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ABSTRACT 

A class of set-valued quasi-variational inequalities is studied in Banach spaces. The concept of QVI was earlier introduced 
by A. Bensoussan and J. L. Lions [4]. In this paper we give a generalization of the existence theorem du to Kano et al [11] 
by proving the existence of a fixed point of the variational selection. 
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INTRODUCTION  

Let B is a reflexive Banach space and B∗  is its topological dual. We assume that  B  has been renormed so that B  and 

B∗  are locally uniformly convex. We denote the duality pairing between B  and B∗  by ,〈⋅〉  whereas 〈⋅〉  stands for the 

norm in B  as well as the associated norm in .B
∗  Let C B⊂  be nonempty, closed, and convex set, and let :K C C⇉� be a 

set-valued map such that for every ,Cν ∈  the set ( )K ν  is a nonempty, closed, and convex subset of .C  Given a 

nonlinear operator F  from B  into B∗  an element ,f B∗∈  the set-valued quasi-variational inequality (QVI) is formulated 

as a problem to find  u C∈  such that ( ) ,u K u∈  and there exists ( )w F u∈  satisfying the variational inequality 

, ( ) ( ), ( )w f v u u v v K uϕ ϕ〈 − − 〉 ≥ − ∀ ∈                                                           (1) 

The above QVI includes many important problems of interest as particular cases. For example, if F  is single valued, then 

(1) recovers the folowing QVI: find  u C∈  such that ( ) ,u K u∈  and 

( ) , ( ) ( ), ( )F u f v u u v v K uϕ ϕ〈 − − 〉 ≥ − ∀ ∈                                                                (2) 

The above problem was introduced by Bensoussan and Lions [4] in connection with a problem of impulse control. A 
general treatment was made by Mosco [14]. If additionally ( )K x C=  for every ,x C∈  then (1) recovers the following 

variational inequality: find x C∈  such that 

( ) , ( ) ( ), .F u f v u u v v Cϕ ϕ〈 − − 〉 ≥ − ∀ ∈                                                             (3) 

Notice that if for every ,x C∈  ( )K x  is a closed and convex cone with its apex at the origin and 0,f =  then equation (1) 

collapses to the generalized complementarity problem: 

Find x C∈  such that 

*( ), ( ) ( ), , 0x K x w F x K x w x∈ ∈ ∩ 〈 〉 =                                                                 (4) 

where ( )K x∗  denotes the positive polar of ( ).K x  

If additionally ( ) ,K x C≡  then (4) recovers the classical complementarity problem (see [7]). 

QVIs turned out to be a powerful modeling tool capable of describing complex equilibrium situations that can appear in 
such different fields as generalized Nash games (see [3, 8, 10], mechanics (see [2, 5, 9], economics (see [10, 15]. We 
refer the reader to the monographs Mosco [14] and Baiochi and Capelo [2] for a more comprehensive analysis of QVIs. 

The objective of this paper is to generalize the result in [12] to the case where *:F B B⇉ is the set-valued pseudo-

monotone operator, ˆ( ) ( , ),F x F x x=  generated by a semi-monotone operator *ˆ : .F B B B× ⇉  

In such a case, our quasi-variational inequality is of the form of the equation (1): 

Find ( )u K u∈  such that for some ( ),w F u∈  

, ( ) ( ), ( )w f v u u v v K uϕ ϕ〈 − − 〉 ≥ − ∀ ∈                                                            (5) 

The technique that will be used to prove the existence of a solution of this QVI is to find fixed points of the associated 
variational selection (see [4, 1,14]). 

The content of this paper will be organized as follows. Section 2 recalls the basic definitions and results for their later use 
in this work. The main result is given in section 3, it deals with an existence theorem for quasi-variational inequalities.  

PRELIMINARIES 

Throughout this paper, B  is a reflexive Banach space and B∗  is its topological dual. By J  we denote the associated 

normalized duality map. We assume that B  has been renormed so that B  and B∗  are locally uniformly convex. We 

denote the duality pairing between B  and B∗  by ,〈⋅〉  whereas .  stands for the norm in B  as well as the associated 

norm in .B
∗  Let C B⊂  be nonempty, closed, and convex, and let :K C C⇉  be a set-valued map such that for every 

,Cν ∈  the set ( )K ν  is a nonempty, closed, and convex subset of .C  

Let *ˆ :F B B B× ⇉  be a given set-valued map, let *:F B B⇉  such that ˆ( ) ( , ),F x F x x=  let : : { }Bϕ → = ∪ ∞ℝ ℝ  be a given 

functional, and let *.f B∈  The domain and the graph of F  are given by ( ) : { | ( ) }D F x B F x= ∈ ≠ ∅  and 
*( ) : {( , ) : ( ), ( )},G F x y B B x D F y F x= ∈ × ∈ ∈  respectively. The strong convergence and the weak convergence in B  as well 

as in B∗  are specified by →  and ,⇀  respectively. 

