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1. Preliminaries  

This section presents a review of some fundamental notions of topological spaces. 

A topological space [6] is a pair ( , )X   consisting of a set X and a family   of subsets of X satisfying the 

following conditions: 

(T1)    and X  . 

(T2)    is closed under arbitrary union. 

(T3)    is closed under finite intersection. 

Throughout this paper ( , )X   denotes a topological space. The elements of X  are called points of the space, the 

subsets of X  belonging to   are called open sets in the space. The complements of the subsets of  X  belonging to   

are called closed sets in the space, and the family of all closed subsets of X is denoted by 
* . The family   of open 

subsets of X  is also called a topology on X . 

A subset A of X in a topological space ( , )X   is said to be clopen if it is both open and closed in ( , )X  . The family 

of all subsets of X is a topology on X  called the discrete topology and it is denoted by . A topological space ( , )X   

is called a quasi-discrete topology if every member of   is clopen subset of X . 

A family B  is called a basis for ( , )X   iff every nonempty open subset of X  can be represented as a union of 

subfamily of B . Clearly, a topological space can have many bases. A family S  is called a subbasis for ( , )X   

iff the family of all finite intersections of  S  is a basis for  . 

The  -closure of a subset A  of X is denoted by A 
 and it is defined by

 
 *: andA F X A F F      . 

Evidently, A 
 is the smallest closed subset of X  which contains A . Note that, A  is closed iff A A  . The  -

interior of a subset A  of X  is denoted by 
oA  and it is defined by

 
 : and .oA G X G A G      

Evidently, 
oA  is the largest open subset of X  which contained in A . Note that, A  is open iff 

oA A . The boundary 

of a subset A  of X  (briefly )(ABN  ) is denoted by 
bA  and it is defined by 

b oA A A  . 

2. Near open sets in topological spaces
 

In this section, we introduce some results on some classes of near open sets in topological spaces. Some forms 
of near open sets which are essential for our present study are introduced in the following definition. 

Definition 2.1. Let ( , )X   be a topological space. The subset A  of X is called: 

i) Regular-open [12] (briefly r-open) if 
oA A  . 

ii) Semi-open [7] (briefly s-open) if 
oA A  . 

iii) Pre-open [9] (briefly p-open) if 
oA A  . 

iv)  -open [5] (b-open [4]) if 
o oA A A   . 

v)  -open [10] if 
o oA A  . 

vi)  -open [1] (Semi-pre-open [3]) if 
oA A   . 

 

The complement of an r-open (resp. s-open, p-open,  -open,  -open and  -open) set is called r-closed (resp. s-

closed, p- closed,  -closed,  -closed and  - closed) set. The family of all r-open (resp. s-open, p-open,  -open,  -

open and  -open) sets is denoted by ( )RO X  (resp. ( ), ( ), ( ), ( )SO X PO X O X O X   and ( )).O X  The 

family of all r-closed (resp. s-closed, p-closed,  -closed,  -closed and  -closed) sets is denoted by ( )RC X  (resp. 

( ), ( ), ( ), ( )SC X PC X C X C X   and ( )).C X  
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The near interior (briefly j -interior) (resp. near closure (briefly j -closure)) [2] of a subset A of X is denoted by 
joA  

(resp. 
jA 

)  and it is defined by  

 : , is a -open setjoA G X G A G j    

   r :esp. is a -closed se, t ,jA H X A H H j     

{ , , , ,where , }j r s p    . 

Evidently, 
joA  for all },,,,{ psj  is the largest  j-open subset of X which contained in A . Note that, A is a j-

open set iff 
joAA  . Also, 

jA  for all },,,,{ psj   is the smallest j-closed subset of X which contains A . 

Note that A is a j-closed set iff 
 jAA . 

The j-boundary of a subset A of X (briefly ( )j BN A ) is denoted by 
jbA  for all  , , , , ,j r s p     and it is 

defined by 
jb j joA A A  . 

From known results [1, 5] we have the following two remarks.  

Remark 2.1. Let ( , )X   be a topological space. Then 

i)  ( ) ( ) ( ) ( ) ( ) ( ).RO X O X SO X PO X O X O X         

ii)  *( ) ( ) ( ) ( ) ( ) ( ).RC X C X SC X PC X C X C X         

Remark 2.2. Let ( , )X   be a topological space and let A be a subset of X . Then 

i)   .ro o o so po oA A A A A A A       

ii)   .rs pA A A A A A A             

Proposition 2.1. Let ( , )X   be a quasi-discrete topological space. Then 

      i)   )()()( XOXSOXRO   . 

     ii)   )()()( XOXOXPO  . 

