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ABSTRACT 

In this paper a new method based on learning algorithm of  Fuzzy neural network and Taylor series has been developed 
for obtaining numerical solution of fuzzy differential equations.A fuzzy trial solution of the fuzzy initial value problem is 
written as a sum of two parts.The first part satisfies the fuzzy initial condition,it contains Taylor series and involves no 
fuzzy adjustable parameters.The second part involves a feed-forward fuzzy neural network containing fuzzy adjustable 
parameters (the fuzzy weights).Hence by construction,the fuzzy initial condition is satisfied and the fuzzy network is 
trained to satisfy the fuzzy differential equation . In comparison with existing similar neural networks,the proposed method 
provides solutions with high accuracy.Finally , we illustrate our approach by two numerical examples . 

Keywords:Fuzzy differential equation ; Fuzzy neural network ; Feed-forward neural network ; BFGS method 
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1. INTRODUCTION 

Nowadays, fuzzy differential equations (FDEs) is a popular topic studied by many researchers since it is utilized widely for 
the purpose of modeling problems in science and engineering. Most of the practical problems require the solution of a 
fuzzy differential equation which satisfies fuzzy initial or boundary conditions. The theory of fuzzy differential equations 
was treated by Kaleva [16], Ouyang and Wu [32],  Khanna[17], Nieto[28], Buckley and Feuring [9], Seikkala also recently 
there appeared the papers of Bede, Bede and Gal [8], Diamond [10,11], Georgiou, Nieto and et al. [14] ,Nieto and 
Rodriguez-Lopez [29]. 

 In the following, we have mentioned  some numerical solution which have proposed by other scientists. Abbasbandy and 
Allahviranloo have solved fuzzy differential equations by Runge-Kuta and Taylor methods [1,2]. Also , Allahviranloo and  et 
al. solved differential equations by predictor- corrector and transformation methods [3,4,5]. Ghazanfari and Shakerami 
developed Runge-Kuta like formula of order 4 for solving fuzzy differential equations [13]. Nystrom method has been 
introduced for solving fuzzy differential equations  [18]. 

In 1990 Lee and Kang [19] used parallel processor computers to solve a first order differential equations with Hopfield 
neural network models. Meade, Fernandes and Malek  [22,27] solved linear and nonlinear ordinary differential equations 
using feed-forward neural network architecture and 𝐵1-splines. Recently, fuzzy neural networks have been successfully 

used for solving fuzzy polynomial equations and systems of fuzzy polynomial equations [6,7], approximate fuzzy 
coefficients of fuzzy regression models [21,25,26], approximate solution of fuzzy linear system and fully fuzzy linear 
systems[31]. In Year 2012 Mosleh and  Otadi [23] used fuzzy neural network to solve a first order fuzzy neural network , 
system of fuzzy differential equations [20]and second order fuzzy differential equation[24]. 

In this work we proposed a new numerical method to find the approximate solution of FDEs , this method can result in 
improved numerical methods for solving FDEs. In this proposed method, fuzzy neural network model(FNNM) is applied as 
universal approximator. We use fuzzy trial function, this fuzzy trial function is a combination of two terms. A first term is 
responsible for the fuzzy condition  while the second term contains the fuzzy neural network adjustable parameters to be 
calculated. The main aim of this paper is to illustrate how fuzzy connection weights are adjusted in the learning of fuzzy 
neural networks. Our fuzzy neural network in this work is a three-Layer feed- forward neural network where connection 
weights and biases are fuzzy numbers . 
The proposed method based on Taylor series.In fact, we will multiplying the fuzzy initial condition by a suitable Taylor 
series provided that the fuzzy trial solution must satisfy the fuzzy initial / boundary conditions, Therefore ,many Taylor 
serieses with respect to many functions can be used such as  𝑒𝑥  , 𝑐𝑜𝑠𝑥 , 𝑐𝑜𝑠𝑥 , 𝑒𝑡𝑐 .In [12] ,for the first time, 

Ezadi,Parandin and et al. used  usual neural network based on the semi-Taylor series (with respect to the function 𝑒𝑥 ) to 

solve the first order FDEs . Here , we will use the same concepts in [12] ,but we will use fuzzy neural network instead of 
usual neural network .We will describe this new method for the first (and second ) order FDE,and one can use the same 
procedure to solve high order FDE and fuzzy partial differential equation .The accuracy of this method depend mainly on 
the Taylor series which we choose for the trial solution.Of course, this chosen is not unique,therefore,the accuracy is 
different from problem to other.In general,this modified method is effective for solving FDEs . 

2. PRELIMINARIES                                                                                                         
In this section the basic notations used in fuzzy calculus are introduced. 

Definition 𝟐.𝟏  28 : A fuzzy number u is completely determined by any pair u=  u , u   of functions u (r) , u  (r) : R ⟶ 

 0,1  satisfying the conditions:     

 1  u (r) is a bounded, monotonic, increasing (non – decreasing) left continuous function for all r ∈ (  0,1  and right 

continuous  for  r=0.         

(2) u  (r) is a bounded,  monotonic, decreasing (non – increasing) left continuous function for all r ∈ ( 0,1  and right 

continuous  for   r=0.                 

(3) For all r ∈ ( 0,1  we have u (r) ≤ u  (r).  

For every u = u , u   , v =  v , v  and 𝑘 > 0 we define addition and multiplication as follows:                                                                                    

 1   u +  v   (r) = u (r) + v (r)                                                                                                                 (1) 

 2   u +  v  (r) = u  (r) + v (r)                                                                                                                  (2) 

 3   k u   (r) = K u (r) ,  k u  (r) = K u  (r)                                                                                               (3) 

The collection of all fuzzy numbers with addition and multiplication as defined by 𝐸𝑞𝑠.  1  ⟶  3  is denoted by E
1
 . For r ∈ 

(  0,1  , we define       

the r - cuts of fuzzy number u with [u]𝑟  = x ∈ R u  x ≥ r   and for  r =0, the support of u is defined as [u]0  

= x ∈ R u  x  > 0                  

Definition 𝟐.𝟐  28 : The function f : R ⟶ E
1
 is called a fuzzy function. Now if, for an arbitrary fixed t1 ∈ R and 𝜖 > 0 

there exist a 𝛿 > 0 such that:   t - t1 < 𝛿 ⟹ d  f t  , f(t1)  < 𝜖                                          
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Then f is said to be continuous function.  

Definition 𝟐.𝟑  14 : let u , v ∈ E
1 

. If there exist w ∈ E
1 

such that u = v+w then w is called the H-difference (Hukuhara-

difference) of u , v and it is denoted by w=  u Θ v. In this paper the Θ sign stands always for H-difference,and let us remark 

that  u Θ v ≠ u + (-1) v . 

