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ABSTRACT 

Passive dynamic walking is an essential development for the biped robots. So the focus of our work is a systematic 
analysis of the passive walk of a planar biped robot on an inclined slope. The dynamics of passive biped robot is only 
caused of gravity. The biped robot with two point masses at kneeless legs and a third point mass at the hip-joint is 
kinematically equivalent to a double pendulum. In this paper, we represent a general method for developing the equations 
of motion and impact equations for the study of multi-body systems, as in bipedal models. The solution of this system 
depends on the initial conditions. But it is difficult to find the proper initial conditions for which the system has solutions, in 
other words, the initial conditions for which the robot can walk. In this paper, we describe the cell mapping method which 
able to compute the feasible initial conditions for which the biped robot can move forward on the inclined ramp. The results 
of this method described the region of feasible initial conditions is small and bounded. Moreover, the results of cell 
mapping method give the fixed of Poincare map which explains the symmetric gait cycle of the robot and describe the 
orientation of legs of robot. 
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1. INTRODUCTION 

In the recent years, the demand of legged robots is increase due to their capability of working in the hazardous 
atmosphere and on the rough terrain is better than wheeled vehicles. But the biped robots have higher mobility than other 
vehicles, mainly when walking on rough terrains, inclined slope and in location with obstacles.Hence, a huge number of 
researches have been done on the walking of bipedal robots. 

The model of biped robots has been inspired by the most complicated and flexible biped recognized to human. For that 
reason, most of the models built up bear a strong similarity to the human body. The model of passive walking for biped 
robot was first introduced by MaGeer [1][2] , where a simple biped robot is designed. He observed that the biped robot can 
present a stable walking on a range of thin slopes. These robots are kinematically similar to double inverted pendulum[3]. 
Mochon and MacMahon [4] studied that the mathematical models for such biped robots are basically hybrid, consisting of 
ordinary differential equations to describe the swing phase of the walking motion, and a discrete map to model the impact 
when the leg touches the ground. Their concept is extended by Goswami [5]. One of the main problems of biped robot to a 
wider application of legged robot is their lack of stability. The stability of analysis walking of biped robot was done by Shah 
and Yeolekar[6][7] . Garcia, Chatterjee, Ruina, and Coleman [8] explained that the passive dynamic walker can have 
stable cyclic motion when walking on the inclined slope. They observed that even a very small disturbance may result in 
failure. This guides us to think that the range of allowable initial conditions for the cyclic solution. Therefore in this paper, 
we will examine feasibility of initial conditions for symmetric gait cycle using cell-mapping method [9][10]. 

2. MATHEMATICAL MODELING 

This model is the simplest model of passive dynamic robots, consisting two rigid legs pivoted at the hip, three point-
masses: one at the hip and other two at the centre of mass of legs. The feet have plastic (no-slip, no-bounce) collisions 
with the surface of inclined ramp, except for the period of forward swinging, as geometric interference is ignored. The 
mathematical modeling of biped robots is necessarily hybrid, consisting of ordinary differential equations to describe the 
swing phase of the walking motion, and a discrete map to model the impact when the leg touches the ground. Biped 
robots exhibit periodic behavior. Distinct events, such as contact with the ground, can act to trap the evolving system state 
within a constrained region of the state space. Therefore Limit cycles (periodic behavior) are often created in this way. 

2.1 Differential Equation 

The working model of a passive dynamic bipedal robot (PDBR) is shown in Figure 1 schematically. [6][7]. 

 

 

 

 

 

 

 

 

Fig 1: A Passive Dynamic Biped Robot 

The following Table 1 lists physical parameters of this model.  

Table 1.List of parameters of PDBR model 

Symbols Parameters 

st Angle of stance leg with vertical upward axis 

sw Angle of swing leg with vertical upward axis 

a  The length of rod from the CM of Stance (and Swing)leg to the foot 

b  The length of rod from the CM of Stance (and Swing)leg to the Hip 

l  Length of rod== a + b 

m  Mass of leg 

M Mass of Hip 

  Slope of ramp 

 Inter legs Angle 
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Using Euler-Lagrange equations, the dynamic equation of the robot can be derived as:  

     , , 0M N G                (1) 

where 
T

st sw      ,  M   is the inertia matrix, the matrix  ,N    contains terms of centrifugal and coriolis forces,

 ,G   is the gravity term as given below[6][7]: 
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2.2 Linearized State Space Model 

The above non-linear model can be linearized at the equilibrium point  0 0.035 0.035 0 0
T

e  , the equation becomes 

0 0 0
e e

M G    

The linearized state space model can be written as 

      y Ay         (2) 

where 0ey x  , 
T
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  and the elements of matrix A are: 
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. 

2.3 Heel strike and Impact equations 

The heel strike occurs when the swing leg touches the ramp surface. We assumed that the heel strike to be inelastic and 
without slipping, and the stance-leg lifts from the ramp without interaction. This impact occurs when the geometric 
condition, the y-coordinate of a foot of the swing leg will become a zero is met, that is,  

    0st sw        

and the angular velocities of the both are equal in the opposite direction at two leg stance point when heel strike occurred 
and so 

0st sw     

The angular momentums are conserved at the time of impact for the new stance-leg about the foot and the hip of PDBR 
(see Figure 2).[6][7] 
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Fig 2:[a] Directions of angular momentums about the swing leg’s foot and the hip before the heel strike [b] 
Directions of angular momentums about the new stance leg’s foot and after the heel strike.   

The conservation law of the angular momentum gives to the following compressed equation between the pre- and post-
impact angular velocities after the heel strike: 
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After the heel strike the swing leg will become the new stance and the stance leg will be the new swing leg that change 
can be computed using the following equation: 

      J where
0 1

1 0
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J . 

