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ABSTRACT 

This paper aims to establish limit theorems on the lag increments of a centered Gaussian process on a probability space 
in a general form under consideration of some convenient different statements.   
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 1. INTRODUCTION  

Limit theorems on the increments of Wiener processes and Gaussian processes have been investigated in various 

directions by many authors [1], [2], [4], [6] and [7], etc. According to the previous results, we are interested specifically in 

Choi, Y. K. et al. [4] whose results are the following limit theorem on the lag increments of a Gaussian process. 

Theorem 1.1 ([4]).  

Let { ( ), 0 }X t t  be a centered Gaussian process on the probability space ( , , )F P   with (0) 0X   and 

stationary increments 
2 2[{ ( )- ( )} ] (| - |)E X t X s t s , where ( )y  is a function of 0y  . Then 

0

( ) ( )
1, . .,

( , )
lim sup sup

t TT

X T X T t
a sd T t 

 
  

0 0

( ) ( )
1, . .,

( , )
lim sup supT t T s t

X T X T s
a sd T t    

 
  

0

( ) ( )
1, . .,

( , )
lim sup supT t T t s T

X s X s t
a sd T t    

 
  

and 

0 0

( ) ( )
1, . .

( , )
lim sup sup supT t T t s T h t

X s X s h
a sd T t      

 
 , 

where 
1/2( , ) [2 ( log ( / ) log log )]T td t T t t  . 

The main aim of this paper is to reformulate these previous results throughout studying the almost sure behaviour in a 

general form using ( , )T td   with 0 1  instead of ( , )T td ,  where 

1/22( , ) [2 ( )( log ( / ) (1 ) log log log log ) ]T td t T t T t      , 

with 0 1 , log log (max( ,1))t t  and log log log log (max( , ))t t e . For some 0 0C  , let 

0( ) tt C   , 0 1   .  

 

2.  MAIN RESULTS 

In this section we are going to restudy the results obtained in Theorem 1.1 and we give our main results regarding to 

( , )T td   with ]0, 1[ .  

Theorem 2.1  

For a centered Gaussian process { ( ), 0 }X t t   on the probability space ( , , )F P   with (0) 0X   and 

stationary increments 
2 2[{ ( )- ( )} ] (| - |)E X t X s t s , where ( )y  is a function of 0y  , we have 

0

( ) ( )
1, . .,

( , )
lim sup sup

t TT

X T X T t
a sd T t 

 
                      (1) 
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0 0

( ) ( )
1, . .,

( , )
lim sup supT t T s t

X T X T s
a sd T t

    

 
                               (2) 

            
0

( ) ( )
1, . .,

( , )
lim sup supT t T t s T

X s X s t
a sd T t

    

 
                      (3) 

and 

       
0 0

( ) ( )
1, . .

( , )
lim sup sup supT t T t s T h t

X s X s h
a sd T t

      

 
                   (4) 

Remark. Theorem 1.1 is immediate by putting 1   in Theorem 2.1.  

 

3.  PROOF 

Before proving Theorem 2.1, we shall first give the following lemmas. It is interesting to compare (1) with the law of the 

iterated logarithm 

            

( )
1, . .,

( , )
lim sup

T

X T
a sd T T

                   (5) 

Here (5) follows by setting Ta T  in the next Lemma 3.1.  

Lemma 3.1 ([8]).  

Let { ( ), 0 }X t t   be a centered Gaussian process with 

0
22 0( ) [{ ( )- ( )}] hh E X t h X t C 

     for 0 1  

 

and a constant 0 0C  . Let 0 Ta T  be a function of T  for which 

(i) Ta  is non-decreasing,                   

(ii) / TT a  is non-decreasing. 

Then 

( ) ( ) 1, . .,lim sup T T
T

X T X T a a s


     

and 

    
0 0

( ) ( ) 1, . .,lim sup sup sup Tt T a s aT T T
X t s X t a s

    

     

where 

1/22[2 ( )( log ( / ) log log ) ]T T Ta T a T 
    . 
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Lemma 3.2 ([3] and [5]).  

Let { ( ), }X t t    be an almost surely continuous Gaussian process with 0{ ( )}E X t   and 

2 2[{ ( )- ( )} ] ( )E X t h X t t   , 1( )( ) tt t     for some 0 , where 1( )t  is a non-decreasing function. 

Then, for any 0  , there exist positive  constants C C   and a  such that 

2

0 0
{ ( ) ( ) ( )} exp( )

2
sup sup
s h T h a

CT
P X s X s h a a    


    

 
 

for every positive real numbers   and a a . 

 

Now, we can begin to prove the mentioned results of Theorem 2.1. 

 

Proof of Theorem 2.1 

Firstly, from Lemma 3.1 we have 

     
0

( ) ( ) ( )
1, . .,

( , ) ( , )
lim sup sup lim sup

t TT T

X T X T t X T
a sd T t d T T   

 
            (6) 

The result (1) follows from (6) when we establish that 

0 0

( ) ( )
1, . .

( , )
lim sup sup supT t T t s T h t

X s X s h
a sd T t

      

 
          (7) 

Take 0  so that 
22 / ( (2 ) :1 21 2(1 ) ) 

         for any small 0  . For 1,2,3,...n  , let 

...,-2,-1,0,1,2,...,  nk k , where [ ( 1)/ log ]nk n   . Set 
n

nT e , 
k

kt    , [1/ log ]k    and 

1/[ ( 1 log ) / log ]nk n n      .  