Definition 𝟐.𝟒  14 :  Let f : [a,b] →  𝐸1   and  𝑡0  ∈  [a,b].We  say  that  f is H-differential (Hukuhara-differential) at 𝑡0 , if 

there exists an element  fˊ 𝑡0 ∈ 𝐸1 such that for all  h> 0  sufficiently small, ∃ f(𝑡0 +h) Θ f 𝑡0 , f 𝑡0  Θ f(𝑡0 - h) and the limits  

lim→0
f 𝑡0 +h  Θ  f 𝑡0 


 = lim→0

f 𝑡0  Θ  f(𝑡0 − h)


 = fˊ 𝑡0 .                       (4)                                          

3. FUZZY NEURAL NETWORK  

 A fuzzy neural network or neuro -fuzzy system is a learning machine that finds  the parameters  of a fuzzy system ( i.e. 
fuzzy  sets and  fuzzy  rules) by  exploiting  approximation  from  neural  network  .  Combining  fuzzy system with neural 

network. Both neural network and fuzzy system have some things in common [7] .                                                                                                                            

 Artificial  neural  networks  are an exciting form of  the  artificial intelligence  which  mimic  the  learning  process of the 
human  brain  in order to extract patterns  from  historical data . Simple perceptrons need a teacher to tell the network 
what  the desired output should by. These are supervised  networks. In an unsupervised net , the network adapts purely in 
response to its input [15] . 

𝟒. OPERATIONS OF FUZZY NUMBERS 

 we briefly on mention fuzzy numbers operation defined by the extension principle . since input vector of feed-forward 
neural network is fuzzy in this paper, the following addition, multiplication and nonlinear mapping of fuzzy number are 
necessary for defining our fuzzy neural network [21]: 

          (1) ϻA+B (z) = Max {ϻA (x) ᴧ ϻB (y) │z = x + y}                                                                   (5)                                                      

          (2) ϻAB (z) = Max {ϻA(x) ᴧ ϻB (y) │z = x y}                                                                        (6)                                                             

                        3   ϻ𝑓 net 
(z) =Max  ϻnet (x) │z = 𝑓(x)                                                                               (7)                                                      

Where A,B and net are fuzzy number , ϻ (∗) denotes the membership function of each fuzzy number, ᴧ is the Minimum 

operator and 𝑓(.) is a continuous activation function (such as Hyperbolic tangent function) inside the hidden neurons. the 

above operations of fuzzy numbers are numerically performed on level sets (i.e. r-cuts) . 

The r-level set of a fuzzy number A is defined as:        [A]r = { x ϵ R │ ϻA (x) ≥  r  }  , 0 < r ≤ 1              (8)                                                                                    

Since level sets of fuzzy numbers become closed intervals we denote  [A]r  as : [A]r   =      [A]
L
r

 , [A]
U
r

    

Where [A]
L
r
 and [A]

U
r
 are the lower limit and the upper limit of the r-level set [A]r    respectively , from interval arithmetic , 

the above operations of fuzzy number are written for r-level set as follows:  

[A]r +[B]r   =    A L
r

 +  B L
r

 ,  A U
r

+  [B]
U
r

                                                                                        (9)                                     

[A]r  [B]r  =  
Min   A L

r
.  B L

r
 ,  A L

r
 .  B U

r
 ,  A U

r
 .  B L

r
 ,  A U

r
 .  B U

r
  ,

Max   A L
r

.  B L
r

 ,  A L
r

.  B U
r

 ,  A U
r

.  B L
r

 ,  A U
r

 .  B U
r

  
                                                           (10) 

𝑓 [net]r    = 𝑓    net 
L
r

 ,  net 
U
r
  =  𝑓   net 

L
r
  , 𝑓   net 

U
r
                                                                       (11)                         

 

5. INPUT-OUTPUT RELATIONS OF EACH UNIT 

Let us consider a fuzzy three – layer feed – forward neural network with n input units , m hidden units and s output units . 
Target vector , connection weights and biases are fuzzy numbers and input vector is real number. For convenience in this 
discussion , FNNM with an input layer, a single hidden layer, and an output layer in Fig. (1) is represented as a basic 
structural architecture. Here, the dimension of FNNM is denoted by the number of neurons in each layer , that is n × m × s 

, where n , m and s are the number of the neurons in the input layer, the hidden layer and the output layer , respectively 
[20] . 
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Fig 1 :Three-layer feed-forward Fuzzy neural network . 

The architecture of the model shows how FNNM transforms the n inputs  x1  , x2 , … , xi  , … , xn   into        the s fuzzy outputs 

  y1 r  ,  y2 r  , …  yk r  , …   ys r   throughout the m hidden fuzzy neurons   z1 r  ,  z2 r  , … [z𝑗 ]r  , …   zm  r  , where the cycles 

represent the neurons in each layer. Let [b𝑗 ]r   be the fuzzy bias for the fuzzy neuron [z𝑗 ]r  ,  ck r  be the fuzzy bias for the 

fuzzy neuron  yk r , [w𝑗 i]r   be the fuzzy weight connecting crisp neuron xi to fuzzy neuron [z𝑗 ]r  , and [wk𝑗 ]r be the fuzzy 

weight connecting fuzzy neuron [z𝑗 ]r to fuzzy neuron  yk r   . 

When an n – dimensional input vector  x1  , x2 , … , xi  , … , xn  is presented to our fuzzy neural network , its input – output 

relation can be written as follows , where   F : Rn  ⟶ Es  :  

Input units : 

    oi = xi  ,    i = 1,2,3, …n                                                                                                                      (12) 

Hidden units : 

    z𝑗  = F  net𝑗    ,    𝑗 = 1,2,3, …,m,                                                                                                          (13) 

    net𝑗  =  oi  w𝑗 i + b𝑗
n
i=1                                                                                                                           (14) 

Output units : 

    yk  = F  netk   ,    k = 1,2,3, …, s,                                                                                                         (15) 

    netk  =  wk𝑗  z𝑗 +m
𝑗 =1 ck                                                                                                                          (16) 

The architecture of our fuzzy neural network is shown in Fig.(1) , where connection weights , biases , and targets are fuzzy 
numbers and inputs are real numbers. The input – output relation in Eqs. (12 – 16) is defined by the extension principle  . 

