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ABSTRACT:  

The aim of this work is to study the incidence functions and the tensor product of two incidence algebras. We show that 
the tensor product of two incidence algebras is an incidence algebra. We believe that our result is true for uncountable 
locally partial order sets. We present some examples of incidence functions. We study the Jacobson radical of the tensor 
product of the incidence algebras as well as when a tensor incidence algebra is an algebraic algebra over a field. 
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This work is about incidence algebra of a locally finite partially ordered set over a field. The concept is a link between 
algebra and combinatorics. Originally, this concept is due to Gian-Carlo Rota in his fundamental work [12]. Indeed, 
incidence algebra encodes many properties of locally finite posets under consideration. Incidence algebras can be 
equipped with the weak topology. In [16, 17, 18], some chain conditions and ring properties have been investigated. More 
algebraic properties and the notion of generating functions of incidence algebras can be seen in [3]. Hopf algebras and 
incidence algebras are discussed in [5, 13]. The probability databases and algorithms programming for incidence algebras 
is discussed in [2]. Matrix incidence algebras appear quite often in the literatures. For a characterization of reduced 
incidence algebras, the reader can consult the article [10]. Also subalgebras of incidence algebras determined by 
equivalence relations, can be seen in [8]. Radical and primes in incidence algebras appeared in [6]. Incidence algebra for 
t-Design with automorphisms is discussed in [11]. The automorphism groups of incidence algebras can be seen in [15, 
19]. The interplay between graph theory and incidence algebras can be seen in [9, 14]. The book [4] is very interesting in 
this subject. All these references and articles for incidence algebras mean that the concept is very important in pure and 
applied mathematics. 

However, we shall consider the tensor product of two incidence algebras. We prove that the operation of tensor product 
over a field of two incidence algebras is closed. We believe that our result is true even for uncountable locally partial order 
sets. Then we study the Jacobson radical of a locally finite poset. We prove a statement regarding the Jacobson radical of 
the tensor product of incidence algebras of locally finite poset over a field. In the end, we show when a tensor product of 
two incidence algebras is an algebraic algebra over a field. 

In order to represent our work and to make the paper readable and understandable, we state the basic definitions and we 
mention examples. We organize the paper as follows. Section 2 contains the basic definitions and the standard arguments 
for making the incidence algebras. Section 3 is devoted to the main results about the tensor product of two incidence 
algebras. 

2  Incidence functions and incidence algebras 

The main motivation for this work is to study and understand the concept of incidence functions. The idea is to collect such 
functions in a set and then to define natural algebraic structures. We end up with an algebra which is called the incidence 
algebra. 

Let P  be a non-empty set. A relation   on the set P  is called a partially ordered relation if it is reflexive, transitive and 
anti-symmetric. 

Definition 2.1 A partially ordered set (poset) ),( P  such that all of its intervals are finite is called locally finite. 

For Pba , , by an interval, say ],[ ba , we mean any subset of P  of the form }:{ bxaPx  . The definition of 

locally finite poset gives us the opportunity to deduce that any chain between any two elements is finite. We shall restrict 
our study in this paper to locally finite posets. 

Definition 2.2 Consider a field F  of characteristic zero and let ),( P  be a locally finite poset. The function 

FPPf :  is called an incidence function if yx   implies Fyxf 0=),( . 

Note that ),( yxf  means ]),([ yxf . Let us collect all incidence functions for a post ),( P  into a set which we call it 

the set of incidence functions. As a notation, we denote such set by ).(PFI  We are interested to give the set )(PFI  

some natural algebraic structures and to study the behaviour of its elements. It is clear that we can add two incidence 

functions as well as acting by scalers from the field F . Precisely, for all )(, Pgf FI , for all Pyx ,  and for all 

F , the addition and the scaler action can be defined on )(PFI  as follows: 

),,(),(=),)(( yxgyxfyxgf   

).,(=),)(( yxfyxf    

The construction above is not new and the reader can see [1, Chapter IV] for standard treatment of the subject. Our main 

target is to build the tensor product of this construction. Let us record that such set is a vector space over F . 

Lemma 2.3 The set )(PFI  of incidence functions is a vector space over the field F . 

Let us define the convolution (or Dirichlet) product of two incidence functions. 

Definition 2.4  For two incidence functions f  and g  in the incidence set )(PFI , the convolution product can be 

defined as 
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Definition 2.4 and that ),( P  is locally finite poset grantee that the set of incidence functions is closed under the 

convolution product. 

Lemma 2.5 Under the convolution product, the vector space )),(( PFI  of incidence functions is an associative F -

algebra with identity. 

The incidence F -algebra ),),(( PFI  is finite dimensional over F  if and only if the set P  is finite. In fact, if P  is 

finite then ),),(( PFI  is isomorphic to a subalgebra of the F -algebra of all upper triangular matrices over the field F  

of size nn  where |=| Pn , see [1, Page 140]. 

Let us state some examples of incidence functions. These elements of the incidence F -algebra ),),(( PFI  have 

many properties. 

Example 2.6  The Kronecker delta function (in the literature also is called the characteristic function or the indicator 

function) Fyx 1=),(  if yx =  and zero otherwise is an obvious example of an incidence function. In fact, it is the two 

sided identity of the incidence F -algebra ),),(( PFI . 

Example 2.7 The Zeta function Fyx 1=),(  if yx   and zero otherwise is an important example of an incidence 

function. Under the convolution product, zeta function is an invertible element of the incidence F -algebra ),),(( PFI . 