When 1n nT T T


  , we have 

11

1 1

0 0 0

10 , 0

( ) ( ) ( ) ( )
( , ) ( , )

( ) ( )
( , )

sup sup sup sup sup sup sup

sup sup sup

n k

n k

n nk k

n n k

t t tt T t s T t s Th t k k h t

k k s h s T h t

X s X s h X s X s h
d T t d T t

X s X s h
d T t

 





 

           

       

   


 


 

Put 
0

( ) ( )
( , )

sup supn k t s T h t

X s X s h
A d T t   

 
 , we find that 

             
0 0 1

( ) ( )
.

( , )
sup sup sup sup

n
n kt T t s T h t k k

X s X s h
Ad T t        

 
                 (8) 

Let 
1 11 1 0

 



         . From Lemma 3.2, we have 
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1

1/2

1
2

21

1 1

1

1

1 10 , 0

( ) ( )
{ 1 } [

( )
( )(1 ) {2(log ( ) log log (1 ) log )} ]

( )
(1 ) ( )exp ( ) {2(log( ) (1 ) log ) log }
2 ( )

sup sup

( )

( )(

k

k n
n k

k k

n k n
n k

k k k

n

k

n k
n k s h s T h t

X s X s h
P A P t

t T T tt t
T t TC T tt t t

TTC t







 





     

 
   




     



  
    

  


21 2(1 )

2

1 1 2
1

1

(log ) (log )

(log ) (log ) ( )
.

)

( )( )

n n k

k

n n kn

k k

T t
t

T T tTC t t

 
  

 


   


 





 

Then, 

             

(1 2 ) (1 )
1 21

1

( ))
{ 1 } log log .( ) ( ) ( )n

n k
k

n k
TP A C T tt

  
  

 



                   (9) 

Hence, for k k   , we obtain 

(1 2 ) (1 )

1 1

(1 2 ) (1 ) (1 2 ) (1 )

1 1 0
0

1 1

(1 2 ) (1 ) (1

{ 1 } log

log log

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

n
nn n

k k k k k

kn n
n nn n k

k k k

n
n

kn k

n k

n n

TP A C Tt

T TC T C Tt t

eC C e

 



  
 



 
   

      
  

 

  
 

 

 

  





 

   

   

 

 


   

   

  1

2 ) (1 )

1( )n k e 



  

 

 

Then, 

   1 { 1 }n
k k

n kP A





 

                                                    (10) 

For the case 1nk k k   , we have, as in (9), the following inequality 

(1 2 ) (1 )
1 2( ))

{ 1 } log log( ) ( ) ( )n
n k

k
n k

TP A C T tt

  
  

                               (11) 

Note that, if nk k k
   , then 

1 1
1 1/ .

log
( ) ( ) ( )( )

nk n
k

n

Tt T
  

 

  
    

From (11), it follows that 

(1 2 ) (1 )/
(1 2 )

1 1 1 1 /

(1 2 ) (1 ) (1 2 ) (1 )
1 2 1 2

1 1 1 1

1( ) ( )

(log )
{ 1 } log

(log )

( ) ( )

( )n n

n n

k k
kn k k n k k

k k
n k k n k k

n
n k

n

T
P A C t

T

C n k C n k

 

 

   

     

       

      
             

     




   

 

   

   

 

Then, 
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                    1 1 { 1 }nk
n k k n kP A





  
     .                      (12) 

For the case n nk k k    and for n  large enough, we have 

1
1

1
2

1 , ( log ) log 2 : .k n n nnnT t T k k n k

            

Using (11) again, thus we can obtain 

(1 2 ) (1 )/ (1 2 )1
11 1 1 1

1
1

(1 2 ) (1 )/ 1 22
1

(1 2 ) (1 )/ 1 2
1

1
1

( )

( )

( )

{ 1 } (log ) log

( 1) (log ) (log )

( ) ( )n n

n n

k k n
n kn k k n k k

k

n n n nn

nn

n

n k
TP A C T tt

C k k T T

C k n n

C n

          
      



        



         



  



   

   





   





 ,

 

i.e, 

                       1 1 { 1 }n

n

k
n k k n kP A

  
     .                                (13) 

Finally, merging (10), (12) and (13) together, we get 

1 11 1

1

1 1

1
1 1

{ sup 1 } { 1 }

{ 1 }

{ 1 }

{ 1 } .

n n

n

n

n

n nk k k k

n
k k

k
n k k

k
n k k

n k n k

n k

n k

n k

P A P A

P A

P A

P A





 

 
     




 



  

 

  

      

   

   

     

  

 

 

 

 

By the Borel-Cantelli, the result (7) follows from (8).  

The result (4) follows also from (7) if we show that 

      
0 0

( ) ( )
1, . .

( , )
lim inf sup sup sup

t T t s T h tT

X s X s h
a sd T t     

 
                        (14) 

For 1,2,3,...n  , set n
n eT  , and let T  in 1, ][ n nT T


. Then 

1/2

1/2

0 10 1

1 1

1

( ) ( ) ( ) ( 1)
( , ) ( ,1)

( ) ( 1) ( ,1)
[ ]

( ,1) ( ,1)

( ) ( 1)
[ ]

1 log ( 1)(1) 2

[ ] .
1 log ( 1)

sup sup sup sup

sup

sup

n

n

n

n

t T t s T s Th t n

n
s T n n

s T

X s X s h X s X s
d T t d T

X s X s d T
d T d T

X s X s n
n nn

nB n n
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According to [4], the following result can be found 

1lim inf n
n

B


 .                    (15) 

So, we have 

1/2[ ] 1
1 log ( 1)

n
n n 
  

,   at  n  .                  (16) 

Thus the result (14) follows from (15) and (16). Moreover, the results (2) and (3) follow immediately from (1) and (4). 
 

4.  CONCLUSION  

Some results of limit theorems on the lag increments of a Gaussian process to a general case are developed under 

consideration ( , )T td   with 0 1 . These results can be considered as a generalization of some previous results 

to Gaussian process. 
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