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Abstract This paper covered the study of the boundary value problem for isotropic homogeneous perforated infinite
elastic media. For this, we considered the problem of a thin infinite plate of specific thickness with a curvilinear hole where
the origin lie outside the hole is conformally mapped outside a unit circle by means of a specific rational mapping . The
complex variable method has been applied and it transforms the problem to the integro-differential equation with Cauchy
kernel that can be solved to find two complex potential functions which called Gaursat functions. Many special cases are
discussed and established of these functions .Also, many applications and examples are considered. Moreover the
components of stress , in each application , are computed.
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1- INTRODUCTION :

Problems dealing with isotropic homogeneous perforated infinite plate have been investigated by several authors. Some
author used Laurent's theorem to express each complex potential as a power series [1-4].

Several authors wrote about the boundary value problems and their applications in many different sciences, see Gak-hov
[5], Ciarlet et al.[6], Zebib[7] and Saito and Yamamto[8]. From these problems, we established contact problems and
mixed problems in the theory of elasticity , see Colton and Kress[9], and Abdou[10]. In Abdou[10,11], Abdou and
Khamis[12] and M. A. Abdou and S. J. Monaquel [13], F. S. Bayones and B. M. Alharbi [14] ,Complex variable method is
used to express the solutions of these problems in the form of power series by applied Laurant's theorem. Some problems
discussed the solution under presence of heat [15-16].

The complex variable method has been applied to solve the first and second fundamental problems for |§| > 1, the infinite
region outside a closed contour conformably mapped outside the unit circle »  with two poles . the first and second
fundamental problem in the plane theory of elasticity are equivalent to finding analytic functions ¢l(Z) and y, (z) of one

complex argument Z = X + iy . These functions must satisfy the boundary condition,

K (1) —t4 (1) —y, () = T (1) @)
where 1 denotes the affix of a point on the boundary. In terms of z =cw({).c >0, W'({) does not vanish or become

infinite for |é'| >1,

w'(£) =0,00 @)

where the infinite region is outside a unit circle ¥ . For the first fundamental boundary value problems or it called the
stress boundary value problems, K=-1 and f(t) is a given function of stress. While for K=k >1, f(t) is a given

function of displacement which called the thermal conductivity, we have the second fundamental boundary value problems
or called the displacement boundary value problems.

The complex potential functions ¢, (t) and y/, (t) take the following forms, see[17]

X +iY

$.(&) = Tonds k)ln§+CF§+¢(§) ®)
and,
_ o (X-iY)
ig)=k—— k) ING +c0°¢ +y (). @

where, S, Sy are the components of the resultant vector of all external forces acting on the boundary and ", " are
complex constants. Generally the two complex functions ¢(¢) and /(¢ are single value analytic functions within the
region outside the unit circle y and ¢(x) =0, y(0) =0.

In this paper, we consider infinite elastic media with a curvilinear hole having three poles and arbitrary shape with complex
parameters , in this problem we use the conformal mapping to obtain the complex potential function after rate setting the
problem in form of integra-differential with singular kernel. Many special cases are obtain and several applications are
discussed form the work .

2- Formulation of the problem :

Consider the rational mapping on the domain outside a unit circle ¥ by the rational function

(@dg+mg*+m, g +m )

Z=C ,C>O,

(1-ngMA-n¢HA-ng)

n. j=1,2,3, are complex parameters , n,#n,#n,.

>1 (5)

where ,m;

’

We can written the rational function in the form
4 2
dg* +m g +m, g +m,

. (6)
(é,_ nl)(g - nz)(é/_ n3)

This mapping must satisfy the condition (2), then
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C (C-n)E-n)E-N) (C-n)(C—n) (¢ -
+(§_n1)(§_n3)+(é’_n2)(é’_n3)] (7)

e L e L S PR

3- The rational mapping :

The mapping function (6) maps the curvilinear hole C where the origin lies outside the hole under the conditions that
w'(<) dose not vanish or become infinite outside the unit circle y . The following graphs give the different shapes of the

rational mapping (6).
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Fig(1) The different shapes of the rational mapping (6)
4- Method of Solution:

In this section ,we use the complex variable method to obtain the two complex functions (Goursat functions) ¢#(¢) and
w (&) - Moreover, the three stress components &, o, .0, Wil be completely determined .