Proof. 

   i) Let ( )G SO X , then 
oG G  . Since   is  quasi-discrete, then 

o oG G  .  

      Thus  
oG G . But 

oG G , then 
oG G , that is G  . Hence

 
( )SO X  .  

      But
  

( )SO X  . Then ( )SO X  . 

      Similarly, we can prove  ( )O X  . 

      Now, let G  . Since   is quasi-discrete, then 
*G   and 

oG G  . Thus 

     
 

( )G RO X . Hence ( )RO X  . But ( )RO X  . Then ( )RO X  . 

  ii) Let G . Since   is quasi-discrete, then 
oG G  . Hence 

oG G  ,  

       since G G  . That is ( )G PO X . Thus ( )PO X . But ( )PO X .  

       Then ( )PO X 
. 

      Similarly, we can prove ( ) ( )O X O X  .     □ 
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Definition 2.2 [6]. A topological space ( , )X   is said to be a 
1T  space if for each ,x y X , x y , 

there exist two open sets U, V  such that x U , y U and y V , x V .  

Lemma 2.1 [8]. Let ( , )X   be a topological space. Then ( , )X   is a 
1T  space if and only if  x  is a closed 

subset of ,X x X  . 

Definition 2.3 [6]. A topological space ( , )X   is said to be regular at a point x X  if for every closed 

subset F  of X  and Fx , then there exist two disjoint open sets VU ,  such that x U  and F V . 

A topological space ( , )X   is said to be regular space if it is regular at each of its points. 

Proposition 2.2. Every finite regular topological space is a quasi-discrete topological space. 

Proof. Let ( , )X   be a finite regular topological space and G  . Then X G    . Since X  is regular, then for 

each ,x G  there exists 
xH   such that 

xX G H   and 
xx H . Thus

 

x

x G

X G H


    and 

x

x G

x H


 . Then 

  

x

x G

H G X


 
  

 
 . But 

x

x G

H G 


 
  

 
 , hence

   

x

x G

H X G


  . Since X  is finite, 

then 
x

x G

H


  is open. Thus X G  is open set, and so G  is closed. Therefore ( , )X   is a quasi-discrete topological 

space.     □ 

Lemma 2.2 [6]. Let ( , )X   be a regular topological space. Then for any two points Xyx ,  either 
  }{}{ yx  

or  }{}{ yx  .  

Proposition 2.3. Let ( , )X   be a finite regular topological space. Then for any two points Xyx ,  either 

  jj yx }{}{  or  jj yx }{}{   for all  , , , , ,j r s p    . 

Proof. Let ( , )X   be a finite regular topological space. Then by Proposition 2.2,   is quasi-discrete. Thus by 

Proposition 2.1 part (i), we have 

( ) ( ) ( ) .RO X SO X O X     Hence for any point x X , we get 

  }{}{}{}{ xxxx sr 
. Since X is regular, then by Lemma 2.2, we have for any two points Xyx ,  either 

  jj yx }{}{  or  jj yx }{}{   for all  , ,j r s  . Also by using Proposition 2.1 part (ii), we have 

( ) ( ) ( )PO X O X O X   . Hence for any point x X , we get 

}{}{}{}{}{ xxxxx p   
. Then for any two points Xyx ,  either 

  jj yx }{}{  or 

 jj yx }{}{   for all },,{ pj .     □   

Lemma 2.3 [6]. Let A be a subset of X in a topological space ( , )X   and x X . Then x A   if and 

only if every open set containing x  meets A. 

Lemma 2.4. Let A be an s-open (r-closed) subset of X in a topological space ( , )X  . Then   
oA A  . 

Proof. Let A  be an s-open subset of  X . Then .oA A   Thus 
oA A  . Since   ,oA A  

oA A  .  Hence  
oA A  . 

Similarly, we can prove this lemma if A is r-closed.     □ 

Proposition 2.4. Let A be an s-open (r-closed) subset of X in a topological space ( , )X   and x X . 

Then x A   if and only if every open set containing x  meets 
oA . 

Proof. Let A  be an s-open subset of X. Then by Lemma 2.4, we have 
oA A  . Hence x A    iff  

ox A  ,   
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 iff every open set containing  x meets 
oA  by Lemma 2.3. 

