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ABSTRACT: In this paper, we will introduce the concept of weakly commuting and variants of weakly commuting 

mappings (R-weakly commuting, R-weakly commuting of type (Af), type (Ag), type (P) mappings) for triplet in fuzzy metric 
spaces. Secondly, we introduce the notion of weakly compatibility and its variants weakly f-compatible maps and weakly 
g-compatible maps. At the end, we prove common fixed point theorems for a pair of weakly compatible map and their 
variants, which generalize the results of various authors present in fixed point theory literature. Our result is validated wi th 
a suitable example. 
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INTRODUCTION 

Fixed point theory has been remained an important area of research for mathematicians. From Banach contraction 
principle to upto now much have been invented, applied, generalized in this particular direction. After a long research in 
fixed point theorems and their applications focus is now on coupled and tripled fixed point theory. In 2006, Bhaskar and 
Lakshmikantham [1] discussed the mixed monotone mappings and gave some coupled fixed point theorems which can be 
used to discuss the existence and uniqueness of solution for a periodic boundary value problem.   

The concept of tripled fixed point has been introduced by Berinde and Borcut in 2011. In their manuscript, some new 
tripled point theorems are obtained using the mixed g-monotone mapping. Their results generalize and extend the 
Bhaskar and Lakshmikantham’s research for nonlinear mappings. Moreover, these results could be used to study the 
existence of solutions of a periodic boundary value problem involving y = f(t, y, y).  

It is well known that a fuzzy metric space is an important generalization of the metric space. Many authors have 
considered this problem and have introduced it in different ways. For instance, George and Veeramani [11] modified the 
concept of a fuzzy metric space introduced by Kramosil and Michalek [18] and defined the Hausdorff topology of a fuzzy 
metric space. There exists considerable literature about fixed point properties for mappings defined on fuzzy metric 
spaces, which have been studied by many authors (see [5,7,8,13-19]). Zhu and Xiao [21] and Hu [13,14] gave a coupled 
fixed point theorem for contractions in fuzzy metric spaces, and Fang [7, 8] proved some common fixed point theorems 
under φ-contractions for compatible and weakly compatible mappings on probabilistic metric spaces. 

In this paper, we give a new tripled fixed point theorem under weaker conditions than in [17] and give an example, which 
shows that the result is a genuine generalization of the corresponding result in [17]. 

2.PRELIMINARIES   

Before proceeding towards our main result we will give some preliminaries: 

Henceforth, X will denote a non-empty set and X
3
 = X × X × X. Subscripts will be used to indicate the arguments of a 

function. For instance, F (x, y, z) will be denoted by Fxyz  and M(x, y, t) will be denoted by Mxy(t). Furthermore, for brevity, 
g(x) will be denoted by gx, metric space will be denoted by MS. 

Definition 2.1 [17] Let (X, d) be a MS. A mapping f: X → X is said to be Lipschitzian if there exists k ≥ 0 such that d(fx, 

fy) ≤ kdxy for all x, y ∈ X. The smallest k (denoted by kf) for which this inequality holds is said to be the Lipschitz constant 
for f. A Lipschitzian mapping f: X → X is a contraction if kf < 1. 

Definition 2.2 [12] A triangular norm (also called a t-norm) is a map ∗: [0, 1]
2
 → [0, 1] that is associative,commutative, 

nondecreasing in both arguments and has 1 as identity. For each a ∈ [0, 1], the sequence   is defined 

inductively by ∗
1
a = a and ∗

n
a = (∗

n−1
a) ∗ a. A t-norm ∗ is said to be of H-type if the sequence is 

equicontinuous at a = 1, i.e., for all ε ∈ (0, 1), there exists η ∈ (0, 1) such that if a ∈ (1 − η, 1], then ∗
m
a > 1 − ε for all m ∈ 

N. 

The most important and well-known continuous t-norm of H-type is ∗ = min, that verifies min (a, b) ≥ ab for all a, b ∈ [0, 1]. 

The following result presents a wide range of t-norms of H-type. 

Lemma  2. 3 Let δ ∈ (0, 1] be a real number and let ∗ be a t-norm. Define ∗δ as x ∗δ y = x ∗ y, if max(x, y) ≤ 1 − δ, and 

x ∗δ y = min(x, y), if max(x, y) > 1 − δ. Then ∗δ is a t-norm of H-type. 