In this work, we study the following quasi-variational inequality: 
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Find ( )u K u∈  such that for some ( ),w F u∈  we have 

, ( ) ( ), ( )w f v u u v v K uϕ ϕ〈 − − 〉 ≥ − ∀ ∈                                             (6) 

Definition 1: An operator *ˆ :F B B B× ⇉  is called semimonotone, if ˆ( )D F B B= ×  and the following conditions (SM1) 

and (SM2) are satisfied: 

• (SM1) For any fixed v B∈  the mapping ˆ ( , )u F v u→  is maximal monotone form ˆ( ( ,))D F v B=  into .B
∗  

• (SM2) Let u  be any element of B  and { }vn
 be any sequence in B  such that nv v⇀  weakly in .B  

Then, for every * ˆ ( , ),u F v u∈  there exists a sequence *{ }
n

u  in B∗  such that * ˆ ( , )n nu F v u∈  and * *

n
u u→  in B∗  as .n → ∞  

Theorem 1 :[13] 

Let Z  be a reflexive Banach space and let C Z⊂  be nonempty, convex, and closed. Assume that : C CΨ ⇉  is a set-

valued map such that for every ,u C∈  the set ( )uΨ  is nonempty, closed, and convex, and the graph of Ψ  is sequentially 

weakly closed. Suppose that the set ( )CΨ  is bounded. Then the map Ψ  has at least one fixed point in .C  

Definition 2:  Let *:F B B⇉  be a set-valued map. The map F  is said to be: 

� monotone, if , 0u v x y〈 − − 〉 ≥  for all ( , ),( , ) ( ),x u y v G F∈  

� strictly monotone, if , 0u v x y〈 − − 〉 >  for all ( , ),( , ) ( )x u y v G F∈  with ,x y≠  

� m-relaxed monotone, if ,u v x y m x y〈 − − 〉 ≥ −� �  for all ( , ),( , ) ( ),x u y v G F∈  where m 0,>  

� maximal monotone, if the graph of the monotone map F  is not included in the graph of any other monotone map 
with the same domain; 

� coercive, if , ( )u x m x x〈 〉 ≥ � � � �  for all ( , ) ( ),x u G F∈  where :m + +→ℝ ℝ  with lim ( ) .
r

m r
→∞

= ∞  

Definition 3: Let *:F B B⇉  be a set-valued map. 

� The map F  is called pseudo-monotone, if for any sequence ( , ) ( )n nx w G F∈  such that nx x⇀  and 

sup ,im 0,l n nw x x〈 − 〉 ≤  it holds that for each ,y B∈  there exists ( ) ( )w y F x∈  satisfying 

inf , ( ),lim n nw x y w y x y〈 − 〉 ≥ 〈 − 〉  

� The map F  is called generalized pseudo-monotone,if for any ( , ) ( )n nx w G F∈  with nx x⇀  and nw w⇀  such that 

sup ,li ,m n nw x w x〈 〉 ≤ 〈 〉 , we have ( )w F x∈  and , , .n nw x w x〈 〉 → 〈 〉  

� The map F  is said to possess S+  property if for any sequence ( , ) ( )n nx w G F∈  with ( )nx x D F∈⇀  and 

sup ,im 0,l n nw x x〈 − 〉 →  we have .nx x→  

Definition 4: The map F  is called M-continuous relative to ,ϕ  if the following conditions hold: 

• (M1) For any sequence nx C⊂  with ,nx x⇀  and for each ( ),y K x∈  there exists { }yn
 such that 

( ),n n ny K x y y∈ →  and ( ) ( ).ny yϕ ϕ→  

• (M2) For ( )n ny K x∈  with nx x⇀  and ,ny y⇀  we have  ( ),y K x∈  which means that ( )G K  is sequentially 

weakly closed. 

