
  ISSN 2347-1921                                                           

 

5198 | P a g e                                                O c t o b e r  0 6 ,  2 0 1 5 

An infinite plate with a curvilinear hole having three poles with complex 
parameters  

 F. S. Bayones1 and B. M. Alharbi 2 

1,2
 Math. Dept., Faculty of Science, Taif University, Saudi Arabia  

Abstract This paper covered the study of the boundary value problem for isotropic homogeneous perforated infinite 

elastic media. For this, we considered the problem of a thin infinite plate of specific thickness with a curvilinear hole where 
the origin lie outside the hole is conformally mapped outside a unit circle by means of a specific rational mapping . The 
complex variable method has been applied and it transforms the problem to the integro-differential equation with Cauchy 
kernel that can be solved to find two complex potential functions which called Gaursat functions. Many special cases are 
discussed and established of these functions .Also, many applications and examples are considered. Moreover the 
components of stress , in each application , are computed. 

 Keywords: Conformal Mapping; Integro-Differential Equation with Discontinuous Kernel; Complex Potential 

Functions; Cauchey method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Council for Innovative Research 

Peer Review Research Publishing System 

Journal: JOURNAL OF ADVANCES IN MATHEMATICS 
Vol .11, No. 5 

www.cirjam.com , editorjam@gmail.com 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KHALSA PUBLICATIONS

https://core.ac.uk/display/322470856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://member.cirworld.com/
http://www.cirjam.com/


  ISSN 2347-1921                                                           

 

5199 | P a g e                                                O c t o b e r  0 6 ,  2 0 1 5 

1- INTRODUCTION : 

Problems dealing with isotropic homogeneous perforated infinite plate have been investigated by several authors. Some 
author used Laurent's theorem  to express each complex potential as a power series [1-4].  

 Several authors wrote about the boundary value problems and their applications in many different sciences, see Gak-hov 
[5], Ciarlet et al.[6], Zebib[7] and Saito and Yamamto[8]. From these problems, we established contact problems and 
mixed problems in the theory of elasticity , see Colton and Kress[9], and Abdou[10]. In Abdou[10,11], Abdou and 
Khamis[12] and M. A. Abdou and S. J. Monaquel [13], F. S. Bayones and B. M. Alharbi [14] ,Complex variable method is 
used to express the solutions of these problems in the form of power series by applied Laurant's theorem. Some problems 
discussed the solution under presence of heat [15-16]. 

The complex variable method has been applied to solve the first and second fundamental problems for  < 1, the infinite 

region outside a closed contour conformably mapped outside the unit circle    with two poles . the first and second 

fundamental problem in the plane theory of elasticity are  equivalent to finding analytic functions )(1 z  and )(1 z  of  one 

complex argument iyxz  . These functions must satisfy the boundary condition, 

                                               )()()()( 111 tfttttK                                               (1) 

where t  denotes the affix of a point on the boundary. In terms of  )(cwz  , 0c , )(' w  does not vanish or become 

infinite for 1 , 

                                                         ,0)(' w                                                         (2) 

where the infinite region is outside a unit circle  . For the first fundamental boundary value problems or it called the 

stress boundary value problems, 1K  and )(tf  is a given function of stress. While for 1 kK , )(tf  is a given 

function of displacement which called the thermal conductivity, we have the second fundamental boundary value problems 
or called the displacement boundary value problems. 

The complex potential functions )(1 t  and )(1 t  take the following forms, see[17] 
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where, 
yx SS ,  are the components of the resultant vector of all external forces acting on the boundary and  ,  are 

complex constants. Generally the two complex functions )(  and )(  are single value analytic functions within the 

region outside the unit circle   and 0)(,0)(   . 

In this paper, we consider infinite elastic media with a curvilinear hole having three poles and arbitrary shape with complex 
parameters , in this problem we use the conformal mapping to obtain the complex potential function after rate setting the 
problem in form of integra-differential with singular kernel. Many special cases are obtain and several applications are 
discussed form the work . 