6. CALCULATION OF FUZZY OUTPUT 

The fuzzy output from each unit in Eqs. (12 – 16) is numerically calculated for real inputs and level sets of fuzzy weights 

and fuzzy biases. The input – output relations of our fuzzy neural network can be written for the r – level sets [23] : 

Input units : 

    oi = xi  ,    i = 1,2,3, …n                                                                                                                      (17) 

Hidden units :  

    [z𝑗 ]r = F  [net𝑗 ]r   , 𝑗 = 1,2,3, …,m,                                                                                                     (18) 

    [net𝑗 ]r  =  oi  [w𝑗 i]r + [b𝑗 ]r
n
i=1                                                                                                               (19) 

Output units : 

     yk r = F  [netk]r   , k = 1,2,3, …, s,                                                                                                    (20) 
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    [netk]r =  [wk𝑗 ]r  [z𝑗 ]r+
m
𝑗 =1  ck r  .                                                                                                        (21) 

From Eqs. (17 – 21) , we can see that the r – level sets of the fuzzy outputs yk´s are calculated from those of the fuzzy 

weights, fuzzy biases and the crisp inputs.  

From the operations of fuzzy numbers , the above relations are rewritten as follows when the inputs xi´s are non – 

negative , i.e., xi ≥ 0   

Input units : 

    oi = xi                                                                                                                                                 (22) 

Hidden units : 

    [z𝑗 ]r = F  [net𝑗 ]r  =   z𝑗  r

L
 ,  z𝑗  r

U
  = .  F   net𝑗  r

L
  , F   net𝑗  r

U
                                                             (23) 

where                                                                                                                      

     net𝑗  r

L
 =  oi   w𝑗 i r

L
 +  b𝑗  r

Ln
i=1                                                                                                              (24) 

     net𝑗  r

U
 =  oi   w𝑗 i r

U
 +  b𝑗  r

Un
i=1                                                                                                             (25) 

Output units : 

     yk r = F  [netk]r  =   yk r
L  ,  yk r

U  = .  F  netk r
L  , F  netk r

U                                                             (26)                                                                                            

     netk r
L =    wk𝑗  r

L
   z𝑗  r

L 
𝑗 ∈a  +    wk𝑗  r

L
   z𝑗  r

U 
𝑗∈b  +  ck r

L                                                                       (27)                                                                                              

     netk r
U  =    wk𝑗  r

U
   z𝑗  r

U 
𝑗∈c  +    wk𝑗  r

U
   z𝑗  r

L 
𝑗∈d  +  ck r

U                                                                     (28)                                                                                           

For  z𝑗  r

U
 ≥  z𝑗  r

L
 ≥ 0 , where  

    a =  𝑗 ∶   wk𝑗  r

L
 ≥ 0  , b =  𝑗 ∶   wk𝑗  r

L
 < 0  , c =  𝑗 ∶   wk𝑗  r

U
 ≥ 0  , d =  𝑗 ∶   wk𝑗  r

U
 < 0    and 

    a ∪ b =  1,2,3, … , m   and  c ∪ d =  1,2,3, … , m   . 

7.FUZZY NEURAL NETWORK APPROACH FOR SOLVING FDEs 

 To solve any fuzzy ordinary differential equation (i.e., first order FDE , second order FDE ,etc.) we consider a three – 

layered fuzzy neural network model (FNNM) with one unit entry x , one hidden layer consisting of m activation functions 

and one unit output N(x , p). The activation function for the hidden units of our fuzzy neural network is  hyperbolic tangent 

function.Here, the dimension of FNNM is ( 1 x m x 1). 

 For every entry x the input neuron makes no changes in its input, so the input to the hidden neurons is: 

    net𝑗  = x w𝑗  + b𝑗   , 𝑗 = 1,2,3, …,m,                                                                                                        (29) 

Where w𝑗  is a weight parameter from input layer to the 𝑗th unit in the hidden layer, b𝑗  is an 𝑗th bias for the 𝑗th unit in the 

hidden layer. 

The output , in the hidden neurons is :  

    z𝑗  = s  net𝑗      , 𝑗 = 1,2,3, …,m,                                                                                                           (30) 

Where s is the hyperbolic tangent activation function  . The output neuron make no change in its input , so the input to the 

output neuron is equal to output :  

    N = v1 z1 + v2 z2 + v3 z3 + … + v𝑗  z𝑗  + … + vm  zm  =  v𝑗  z𝑗
m
𝑗 =1              (31)                                               Where v𝑗  is a 

weight parameter from 𝑗th unit in the hidden layer to the output layer.  

From Eqs. (22 – 28) , we can see that the r – level sets of the Eqs. (29 – 31) are calculated from those of the fuzzy 

weights , fuzzy biases and crisp inputs (Fig.2). For our fuzzy neural network , we can derive the learning algorithm without 

assuming that the input x is non – negative. For reducing the complexity of the learning algorithm , input x usually 

assumed as non – negative in the fuzzy neural network, i.e.,  x ≥ 0  [20] : 

Input unit : 

 o = x ,                                                                                                                                                    (32) 
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Fig 2 : (1 x m x 1) Feed-forward fuzzy neural network . 

    Hidden units :                                              

[z𝑗 ]r  =   z𝑗  r

L
 ,  z𝑗  r

U
  =  s   net𝑗  r

L
  , s   net𝑗  r

U
                                                                                        (33) 

   Where       net𝑗  r

L
 = o  w𝑗  r

L
 +  b𝑗  r

L
    and       net𝑗  r

U
 = 𝑜  w𝑗  r

U
 +  b𝑗  r

U
                                                                                  

Output unit :   [N]r =   N r
L  ,  N r

U    ,        where  

    N r
L  =   v𝑗  r

L
  z𝑗  r

L
+   v𝑗  r

L
  z𝑗  r

U
𝑗 ∈b   

𝑗∈a                                                                                                  (34) 

     N r
U  =   v𝑗  r

U
  z𝑗  r

U
+   v𝑗  r

U
  z𝑗  r

L
𝑗∈d   

𝑗∈c                                                                                                (35) 

For  z𝑗  r

U
 ≥  z𝑗  r

L
 ≥ 0 , where : a =  𝑗 ∶   v𝑗  r

L
 ≥  0  , b =  𝑗 ∶   v𝑗  r

L
 <  0     c =  𝑗 ∶   v𝑗  r

U
 ≥  0   ,   

d =  𝑗 ∶   v𝑗  r

U
 <  0   and a ∪ b =  1,2, … m   and  c ∪ d =  1,2, … m  . 

For illustration the solution steps, we will consider the first order fuzzy differential equation [23] : 

    
d y  x 

dx
 = F  x , y        ,  x ∈  a , b   , y  a  = A                                                                                         (36) 

Where A is a fuzzy number in E
1
 with r – level sets : 

    [A]r =   A r
L  ,  A r

U    , r ∈  0, 1  . 