Lemme 1: Let Z  be a reflexive Banach space with Z ∗  as its dual. Let :A Z Z
∗

⇉  be a monotone map with 

( ( )).x int D A∈  Then there exists a constant ( ) 0r r x= >  such that for every ( , ) ( )x w G A∈  and corresponding 

: sup{ | },c w x x r
′ ′= − ≤� � �∣  and ( ) ,w A x′ ′∈ < ∞  we have 

, ( )w x x r w x x r c〈 − 〉 ≥ − − +� � � �  

 

Lemme 2:  Let Z  be a Banach space with Z ∗  as its dual and let { } .nx Z⊂  Suppose that there exists a sequence 

{ }ns +⊂ ℝ  with 0
n

s ↓  such that for every ,h Z ∗∈  there exists a constant Ch  such that , ,n n n hh x s x C〈 〉 ≤ +� �  for every .n  

Then the sequence { }nx  is bounded. 



ISSN 2347-1921            

3585 | P a g e                                                         M a y  2 2 ,  2 0 1 5  

MAIN RESULT 

The main result of this paper is the existence Theorem for quasi-variational inequalities cited as follows: 

Theorem 2: Assume that the following conditions hold: 

ˆ( )
F

A : F̂  is a bounded semi-monotone operator. 

( )Aϕ : : Bϕ →ℝ  is a proper, convex, and lower-semicontinuous functional. 

( ) : ( ( ))CA C int D ϕ⊂ ∂  

K(A ):  K  is M-continuous relative to ϕ  

*( ) : , ( ), ( )
coer s C s

A s B x K xν ν ϕ∈∀ ∈ ∃ ∈∩ < ∞  such that ( )Cy Kν ν∈∀ ∈∪ with y� �  sufficiently large and ˆ ( , )Cw F yν ν∈∀ ∈ ∪ ,  we 

have: 

, ( ) ( )sw s y x y y yϕ σ〈 − − 〉 + ≥ − � � � �                                                      (7) 

Then the set of solutions of the quasi-variational inequality (6) is nonempty and bounded. 

Proof. We will divide the proof into several parts. Our objective is to show that the solution map :S C C⇉  satisfies the 

assumptions imposed on the map Ψ  in Theorem 1. However, instead of assuming that the underlying set C  is bounded, 

we show below that ( )S C  is bounded. We have to show that ( )G S  is sequentially weakly closed. The proof is done in 

five steps. 

Step I. For every Cν ∈ , the set ( )S ν is nonempty. Let Cν ∈  be arbitrary. We will show that there exists ( )x K ν∈  such 

that for some ˆ ( , )w F xν∈ , we have  

, ( ) ( ), ( )w f z x x z z Kϕ ϕ ν〈 − − 〉 ≥ − ∀ ∈                                                     (8) 

Define a set-valued map 
*:T B B⇉  by ( )

ˆ( ) ( , ) ( ) ( )
K

T x F x N x xνν ϕ= + + ∂  where ( )KN ν  is the normal map of ( )K ν . It is 

known that ( )KN ν  is maximal monotone. Since  

( )( ) ( ( ) ( ( )) ( ) ( ( )) ( ( ))KD N int D F int D K int D C int Dν ϕ ν ϕ ϕ∩ ∩ ∂ = ∩ ∂ ⊂ ∩ ∂ ≠ ∅  

we notice that T is a maximal monotone map with ( ) ( )D T K ν= . Hence, we have *( ) , 0R T J Bε ε+ = ∀ > and then  for every 

,n N∈  there exists ( )nx D T∈  such that ( ) ( ),n n nf T x J xε∈ + , where { }nε +⊂ ℝ  is such that 0.
n

ε ↓  Therefore, for  some 

ˆ ( , ),n nw F xν∈  ( ) ( ),n K nv N xν∈   ( )n nu xϕ∈∂  we have ( ),n n n n nf w v u J xε= + + +  which, due to the definitions of 
( ) (.)KN ν  and 

(.)ϕ∂ , implies that 

( ) , ( ( ) for every ( )n n n n nw J x f y x x y y Kε ϕ ϕ ν〈 + − − 〉+ ≥ − ∈                                       (9) 

We claim that { }nx  is bounded. Indeed, if this is not the case, then there exists a subsequence { }nx  such that nx → ∞� �  

as n → ∞ . In view of the above inequality, for every ( ),y K ν∈  we have 

, ( ) ( ), ( )n n n n n nw f x y x J x y x yϕ ε ϕ〈 − − 〉 + ≤ 〈 − 〉 +  

       ( ) ( )n n nx x y yε ϕ≤ − − +� � � � � �  

where the second inequality follows from the properties of the duality map. Let 
*

s B∈  be arbitrary and take S
x  provided 

by coerA . By substituting sy x=  in the above inequality, and using coerA  we obtain  