Definition 2. 4 [18] A triplet  (X,M, ∗) is called a fuzzy metric space (in the sense of Kramosil and Michalek; briefly, a 

FMS) if X is an arbitrary non-empty set, ∗ is a continuous t-norm and M : X×X×[0,∞) → [0, 1] is a fuzzy set satisfying the 

following conditions, for each x, y, z ∈ X, and t, s > 0: 

(i) Mxy(0) = 0; 

(ii) Mxy(t) = 1 if and only if x = y; 

(iii) Mxy(t) = Myx(t); 

(iv) Mxy(·) : [0,∞) → [0, 1] is left continuous; 

(v) Mxy(t) ∗Myz(s) ≤ Mxz(t + s). 

In this case, we also say that (X, M) is a FMS under ∗. In the sequel, we will only consider FMS verifying: 

(vi) limt→∞Mxy(t) = 1 for all x, y ∈ X. 

Lemma 2. 5 

 [17] Mxy(·) is a non-decreasing function on [0,∞). 

FMS is said to be continuous at a point x0 ∈ X if, for any sequence {xn} in X converging to x0, the sequence {gxn} 

converges to gx0. If g is continuous at each x ∈ X, then g is said to be continuous on X. As usual, if x0 ∈ X, we will denote 

g−1(x0) = {x ∈ X: gx = x0}. 

Now, we will define fixed point, coincidence and weakly compatibility and its variants for the case of triplet. 
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Definition 2. 6. An element (x, y, z)   X × X × X is called a tripled fixed point of F: X × X × X → X if F (x, y, z) = x, F (y, 

z, x) = y, and F (z, x, y) = z. 

 Definition 2.7. An element (x, y,z)  X× X× X is called a tripled coincidence point of mappings   F: X × X× X → X and 

g: XX if 

F(x,y,z) = g (x), F (y,z,x) = g (y) and F (z,x,y) = g (z). 

In 1994, Mishra [20] introduced the concept of compatible mappings in fuzzy metric spaces akin to the concept of 
compatible mapping in metric spaces, see [8]. In 1994, Pant [21] introduced the concept of R-weakly commuting maps in 
metric spaces. Later on, Vasuki [28] initiated the concept of non compatible of mapping in fuzzy metric spaces and 
introduced the notion of R-weakly commuting mappings in fuzzy metric spaces and proved some common fixed point 
theorems for R-weakly commuting maps in the fuzzy metric space. Further, Pathak et al. [22] generalized the concept of 
R-weakly commuting maps of type (Ag) and type (Af) as follows. 

Definition 2.8 A pair of self-mappings (f,g) of a fuzzy metric space (X,M,∗) is said to be 

i. weakly commuting if M(fgx,gfx,t) ≥ M(fx,gx,t). 

ii. R-weakly commuting if there exists some R > 0 such that 

M(fgx,gfx,t) ≥ M(fx,gx,t/R). 

iii. R-weakly commuting mappings of type (Af) if there exists some R > 0 such that 

M(fgx,ggx,t) ≥ M(fx,gx,t/R). 

iv. R-weakly commuting mappings of type (Ag) if there exists some R > 0 such that 

M(gfx,ffx,t) ≥ M(fx,gx,t/R). 

In 2006, Imdad and Javid Ali [15] introduced the definition of R-weakly commuting mappings of type (P) as follow. A pair of 
self-mappings (f,g) of a fuzzy metric space (X,M,∗) is said to be R-weakly commuting mappings of type (P) if there exists 

some R > 0 such that 

M(ffx,ggx,t) ≥ M(fx,gx,t/R), for all x ∈ X and t > 0. 

Now we introduce the following notions for tripled mappings. 

Definition 2.9 The mappings f : X × X× X → X and g : X → X are said to be weakly commuting if 

M(f(gx,gy,gz),gf(x,y,z),t) ≥ M(f(x,y,z),gx,t), 

M(f(gy,gz,gx),gf(y,z,x),t) ≥ M(f(y,z,x),gy,t) 

M(f(gz,gx,gy),gf(z,x,y),t) ≥ M(f(z,x,y),gz,t) 

for all x,y,z in X and t > 0. 

