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1 INTRODUCTION

Finding the zeros of a nonlinear equation, f (X) =0, is a classical problem of numerical analysis. Analytic methods for

solving such equations rarely exit, and therefore, one can hope to obtain only approximate solutions by relying on iteration
methods. For a survey of the most important algorithms, some excellent textbooks are available (see, [4, 8, 10] ). The
classical Newton’s method:

Xn+l=Xn_Ma n:o,1,2,.... (1)
f'(X,)

Being quadratically convergent, Newton’s method is probably the best known and most widely used algorithm. Time to time
the method has been derived and modified in a variety of ways. One such method derived from Newton’s method by
approximating the derivative with non-derivative term of difference quotient is Steffensen’s method [9, 11]. The method
requires two evaluations of function and is quadratically convergent. The interesting iterative scheme is Steffensen’s method
that has the following form:

Xpy = X, — (LY , n=0,12,.... @)
(f (Xn + f(Xn))_ f (Xn))

In order to control the approximation of the derivative and the stability of the iteration, a Steffensen’s type method has been

proposed in [2], this approach is based on a better approximation to the derivative f'(Xn) in each iteration. It has the
following form:

Xowg = X, — f(%,) .
T (e L OO ) = T e, | F )] (X))

After that, the paper [1] has extended the above result on Banach spaces, obtained its local and semi-local convergence
theorems, and made its applications on boundary-value problems by multiple shooting methods.

©)

A family of fourth order methods free from any derivative, satisfying the highest convergence order were established in [12,
13].

2 (-Calculus

In the following, @ is a positve number, 0<g<1l. For neN={0,1,..} , keZ" ={1,2,..} and
a,a,,...,4, € C, the ( -shifted factorial, the multiple Q -shifted factorial and the (] — binomial coefficients are defined

by
n-1 i k
(@a),:=1, (&0),:=]]1-2ad’). (a.a,.....a;a), =] [(@;:a),. @
j=0 j=1
and

a | =land[a | = (1_qa)(l_qa_l)'”(l_qa_m), ®)
{ 0} { n} (a;a),

respectively. The limit, |imn_...(&;Q),, is denoted by (&;(),, . Moreover (&;(), has the representation, cf. [5],

(a:9), = z(—nk{n } gt ®
k=0 k
aq

The (— Gamma function, [5, 6], is defined by

r@="9% g gu: cc gkl )
REDY

where we take the principal values of qZ and (1- q)l_Z . In particular
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Fq(n+1):(q;—q)“n, neN.
(1-9)

Let 1€ C befixed. Aset Ac C iscalleda gz—geometric setif for X € A, X e A.Let T be a function defined

ona (] -geometric set AcC.The ( -difference operator is defined by the formula
D, f (X) ::M, x e A—{0}. ©)
X — QX

If 0 A, wesaythat T has (]-derivative at zero if the limit

f(xgq")-f(0
Iim—( d )n (),XGA ©)
n—o0 Xq

exists and does not depend on X . We then denote this limitby D, f (0). The ( -integration of F. H. Jackson [7] is defined

for afunction f defined ona Q-geometric set A to be

b b a
j f(t)dt:= jo f(t)d t— jo f(D)d,t, abe A, (10)
where
J:f (t)d t:= nZ:;‘xq“(l—q) f(xq"), xeA 11)

provided that the series converges. A function f which is defined on a g -geometric set A, Oe A, is said to be q
-regular at zero if

lim f(xq") = f(0), forevery xe A

n—o0

The rule of ( — integration by parts is
J,809D, f (9dx = (fg)(a) ~lim (g)(aq") = | D, g () f (aX)dlyx. 12

If f,g are (—regular at zero, the |imn_. (fg)(@g") on the right hand side of (12) will be replaced by (fg)(0).
The two variable polynomial @,(X,8), X,a € C, are defined to be

x"(a/x;q).,, x#0,
P (X,a):=1, ¢, (xa):= (13)

n(n-1)

(-1)"q 2 a", x=0.

In [3], Annaby and Mansour gave ( -Taylor series in the following forms

o D; f(a)
”X)‘%rq(m) o (%.a T )jqon L (X, at)Dy f ()dt. (14)
_ n-1 k(k -1) D f(aq*k)
f(x) = ;(—1) m o (a,x) s
o+ ( i, — [ s (DD T OO
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3 A q-Steffensen-secant method

In the following we set € =X —a, e =y —a, z =X +qf(x.), y, =X, —f(x,)f[X,,z,]. where

f[a,b]=%,

_D,f(a) a(l-g)Dgf(a) a’(1-q)°(1+a)D;f(a)

+ + , (16)

r,(2) r,(3) [, (4)

D f(a) a(l-0)(2+q)D;f(a)
B= + , 7)

IL,3) I,(4)
and
C= M (18)
I, (4)

Now, we state and prove our g-Steffensen-secant Theorem with fourth order convergence.
Theorem 3.1 Let f:D—R be areal-valued function with aroot a€D, DR, andlet X, be closed enough
to a.If D: (X), k=1,2,3 exist,and D, (@) # 0, then

f[Xn’yn]_ f[zn1yn]+ f[Zn,Xn] f(y ), nEN,

X = Y, —
n+1 yn f Z[Xn, yn]