Its inverse is an important incidence function which is called Möbius function. 

The following lemma characterizes invertible elements of the incidence F -algebra ),),(( PFI . Its proof can be seen in 

[1, Chaper IV, Proposition 4.2]. 

Lemma 2.8 An element f  in the incidence F -algebra ),),(( PFI  is invertible if and only if 0),( xxf  for all 

Px . 

More examples of incidence functions can be seen in [1, Page 141]. Each algebra contains three types of elements; 
namely, the units, idempotents and nilpotent elements. The relationship between these elements is crucial for many 
investigations of the algebraic structures under consideration. For instance, the group of units acts on the set of 
idempotents and the equivalence classes play a significant rule for the decomposition of algebra. Likewise, nilpotent 
elements belong to two sided ideal of the algebra which is usually called the radical of the algebra. 

3   Tensor product of incidence algebras 

This section contains the work which we believe that it is new in the notion of incidence algebras. We shall do the 
operation of tensor product between two incidence algebras. Our aim is to show that operation is closed. But, first we shall 
discuss the product of two posets and some related results. 

Let 1P  and 2P  be two posets. Then the product 21 PP   is obviously a poset on the cartesian product with the coordinate-

wise order relation. It is clear that if 1P  and 2P  are two locally finite posets then 21 PP   is a locally finite poset. This 

observation enables us to build the tensor product of two incidence F -algebras. 

Proposition 3.1  Let ),( iiP   be locally finite poset; 1,2=i . Let ),,( iiiFi Pf I  for 1,2=i . Then the tensor 

product function 21 ff   is an element in the incidence F -algebra ),),(( 21 PPFI . 

Proof: First of all, we may assume that the order of the product poset 21 PP   to be lexicographical order. Now 

for 1,2=i ; FPPf iii :  is an incidence function which means that Fiii yxf 0=),(  whenever .ii yx   Then 

Fyxfyxfyxfyxf 0=),(),(=),(),( 222111222111   

whenever .ii yx   Writing 2121 ),(= PPxxx   and 2121 ),(= PPyyy  . Then 
2

21 )(),( PPyx  . It follows 

that the function 
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FPPff  2

2121 )(:  

satisfies ,0=),)(( 21 Fyxff   whenever .yx   This means that 21 ff   is an incidence function of the locally finite 

poset 21 PP   and hence it is an element of the incidence F -algebra ),),(( 21 PPFI . This completes the proof of 

the the proposition.  

Theorem 3.2  Let ),( iiP   be locally finite poset; 1,2=i . Let ),,( iiiF P I  be the incidence F -algebra which is 

associated to iP , for 1,2=i . Then the tensor product algebra )()( 21 PP FF II   is an incidence F -algebra which is 

isomorphic to ),),(( 21 PPFI . 

Proof: It is clear that the tensor product of two F -algebras is an F -algebra. Now Proposition 3.1 insures that 
the tensor product function gives the exact isomorphism which preserves the incidence condition.  

Remark 3.3 If the set P  is finite then the isomorphism in Theorem 3.2 matches with the well known Kronecker matrix 

product as ),,( iiiF P I  is isomorphic to a subalgebra of the F -algebra of all upper triangular matrices over the field 

F  of size ii nn   where |=| ii Pn , for 1,2=i . 

As in [1, Exercise 4, Page 150], we define the Jacobson radical of a locally finite poset P  to be the intersection 

)(PJ xPx , where 

0}.=),(:)({=)( xxfPfPJ Fx I  

Note that for all Px , )(PJ x  is a maximal two sided ideal of the incidence F -algebra )(PFI  and the quotient F -

algebra )()/( PJP xFI  is isomorphic to the field F . In particular, )()/( PJPFI  is a semi-simple F -algebra. Recall that 

)(PJ  is nilpotent if and only if P  is bounded, see [6, Theorem 2.3]. Here, we mean by P  is bounded if there is a 

natural number n  such that not every inequality in a chain naa 1  of elements in P  is strict. 

However, in the following result we try to find the Jacobson radical of the cartesian product of two locally finite 

poset iP , for 1,2=i . 

Corollary 3.4  Let ),( iiP   be locally finite poset; 1,2=i . Let ),,( iiiF P I  be the incidence F -algebra which is 

associated to iP , for 1,2=i . Then the Jacobson radical of the cartesian product 21 PP   has the form: 

).()()()(=)( 212121 PJPPPJPPJ FF  II   

Proof: Follows directly from the isomorphism in Theorem 3.2 and the definition of the Jacobson radical of the locally finite 

poset iP , for 1,2=i . 

The following result discuss the incidence algebra which is an algebraic over a field. For the definition of 
algebraic algebra see [7, Definition 5.5, Page 453]. 

Corollary 3.5  Let ),( iiP   be locally finite poset; 1,2=i . Let ),,( iiiF P I  be the incidence F -algebra which is 

associated to iP , for 1,2=i . If )( iF PI , for 1,2=i , is algebraic over F  then the tensor product )()( 21 PP FF II   is 

algebraic over F . 

Proof: Assume that the incidence algebra )( iF PI  is algebraic over F , for 1,2=i . Then by [6, Corollary 2.4], iP  is finite 

or iP  is bounded and F  is finite. Under this assumption, it follows that 21 PP   is finite or 21 PP   is bounded and F  is 

finite. Now using Theorem 3.2 above and the other direction in [6, Corollary 2.4], we deduce that the tensor incidence 

algebra )()( 21 PP FF II   is algebraic over F . 
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