The fuzzy trial solution for this problem is : 

     yt x , p  r = [A]r  +  x − a   N x , p  r                                                                                                  (37) 

This fuzzy solution by intention satisfies the fuzzy initial condition in (36) 
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The error function that must be minimized for the problem (36) is in the form  :                                                 E = 

  Eir
L +  Eir

U  
g
i=1                                                                                                                            (38)   

    Eir
L  =    

d yt   x i  ,p 

dx
 

r

L

−   F  xi  , yt  xi  , p   
r

L
  

2

                                                                                          (39) 

    Eir
U  =    

d yt   x i  ,p 

dx
 

r

U

−   F  xi  , yt  xi  , p   
r

U
  

2

                                                                                          (40) 

Where  xi i=1
g

 are discrete points belonging to the interval  a , b  (training set) and in the cost function (38) , Er
L  and Er

U  can 

be viewed as the squared errors for the lower and upper limits of the   r – level sets  . It is easy to express the first 
derivative of  N x , p  r  in terms of the derivative of the hyperbolic tangent  , i.e.,  

    
𝜕   N r

L

𝜕x
 =   v𝑗  r

L
 

𝜕   z𝑗  r

L

𝜕   net 𝑗  r

L   
𝜕   net 𝑗  r

L

𝜕xa  +   v𝑗  r

L
 

𝜕   z𝑗  r

U

𝜕   net 𝑗  r

U   
𝜕   net 𝑗  r

U

𝜕xb                                                                    (41)                                                                                             

   
𝜕   N r

U

𝜕x
 =   v𝑗  r

U
 

𝜕   z𝑗  r

U

𝜕   net 𝑗  r

U   
𝜕   net 𝑗  r

U

𝜕xc  +   v𝑗  r

U
 

𝜕   z𝑗  r

L

𝜕   net 𝑗  r

L   
𝜕   net 𝑗  r

L

𝜕xd                                                                    (42)                                                                                            

Where    a =  𝑗 ∶   v𝑗  r

L
 ≥  0   ,  b =  𝑗 ∶   v𝑗  r

L
 <  0   , c =  𝑗 ∶   v𝑗  r

U
 ≥  0   ,  d =  𝑗 ∶   v𝑗  r

U
 <  0   and                

a ∪ b =  1,2,3, … m   and  c ∪ d =  1,2,3, … m  . Also we have  

    
𝜕   net 𝑗  r

L

𝜕x
 =  w𝑗  r

L
       ,   

𝜕   net 𝑗  r

U

𝜕x
 =  w𝑗  r

U
   ,    

𝜕   z𝑗  r

L

𝜕   net 𝑗  r

L = 1 -   z𝑗  r

L
 

2

    and      
𝜕   z𝑗  r

U

𝜕   net 𝑗  r

U  = 1 -   z𝑗  r

U
 

2

                                                                                                                                                                       

Now differentiating from fuzzy trial function  yt x , p  r  in (39) and (40) we obtain :  

    
 yt   x ,p  r

L

∂x
 =  N  x , p  r

L +  x − a  
∂   N  x ,p  r

L

∂x
                                                                                            (43) 

    
 yt   x ,p  r

U

∂x
 =  N  x , p  r

U  +  x − a  
∂   N  x ,p  r

U

∂x
                                                                                           (44) 

Therefore , we get  

Eir
L  = 

 
 
 
 
 
   v𝑗  r

L
  z𝑗  r

L
+   v𝑗  r

L
  z𝑗  r

U
+  xi − a ba

   v𝑗  r

L
  w𝑗  r

L
 1 −   z𝑗  r

L
  a +   v𝑗  r

L
  w𝑗  r

U
 1 −   z𝑗  r

U
  b  

−F  xi ,  A r
L+  xi − a     v𝑗  r

L
  z𝑗  r

L
+   v𝑗  r

L
  z𝑗  r

U
ba    

 
 
 
 
 

2

                                                                        (45)                                                                                                              

Eir
U  = 

 
 
 
 
 
   v𝑗  r

U
  z𝑗  r

U
+   v𝑗  r

U
  z𝑗  r

L
+  xi − a dc

   v𝑗  r

U
  w𝑗  r

U
 1 −   z𝑗  r

U
  c +   v𝑗  r

U
  w𝑗  r

L
 1 −   z𝑗  r

L
  d  

−F  xi ,  A r
U+  xi − a     v𝑗  r

U
  z𝑗  r

U
+   v𝑗  r

U
  z𝑗  r

L
dc    

 
 
 
 
 

2

                                                                       (46)                                                                                            

Now we substitute (45) and (46) in (38) to find the error function that must be minimized for problem (36). 

For the higher order fuzzy ordinary differential equations and fuzzy partial differential equations eq. (45) and eq. (46) will 

be very complex and the computations are very difficult. 

Therefore, for reducing the complexity of the learning algorithm, we will propose a partially fuzzy neural network in the next 
section. 

8. PARTIALLY FUZZY NEURAL NETWORKS 

One drawback of the fully fuzzy neural networks with fuzzy connection weights is long computation time. Another 
drawback is that the learning algorithm is complicated. Therefore, for reducing the complexity of the learning algorithm,  a 
partially fuzzy neural network (PFNN) architecture has been proposed where connection weights to the output unit are 

fuzzy numbers while connection weights and biases to the hidden units are real numbers  .[23,24] . 

The input – output relation of each unit of our partially fuzzy neural network in Eqs. (32-35)  can be rewritten for r – level 

sets as follows : 

Input unit :            o = x                                                                                  

Hidden units :        z𝑗  = s  net𝑗    , 𝑗 = 1,2,3, … m                                       

   Where                net𝑗  = o w𝑗  + b𝑗                                                                 

Output unit :        [N]r =   N r
L  ,  N r

U  =   v𝑗  r

L
z𝑗  m

𝑗 =1  ,   v𝑗  r

U
z𝑗  m

𝑗 =1                                      
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Now to find the minimized error function(with PFNN) for problem (36) : 

 
𝜕   N r

L

𝜕x
 =   v𝑗  r

L
 

𝜕  z𝑗

𝜕  net 𝑗
  

𝜕  net 𝑗

𝜕x

m
𝑗 =1  =   v𝑗  r

L
 m

𝑗 =1 w𝑗   1 −  z𝑗
2                                                                           (47)                           

 
𝜕   N r

U

𝜕x
 =   v𝑗  r

U
 

𝜕  z𝑗

𝜕  net 𝑗
  

𝜕  net 𝑗

𝜕x

m
𝑗 =1  =   v𝑗  r

U
 m

𝑗 =1 w𝑗   1 −  z𝑗
2                                                                          (48)                                

By substituting Eqs (47 and 48) in Eqs (39 and 40) , we obtain : 

Eir
L  =  

 z𝑗
m
𝑗 =1  v𝑗  r

L
+  xi − a   w𝑗

m
𝑗 =1  1 −  z𝑗

2  v𝑗  r

L

−F  xi ,  𝐴 r
L+  xi − a   z𝑗  m

𝑗 =1  v𝑗  r

L
 

 

2

                                                                             (49) 

Eir
U  =  

 z𝑗
m
𝑗 =1  v𝑗  r

U
+  xi − a   w𝑗

m
𝑗 =1  1 − z𝑗

2  v𝑗  r

U

−F  xi ,  𝐴 r
U+  xi − a   z𝑗  m

𝑗 =1  v𝑗  r

U
 

 

2

                                                                             (50) 

And then we substitute (49) and (50) in (38) to find the error function that must be minimized for problem (36) (with 

respect to PFNN). 