Similarly, we can prove this proposition if A is r-closed.     □ 

Proposition 2.5. Let A  be an s-open (r-closed) subset of X in a topological space ( , )X  . Then
  

( ) ( )oBN A BN A . 

Proof. Let A  be an r-closed subset of X . Then by Lemma 2.4, we have  
oA A  . Hence

 

( ) ( ) ( ) ( ).o o o o oBN A A A A A BN A        

Similarly, we can prove this proposition if A is s-open.     □ 

Lemma 2.5 [6]. Let A be a subset of X in a topological space ( , )X   and x X . Then 
ox A  if and 

only if there exists an open set G X  such that x G  and G A .  

Lemma 2.6. Let A be an s-closed (r-open) subset of X in a topological space ( , )X   and x X . Then   
o oA A  . 

Proof. Let A  be an s-closed subset of X . Then 
oA A  . Thus 

o oA A  . But
 

,o oA A   since  A A  .  

Hence  
o oA A  . 

Similarly, we can prove this lemma if A is r-open.     □ 

Proposition 2.6. Let A be an s-closed (r-open) subset of X in a topological space ( , )X 
 
and x X . 

Then 
ox A  if and only if there exists an open set XG   such that Gx  and 

 AG . 

Proof. Let A  be an s-closed subset of X. Then by Lemma 2.6, we have 
o oA A  . Hence 

ox A iff  
ox A   iff 

there exists an open set XG   such that Gx  and 
 AG  by Lemma 2.5.  

Similarly, we can prove this proposition if A is r-open.     □ 

Proposition 2.7. Let A  be an s-closed (r-open) subset of X in  a topological space ( , )X  . Then
 

( ) ( )BN A BN A   

Proof. Let A  be an r-open subset of X. Then by Lemma 2.6, we have 
o oA A  . 

Hence ( ) ( ) ( ) ( )o oBN A A A A A BN A         . Similarly, we can prove this proposition if A is s-closed.     

□ 

Lemma 2.7. Let A be a subset of X in a topological space ( , )X   and x X . Then 
jx A   if and only if 

for each j-open set G containing x, we have ,G A   where  , , , , ,j r p s    . 

Proof. We shall prove this lemma in the case of j   and the other cases can be proved similarly. Let 

x A   . Suppose contrary that G is a  -open set such that x G  and G A  . Then x X G   and 

A X G  . But X G  is a  -closed set containing A. Hence x A   , which is a contradiction. Thus 

G A  .  

Conversely, assume that for each  -open set G containing x, G A  . Suppose contrary that
 

,x A    

then there exists  -closed set H such that x H  and A H . Hence X H  is a  -open set containing x, 

and ( ) ,X H A    which is a contradiction. Thus .x A        □     

Lemma 2.8. Let A be a subset of X in a topological space ( , )X   and x X . Then 
jox A  if and only if 

there exists a j-open set G such that ,x G A   where  , , , , ,j r p s    . 

Proof. We shall prove this lemma in the case of j  and the other cases can be proved similarly. Now, 

oAx   iff  setopenais,:  GAGXGx   iff  there exists a  -open set XG   such that 
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AGx  .     □ 

Proposition 2.8. Let A be an s-open subset of X in a topological space ( , )X   and x X . If 
jx A   

where  , , , ,j s p    , then each open set containing x  intersects 
oA . 

Proof. Let A be an s-open subset of X and let 
jx A  , where  , , , ,j s p    . Since 

jA A   for each 

 , , , ,j s p    , then x A  . Since A is s-open, then by Proposition 2.4, every open set containing x 

intersects 
oA .     □ 

Proposition 2.9. Let A be an r-closed subset of X in a topological space ( , )X   and x X . Then 

jx A   if and only if each open set containing x intersects 
oA , where  , , , ,j s p    . 

Proof. Let A be an r-closed subset of X . Then 
oA A  . But 

oA 
 is a closed set, and so it is a  j-closed set for all 

 , , , ,j s p    . Thus 
j oA A  . Hence  

jx A   iff 
ox A  , where  , , , ,j s p     iff each open set containing x intersects 

oA  by Lemma 2.3.     □ 

Proposition 2.10. Let A be an r-closed subset of X in a topological space ( , )X   and x X . Then 

ox A   if and only if each j-open set containing x intersects A for all  , , , ,j s p    . 