4.1- The Components of Stresses:

It is known that, the components of stresses are given by, see[4]

o, +o, =4Re{¢'(2)} (8)
o, —o, +ioc, =2z ¢"(2) +v' (2)} ©)

Hence, we have
o, =Re{2¢'(2)+M(z,2 )}, M(z,2)=12 ¢"(2) +y'(2) (10)

o, =Re{2¢'(2)-M(z,2 )}, M(z,2 )=z ¢"(2) +v'(2) (11)

and

o, =2Im{z ¢"(2) +v' (2)}=21m{M(z,2 )} (12)
4.2- Goursat functions:
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To obtain the tow complex potential functions (Goursat functions) by using the conformal mapping (6) in the boundary
condition (2)We write the expression w($) in the form,

w(¢™)

w(e) . w3
e =B 13

where,

(14)

s h
a(éf)=zg :

16 — Ny

BT is a regular function for ‘é"> 1, W(() has a singularity at =n,¢=n, and £ =n,

w'(S™)

1
h = . (15)
' (nl_nz) (n1_n3) Ll

h, = ! 1 (16)
(nz - n1) (nz Ay na)

h, = . N (17)
(ns - n1) (n3 - nz)

(dn," +mn * +m,n, +m,)(1-n,n,)’(@-n,n,)’(@-n;n;)’

7 {(4d +2m,n * +m,n )(L—n;n)L-n,n,)1-n,n,)—(d +mn’+m,n’ +mn*)
[a-nn)@-nn,)+ @-mn )A-nn,) + @-mn Ja-mn )] | . =123 @8)
Using Eq.(3) and Eq.(4) in Eq.(1), we get
kg(o) —a(o) ¢'(0) —y.(c) =G(o) (19)

where

y.(0) =y (o) + p(o) ¢ (o) (20)

G(0) = F(o)—cdklo + &

I N(o) a(0)+N(o) Blo) (@)
O

(X —iY)

N(o) = {cdl‘ -
27(1+ )

} ) F(o) = f(ew(o)) = f(1) - (22)

Assume that the function F(o-) with it's derivatives must satisfy the Hoélder condition. our aim is to determine the

do
27(o - &)

functions ¢(é‘) and () for the various boundary value problems. For this multiply both sides of Eq. (19) by
, Where é’ is any point in the interior of ) and integral over the circle , we obtain

j¢<a) 1 [a0)H0) 4, J<§ RENTC P

27ziy oc—¢ 2dyo-¢

Using Eqgs.(20)-(22) in Eq.(23) then applying the properties of Cauchy integral , to have
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12 do - kgt @
y O —
and
a(0)g(o) 2
2ij§ do = CZl,—g *
1 N@) ale) o NO) b o)
2l (o-0) 9% ¢

where b, j =1,2,3 are complex constants which can be determined .

Also,
R edrt N0 Ny
il o0 YA LT
where,
_ 1 F(o)
M= 2l (-0

From the above ,Eq.(23) becomes

k() = A+ Y (cb, +N(n,))-S

j=1 n_é,

Determining Eq.(29) with respect to ¢ and using the result in Eq.(26), we obtain

c kb, +A(n,)+cd"n®+o,h (cb, + N(n,))=0

where,
2
. / <l
D, = —— ,]=123
(-n;n))

Hence, we have

b= KEZONE 53 (32)
T ek:—vohh)

[ B B |

where,

PN * 2
E,=—A(n,)—cd I'n—v,h N(n,)

@7)

(28)

(29)

(30)

(1)

(33)

To obtain the complex function y/({) we have form Eq.(20) after substituting the expression of . (o) and G(o), and

taking the complex conjugate of the resulting equation after using the expression of ﬂ(o-) to yields,