9. THE PROPOSED METHOD 

In this section , we will discuss how we can find an approximate solution for the fuzzy differential equations by using the 
fuzzy neural networks based on Taylor series.In [12] , Ezadi,Parandin and et al. used the usual neural network based on 
the semi-Taylor series to solve the first order fuzzy differential equations . Here , we will use the same concepts in [12] ,but 
we will use fuzzy neural network instead of usual neural network .We will describe this new method for the first (and 
second ) order fuzzy differential equation,and one can use the same procedure third (and more )order fuzzy differential 
equation and fuzzy partial differential equation . 

9.1. Solution of First Order Fuzzy Differential Equation 

Again , if  we  consider the first order fuzzy differential equation : 

    
d 𝑦(𝑥)

d𝑥
 = f  𝑥 , y       ,  𝑥 ∈  𝑎 , b   , 𝑦  𝑎  = A                                                                                          (51) 

Where A is a fuzzy number in E
1
 with r – level sets : 

    [A]r =   A r
L  ,  A r

U    , r ∈  0, 1  . 

The fuzzy trail solution for this problem is : 

     𝑦t 𝑥 , p  r  = [U(𝑥)]r  +  𝑥 − 𝑎   N 𝑥, p  r                                                                                             (52)                  

The Taylor series of a real or complex function (𝑦 𝑥 ) that is infinitely differentiable in a neighborhood of a real or complex 

number 𝑥0 is the power series :                                                                                   𝑦 𝑥 = 𝑦 𝑥𝑜 + 𝑦ˊ 𝑥0  𝑥 − 𝑥0 +

𝑦ˊˊ(𝑥0)
(𝑥−𝑥0)2

2!
 +𝑦ˊˊˊ(𝑥0)

(𝑥−𝑥0)3

3!
 +……                  

Which can be written in the more compact sigma notation as : 

𝑦 𝑥 =   𝑦(𝑛)(𝑥0
∞
𝑛=0 )

(𝑥−𝑥0)𝑛

𝑛 !
                                                                                                                   (53)                                           

where  𝑛! denotes the factorial of 𝑛 . 

Exponential function  𝑒𝑥 =  
𝑦 (𝑛 )

𝑛 !
∞
𝑛=0    for all  .   

Praise fuzzy function on basis  Taylor series  

𝑦 𝑥 = [𝑦(𝑥0)]𝑟 + [𝑦(𝑥0)]𝑟 𝑥 − 𝑥0 + [𝑦(𝑥0)]𝑟
(𝑥−𝑥0)2

2!
  + [𝑦(𝑥0)]𝑟

(𝑥−𝑥0)3

3!
 +……                                                                              

Therefore, we get 

[𝑈 𝑥 ]𝑟 = (1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
 ) [𝑦(𝑥0)]𝑟                                                                                                (54)                                             

For  𝑥0 = 𝑎 , the fuzzy initial condition in eq.(51) will be 

[𝑦(𝑥0)]𝑟 = [𝑦 𝑎 ]𝑟 = [𝐴]𝑟 = [ 𝐴 𝑟
𝐿  ,  𝐴 𝑟

𝑈] , then eq.(54) will be : 

[𝑈 𝑥 ]𝑟 = (1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
 ) [𝐴]𝑟                                                                                                       (55)        Then, the 

fuzzy trial solution (52) becomes (when 𝑎 = 0) : 

[𝑦𝑡(𝑥, 𝑝)]𝑟 = (1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
 ) [𝐴]𝑟 + 𝑥[𝑁(𝑥, 𝑝)]𝑟                                                                             (56) 

The error function that must be minimized for the problem (51) is : 
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    E =   Eir
L + Eir

U  
g
i=1   , where                                       

    Eir
L  =    

d yt   𝑥i  ,p 

d𝑥
 

r

L

−   f  𝑥i  , yt  𝑥i  , p   
r

L
  

2

                                                                                           (57)       

    Eir
U  =    

d yt   𝑥i  ,p 

d𝑥
 

r

U

−   f  𝑥i  , yt  𝑥i  , p   
r

U
  

2

                                                                                          (58)               

where : 

[𝑦𝑡(𝑥, 𝑝)]𝑟
𝐿 = (1 + 𝑥 +

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
 )[𝐴]𝑟

𝐿 + 𝑥[𝑁 𝑥, 𝑝 ]𝑟
𝐿                                                                             (59) 

[𝑦𝑡(𝑥, 𝑝)]𝑟
𝐿 = (1 + 𝑥 +

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
 )[𝐴]𝑟

𝐿 + 𝑥[𝑁 𝑥, 𝑝 ]𝑟
𝐿                                                                             (60) 

[𝑦𝑡(𝑥, 𝑝)]𝑟
𝑈 = (1 + 𝑥 +

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
 )[𝐴]𝑟

𝑈 + 𝑥[𝑁 𝑥, 𝑝 ]𝑟
𝑈                                                                           (61) 

𝜕[𝑦𝑡(𝑥 ,𝑝)]𝑟
𝐿

𝜕𝑥
=  1 + 𝑥 +

𝑥2

2
+

𝑥3

6
  𝐴 𝑟

𝐿 + 𝑥
𝜕[𝑁 𝑥 ,𝑝 ]𝑟

𝐿

𝜕𝑥
 +[𝑁 𝑥, 𝑝 ]𝑟

𝐿                                                                     (62)    

𝜕[𝑦𝑡(𝑥 ,𝑝)]𝑟
𝑈

𝜕𝑥
=  1 + 𝑥 +

𝑥2

2
+

𝑥3

6
  𝐴 𝑟

𝑈 + 𝑥
𝜕[𝑁 𝑥 ,𝑝 ]𝑟

𝑈

𝜕𝑥
 +[𝑁 𝑥, 𝑝 ]𝑟

𝑈                                                                   (63) 

9.2. Solution of Second  Order Fuzzy Differential Equation 

Now, we consider the second order fuzzy differential equation  :                                                          𝑦ˊˊ = f(𝑥, 𝑦, 𝑦ˊ)      , 

𝑥 ∈ [𝑎, 𝑏]                                                                                                                  (64)         

        𝑦 𝑎 = 𝐴   , 𝑦ˊ 𝑎 = 𝐵 . 

such that the functions :   

𝑦: [𝑎, 𝑏] → 𝐸1        and      f: [𝑎, 𝑏] × 𝐸1 × 𝐸1 → 𝐸1 

where 𝑦 is a function with fuzzy derivative 𝑦ˊ, also A and B are fuzzy numbers in 𝐸1 with r-level sets : 

[𝐴]𝑟 = [ 𝐴 𝑟
𝐿  ,  𝐴 𝑟

𝑈]   ,   [𝐵]𝑟 = [ 𝐵 𝑟
𝐿  , [𝐵]𝑟

𝑈 ]       . 