Definition 2.10 The mappings f : X × X× X  → X and g : X → X are said to be  

(i) R-weakly commuting if there exists some R > 0 such that 

M(f(gx,gy,gz),gf(x,y,z),t) ≥ M(f(x,y,z),gx,t/R), 

M(f(gy,gz,gx),gf(y,z,x),t) ≥ M(f(y,z,x),gy,t/R) 

M(f(gz,gx,gy),gf(z,x,y),t) ≥ M(f(z,x,y),gz,t/R). 

for all x,y,z in X and t > 0. 

 (ii) R-weakly commuting maps of type (Af) if there exists some R > 0 such that M(f(gx,gy,gz),ggx,t) ≥ M(f(x,y,z),gx,t/R), 

M(f(gy,gz,gx),ggy,t) ≥ M(f(y,z,x),gy,t/R) 

M(f(gz,gx,gy),ggz,t) ≥ M(f(z,x,y),gz,t/R). 

for all x,y,z in X and t > 0. 

 (iii) R-weakly commuting maps of type (Ag) if there exists some R > 0 such that 

M(gf(x,y,z),f(f(x,y,z),f(y,z,x),f(z,x,y),t) ≥ M(f(x,y,z),gx,t/R), 

M(gf(y,z,x),f(f(y,z,x),f(z,x,y),f(x,y,z),t) ≥ M(f(y,z,x),gy,t/R) 

M(gf(z,x,y),f(f(z,x,y),f(x,y,z),f(y,z,x),t) ≥ M(f(z,x,y),gz,t/R). 

for all x,y,z in X and t > 0. 

(iv) R-weakly commuting maps of type (P) if there exists some R > 0 such that 

M(f(f(x,y,z),f(y,z,x),f(z,x,y), ggx,t) ≥ M(f(x,y,z),gx,t/R), 
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M(f(f(y,z,x),f(z,x,y),f(x,y,z), ggy,t) ≥ M(f(y,z,x),gy,t/R) 

M(f(f(z,x,y),f(x,y,z),f(y,z,x), ggz,t) ≥ M(f(z,x,y),gz,t/R). 

for all x,y,z in X and t > 0. 

Definition 2.11 The mappings F and g where F: X × X × X → X and g: XX   are said to be weakly compatible if 

F(x,y,z) = g (x), F (y,z,x) = g (y) and F (z,x,y) = g (z)  implies that 

 gF(x, y, z) = F(gx, gy,gz), gF(y, z, x) = F(gy, gz, gx) and gF(z, x,y) = F(gz, gx,gy)   for all x, y, z  X, that is, the mappings 

commute at coincidence point. 

Remark 2.12 It is easy to prove that if F and g are compatible, then they are weakly compatible, 

but the converse need not be true. See the example in the next section. 

Definition 2.13 The mappings f : X × X × X → X and g : X → X are said to be weakly f-compatible if either 

 = f(x,y,z),   = f(y,z,x),  = f(z,x,y), 

or 

lim n→∞ggxn = f(x,y,z), lim n→∞ggyn = f(y,z,x), lim n→∞ggzn = f(z,x,y). 

whenever {xn} and {yn} are sequences in X such that lim n→∞ f(xn,yn,zn) = lim n→∞ g(xn) = x,  

lim n→∞ f(yn,zn,xn) = lim n→∞ g(yn) = y, lim n→∞ f(zn,xn,yn) = lim n→∞ g(zn) = z. 

and 

lim n→∞ f(gxn,gyn,gzn) = lim n→∞f( ), = f(x,y,z), 

lim n→∞ f(gyn,gzn,gxn) = lim n→∞f( ), = f(y,z,x), 

lim n→∞ f(gzn,gxn,gyn) = lim n→∞f( ), = f(z,x,y). 

for some x,y,z ∈ X. 

Definition 2.14 The mappings f : X × X× X → X and g : X → X are said to be weakly g-compatible if either 

lim n→∞ f(gxn,gyn,gzn) = gx, lim n→∞ f(gyn,gzn,gxn) = gy and lim n→∞ f(gzn,gxn,gyn) = gz 

or 

 lim n→∞f( ), = gx, 

 lim n→∞f( ), = gy, 

lim n→∞f( ), = gz. 

whenever {xn} and {yn} are sequences in X such that lim n→∞ f(xn,yn,zn) = lim n→∞ g(xn) = x,  

lim n→∞ f(yn,zn,xn) = lim n→∞ g(yn) = y, lim n→∞ f(zn,xn,yn) = lim n→∞ g(zn) = z. 

and 

lim n→∞ gf(xn,yn,zn) = lim n→∞ gg(xn) = gx,  

lim n→∞ gf(yn,zn,xn) = lim n→∞ gg(yn) = gy, lim n→∞ gf(zn,xn,yn) = lim n→∞ gg(zn) = gz. 

for some x,y,z ∈ X. 