() = —F(0) +ckdTo ™ —cdl™ o + k(o) — (o) (o) - W((O') 23: ) h(c) 39
W' (o) ~ (-
where,
4.(0)=¢(@)+N(@@)  N(o)= {cdr _‘fl(X”Y)} (35)
2 L+ yp)
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and calculate sum residue, we obtain Multiplying both sides of Eq.(34) by 1 , Where é’ is any point in the interior
27i(0 - ()

of y and integrating over the circle ,then using the properties of Cauchy’s integral and calculating the sum residue ,we

obtain

—ckdTe — W(é’) Hg 0+ B(S) - B (36)
YO =T~ EE ()3, e TAURELD
where,
B¢ =5 (F(“é),) do @)
and
B F(o) do (38)

27zl o

5- Special cases:
Here, we discuss the following:

1) By considering the reality of the constants of the mapping (6), the Goursat functions, when d =1, m,,m,,n, = 0 are
agree with work of England [1]

(¢+mg™) (39)
(1_ nlé/il)(l_ nzéhl)

2) When d =1, m,=n, = 0, j =123, the transformation mapping (6) becomes

z=c(+ms+m?) ,0<m <1,0<m, <1 (40)
The Goursat functions, in this case, of the two formulas (29) and (36) agree with the all results of Abdou and Khamis [12].

3) For m; = 0, 1< j <3, we get the mapping function represent of the hole is an ellipse, see Fig. (2)

7-¢ dg’ (41)
(1_ n1é’71)(l_ nzé'il)(l_ n3§71)

e EL NENV) (42)
(nl _nz) (nl _na)

h = 1 M (43)

h, = L M, (44)
(na - nl) (n3 - nz)

- dn*(L-nn,)*(A-n,n,)*(@-nn,)° ,j=1,2,3 (45)
" Md@-nn)A-nn)a-nn) - d(@-nn)A-nn)+ @-nn)E-nn,) + (- nn)E-nn )

the Goursat functions become

—kg(&) =

(b, +N(n,))- Cd; (46)

i~
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e ,
w($)=ckdI¢ ™ - W) 7§¢*(n,—’1)+8(§)—5 (47)
W) 1-n;¢)
08
oe 15
04
02 10
05 1 15 5
20 15 1o 5 [1]
n, =0.5+0.02i, n,=-0.13+1,
n, =02, n,=04.n, =0.0L, n, =0.07+0.6i, m; =0 ,m, =0,
m,=0,m, =0,m, =0, d =1 m, =0, d=-0.1i

Fig.(2) The different shapes of the rational mapping for special cases

4) When m,=n, = 0, j=1,2, the transformation mapping (6) becomes

_9emeT g<m, <1,n, %0 (48)
1-n¢™

The Goursat functions, in this case, of the two formulas (29) and (36) agree with the all results of Abdou and Asseri [18]
and M.A. Abdoul and A. R. Jan [19] at different discussed.

6-Some applications:

In this section, we assume different values of the given functions in the first or second fundamental boundary value
problems. Then ,we obtain the expression of Goursat functions. After that, the components of stresses can be calculated
directly.

Application 1:

Curvilinear hole for an infinite layer subjected to uniform tensile stress For | — _q ,F—E AT z_% p g2 and
X=Y=f=0,0<8<2x, we have the case of infinite plate stretched at infinity by the application of a uniform tensile
stress of intensity p, making an angle @ with the x-axis. The plate weakened by the curvilinear hole C which is free form

stresses, see Figs.(3-4) (d=0.1+i, n,=0.02+0.2i ,n, =0.04-0.4i,n, =0.05+0.05i
m, =0.004 ,m, =0.007 ,m, =0.002,c=2 , p=0.25). Then the functions in (29) and (36) becomes
f=0=A()=0 (49)
N(n)=|car X -V _cpd "\ ;54 (50)
] 271+ 7) 4
2cdn’pe®-vhecpd _— 2cdn pe?-vhcpd
e B e R TR 1123 e
-E.-v.h E.
ob =11 j_123 (52)
(L1-v;v;h;h))
cpde® & h
(<) = + (cb, +N(n))) (53)
2¢ %(nj -¢) :
—cpd_ w¢™) . h ¢ .
w(¢)= -—224.(0)+ g.(n; ") (54) where
4g w'(g) Z i6)
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Fig.(3): The relation between components of stresses and the angle made on the x-axis
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Application 2:

For k=-1,T="=X=Y=0 and f=Pt, where P is a real constant see Figs.(5-
6).(d =0.1+i, n, =0.02+0.2i ,n, =0.04—-0.4i,n, =0.05+0.05i,c=2 ,p=0.25
m, =0.004 ,m, =0.007 ,m, =0.002). Then the functions in (29) and (36) becomes

do’ +m,c? +m,oc+m,
(O‘— nl)(o__ nz)(o-_ns)

f =Pt=cP (55)
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d+mo’ +m,c’ +mo*

f=c L 2_ — (56)
oc(l-n,0)(1-n,o0)(1-n,0)
N(n)=0 (57)
2| dnf+mn’+mn, +m
A($) =cP>’ S B (58)
j=1 ( j+1)(n j+2)(nj _é/)
n dn ‘im n +m n;+m
An,)= CPZ i : m:) (59)
=1 ( j+1)(n j+2)(nj j_l)
Ej:_A‘(nj) iEi:Al(nj) (60)
hE,
cb, = “Ei M- §5,,% (61)
@- UJUJthJ)
#S) = cb, (62)
3
g WD e G
w(g)= e Z L vy | (63)
w() " fl-n¢)
where
1 ¢ F(o) cPd
B({) = =—
(o —¢Y ¢
1 F(o) 3 ot
B=—|—~do=cP d o ) =¢'(0)-
27zi-£ S do=c jZ:];nJ
] > maxo, at 0 = , .
1 o N o z
3] o~ : . ming,, at @ between ., z .
o + 36 30
2] ++ +++ ¢ﬁ¢+ﬂ+i‘+ 1 max g, at 6 between = 3%
14 GM%% . <;f j% ming, atd ~ ..
:00 . ¢¢¢ . f . {}QOVQ 3 + 5
0N "1 2 N a .. 6 max o at 0 % .
1 DL AN B
o] . "+, 180 »-%0 60", 4 IR T A
3% ++~;+8 o ottt o,— 0,
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Fig.(5): The relation between components of stresses and the angle made on the x-axis.
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APPLICATION 3:
For k:Z ’1—‘:% ,F* :—%p e_2i01 X =Y :0 y f =2ﬂit| see Figs.(7'8),

(d =0.1+i, n,=0.02+0.2i ,n, =0.04—-0.4i,n, =0.05+0.05i ,m, =0.004 ,m, =0.007 ,m,=0.002,c=2 ,p=0.25)
. Then the functions in (29) and (36) becomes

cpd

N(n;) = ; (64)
sl odnf+mn’+mn +m
A(C) = 2cui A —= = (65)
; (nj _nj+1)(nj _nj+2)(nj _é/)
__, T A
m=20/~lii ni(er+Tnjimzjj+msz (66)
j=1 (nj_nj+1)(nj_nj+2)(njnj_1)
2cdn’pe®™-vhecpd |
E, =-A(n)+ R L j=12,3 (67)
2cdnipe*-phcpd
E, =—A(n)+ i P y OMCPE 103 (68)
_uvhE.
o, =S TONE 5 (69)
(L-v;"h%)
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cpde? & N (70)
—x9(8)=AG) + + (cb, +N(n.))
2¢ JZI (n-¢) :
p oLty g W) . h ¢ -
w(¢)=cdy, ~20i 3 (n +¢7) d =B 54 (0) + Z =g, ()
= w' (&) it (1-n;q)
where
F(o g
B¢) = I FO) 45— —2cide
4)
L (F@ g, 20y|2n d. 0O)-0@+20.
27z| o

o _—~y max o, at 0 between , , , .
RN M -~ 36 25

10 P AN ming,at 0 %0, ., = .

+ . ooﬁ’ L + 7 60 30

b + v
b ks

5 :" + ++ s 47 maxo at 6 =0, ., = .

O ) S y G 30

S + vl 2 ﬁ%b% 1 | ming, atd between . , ..

07 g+ 5/.18Q. 9 6 I % 15
5] ¢°¢ + <>¢°I]|ela+"-¢0 N % max o, at ¢ between . , .
B t 3 s

+ . . N min o, at 6 between 0, ~

0] Y P =

+v+ +'_++

£ o, o, — 0,

Fig.(7): The relation between components of stresses and the angle made on the x-axis.
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Fig(8): max o,, at ¢ between

[e3
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