The fuzzy trial for problem (64) has the form (when 𝑎 = 0)  : 

[𝑦𝑡(𝑥, 𝑝)]𝑟  = [𝑈 𝑥 ]𝑟 + 𝑥[𝐵]𝑟+𝑥2[𝑁(𝑥, 𝑝)]𝑟                                                                                               (65)    

Again , we write the power series : 

𝑦 𝑥 = 𝑦 𝑥𝑜 + 𝑦ˊ 𝑥0  𝑥 − 𝑥0 + 𝑦ˊˊ(𝑥0)
(𝑥−𝑥0)2

2!
 +𝑦ˊˊˊ(𝑥0)

(𝑥−𝑥0)3

3!
 +……        

Hyperbolic cosine function  cosh(𝑥) =  
𝑦 (2𝑛 )

(2𝑛)!
∞
𝑛=0    for all  .   

Praise fuzzy function on basis Taylor series  

𝑦 𝑥 = [𝑦(𝑥0)]𝑟 + [𝑦(𝑥0)]𝑟
(𝑥−𝑥0)2

2!
 +[𝑦(𝑥0)]𝑟

(𝑥−𝑥0)4

4!
 +……                                                                      (66)                                                                  

Therefore, we get 

[𝑈 𝑥 ]𝑟 = (1 +
𝑥2

2!
+

𝑥4

4!
+

𝑥6

6!
+

𝑥8

8!
 ) [𝑦(𝑥0)]𝑟                                                                                                (67)     

For  𝑥0 = 𝑎 , the first fuzzy initial condition in eq.(64) will be 

[𝑦(𝑥0)]𝑟 = [𝑦 𝑎 ]𝑟 = [𝐴]𝑟 = [ 𝐴 𝑟
𝐿  ,  𝐴 𝑟

𝑈] , then eq.(67) will be : 

[𝑈 𝑥 ]𝑟 = (1 +
𝑥2

2!
+

𝑥4

4!
+

𝑥6

6!
 )[𝐴]𝑟                                                                                                              (68)    Then, the fuzzy 

trial solution(65) becomes :       

[𝑦𝑡(𝑥, 𝑝)]𝑟 = (1 +
𝑥2

2!
+

𝑥4

4!
+

𝑥6

6!
 )[𝐴]𝑟 + 𝑥[𝐵]𝑟+𝑥2[𝑁(𝑥, 𝑝)]𝑟                                                                        (69)       

The error function that must be minimized for problem  64  is : 

              E =  ( 𝐸𝑖𝑟
𝐿𝑔

𝑖=1  + 𝐸𝑖𝑟
𝑈  )    ,where  

𝐸𝑖𝑟
𝐿  =([𝑦ˊˊ𝑡 𝑥𝑖  , 𝑝 ]𝑟

𝐿 –f(𝑥𝑖  , 𝑦𝑇 𝑥𝑖 , 𝑝 , 𝑦ˊ𝑡 𝑥𝑖 , 𝑝 )]𝑟
𝐿)

2
                                                                                   (70)              

𝐸𝑖𝑟
𝑈  =([𝑦ˊˊ𝑡 𝑥𝑖  , 𝑝 ]𝑟

𝑈  –f(𝑥𝑖  , 𝑦𝑇 𝑥𝑖 , 𝑝 , 𝑦ˊ𝑡 𝑥𝑖 , 𝑝 )]𝑟
𝑈)

2
                                                                                  (71)    

where : 

[𝑦𝑡(𝑥, 𝑝)]𝑟
𝐿 =  1 +

𝑥2

2!
+

𝑥4

4!
+

𝑥6

6!
   𝐴 𝑟

𝐿 + 𝑥 𝐵 𝑟
𝐿 + 𝑥2[𝑁 𝑥, 𝑝 ]𝑟

𝐿                                                                   (72)    
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[𝑦𝑡(𝑥, 𝑝)]𝑟
𝑈 =  1 +

𝑥2

2!
+

𝑥4

4!
+

𝑥6

6!
   𝐴 𝑟

𝑈 + 𝑥 𝐵 𝑟
𝑈 + 𝑥2[𝑁 𝑥, 𝑝 ]𝑟

𝑈                                                                  (73)                    

𝜕[𝑦𝑡(𝑥 ,𝑝)]𝑟
𝐿

𝜕𝑥
=  𝑥 +

𝑥3

3!
+

𝑥5

5!
+

𝑥7

7!
  𝐴 𝑟

𝐿 +  𝐵 𝑟
𝐿 + 𝑥2 𝜕[𝑁 𝑥 ,𝑝 ]𝑟

𝐿

𝜕𝑥
 +2𝑥[𝑁 𝑥, 𝑝 ]𝑟

𝐿                                                   (74)                                                                               

𝜕[𝑦𝑡(𝑥 ,𝑝)]𝑟
𝑈

𝜕𝑥
=  𝑥 +

𝑥3

3!
+

𝑥5

5!
+

𝑥7

7!
  𝐴 𝑟

𝑈 +  𝐵 𝑟
𝑈 + 𝑥2 𝜕[𝑁 𝑥 ,𝑝 ]𝑟

𝑈

𝜕𝑥
 +2𝑥[𝑁 𝑥, 𝑝 ]𝑟

𝑈                                                  (75)                                                                                     

𝜕2[𝑦𝑡(𝑥 ,𝑝)]𝑟
𝐿

𝜕𝑥2 =  1 +
𝑥2

2!
+

𝑥4

4!
+

𝑥6

6!
   𝐴 𝑟

𝐿 + 𝑥2 𝜕2[𝑁 𝑥 ,𝑝 ]𝑟
𝐿

𝜕𝑥2 + 4𝑥
𝜕[𝑁 𝑥 ,𝑝 ]𝑟

𝐿

𝜕𝑥
+ 2[𝑁 𝑥, 𝑝 ]𝑟

𝐿                                        (76)                                                                                          