3. MAIN RESULTS 

Recently, we have proved the following results for tripled fixed point in fuzzy metric spaces: 

Theorem 3.1 [17] Let ∗ be a t-norm of H-type such that s ∗ t ≥ st for all s, t ∈ [0, 1]. Let k ∈ (0, 1) and a, b, c ∈ [0, 1] be 

real numbers such that a + b + c ≤ 1, let (X,M, ∗) be a complete FMS and let F : X
3
 → X and g : X → X be two mappings 

such that F(X
3
)   g(X) and g is continuous and F and g are compatible. 

Suppose that for all x, y, z, u, v,w ∈ X and all t > 0, 

MFxyzFuvw(kt) ≥ Mgxgu(t)
a
 ∗Mgygv(t)

b
 ∗Mgzgw(t)

c
.                                                                                 

Then there exists a unique x ∈ X such that x = gx = Fxxx. In particular, F and g have, at least, one tripled coincidence point. 

Furthermore, (x, x, x) is the unique tripled coincidence point of F and g if we assume that g−1(x0) = {x0} only in the case 
that F ≡ x0 is constant on X

3
. 
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In this result, in order to avoid the indetermination 0
0
, we assume that Mgxgu(t)

0
 = 1 for all t > 0 and all x, y ∈ X. 

Now we are ready to prove our results for weakly compatible mappings. 

Theorem 3.2 Let ∗ be a t-norm of H-type such that s ∗ t ≥ st for all s, t ∈ [0, 1]. Let k ∈ (0, 1) and a, b, c ∈ [0, 1] be real 

numbers such that a + b + c ≤ 1, let (X, M, ∗) be a FMS and let F: X
3
 → X and g: X → X be two weakly compatible 

mappings such that F(X
3
)    g(X) and F(X

3
) or g(X) is complete. 

Suppose that for all x, y, z, u, v,w ∈ X and all t > 0, 

MFxyzFuvw(kt) ≥ Mgxgu(t)
a
 ∗Mgygv(t)

b
 ∗Mgzgw(t)

c
.                                                                                                                          (1) 

Then there exists a unique x ∈ X such that x = gx = Fxxx. In particular, F and g have, at least, one tripled coincidence point.  

Proof . Throughout this proof, n and p will denote non-negative integers and t  [0, ∞). 

Step 1. Definition of the sequences {xn}, {yn} and {zn}. Let x0, y0, z0  X be three arbitrary points 

of X. Since F(X
3
) 
  g(X), we can choose x1, y1, z1  X such that gx1 =  , gy1 =   and gz1 = . 

Again, from F(X
3
) 
  g(X), we can choose x2, y2, z2  X such that gx2 = , gy2 = and gz2= . 

Continuing this process, we can construct sequences {xn}, {yn} and {zn} such that, for n ≥ 0, gxn+1 =  , gyn+1 

=  and gzn+1 = . 

Step 2. {gxn}, {gyn} and {gzn} are Cauchy sequences. Define, for n ≥ 0 and all t ≥ 0,  

δn(t) =  

Since δn is a non-decreasing function and t − kt ≤ t ≤ t/k, we have that 

δn(t − kt) ≤ δn(t) ≤ δn(t/k), for all t > 0 and n ≥ 0.                                                                                                                    (2) 

From inequality (1) we deduce, for all n  N and all t ≥ 0 

=  
a b

 
c                         

(3)
 

=  
a b

 
c                         

(4)
 

=  
a b

 
c                          

(5)
 

According to (3), (4), (5)  we have that 

a b
 

c  

                        = δn-1(t/k); 

a b
 

c  

                                    
 = δn-1(t/k); 

  
a b

 
c  

                                   
  = δn-1(t/k).