( ) , ( )

, ( ) ( )

, ( )

n n n n s n

n s n n n s s

n s s

x x w s x x x

s f x x x x x x

s f x x x

σ ϕ

ε ϕ

ϕ

− ≤ 〈 − − 〉 +

≤ −〈 − − 〉 − − +

≤ −〈 − − 〉 +

� � � �

� � � � � �  

because ( )n n n sx x xε −� � � � � �  is positive for nx� �  sufficiently large. Therefore,  

, ( ) , ( )n n n s ss f x x x s f x xσ ϕ〈 − 〉 ≤ +〈 − 〉 +� � � �  
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hence Lemma 2 with : , : ( )n nh s f s xσ= − = � �  and : , ( )s s sC s f x xϕ= 〈 − 〉 +  ensures that { }nx  is bounded. Due to the 

reflexivity of ,B   we extract a subsequence { }nx  converging weakly to some .x  The Minty formulation (see (10) below) of 

(9) reads ( ) , ( ) ( ),z n n nw J z f z x x zε ϕ ϕ〈 + − − ≥ −  for every ( )z K ν∈  and  ˆ ( , )zw F zν∈  and by invoking the Minty formulation 

once again, we obtain (8). 

Step II. The Minty formulation holds. If ( )x K ν∈ satisfies (8), then it is a solution of the following Minty variational inequality 

and vice versa: for every ( )z K ν∈  and for every ˆ ( , )u F zν∈  we have 

 , ( ) ( )u f z x x zϕ ϕ〈 − − 〉 ≥ −                                                                      (10) 

The proof of the statement can be found in F. Giannessi and A. Khan [7]. 

Step III. The set ( )S C  is bounded. This follows from the condition (7) in a similar way as in part (I). 

Step IV. For every  , ( )C Sν ν∈   is closed and convex set. This is a direct consequence of (10) (see Giannessi and A. 

Khan [6]). 

Step V. The graph of the variational selection S  is sequentially weakly closed. Let {( , )} ( )n ny G Sν ⊂  be such that ny y⇀  

and nν ν⇀ . We will show that ( , ) ( ).y G Sν ∈  The set C  being convex and closed is also weakly closed, and consequently 

.Cν ∈  From the containment {( , )} ( ),n ny G Sν ∈  we infer that ( )n ny K ν∈  and that there exists ˆ ( , )n n nw F yν∈  such that 

, ( ) ( )n n nw f z y y zϕ ϕ〈 − − 〉 ≥ − ,  for every ( ).nz K ν∈  

We have (w )n  is bounded because F̂  is bounded. Moreover  let ( )z K ν∈  and ˆ ( , )w F zν∈   by (SM2) there exists 

ˆˆ ( , )n nw F zν∈  such that ˆ .nw w→  

we have  

ˆ ˆ, , , ( ) ( )

ˆ , , , , ( ) ( )

ˆ , , , ( ) ( )

n n n n n n n n n

n n n n n n n n n n

n n n n n n n n n

w y z w y z w f z y z y

w y z w z z w z y f y z z y

w w z y w z z f y z z y

ϕ ϕ

ϕ ϕ

ϕ ϕ

〈 − 〉 ≤ 〈 − 〉 + 〈 − − 〉 + −

= 〈 − 〉 + 〈 − 〉 + 〈 − 〉 + 〈 − 〉 + −

= 〈 − − 〉 + 〈 − 〉 + 〈 − 〉 + −

 

But since ˆ ( , ),n n nw F yν∈  ˆˆ ( , )n nw F zν∈  and by the monotonicity of ˆ ( ,.)F v  for all v B∈  we have ˆ , 0n n nw w y z〈 − − 〉 ≥  and then 

ˆ , , , ( ) ( ).n n n n n n n nw y z w z z f y z z yϕ ϕ〈 − 〉 ≤ 〈 − 〉 + 〈 − 〉 + −  

By taking the limit, we have  

, , ( ) ( )w y z f y z z yϕ ϕ〈 − 〉 ≤ 〈 − 〉 + −  

Which means that: ˆ( ), ( , )z K w F zν ν∀ ∈ ∀ ∈   we have , ( ) ( )w f z y z yϕ ϕ〈 − − 〉 ≥ −  and by using the Minty formulation, we 

deduce that ( , ) ( ).y G Sν ∈  
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