(19)

is fourth-order convergent, and satisfies the following error equation

e, = A'B(1+gA)[AC(1+0A) - A?B(3+20A+20°A%)Jel +O(e?), neN. (20)

Proof: Using the Taylor expansion in (14), we have

F(x,)=
D, f(a) . Djf(a) . R
m(xn‘ )+W(Xn_ )(x, —0a) + )
M(x —a)(X, —qa)(X, - 2a)+ijx” (a.qt)D; f (t)dt h
q(4) n n q n q 1-‘q(4)a¢3 ’q q q-
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Rearranging the above equation again gives:

f(x,)=Ae, +Be’+Ce’+0(e}), (22)

fla)= (% + )=
X, +qf (X D f
gl e D81+ (¢ —agf 1)

) ro
D@ gt (), -qa s )+

I @)

q

+

D}f (a) ) ) "
) (x, —a+af (x)))(x, —ga+af (x,)(x, —q"a+af (x,))

q

that is D f(a
=04 o)

[,(2)

D/ f (a) )
+W(Gn +af (x))e, +af (x;) +a(1-a))+

(& +f (x,)

D}t (a)

(e, +0f (x,))e, +f (x,) +a(L-a))(e, +f (x,) +a(1-q%))

T,(4)
= Ale, +af (x,)+B(e, +f (x,))* +C(e, +af (x,))* +O(e;).
(23)
Thus,
f(z,)=
A[1+gAle, + B[1+3gA+ g°A’le’ + ”
[C[1+4gA+39°A® +q°A’]+2gB°[1+gA]le: +O(e)).
Moreover,
f[zn’xn]: f(Xn-l-CIf(Xn))—f(Xn)
qf (x,) (25)
= A+ B[2+QAJe, +[C[3+39A+q*A’]+qB*Je’ +O(e).
Therefore,
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_ f(x)
MM)-?E;—H
O(ey)+e, — A"B[1+0Ale: + )
[AB?[1+gA][2+gA]-gA'B* — A"C[2+309A+q*A’]]e’.
Consequently,
f(y,) = f(x,—9(x,))=
D,f(®, D?f (a) o o
L@ (X, —a—g(x,))+ e (X, —a—g(x,))(x, —ga—g(x,))
D:f(a) 2
t— ) (X, —a—g(x,))(x, —gqa—-g(x,))(x, —q a-g(x,))
1 n-9(xy) 4
r—(4) ps(a,qt)D; f (t)d,t
( ) 27)
=0(e;)+ () (e, —9(x,))+
Daf@ o o )en +af (x,) + a- )+
r,3
D f (a)
r(4) ———(e, - 9(x,))(e, —9(x,) +a(l-a)(e, —g(x,) +a(l-q*))
= A(en i g(xn))+ B(en . g(xn)) +C(en > g(xn))3 +O(en)'
This means
f(y,) =O(ey) + B[1+gAJe’ — 8)
[A"B?[1+gA][2+gA]-qB* —C[2+3gA+q*A’]]es,
and
e =0(e})+ A'B[1+qgAle’ - 9)

[A?B’[1+gA][2+0A] -gA'B* — A'C[2+3gA+g° A’]]e’.
On the other hand
f(x,)—f
T (o)
9(x,) (30)
= A+Be, +[C+A"'B*[1+gA]le +O(ed).

Hence
£, ¥a] = O(e}) + o
A’ +2ABe, +[2AC + B’[3+ 2gA]Je? +[2BC + 2AB*[1+ gA]]e’.

But

f(z)-f
f[Zn,yn]: ( n) (yn) e

af (x,)+9(x,) (32)
A+B(1+gA)e, +[C(1+gA)* + A"B?(1+4gA+2gA%)Je> + O(ed).
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So that

H(Xn) — f[ynlxn]_ fz[zn! yn]+ f[Zn’Xn] -
f [yn’Xn]
A" +[APC(1+gA) - A°B(3+20A+20°AM)]e? + (33)
[-2A°BC(2+9A) + A*B*(5+3gA+4q°A%)]el +O(e?).

If we multiply H(X,) by f(y,) we get

H(x,) f(y,) = H(x,) f[y,.ale, =
[1+[A7C(1+gA)— A*B(3+20A+2q°A%)]e’ + (34)
[-2A°BC(2+0A)+ AB?*(5+3gA+4g°A*)]e’ + O(e)le..

Taking in consideration that X, is nothing but 'y, —H(X,) f(y,) we get

Xn+l: yn_H(Xn)f(yn)
= X, —[1+[A™"C(1+gA)— A°B(3+209A+2q°A%)]e + (35)
[-2A2BC(2+gA) + A°B2(5+30A + 492A%)Je* + O(e)]e;

n*

Thus

e... =[A'C(1+0A)— A?B(3+2gA+2q°A%*) +O(e,)]e’e,
= A"B[1+gA][A"C(1+gA) - A°B(3+20A+2q°A%)]e; + O(E)).

This completes the proof.

(36)
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