𝜕2[𝑦𝑡(𝑥 ,𝑝)]𝑟
𝑈

𝜕𝑥2
=  1 +

𝑥2

2!
+

𝑥4

4!
+

𝑥6

6!
   𝐴 𝑟

𝑈 + 𝑥2 𝜕2[𝑁 𝑥 ,𝑝 ]𝑟
𝑈

𝜕𝑥2
+ 4𝑥

𝜕[𝑁 𝑥 ,𝑝 ]𝑟
𝑈

𝜕𝑥
+ 2[𝑁 𝑥, 𝑝 ]𝑟

𝑈                  (77)                                                                                     

and 

[𝑁 𝑥, 𝑝 ]𝑟
𝐿 =  [𝑣𝑗 ]𝑟

𝐿𝑚
𝑗 =1  𝑠( 𝑥 𝑊𝑗 + 𝐵𝑗 )                                                                                                       (78)                                        

[𝑁 𝑥, 𝑝 ]𝑟
𝑈 =  [𝑣𝑗 ]𝑟

𝑈𝑚
𝑗 =1  𝑠(𝑥 𝑊𝑗 + 𝐵𝑗 )                                                                                                       (79)                                       

𝜕[𝑁 𝑥 ,𝑝 ]𝑟
𝐿

𝜕𝑥
 =  𝑊𝑗 [𝑣𝑗 ]𝑟

𝐿𝑚
𝑗 =1  𝑠ˊ(𝑥 𝑊𝑗 + 𝐵𝑗 )                                                                                                    (80)                       

𝜕[𝑁 𝑥 ,𝑝 ]𝑟
𝑈

𝜕𝑥
=  𝑊𝑗 [𝑣𝑗 ]𝑟

𝑈𝑚
𝑗 =1  𝑠ˊ(𝑥 𝑊𝑗 + 𝐵𝑗 )                                                                                                    (81)           

𝜕2 𝑁 𝑥 ,𝑝  𝑟
𝐿

𝜕𝑥2 =   𝑊𝑗
2   𝑣𝑗  𝑟   

𝐿
𝑠ˊˊ 𝑥 𝑊𝑗 + 𝐵𝑗  

 

 
𝑚
𝑗 =1                                                                                                      (82)  

𝜕2[𝑁 𝑥 ,𝑝 ]𝑟
𝑈

𝜕𝑥2 =   𝑊𝑗
2   𝑣𝑗  𝑟   

𝑈
𝑠ˊˊ 𝑥 𝑊𝑗 + 𝐵𝑗  

 

 
𝑚
𝑗 =1                                                                                               (83)                                               

10. NUMERICAL EXAMPLES 

To show the behavior and properties of the new method, two problem will be solved in this section . For each example, the 

accuracy of the method is illustrated by computing the deviations  E  𝑥,r  and E  𝑥,r   

where       E  𝑥,r  =  𝑦𝑡 𝑥,r -𝑦𝑎 𝑥,r      ,    E   𝑥,r  =  𝑦𝑡 𝑥,r -𝑦𝑎 𝑥,r  .              

    and  𝑦𝑎 𝑥,r  =  𝑦𝑎 𝑥,r  , 𝑦𝑎 𝑥,r   ,   𝑦𝑡 𝑥,r  =  𝑦𝑡 𝑥,r  , 𝑦𝑡 𝑥,r   are the analytical and trial solutions respectively .  

Note that, for all examples, a multilayer perceptron consisting of one hidden layer with 10 hidden units and one linear 
output unit is used.To minimize the error function,we used BFGS quasi-Newton method (For more details , see [33] ) . 

Example (1) : Consider the following first order FDE :  

    𝑦ˊ(𝑥) = - 𝑦 (𝑥) + sin𝑥  ,    𝑥 ∈ [0 ,1] ,  𝑦 0  r  = [0.96 + 0.04r , 1.01 –  0.01r] .    

The fuzzy analytical solution for this problem is : 

     𝑦𝑎 𝑥  r =  
0.5  sin𝑥 − cos𝑥 +  2.92 + 0.08r e−𝑥 ,

0.5  sin𝑥 − cos𝑥 +  3.02 −  0.02r e−𝑥 
  

From(52),The fuzzy trial solution for this problem is : 

[𝑦𝑡(𝑥, 𝑝)]𝑟 =  1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
  [0.96 +  0.04r , 1.01 –  0.01r]  + 𝑥[𝑁(𝑥, 𝑝)]𝑟                                                                                              

Analytical and trial solutions for this example can be found in table (1) and table (2) . 

 

 

 

 

 

 

 

 

 

 

Table 1. Numerical results for example (1) , for r = 0.5 . 
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Table 2. Numerical results for example (1) , for 𝒙 = 0.98 . 

 

Example (2) : Consider the following nonlinear FDE :  

    𝑦´ˊ(𝑥) = -  𝑦´(𝑥) 2    ,   0 ≤ 𝑥 ≤ 0.1 

With the fuzzy initial conditions :  𝑦 0  r  =  r , 2 − r  ,  y´ 0  r  =  1 + r , 3 − r .    

The fuzzy analytical solutions for this problem is : 

     𝑦𝑎 𝑥  r =  Ln  er + 𝑥er + r 𝑥er  , Ln  e2−r + 3𝑥e2−r − r 𝑥e2−r   . 

From(69),the fuzzy trial solutions for this problem is : 

[𝑦𝑡(𝑥, 𝑝)]𝑟 =    (1 +
𝑥2

2!
+

𝑥4

4!
+

𝑥6

6!
 )  r , 2 − r  +  1 + r , 3 − r 𝑥+𝑥2[𝑁(𝑥, 𝑝)]𝑟  

Analytical and trial solutions for this example can be found in table(3) and table(4) .  

 

 

 

Table 3. Numerical results for example (2) , for r = 0.5 . 