2- Formulation of the problem : 

Consider the rational mapping on the domain outside a unit circle   by the rational function 
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where 
jj

nmd ,,  , j=1,2,3, are complex parameters , 
321

nnn  . 

We can written the rational function in the form  
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This mapping must satisfy the condition (2), then  
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3- The rational mapping : 

The mapping function (6) maps the curvilinear hole C where the origin lies outside the hole under the conditions that 

)(' w  dose not vanish or become infinite outside the unit circle  . The following graphs give the different shapes of the 

rational mapping (6).  
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                    Fig(1) The different shapes of the rational mapping (6) 

4- Method of Solution: 

In this section ,we use the complex variable method to obtain the two complex functions (Goursat functions) )(  and 

)( . Moreover, the three stress components 
xyyyxx  ,,  will be completely determined . 

4.1- The Components of Stresses: 

It is known that, the components of stresses are given by, see[4]  

 )}('Re{4 z
yyxx

                                          (8) 

                         )}(')({2 zzzi
xyxxyy

                                   (9) 

Hence, we have 

)(')(),()},,()(2Re{ zzzzzMzzMz
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                (10) 

)(')(),()},,()(2Re{ zzzzzMzzMz
xx

               (11) 

and 

)},(Im{2)}(')(Im{2 zzMzzz
xy

                              (12) 

4.2- Goursat functions: 
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To obtain the tow complex potential functions (Goursat functions) by using the conformal mapping (6) in the boundary 

condition (2)We write the expression 
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Using Eq.(3) and Eq.(4) in Eq.(1), we get  
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Assume that the function )(F  with it's derivatives must satisfy the Hӧlder condition. our aim is to determine the 

functions )( and )( for the various boundary value problems. For this multiply both sides of  Eq. (19) by 
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, where  is any point in the interior of  and integral over the circle , we obtain 
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Using Eqs.(20)-(22) in Eq.(23) then applying the properties of Cauchy integral , to have  
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where 3,2,1, jb
j

 are complex constants which can be determined . 

Also,  
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From the above ,Eq.(23) becomes 
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Determining Eq.(29) with respect to  and using the result in Eq.(26), we obtain  
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To obtain the complex function )(  we have form Eq.(20) after substituting the expression of )(*   and )(G , and 

taking the complex conjugate of the resulting equation after using the expression of )(  to yields,       
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and calculate sum residue, we obtain Multiplying both sides of Eq.(34) by 

)(2

1

 i

 , where  is any point in the interior 

of  and integrating over the circle ,then using the properties of Cauchy’s integral and calculating the sum residue ,we 

obtain 
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5- Special cases: 

Here, we discuss the following: 

1) By considering the reality of the constants of the mapping (6), the Goursat functions, when 0,,,1
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 nmmd  are 

agree with work of England [1]  

                                                  

)1)(1(

)(
1

2

1

1

1

1














nn

m
cz                                                (39) 

2) When 3,2,1,0,1
3

 jnmd
j

,  the transformation mapping (6) becomes 

                                  )( 2

2

1

1

   mmcz     , 10,10
21
 mm                       (40) 

The Goursat functions, in this case, of the two formulas (29) and (36) agree with the all results of Abdou and Khamis [12]. 

3) For 31,0  jm
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 , we get the mapping function represent of the hole is an ellipse, see Fig. (2) 
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Fig.(2) The different shapes of the rational mapping for  special cases 

4) When 2,1,0  jnm
jj

,  the transformation mapping (6) becomes 
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The Goursat functions, in this case, of the two formulas (29) and (36) agree with the all results of Abdou and Asseri [18] 
and M.A. Abdou1 and A. R. Jan [19] at  different  discussed.   

