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ABSTRACT 

In earlier studies of iterative approaches, the accelerated over relaxation (AOR) method has been pointed out to be 
relatively faster than the existing successive over relaxation (SOR) and Gauss Seidel (GS) methods. Due to the 
effectiveness of this method, the foremost goal of this paper is to demonstrate the use of the AOR method, together with 
triangle element solutions, based on the Galerkin scheme method.  The effectiveness of this method has been shown via 
the results of numerical experiments, which have been logged and examined. The findings reveal that the AOR method is 
superior compared to the existing SOR and GS methods. 
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1. INTRODUCTION  

Consider the 2D Poisson equation to be given as follows: 

       
2 2

2 2
, , ,, , x y a b a b

U U
f x y
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                                                                                (1) 

  with the dirichlet boundary conditions: 
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whereas,  ,f x y  is a given function with abundant smoothness. There are numerous studies in the related literature on 

numerical methods for solving problem (1) [2,11,14]. The applications of numerical methods for problem (1) mostly lead to 
sparse linear systems, and sometimes the condition number of the corresponding matrices is large. The computational 
complexity of the matrix and solving the corresponding linear system is huge when the mesh size of the matrix is large. 
Consequently, in this paper, implementation and performance of the weighted parameter approach based on AOR method 
with Galerkin scheme for solving FE approximation equations arise from the discretization of problem (1). Generally, the 
basic concept of the AOR approach is to speed-up the computational time by reducing the number of iterations of the 
solution method. In order to facilitate formulating the triangle element approximation equations for problem (1), our next 
discussion focuses on uniform node points only, as shown in Figure 1. 

 

Figure 1: Show the solution domain   of triangle elements for the full-sweep cases at n=8. 

Based on Figure 1, the solution domain needs to be discretized uniformly in both x and y directions with a mesh size h, 
which is defined as follows: 

, 1.
b a

h m n
n


                                                                                                                                      (2) 

where n is an arbitrary positive integer. Similarly, using the same concept as that in the full-sweep design, applied to finite 

difference (FD) methods [3], FE networks consist of several triangle elements, in which each triangle element involves 

three solid node points of type  only. Thus, the implementation of the full-sweep idea is carried out onto the node points 
of the same type until the iterative convergence test is reached [9]. 

The framework of this paper is organized in the following manner. An implementation of the FE method, which is based on 
the triangle element being used to discretize problem (1), is presented in Section 2. This is followed by the formulation of 
the proposed method in Section 3. Numerical results of the tested methods and concluding remarks are summarized in 
Sections 4 and 5 respectively. 

 

2. TRIANGLE ELEMENT APPROXIMATIONS 

As mentioned in the previous section, this paper discusses the use of the AOR method by using a linear FE approximation 

equation based on the Galerkin scheme to solve 2D Poisson equations. By considering three node points of type  only,  
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Figure 2: The definition of the hat function  i, j ,R x y , of triangle elements at the solution domain. 

the general approximation of the function,  ,U x y in the form of an interpolation function for an arbitrary triangle 

element e is given by [5,6]: 

 

       
~

1 1 2 2 3 3, , , ,

e

U x y N x y U N x y U N x y U                                                                          (3) 

and the shape functions  , , k 1,2,3kN x y   can generally be shown as: 
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In line to this, the first order partial derivatives of the shape functions towards x and y are given, respectively, as: 
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In Figure 2, the definition of the hat function,  , ,r sR x y  in the solution domain is easily shown. Based on the 

distribution of the hat function,  , ,r sR x y , the approximation of the functions,  ,U x y  and  ,f x y , for the 

entire domain, are defined, respectively, as [10] follows: 
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Thus, Eqs. (6) and (7) are approximate solutions for problem (1). Therefore, let us consider the Galerkin scheme to be 
defined as follows: 

   i, j i, j, , 0, . 0,1,2, ,m
D

R x y E x y i j                                                                                      (8) 
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where    
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 is a residual function. By applying the Green theorem, Eq. (6) can be 

shown as follows: 
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where 
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The linear system in Eq. (10) can actually be easily expressed in stencil form, respectively, as follows: 
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                                                                                         (11) 

To expedite the implementation of AOR method, illustration of the stencil forms in Eq. (11) can be visualized  through the 
computational molecule, as shown in Figure 3. Indeed the computational molecule comprises seven solid node points in 
formulating their approximation equations. Subsequently, two of its coefficients have a value of zero. This computational 
molecule for the Galerkin triangle FE scheme is in a form that is similar to the existing five point FD method [1]. By taking 
account of this computational molecule, further explanation of the AOR method is presented on the manner used to 
construct its formulation in the next section. 

 

Figure 3: Computational molecule of the Galerkin Triangle FE scheme. 