               
 

This proves that, for all t > 0 and all n ≥ 0,
   
 

≥ δn-1(t/k) 
  
≥ δn-1(t).                                                                            

 
(6) 

                                                                                     
 

Swapping t by t − kt, we deduce, for all t > 0 and n ≥ 0, that 

≥ δn-1(t-kt).
                                                                                       

(7) 

Taking into account that ∗ is commutative and ∗ ≥ ·, and (3), (4), (5), we observe that 
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 δn(t) =  

        ≥  
a b

 
c
)* 

            *
c a

 
b
)* 

             *
b c

 
a
)*= 

          = 
a c

 
b
)* 

             *
b a

 
c
)* 

             *
c b

 
a
)* ≥   

            ≥ 
a c

 
b
)* 

             *
b a

 
c
)* 

             *
c b

 
a
) =   

           = 
a+b+c a+b+c

 
a+b+c

 ≥ 

           ≥   
 
= δn-1(t/k).

               
 

If we join this property to (2), 

δn(t) ≥ δn−1(t/k) ≥ δn−1(t) ≥ δn−1(t − kt), for all t > 0 and n ≥ 1.                                                                                                 (8) 

Repeatedly applying the first inequality, we deduce that δn(t) ≥ δn−1(t/k) ≥ δn−2(t/k
2
) ≥ . .  ≥ δ0 t/k

n
) 

for all t > 0 and n ≥ 1. This means that for all t > 0, 

limn→∞δn (t) ≥ limn→∞δ0 (t/k
n
) = 1 implies  limn→∞δn (t) = 1.                                                                                                    (9)                                                                                          

Properties (6) and (8) imply that 

≥ δn(t) 
  
≥ δn-1(t-kt).

                                                                                                                 
(10)

       
 

Next, we claim that 

≥  ∗p
 δn-1(t-kt), for all t > 0, n,p ≥ 1.                                                  (11) 

We prove it by induction methodology in p ≥ 1. If p = 1, (11) is true for all n ≥ 1 and all t > 0 by (10). 

Suppose that (11) is true for all n ≥ 1 and all t > 0 for some p, and we are going to prove it for p+ 1.Applying (1), the 
induction hypothesis and that ∗ ≥ ·, 

=   

a b
 

c  

                                 
 ( ∗p

 δn-1(t-kt))
a  

 (∗p
 δn-1(t-kt))

b   
 (∗p

 δn-1(t-kt))
c   

 

                       ( ∗p
 δn-1(t-kt))

a  .
 (∗p

 δn-1(t-kt))
 b   

 (∗p
 δn-1(t-kt))

 c    

                                 
= ( ∗p

 δn-1(t-kt))
a+b+c 

 ∗p
 δn-1(t-kt). 

Arguing in the same way, we come to  

≥  ∗p
 δn-1(t-kt). 
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Applying the axiom (v) of a FMS, (7) and the induction hypothesis, 

 

                                                                   

                                                               δn-1(t-kt)  (∗p
 δn-1(t-kt)) = ∗p+1

 δn-1(t-kt). 

The same reasoning is also valid for . Therefore, (11) is true. This permits us to 

show that {gxn} is Cauchy. Suppose that t > 0 and ε  (0, 1) are given. By the hypothesis, as ∗ is a t-norm of H-type, there 

exists 0 < η < 1 such that ∗pa > 1−ε for all a  (1−η, 1] and for all p ≥ 1. By (9), limn→∞ δn (t) = 1, so there exists n0  N 
such that δn (t − kt) > 1 − η for all n ≥ n0. Hence from (11), we get  

> 1 − ε for all n ≥ n0 and p ≥ 1. Therefore, {gxn} is a Cauchy sequence. 

Similarly, {gyn} and {gzn} are also Cauchy sequences. 

 Step 3. We claim that g and F have a tripled coincidence point.  

Without loss of generality, we can assume that g(X) is complete, then there exist x, y,z and u, v, w   g(X), such that 

 limn→∞ gxn = g(u) = x, limn→∞ gyn = g(v) = y and limn→∞ gzn = g(w) =  z.   

limn→∞ gxn+1 = limn→∞ = g(u) =  x. 

limn→∞ gyn+1  = limn→∞   = g(v) = y 

limn→∞ gzn+1  = limn→∞   = g(w) =  z. 

From (1) we get 

  
a b

 
c  

                           
 

Since M is continuous, taking limit as n→∞, we have 

 = 1. 

which implies that F(u, v, w) = g(u) = x. 

Similarly, we can show that F (v, w, u) = g (v) = y and F (w, u, v) = g (w) = z. Since F and g are weakly compatible, we get 
that gFuvw = Fg(u)g(v)g(w) , gFvwu = Fg(v)g(w)g(u) and gFwuv = Fg(w)g(u)g(v)   g which implies that   

   Fxyz = gx.  In a similar way, we can show that Fyzx = gy and Fzxy = gz, so (x, y, z) is a tripled coincidence point of the 
mappings F and g. 