  𝑥  𝑦𝑎 𝑥  r
L   𝑦t 𝑥  r

L        E  𝑥,r   𝑦𝑎 𝑥  r
U   𝑦t 𝑥  r

U       E   𝑥,r  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0.98 

0.891574004 

0.821022891 

0.766502825 

0.726252342 

0.698586864 

0.681894650 

0.674633999 

0.675331557 

0.682581567 

0.695045912 

0.98 

0.891574581 

0.821023390 

0.766502420 

0.726252125 

0.698586787 

0.681894580 

0.674634988 

0.675332678 

0.682579911 

0.695046720 

0 

0.000000577 

0.000000499 

0.000000405 

0.000000217 

0.000000077 

0.000000070 

0.000000989 

  0.000001121 

  0.000001656 

  0.000000808 

1.005 

0.914194939 

0.841491159 

0.785023280 

0.743010343 

0.713750131 

0.695614941 

0.687048632 

0.686564781 

0.692745808 

0.704242898 

1.005 

0.914195305 

0.841491470 

0.785023535 

0.743010630 

0.713749811 

0.695614876 

0.687048723 

0.686565200 

0.692746369 

0.704236249 

0 

0.000000366 

0.000000311 

0.000000255 

0.000000287 

0.000000320 

0.000000065 

0.000000091 

   0.000000419 

0.000000561 

0.000006649 

  r  𝑦𝑎 𝑥  r
L   𝑦t 𝑥  r

L        E  𝑥,r   𝑦𝑎 𝑥  r
U   𝑦t 𝑥  r

U       E   𝑥,r  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0.684691615 

0.686192860 

0.687694104 

0.689195349 

0.690696593 

0.692197837 

0.693699082 

0.695200326 

0.696701571 

0.698202815 

0.699704059 

0.684691699 

0.686193183 

0.687694503 

0.689194544 

0.690695784 

0.692196904 

0.693700032 

0.695204660 

0.696695912 

0.698195114 

0.699704180 

0.000000084 

0.000000323 

0.000000399 

0.000000805 

0.000000809 

0.000000933 

0.000000950 

0.000004334 

  0.000005659 

  0.000007701 

  0.000000121 

0.703457170 

0.703081859 

0.702706548 

0.702331237 

0701955926 

0.701580615 

0.701205304 

0.700829993 

0.700454682 

0.700079370 

0.699704059 

0.703457233 

0.703081937 

0.702707155 

0.702330560 

0.701956698 

0.701581567 

0.701206300 

0.700821546 

0.700461711 

0.700080145 

0.699704968 

0.000000063 

0.000000078 

0.000000607 

0.000000677 

0.000000772 

0.000000952 

0.000000996 

0.000008447 

   0.000007029 

0.000000775 

0.000000909 
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Table 4. Numerical results for example (2) , for 𝒙 = 0.1 . 

 

For the above example , we also solved it by using semi – Taylor series of the  cosine function   cos(𝑥) =   (−1)𝑛 𝑦 (2𝑛 )

(2𝑛)!
∞
𝑛=0      

for all 𝑥.   Therefore , the fuzzy trial solutions for this case will be  :    

[𝑦𝑡(𝑥, 𝑝)]𝑟 = (1 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
 )  r , 2 − r  +  1 + r , 3 − r 𝑥+𝑥2[𝑁(𝑥, 𝑝)]𝑟      

Analytical and trial solutions for this case can be found in tables(5) and table(6) . 

 

 

 

 

 

 

 

Table 5. Numerical results for example (2) , for r = 0.5 . 

   𝑥  𝑦𝑎 𝑥  r
L  𝑦𝑎 𝑥  r

U   𝑦t 𝑥  r
L  𝑦t 𝑥  r

U     E  𝑥,r     E   𝑥,r  

0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

0.5 

0.514888612 

0.529558802 

0.544016885 

0.558268908 

0.572320661 

0.586177696 

0.599845335 

0.613328685 

0.626632650 

0.639761942 

1.5 

1.524692613 

1.548790164 

1.572320662 

1.595310180 

1.617783036 

1.639761942 

1.661268148 

1.682321557 

1.702940844 

1.723143551 

0.5 

0.514888619 

0.529558809 

0.544016878 

0.558268900 

0.572320669 

0.586177630 

0.599845280 

0.613328694 

0.626632659 

0.639761933 

1.5 

1.524692617 

1.548790160 

1.572320667 

1.595310185 

1.617783030 

1.639761936 

1.661268141 

1.682321551 

1.702940769 

1.723143623 

0 

7.232 e-9 

7.287 e-9 

7.898 e-9 

8.001 e-9 

8.088 e-9 

6.663 e-8 

5.555 e-8 

9.443 e-9 

9.033 e-9 

9.221 e-9 

0 

4.440 e-9 

4.828 e-9 

5.110 e-9 

5.909 e-9 

6.559 e-9 

6.313 e-9 

7.122 e-9 

6.997 e-9 

7.544 e-8 

7.208 e-8 

    r  𝑦𝑎 𝑥  r
L  𝑦𝑎 𝑥  r

U   𝑦t 𝑥  r
L  𝑦t 𝑥  r

U     E  𝑥,r     E   𝑥,r  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0.095310179 

0.204360015 

0.313328685 

0.422217632 

0.531028262 

0.639761942 

0.748420005 

0.857003748 

0.965514438 

1.073953307 

1.182321557 

2.262364264 

  2.154642218 

2.046860078 

1.939016900 

1.831111721 

1.723143551 

1.615111380 

1.507014169 

1.398850859 

1.290620360 

1.182321557 

0.095310173 

0.204360073 

0.313328736 

0.422217636 

0.531028265 

0.639761933 

0.748420002 

0.857003746 

0.965514439 

1.073953398 

1.182321466 

2.262364272 

2.154642213 

2.046860082 

1.939016910 

1.831111631 

1.723143623 

1.615111386 

1.507014163 

1.398850862 

1.290620365 

1.182321552 

6.623e-9 

5.895 e-8 

5.179 e-8 

4.478 e-9 

 3.790e-9 

9.221 e-9 

 3.110e-9 

 2.422e-9 

1.702 e-9 

9.138 e-8 

9.135 e-8 

8.529e-9 

5.397 e-9 

4.530 e-9 

 1.001e-8 

 9.081e-8 

7.208 e-8 

   6.743 e-9 

 6.212e-9 

3.421 e-9 

5.080e-9 

5.601 e-9 
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Table 6. Numerical results for example (6.3.3.2) , for 𝒙 = 0.1 . 

         

11. CONCLUSIONS 

 In this paper, we presented a hybrid approach based on fuzzy neural networks and Taylor series for solving fuzzy 
differential equations. We demonstrate the ability of  fuzzy neural networks to approximate the solutions of FDEs . By 
comparing our results with the results obtained by other numerical methods, it can be observed that the proposed method 
yields more accurate approximations. Even better results may be possible if one uses more neurons or more training 
points. Moreover, after solving a FDE the solution is obtainable at any arbitrary point in the training interval (even between 

training points). The main reason for using fuzzy neural networks was their applicability in function approximation. Further 

research is in progress to apply and extend this method to solve fuzzy partial differential equations FPDEs . 
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 6,151 e-8 

3.659e-9 

7.182e-9 

1.594e-9 

 2.788e-8 

 1.992e-8 
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 1.986 e-8 

5.051 e-8 
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