Proof. Let A be an r-closed subset of X. Then 
oA A  . But 

oA 
 is a closed set, and so it is a  j-closed set for all 

 , , , ,j s p    . Thus 
j oA A  . Hence  

ox A   iff 
jx A   iff each  j-open set containing x intersects A by Lemma 2.7.     □   

Proposition 2.11. Let A be an s-closed subset of X in a topological space
 

( , )X   and x X . If 

,ox A   then there exists a j-open set G such that x G A  , where  , , , ,j s p    . 

Proof. We shall prove this proposition in the case of j   and the other cases can be proved similarly. Let 

A be an s-closed subset of X. Then 
oA A  . But 

oA 
 is open set, and so it is  -open set contained in A . 

Thus 
o oA A  . Now if 

ox A  , then 
ox A . Hence by Lemma 2.8, there exists an  -open set G such 

that x G A  .     □ 

Proposition 2.12. Let A be an r-open subset of X in a topological space
 

( , )X   and .x X  Then 

jox A  where  , , , ,j s p     if and only if there exists an open set G such that x G A   .  

Proof. We shall prove this proposition in the case of j   and the other cases can be proved similarly. Let 

A be an r-open subset of X and x A  . Then 
oA A  . But 

oA 
 is open set, and so it is  -open set. Thus 

o oA A  . Then
ox A   iff 

ox A   iff there exists an open set G such that x G A    by Lemma 2.5.     □ 

Proposition 2.13. Let A be an r-open subset of X in a topological space ( , )X   and x X . Then 

ox A   if and only if there exists a j-open set G such that x G A  , where  , , , ,j s p     . 

Proof. We shall prove this proposition in the case of  j=s  and the other cases can be proved similarly. Let A 

be an r-open subset of X. Then 
oA A  . But 

oA 
 is open set, and so it is s-open set. Thus 

o soA A  . Then   

ox A   iff 
soAx  iff there exists an s-open set G such that x G A   by Lemma 2.8.    □ 

 

3. Generating relations using some classes of near open sets 

In this section we introduce some definitions of relations generated by using some classes of near open sets. 
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Definition 3.1 [11]. Let ( , )X   be a topological space. Then the relation on X generated by   is denoted by 

R
 and it is defined by  

  ( , ) :R x y x y


  . 

Example 3.1. Let   , ,X a   on  , ,X a b c . The family of closed sets is   , , ,X b c . Then
 

         , , and , .a X b b c c b c
  
    Hence according to Definition 3.1, we get 

 
 ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )R a a b a c a b b c b b c c c  . 

Definition 3.2. Let ( , )X   be a topological space. Then the relation on X generated by the class )(XRO  (resp. 

)(XPO , )(XSO , )(XO , )(XO  and )(XO ) is denoted by rR  (resp. pR , sR , R , R  and R ) and it 

is defined by 

  r

r yxyxR }{:),(  (resp.   p

p yxyxR }{:),( ,   s

s yxyxR }{:),( , 

  
 }{:),( yxyxR ,   

 }{:),( yxyxR  and   
 }{:),( yxyxR ). 

Example 3.2. Let  , , ,X a b c d  and       , , , , , , ,X a b d a b d  . Then 

( ) , ,{ },{ , } ,{ }RO X X d a b  and ( ) , ,{ , , },{ , }{ }.RC X X a b c c d Thus      , , ,
r r

a b a b c
 
   

   
r

c c

  and    ,

r
d c d


 . Hence according to Definition 3.2, we get

 

 ( , ),( , ),( , ),( , ),( , ),( , ),( , ),( , ),( , )rR a a b a c a a b b b c b c c c d d d . 

Proposition 3.1. Let ( , )X   be a topological space. Then 

  .s p rR R R R R R R         

Proof. Let y X , then by Remark 2.2, we get 

 { } { } { } { } { } { } { } .s p ry y y y y y y              

Hence 

  .S P rR R R R R R R            □ 

Definition 3.3 [8]. A relation R  on a set X  is said to be an equivalence relation if it satisfies the 

following conditions: 

     i)  ( , ) ,x x R x X  (reflexive). 

    ii)   If ( , ) ,x y R  then ( , )y x R (symmetric). 

   iii)   If ( , )x y R   and ( , ) ,y z R  then ( , )x z R (transitive). 

Proposition 3.2. Let ( , )X   be a topological space. Then R  and jR are reflexive relations on X for all 

 , , , , ,j r s p    . 