  Thus, Fxyz = gx, Fyzx = gy and Fzxy = gz.                                                                                                                            (12)  

Step 4. We claim that x = Fzxy, y = Fxyz and z = Fyzx. We note that by condition (1), 

  =  
a b

 
c 
;                                     (13)                          

 =  
a b

 
c 
;                                     (14) 

 =  
a b

 
c 
;                                     (15) 

Let βn(t) =   for all t > 0 and n ≥ 0. By (13), (14) and (15), 

βn+1(kt) =    

               
a b

 
c 
*  

a b
 

c 
*   

                
a
  

b
 

c  
= 
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                 =  
a

 
c 
 

b
  

                       
b
 

a
 

c 
 

                      
c 
 

b
 

a
  

 
 

 
                  

a  
. 

c 
 

b
  

                       
b 

. 
a

 
c 

 

                      
c 
 

b
  

                 =   
a+b+c  a+b+c

  
a+b+c 

  

                    
  

    = βn(t).
   
  

This proves that βn+1(kt) ≥ βn(t) for all n ≥ 0 and all t > 0. Repeating this process, 

βn(t) ≥ βn−1(t/k) ≥ βn−2(t/k
2
) ≥ . . . ≥ β0(t/k

n
), for all t > 0 and n ≥ 1.                                                                                        (16) 

Now, by (16), (13), (14) and (15), 

 
a b

 
c 
 βn(t) ≥ β0(t/k

n
);                                                  (17) 

 
a b

 
c     

βn(t) ≥ β0(t/k
n
);                                                   (18) 

 
a b

 
c    

 βn(t) ≥ β0(t/k
n
);                                                 (19) 

Therefore, ,   ≥ β0(t/kn)   for all t > 0 and n ≥ 1. Since 

limn→∞ β0 (t/kn) = 1 for all t > 0, we have, taking limit in (17), (18) and (19), that limn→∞ gxn = gz, limn→∞ gyn = gx and limn→∞ 
gzn = gy. This shows, using (12), that 

Fxyz = gx = limn→∞gyn = y, Fyzx = gy = limn→∞gzn = z, Fzxy = gz = limn→∞gxn = x. 

Step 5. We will prove that x = y = z.  

Let θ(t) = Mxy(t) ∗ Myz(t) ∗ Mzx(t) for all t > 0. Then, by condition (1), 

Mxy(kt) =  
a b

 
c 
= 

  
 

             = 
a b

 
c                                                                                                                                                                                

(20)  

Myz(kt) =  
a b

 
c 
= 

  
 

             = 
a b

 
c                                                                                                                                                                               

(21)  

Mzx(kt) =  
a b

 
c 
= 

  
 

             = 
a b

 
c                                                                                                                                                                              

(22)  

If we use these three inequalities at the same time, 

θ(kt) =       ≥  

         ≥ a b c∗   a b c ∗ a b c    

         = c b∗ a ∗  a   c b∗ b ∗ a c      

         ≥ c b. a  ∗ a   c b  b . a c  

         = a+b+c  a+b+c a+b+c  ≥ 
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         ≥    = θ(t).            

We find that θ(kt) ≥ θ(t) implies that θ(t) ≥ θ(t/k) ≥ θ(t/k2) ≥ . . . ≥ θ(t/k
n
) for all t > 0 and n ≥ 1. By (20), (21) and (22), 

 Mxy(kt) ≥ 
a b

 
c 
≥   = θ(t) ≥ θ(t/k

n
).        

   
        

   
 

Myz(kt)  ≥ 
a b

 
c 
 ≥   

 
 = θ(t) ≥ θ(t/k

n
). 

Mzx(kt)  ≥ 
a b

 
c 
 ≥   

 
 = θ(t) ≥ θ(t/k

n
). 

 Letting n → ∞, we have limn→∞ θ (t/k
n
) = 1 for all t > 0, and this means that Mxy(kt) = Myz(kt) =Mzx(kt) = 1 for all t > 0, i.e., x 

= y = z. The unicity of x follows from (1). 

Remark 3.3 In the above theorem if we take ф (t) = kt then we can get more generalized form of the result.  