 

3. THE AOR METHOD 

The AOR method was introduced in [7]. Generally, let us consider the numerical solution of the linear system to be as 
follows:  

,AU f                                                                                                                                                   (12) 
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where 
,n nA  represents nonsingular, sparse matrices with non-vanishing diagonal entries, and 

,, n nU f   with 

U  to be determined. Let us study the AOR method. Let 
,n nA  be a one-cycle and consistent orderings ordered 

matrix of the form: 
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 
 
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                                                                                                                                                 (13) 

where 
1, 2 2, 1,n n T n nU U   , and  

1, 1n nD  are diagonal nonsingular matrices, respectively, with 

1 2
.n n n   Again, let A be defined as follows:  

A D L V                                                                                                                                                (14) 
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The Jacobi matrix is  

 1B D L V L V   
                                                                                                                           (15) 
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where 
1 TL D U  and 

1V D U  . In general, the AOR iterative scheme can be defined as follows: 
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Theoretically, applying Eq. (12) to each point  ,i jx y  leads to a linear system with coefficient matrix A given by: 
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where 
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and the submatrices 
0
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R  and 
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R  are given by: 
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respectively. Since the coefficient matrices in Eq. (17) represent a pointwise pentadiagonal with non-vanishing diagonal 
element, it has the property A and   Consistently Ordered, as prescribed in [4,12,13]. Hence, the theory of AOR 

method is also valid in triangle element approaches. The AOR method generally implicates dual parameters, r and w, 
where all the communal existing methods such as Jacobi, GS and SOR become common cases of this method when the 
parameters are given certain values. For example, when w = 1 and r = 0, we attain the Jacobi method. If w = r = 1, we 
obtain the GS method. If w = r, we obtain the SOR method.  

In order to perform the AOR method, the solution domain is divided as shown in Figure. 1. Conferring to Eq. (16), the AOR 
method over the linear system Eq. (17) can be stated as follows: 

            

          
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k k k k
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U U U U
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U U U U F

U
  
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         

  

   
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                          (18)    

  where 

 
2

, ,1, 1, , 1 , 1 1, 1 1, 1 6
12

i j i ji j i j i j i j i j i j

h
F f f f f f f f               

Eq. (18) allows us to iterate through half of the points lying on the h-grid.  Consequently, the iteration can be carried out 
autonomously, involving only this type of point, as prescribed in the following algorithm: 

Discretize the solution domain into point of type  , as shown in Figure. 1. 

1. Perform iterations (using Eq. (18)). 

2. Within the interval of ±0.1 from the value found in Step 2, define the optimal ω opt with a precision of 0.01 by 
choosing consecutive values for which k is minimal; r is taken to be equal to ω.   

3. Perform experiments using the value of ω opt, and choose consecutive values of r with a precision of 0.01 within 
the interval of ±0.1 from the ω opt. 

4. Define the value r opt for which k is minimal. 

5. Display the approximate solutions. 

4. NUMERICAL RESULTS 

In this section, the proposed algorithm was tested on the following model, following the 2D Poisson equation:  

    
2 2

2 2
cos cosx y x y

U U

x y
  

 
  

 
                                                                                      (19) 
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The exact solution is given by: 

     , cos cosx y x yU   

Through the experiments, three parameters were observed, namely, the number of iterations (k), the maximum absolute 
error (Abs. Error) and the execution time, t (in seconds). Three methods (GS, SOR and AOR) were tested on several 
mesh sizes (i.e., 284, 308, 332 and 356). In the course of implementation of the proposed methods, the value of the 
tolerance error was considered ε =10

−10
. The C++ programming lanauge was used for constructing the program, and the 

program was execiuted on a PC with an Intel(R) Core (TM) i7 CPU 860@3.00 Ghz, and 6.00GB RAM. The operation 
system used was Windows 7, along with a installation Borland C++ compiler version 5.5. Based on the given example, all 
of the results of the numerical experiments were recorded through the implementation of the proposed methods in Table 
1, while Table 2 describes the depreciation percentage of the number of iterations and execution time for the AOR and 
SOR methods compared to the GS method. 

Table 1: Comparison of a number of iterations, execution time (seconds) and maximum absolute error for the iterative 
methods. 

N Methods r w k t Abs. Error 

 GS - - 115954 267.61 1.0913e-6 

284 SOR - 1.952 3428 11.97 3.0217e-7 

 AOR 1.989 1.979 1890 9.43 2.8268e-7 

 GS - - 134823 366.50 1.1936e-6 

308 SOR - 1.949 4288 17.69 2.6481e-7 

 AOR 1.989 1.987 1939 11.75 2.4128e-7 

 GS - - 154979 490.68 1.3165e-6 

332 SOR - 1.939 5960 28.58 2.4124e-7 

 AOR 1.986 1.991 2668 18.84 2.0723e-7 

 GS - - 176045 638.22 1.4576e-6 

356 SOR - 1.939 6815 37.63 2.1950e-7 

 AOR 1.987 1.993 3032 24.70 1.8023e-7 

 

Table 2: Reduction percentages of the number of iterations and execution time for the iterative methods compared with 
GS method. 

Methods k t 

SOR 96.13–97.04 94:10–95:49 

AOR 96.82–98.36 96.12–96.44 

 

5. CONCLUSION 

The results from the previous section demonstrated that triangle element approximation equations based on Galerkin 
scheme can easily be presented in Eq. (11). According to the numerical results obtained for the proposed problem, as 
shown in Tables 1 and 2, they clearly show that applying the AOR method can reduce the number of iterations and 
execution time compared to the SOR and GS methods. Moreover, approximate solutions for the AOR method are also in 
good agreement compared to the SOR and GS methods. For future work, this study will be extended to investigate the 
applications of the half-sweep concept [1] with the AOR method by using FE approximation equations. 
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