Proof. Since  x x


  and  
j

x x


  for all Xx  and  , , , , ,j r s p    , then ( , )x x R  and 

( , ) jx x R  for all .x X  Hence
 
R  and jR  are reflexive relations on X for all  , , , , ,j r s p    .     □ 

Proposition 3.3. Let ( , )X   be a topological space. Then R  and jR  are transitive relations on X for all 

 , , , ,j s p    . 
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Proof. Let ( , ), ( , )x y y z R . Then  x y


  and  y z


 . Thus    y z
 
  and so  x z


 . Then 

( , )x z R . Therefore R  is transitive relation on X.
 

Similarly, we can prove jR  is transitive relation on X for all  , , , ,j s p    .     □ 

Example 3.3. Let         , , , , , , , , , , ,X a b c d X a b d a b d   
 
be   a topology on X. Then 

( ) , ,{ },{ , } ,{ }RO X X a b d

 
( ) , ,{ },{ , , },{ , }{ },O X X a a b d b d 

 
( ) , ,{ },{ , },{ , , },{ , },{ , , } ,{ }SO X X a a c a b d b d b c d

 
( ) , ,{ },{ },{ },{ , },{ , },{ , , },{ , , },{ , , },{ , } ,{ }PO X X a b d a b a d a b c a b d a c d b d

 
( ) , ,{ },{ },{ },{ , },{ , },{ , },{ , , },{ , , },{ , , },{ , }

{ , , } , and

{

}

O X X a b d a b a c a d a b c a b d a c d b d

b c d

 
 

( ) , ,{ },{ },{ },{ , },{ , },{ , },{ , , },{ , , },{ , , },{ , },{ , }

{ , , },{ , }

{

}.

O X X a b d a b a c a d a b c a b d a c d b c b d

b c d c d

 

 

Thus 

( ) , ,{ , , },{ , } ,{ }RC X X b c d a c

 
( ) , ,{ , , },{ },{ , }{ },C X X b c d c a c 

 
( ) , ,{ , , },{ , },{ },{ , },{ } ,{ }SC X X b c d b d c a c a

 
( ) , ,{ , , },{ , , },{ , , },{ , },{ , },{ },{ },{ },{ , } ,{ }PC X X b c d a c d a b c c d b c d c b a c

 
( ) , ,{ , , },{ , , },{ , , },{ , },{ , },{ , },{ },{ },{ },{ , }

{ } , and

{

}

C X X b c d a c d a b c c d b d b c d c b a c

a

 
 

( ) , ,{ , , },{ , , },{ , , },{ , },{ , },{ , },{ },{ },{ },{ , },{ , }

{ },{ , } .

{

}

C X X b c d a c d a b c c d b d b c d c b a d a c

a a b

 

 

Hence 

       
       , ,

r
a a a a c

  
           , , ,

r
b b b b c d

  
    

       
       ,

r
c c c c

  
          , , ,

r
d d d b c d

  
    

       
               , , , , , ,

s s s s
a a b b d c c d b d

   
   

 

       
               , , , , ,

p p p p
a a c b b c c d d

   
     

       
                 , , ,a a a b b b c c c

          
       and 

       
     .d d d

  
   

According to Definition 3.1 and Definition 3.2, we get  
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 ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )rR R R a a c a b b c b d b c c b d c d d d    , 

      

 

 

( , ), ( , ), ( , ), ( , ), ( , ), ( , ) ,

( , ), ( , ), ( , ), ( , ), ( , ) , and

s

p

R a a b b d b c c b d d d

R a a c a b b c c d d




 

       ( , ), ( , ), ( , ), ( , )R R a a b b c c d d   . 

Then R , jR  are reflexive and transitive relations on X for all  , , , ,j s p    . 

Proposition 3.4. Let ( , )X   be a topological space. Then ( , )X   is a 
1T  space if and only if  

 ( , ) : ,jR R x x x X     for all  , , , ,j s p    . 

Proof. Let ( , )X   be a 
1T  space. Then by Lemma 2.1, we have  x  is a closed subset of X  for all Xx . Thus

 

   x x

 . But 

 
   

j
x x

 
  and  

j
x 


  for all  , , , ,j s p    . Hence

 
   

j
x x


 . Therefore

  

 ( , ) : ,jR R x x x X     for all  , , , ,j s p    . 