Remark 3.4 The unicity of the coincidence point of F and g is not always true. For instance, if F ≡ x0 is constant and g ≡ x0 

is also constant, then every (x, y, z) ∈  X
3
 is a coincidence point of F and g. 

Example 3.5 Let X = {0, 1, ,  ,  ,   . . . ,   , . . .},  = min, M(x, y, t) =  

 for all x, y  X, t > 0. 

Then (X,M, ) is a fuzzy metric space. 

 Let g : X→X and F : X 
3
→X be defined as 

g (x) =  

F(x,y,z) =  

Let xn = yn =  then g(xn) =  and F(xn, yn zn ) =   , but 

 0.  

so g and F are not compatible. From Fxyz = gx, Fyzx = gy and Fzxy = gz 

 we can get (x, y,z) = (0,0,0), 

and we have gFxyz = Fg(x)g(y)g(z)  which implies that F and g are weakly compatible. 

By the definition of M and taking k =  and the result above, we can get that inequality (1). 

Then all the conditions in Theorem 3.2 are satisfied, and 0 is the unique common fixed point. 

 

Theorem 3.6 Theorem 3.2 remains true if the ’weakly compatible property’ is replaced by any one (retaining the rest of the 

hypothesis) of the following: 

 (i) weakly commuting property, (ii) R-weakly commuting property, (iii) R-weakly commuting property of type (Af), (iv) R-
weakly commuting property of type (Ag), (v) R-weakly commuting property of type (P). 

Proof. Let u,v,w be three points in X so that Fuvw = gu and Fvwu = gv and Fwuv = gw. Taking xn = u,yn = v and zn = w it is 
easy to show that F(gu,gv,gw) = gF(u,v,w) and F(gv,gw,gu) = gF(v,w,u) and F(gw,gu,gv) = gF(w,u,v)    Now applying 
Theorem 3.2, we can conclude that F,g have a unique common fixed point. In case if (F,g) satisfies R-weakly commuting 
property, then there exists some R > 0 such that  

M(F(gx,gy,gz),gF(x,y,z),t) ≥ M(F(x,y,z),gx,t/R), 

M(F(gy,gz,gx),gF(y,z,x),t) ≥ M(F(y,z,x),gy,t/R) 

M(F(gz,gx,gy),gF(z,x,y),t) ≥ M(F(z,x,y),gz,t/R) 

for all x,y,z in X and t > 0. 
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Let u,v,w be three points in X so that Fuvw = gu and Fvwu = gv and Fwuv = gw, then it is easy to see that F and g 
commutes at u,v and w. Now applying Theorem 3.2, we can conclude that F and g have a unique common fixed point. 
Similarly, if pair (F,g) is weakly commuting, R-weakly commuting of type (Af), type (Ag), type (P) then it commutes at their 
points of coincidence. Now, in view of Theorem 3.2, in all the cases F and g have a unique common fixed point in X. This 
completes our proof. 

Theorem 3.7. Theorem 3.2 remains true if the ‘weakly compatible property’ is replaced by any one (retaining the rest of 

the hypothesis) of the following: (i) weakly f-compatible, (ii) weakly g-compatible. 

Proof. In case if the pair (F,g) satisfies weakly f-compatible property, then either 

 = F(x,y,z),   = F(y,z,x),  = F(z,x,y), 

or 

lim n→∞ggxn = F(x,y,z), lim n→∞ggyn = F(y,z,x), lim n→∞ggzn = F(z,x,y). 

whenever {xn} and {yn} are sequences in X such that lim n→∞ F(xn,yn,zn) = lim n→∞ g(xn) = x,  

lim n→∞ F(yn,zn,xn) = lim n→∞ g(yn) = y, lim n→∞ F(zn,xn,yn) = lim n→∞ g(zn) = z. 

and 

lim n→∞ F(gxn,gyn,gzn) = lim n→∞F( ), = F(x,y,z), 

lim n→∞ F(gyn,gzn,gxn) = lim n→∞F( ), = F(y,z,x), 

lim n→∞ F(gzn,gxn,gyn) = lim n→∞F( ), = F(z,x,y). 

for some x,y,z ∈  X. 

Let u,v,w be three points in X so that Fuvw = gu and Fvwu = gv and Fwuv = gw, then it is easy to see that F and g 
commutes at u,v and w. Now applying Theorem 3.2, we can conclude that F and g have a unique common fixed point. 
Similarly, the theorem holds good if the pair (F,g) weakly g- compatible. 
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