Therefore the transition matrix of the state-space system can be written as: 
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2.4 The complete PDBR model 

The complete biped passive dynamic robot can be described as follows [6][7]:  

 

 

 

 

 

 

 

 

 

 Fig 3: Walking steps for PDBR 

Motion Equation: y Ay  
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Impact Equation:   y T y when     0      st sw and 0   
st sw . 

3. ANALYTICAL PROCEDURE 

The system of PDBR is hybrid of two discrete events: motion equation (2) and transition function (3) [6]. The analytical 
solution of the differential equation of motion (2) is given by the explicit equation   

   0 Aty t e y  

wherey0 is the initial state-space position of PDBR. If  denotes the time of heel strike when the foot of swing leg touch the 
ramp-surface, then the state-vector y at the time of heel strike, can be expressed as   

  0

  Ay e y . 

At the time of impact, the legs will change their positions, that is, the swing leg will be the stance leg and the stance will 
become swing leg for the next step. This change will be done by the transition equation (3) and the state-space position of 
PDBR for the next step can be worked out by 

            y T y . 

Considering the state-vector  y  as the initial position vector for the next step and repeating the above process with it.  

4. CELL MAPPING METHOD 

Cell mapping method is a new approach for the study of dynamic behavior of a nonlinear system (Hsu, 1987). The cell 
mapping method is based on the cells which are the rectangular boxes in state space. Considering the dynamic system 

with Euclidean system R
n
(n 2) and the domain of interest  is restricted to a bounded subset of the state space which 

contains feasible initial conditions for the dynamic system. Let  1 2  nX x x x  be the state space vector. The cell 

of state space is generated by dividing each coordinate axis (xi) of the domain of interest () into a large number (ni) of 

equal intervals with respect to lower  l

ix  and upper boundaries  u

ix . So the size hi of each interval is
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
u l

i i
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N n number of cells. The region excluding  of R
n
 is called the sink cell 

and  is called regular cell region. The mapping C: MM   1 2, , ,  NM n n n  maps a set of positive integer to a set of 

positive integer where each positive integer represents the cell number. This map C is called cell mapping which gives 
image of each cell with respect to the dynamical system. The notation C(i) = j shows that the evolution of i

th
 cell is the j

th
 

cell under the map C and C
m

(i) = k showsthat the evolution of i
th

 cell after m times application of a map C on the i
th

 cell. A 
cell i is called fixed cell if C(i)=i  and if C

P
(i)=i, then it is called P

th
 periodic cell. The cells which are not fixed or periodic are 

transient cells. If transient cell reach to fixed cell or periodic cell after some steps, then those cells generate the basin of 
attraction for fixed cell or periodic cell.  The cell mapping method is as accurate as discretization. 

5. RESULTS OF CELL MAPPING METHOD 

The cell mapping method is applied to the robot with the following values of parameters: 

Table 2.List of values of parameters of biped robot 

Notation Parameters Values 

a  The length of rod from the CM of Stance (and Swing)leg to the foot 0.5 m 

b  The length of rod from the CM of Stance (and Swing)leg to the Hip 0.5 m 

l  Length of rod= a + b 1 m 

m  Mass of leg 5 kg 

M Mass of Hip 10 kg 

α Slope of ramp 2

deg 

5.1 Feasible initial conditions 

By the physical laws of conservation, the state space has only two independent variables 


and  after the first heel-

strike. So the Poincare section is of dimension 2. Furthermore, the passive dynamic biped robot is walking on the inclined 

ramp, so it walks forward only when 0  and 0  . Appling cell mapping method on the state space by considering  
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the above conditions, the state space plane is divided into three regions; first is a region of feasible conditions when  

5.8 4.63



   


for which robot can walk, second is a region of forward falling when ( 5.8)    because after passing 

the mid-stance the swing foot does not go up from the ground level and third is the region of backward falling when 

( 4.63)    because the robot does not have enough initial velocity to begin the walk on the ramp. Moreover, the 

analysis also suggested that the feasible initial conditions for which the biped robot can walk are found only when 
6


   

for the ramp slope α=0.0349 rad.(2deg.). The general behavior of the robot is shown the Figure 4. 

 

Fig 4: Feasible Initial conditions  ,   for the passive dynamic biped robot with respect 

tostance leg angle  and stance leg angular velocity    jointly with region of 

forward falling and backward following at a ramp slope of  = 0:0349 rad. (2deg). 

5.2 Fixed Point Analysis 

The robot can walk if it begins to start walk within the region of feasible initial conditions but the walking of 
biped robot is stable if it has the symmetric gait. The symmetric gait means repetitive motion of the robot. It 
can be calculated by finding the fixed point of Poincare map 

   1    Aτ

i i iy P y e T y  

Applying the cell mapping method on the region of feasible initial conditions, we got fixed point (0.0360, 0.1871). The 
symmetric gait cycle of the robot is shown in the Figure 5(a) and the angular flow of stance leg and swing leg are shown in 
the Figure 5(b) with respect to a fixed point.[6]    

   

 

 

 

 

 

 

 

 

 

Fig 5: (a) Symmetric gait of fixed point (0.0360,-0.1871) (b) Angular Flow of Stance leg and Swing 
leg during walking of passive biped robot on the inclined ramp at α=0.0349 for the fixed point. 

                                                                                                            
(a)                                                                    (b) 
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6. CONCLUSION AND DIRECTION FOR THE FUTURE 

A passive dynamic biped robot without keen is an unactuated system. In this paper, we have described the 
theory of cell mapping method which can be used to find the regions of state space where robot can walk 
and also where fails to walk.  Moreover, it can also compute the fixed point of Poincare map which gives the 
symmetric gait cycle for biped robot.  In the future study, we will use the method to estimate the stability of 
symmetric gait cycle of linear and non linear model of biped robot. 
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