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1 INTRODUCTION 

Finding the zeros of a nonlinear equation, 0=)(xf , is a classical problem of numerical analysis. Analytic methods for 

solving such equations rarely exit, and therefore, one can hope to obtain only approximate solutions by relying on iteration 
methods. For a survey of the most important algorithms, some excellent textbooks are available (see, [4, 8, 10] ). The 
classical Newton’s method:  
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Being quadratically convergent, Newton’s method is probably the best known and most widely used algorithm. Time to time 
the method has been derived and modified in a variety of ways. One such method derived from Newton’s method by 
approximating the derivative with non-derivative term of difference quotient is Steffensen’s method [9, 11]. The method 
requires two evaluations of function and is quadratically convergent. The interesting iterative scheme is Steffensen’s method 
that has the following form:  
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In order to control the approximation of the derivative and the stability of the iteration, a Steffensen’s type method has been 

proposed in [2], this approach is based on a better approximation to the derivative )( nxf   in each iteration. It has the 

following form:  
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After that, the paper [1] has extended the above result on Banach spaces, obtained its local and semi-local convergence 
theorems, and made its applications on boundary-value problems by multiple shooting methods. 

A family of fourth order methods free from any derivative, satisfying the highest convergence order were established in [12, 
13]. 

2  q -Calculus 

In the following, q  is a positive number, 1<<0 q . For }{0,1,= Nn , }{1,2,= Zk  and 

Ckaaa ,,, 1  , the q -shifted factorial, the multiple q -shifted factorial and the q binomial coefficients are defined 

by  
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 respectively. The limit, nn qa );(lim  , is denoted by );( qa . Moreover nqa );(  has the representation, cf. [5],  
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 The q Gamma function, [5, 6], is defined by  
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 where we take the principal values of 
zq  and 

zq  1)(1 . In particular  
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Let C  be fixed. A set CA  is called a  geometric set if for Ax , Ax . Let f  be a function defined 

on a q -geometric set CA . The q -difference operator is defined by the formula  
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 If A0 , we say that f  has q -derivative at zero if the limit  
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exists and does not depend on x . We then denote this limit by (0)fDq . The q -integration of F. H. Jackson [7] is defined 

for a function f  defined on a q -geometric set A  to be  
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 provided that the series converges. A function f  which is defined on a q -geometric set A , A0 , is said to be q
-regular at zero if  
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The rule of q integration by parts is  
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 If gf ,  are q regular at zero, the ))((lim
n

n aqfg  on the right hand side of (12) will be replaced by )(0)( fg . 

The two variable polynomial ),( axn , Cax, , are defined to be  
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 In [3], Annaby and Mansour gave q -Taylor series in the following forms  

 .)(),(
)(

1
),(

1)(

)(
=)( 1

1

0=

tdtfDqtx
n

ax
k

afD
xf q

n

qn

x

a
q

k

q

k

q
n

k











  (14) 

  

 

,)(),(
)(

1
3

),(
1)(

)(
1)(=)(

11

2

1)(1

0=

tdtfDqtx
n

cm

xa
k

aqfD
qxf

q

n

qn

x

naq
q

k

q

kk

q
kk

k
n

k




















 (15) 



ISSN 2347-1921                                                           

3446 | P a g e                             A p r i l  2 3 ,  2 0 1 5
                                                          
 

3  A q -Steffensen-secant method 

In the following we set axe nn = , aye nn =*
, )(= nnn xqfxz  , ],[)/(= nnnnn zxfxfxy  , where 
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 Now, we state and prove our q-Steffensen-secant Theorem with fourth order convergence. 

Theorem 3.1 Let RD:f  be a real-valued function with a root Da , RD , and let 0x  be closed enough 

to a . If )(xDk

q , 1,2,3=k  exist, and 0)( aDq , then  
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is fourth-order convergent, and satisfies the following error equation  
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Proof: Using the Taylor expansion in (14), we have  
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 Rearranging the above equation again gives:  
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 Thus,  
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 Moreover, 
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 Therefore,  
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 Consequently,  
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 This means  
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 On the other hand 
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 So that  
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 If we multiply )( nxH  by )( nyf  we get  
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 Taking in consideration that 1nx  is nothing but )()( nnn yfxHy   we get  

 

.)]()]43(5)(22[

)]22(3)(1[[1=

)()(=

*4322232

22221

1

nnn

nn

nnnn

eeOeAqqABAqABCA

eAqqABAqACAx

yfxHyx













 (35) 

 Thus 
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This completes the proof.  
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