Conversely, let
  

 ( , ) : .jR R x x x X   
 

Then     ,x x

 for all x X . Thus  x  is a closed set 

x X  . Hence by Lemma 2.1, we have
 
( , )X   is a 

1T  space.     □ 

Proposition 3.5. Let ( , )X   be a topological space. If ( , )X   is a 
1T  space, then R  and jR  are 

equivalence relations on X for all   , , , ,j s p    . 

Proof. By Proposition 3.4, the proof is obvious.     □  

Proposition 3.6. Let ( , )X   be a regular topological space. Then R  is symmetric relation on X. 

Proof. Let ( , )X   be a regular topological space and ( , )x y R . Then   x y


 . But  x x


 . Thus  

   x y 
 

 . Since X  is regular, then by Lemma 2.2, we have
 
   x y

 
 . Hence

 
 y x


 , and so

 

( , )y x R . Therefore R  is symmetric relation on X.     □
 

Proposition 3.7. Let ( , )X   be a finite regular topological space. Then jR  is symmetric relation on X for all 

 , , , , ,j r s p    . 

Proof. We shall prove this proposition in the case of j r , and the other cases can be proved similarly. Let ( , )X   

be a finite regular topological space and ( , ) rx y R . Then   
r

x y


 . But  
r

x x


 . Thus  

   
r r

x y 
 

 . Hence by Proposition 2.3, we have
 
   

r r
x y

 
 . Then

 
 

r
y x


 . Thus

 
( , ) ry x R . 

Therefore 
rR  is symmetric relation on X.     □ 

Proposition 3.8. Let ( , )X   be a finite regular topological space. Then R  and jR  are equivalence relations for 

all  , , , ,j s p    . 

Proof. By Proposition 3.2, Proposition 3.3, Proposition 3.6 and Proposition 3.7, the proof is obvious.     □ 

Definition 3.4. A topological space ( , )X   is said to be a  j-regular topological space, if for each point x X  and 

for each  j-closed set F does not contain x, then there exist two disjoint j-open sets G and H such that x G  and 

F H , where  , , , , , .j r s p     

Example 3.4. Let         , , , and let , , , , , , ,X a b c d X a b d a b d   be a topology on X. Then  



                                                                     ISSN 2347-1921 
                                                      

 

5016 | P a g e                                                  A u g u s t  2 4 ,  2 0 1 5  

         
          ( ) , , , , , , , , , , , ,SO X X a a c a b d b d b c d  and 

                   ( ) , , , , , , , , , ,SC X X b c d b d c a c a . 

Hence X is s-regular, since for each point x X  and for each s-closed set F X  such that ,x F  there exist two 

disjoint  s-open sets G and H such that x G  and F H . 

Proposition 3.9. Let ( , )X   be a j-regular topological space where  , , , ,j s p    . Then for each two 

points x and y of X we have either  

   
j j

x y
 
  or    

j j
x y 

 
  . 

Proof. We shall prove this proposition in the case of j   and the other cases can be proved similarly. Let ( , )X   

be  -regular topological space and let x, y X . Suppose that    x y
  
 . Then either   x y


  or 

 y y


 . Let  x y


 , since  y


 is an  -closed set does not contain x , then there exist two disjoint  -

open sets G and H  such that x G  and  y H

 . But X H  is an  -closed set containing x. Then 

 x X H

  . Hence      ( )x y X H H

 


 
    . 

Therefore    x y
 


 

 .     □ 

Proposition 3.10. Let ( , )X   be a  j-regular topological space where  , , , ,j s p    . Then 
jR is 

symmetric relation on X. 

Proof. We shall prove this proposition in the case of j   and the other cases can be proved similarly. Let ( , )X   

be a  -regular topological space and ( , )x y R . Then   x y


 . But  x x


 . Thus     x y
 


 

 . 

Since X  is  -regular, then by Proposition 3.9, we have    x y
  
 . Hence

 
 y x


 , and so

 
( , )y x R . 

Therefore R  is symmetric relation on X.     □
 

Proposition 3.11. Let ( , )X   be a j-regular topological space where  , , , ,j s p    . Then 
jR is 

equivalence relation on X . 

Proof. By Proposition 3.2, Proposition 3.3 and Proposition 3.10, The proof is obvious.     □ 

 

4. Conclusions 

In this paper, we introduced some definitions of relations generated by using some classes of near open sets. Also, we 

introduced some properties of some classes of near open sets in topological spaces. 
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