6-Some applications: 

In this section, we assume different values of the given functions in the first or second fundamental boundary value 
problems. Then ,we obtain the expression of Goursat functions. After that, the components of stresses can be calculated 
directly. 
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stress of intensity p , making an angle  with the x-axis. The plate weakened by the curvilinear hole C which is free form 
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Fig.(3): The relation between components of stresses and the angle made on the x-axis 
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Application 2: 

For  *,1k 0YX  and Ptf  , where P  is a real constant see Figs.(5-
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Fig.(5): The relation between components of stresses and the angle made on the x-axis. 
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APPLICATION 3: 

For  iep
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Fig.(7): The relation between components of stresses and the angle made on the x-axis. 
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Fig(8):  max

yy

xx



 at  between 
36

 , 
30

 min 

yy

xx



  at   between  
36

 , 
30

 . 

             max

xx

yy



 at   between  
36

 , 
30

 ., min 

xx

yy



  at     
45

    

                                                                                                                                                                                                                   

REFERENCE                                                                                                                                          

[1] A.H.England , Complex Variable Methods in Elasticity, London, New York, (1971). 

[2] A.I.Kalandiya, Mathematical Theory of Elasticity, Mir Moscow, (1975). 

[3] I.S.Sokolnikff, Mathematical Theory of Elasticity, New York,(1950). 

[4] N.I.Muskhelishvili, Some Basic Problems of Mathematical Theory of Elasticity,  

Noordhoff International, Leyden, he Netherlands, (1953). 

[5] F.D.Gakhov, ., Boundary value problems, General publishing company, Ltd., Canada (1966). 

[6] P. G. Ciarlet, M. H. Schultz, and R. S. Varga, Numerical methods of high-order accuracy for nonlinear boundary value 
problems I. One dimensional problem, Numer. Math., Vol. 9 , (1967).  

[7] A. Zebib, A Chebyshev method for the solution of boundary value problems, J. Comput. Phys.Vol. 53, (1984).  

[8] S.Saito, M.Yamamto, Boundary value problems of quasili-near ordinary differential systems on a finite interval. Math. 
Japon. Vol. 34 ,(1989).  

[9] D. Colton, R. Kress, Integral Equation Methods in Scattering Theory, John Wiley, New York, (1983).  

[10] M. A. Abdou, First and second fundamental problems for an elastic infinite plate with a curbilinear hole. Alex. Eng. 
J.Vol. 33, (1994).  

[11] M. A. Abdou, Fundamental problems for infinite plate with a curvilinear hole having infinite poles. Appl. Math. Com-
put.,Vol.93, (2002).  

[12] M. A. Abdou and A. K. Khamis, On a Problem of an Infinite Plate with a Curvilinear Hole Having Three Poles and 
Arbitrary Shape. Bulletin of Calcutta Mathematical Society, 92, 309-322,(2000). 

[13] M. A. Abdou and S. J. Monaquel, Integro Differential Equation and Fundamental 

Problems of an Infinite Plate with a Curvilinear Hole Having Strong Pole. Int. J. Contemp. Math. Sciences, Vol. 6(4), 199 – 
208, (2011). 

[14] F. S. Bayones and B. M. Alharbi, On a Problem of an Infinite Plate with a Curvilinear Hole inside the Unit Circle. 
Applied Mathematics, 6, 206-220, (2015). 

[15] F.S.Bayones, Presence of Heat on an Infinite Plate with a Curvilinear Hole Having Two Poles. Journal of Modern 
Physics, 6, 837-853, (2015). 

[16] F.S.Bayones, An Infinite Plate with a Curvilinear Hole Having Three Poles and Presence of Heat. Journal of 
Computational and Theoretical Nanoscience, 12, 1630-1640, (2015). 

[17] H. Parkus, Thermo Elasticity. Spring-Verlag, Berlin, (1976). 

[18] M. A. Abdou, and S.A. Asseri, Gaursat Functions for an Infinite Plate with a Generalized Curvilinear Hole in Zeta 
Plane. Applied Mathematics and Computation, 212, 23-36, (2009). 

[19] M. A. Abdou and A. R. Jan, An Infinite Elastic Plate Weakened by a Generalized Curvilinear Hole and  Goursat 
Functions. Applied Mathematics, 5, 728-743, (2014). 

 

 

 




