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ABSTRACT 

Semiparametric regression is concerned with the flexible combination of non-linear functional relationships in regression 
analysis. The main advantage of the semiparametric regression models is that any application benefits from regression 
analysis can also benefit from the semiparametric regression.In this paper, we derived a consistent estimator of 
parametric portion and nonparametric portion in Weibull semi-parametric regression models under random censorship. 
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1.  INTRODUCTION  

Regression models can be either linear or nonlinear. A linear model assumes the relationships between variables are 
straight-line relationships, while a nonlinear model assumes the relationships between variables are represented by 
curved lines. The typically used models are parametric or nonparametric models, when a model includes both a 
parametric and nonparametric components, a semiparametric model is needed. Variable selection for semiparametric 
regression models consists of two components: model selection for nonparametric components and select significant 
variables for parametric portion. Thus, it is much more challenging than that for parametric models such as linear models 
and generalized linear models because traditional variable selection procedures including stepwise regression and the 
best subset selection require model selection to nonparametric components for each submodel.Thus,semiparametric 
models are intermediate between parametric and nonparametric models: they are larger than parametric models, but 
smaller than nonparametric models. Because if only partial information concerning the functional form of the 
responsecovariate relationship is available, then a completely nonparametric model is inefficient and a completely 
parametric model may be wrong, it is important to combine the parametric portion and the nonparametric portion in a 
model. Sevirini and Staniswalis[6]used a quasi–likelihood function to estimate the parameters in a semiparametric model. 
This method of estimation only requires specification of the secondmoment properties of the data, rather than specification 
of the entire distribution. Hunsberger[2] used a weighted likelihood (Staniswalis, [8]), sometimes termed a local likelihood 
(Hastie [1]), to show that there exists a sequence of consistent estimators for the parametric and nonparametric 
components of the semiparametric regression model for arbitrary but specified densities of the observations, asymptotic 
normality and consistency for these estimators are established. 

In survival analysis, it is important to consider the relationship of lifetime to other factors. A popular regression model for 
the analysis of survival data is the Cox proportional hazards regression model. It allows testing for differences in survival 
times of two or more groups of interest, while allowing to adjust for covariates of interest. The Cox regression model is a 
semiparametric model, making fewer assumptions than typical parametric methods but more assumptions than those 
nonparametric methods described above. Observations are called censored when the information about their survival time 
is incomplete; the most commonly encountered form is right censoring. Lawless [4] discussed the parametric regression 
models for lifetime distribution in detail, but if the relationship between a lifetime and a set of concomitant variables cannot 
be described by the parametric regression model, we should think about the nonparametric regression models and the 
semiparametric regression models. In this paper, we only discuss the Weibullsemiparametric regression models, further 
study on other models will be developed in our future work. 

2.  SEMI-PARAMETRIC WEIBULL REGRESSION MODELS 

When individuals have constant hazard functions that may depend on concomitant variables, a Weibullregression model is 
appropriate. Parametric Weibull regression models have been studied by Lawless [4]and Khokan, Bari and Khan [3]. 
Suppose the life times are assumed to be Weibull distributed with p.d.f. ofZ, given x, is 

f(z x) =  
γ

θ x 
 

z

θ x 
 
γ−1

exp  − 
z

θ x 
 
γ

 , 𝑧 ≥ 0 

is in parametric regression models, the most useful functional form forθ x = exp⁡(xβ), where 𝑥 and β can be vectors, 
respectively. The ordinary maximum likelihood method can be relied on to estimate the parameters β. 

Suppose the life times are assumed to be Weibull distributed with c.d.f. ofZ, given x, is 

𝐹𝑧(𝑧 𝑥) = 1 − exp  − 
𝑧

𝜃 𝑥 
 
𝛾

   

andthe survival function 

𝑆(𝑧 𝑥) = 1 − 𝐹𝑧(𝑧 𝑥)  = 1 −  1 − exp − 
𝑧

𝜃 𝑥 
 
𝛾

  = exp −  
𝑧

𝜃 𝑥 
 
𝛾

  

We will discuss semiparametricWeibull regression models. The survival function and p.d.f. of Z, given x and t, are 
assumed to be  

𝑆(𝑧 𝑥, 𝑡) = exp −  
𝑧

𝜃 𝑥, 𝑡 
 
𝛾

   ,    𝑡 ≥ 0                                                             (1) 

and 

𝑓(𝑧 𝑥, 𝑡) =  
𝛾

𝜃(𝑥, 𝑡)
 

𝑧

𝜃(𝑥, 𝑡)
 
𝛾−1

𝑒𝑥𝑝  −  
𝑧

𝜃(𝑥, 𝑡)
 
𝛾

 ,    𝑡 ≥ 0                      (2)  

 

Here 𝑥 and 𝑡  are regression variables and 

𝜃 𝑥, 𝑡 = 𝐸(𝑍 𝑥, 𝑡) = 𝑒𝑥𝑝 𝑥𝛽 + 𝑔(𝑡)   

For simplification, we assume 𝑥 ∈ ℜ 𝑎𝑛𝑑 𝑡 ∈ ℜ, 𝛽 𝑖𝑠 𝑎 𝑠𝑐𝑎𝑙𝑒.  
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The model (2) is proportional hazards model. In addition, it can be viewed as a location-scale model for 𝑦 = log⁡(𝑧) from 
(2) the p.d.f. of y, given x and t, is  

f(y x, t) =  
γ

θ x, t 
 

ey

θ x, t 
 
γ−1

exp  − 
ey

θ x, t 
 
γ

   

f(y x, t)  = γ exp γ y − (xβ + g(t) − eγ y−(xβ+g(t)  , - ∞<y<∞(3) 

and survival function  

𝑆(𝑦 𝑥, 𝑡) = 𝑒𝑥𝑝  −
𝑒𝑦

𝑒𝑥𝛽+𝑔(𝑡)
 

𝛾

= 𝑒𝑥𝑝⁡ −𝑒
𝛾 𝑦− 𝑥𝛽+𝑔 𝑡   

   

Alternately, we can write  

𝑦 = 𝑥𝛽 + 𝑔 𝑡 + 𝜀                                                               4  

whereε has a standard extreme value distribution with p.d.f. to 

𝛾 exp 𝛾𝑠 − exp 𝛾𝑠  ,−∞ < 𝑦 < ∞                                                  

 

3. THE WEIGHTED MAXIMUM LIKELIHOOD METHOD  

Yang[9]discussed this method on exponential regression model but this paper will discuss it on Weibull regression models. 
Suppose that associated with each individual is lifetime or censoring time 𝑧𝑖  and a regression vector  𝑥𝑖 , 𝑡𝑖 , the notation 

𝛿𝑖 = 1and 𝛿𝑖 = 0 will be used to refer to individual i for which 𝑧𝑖  is a lifetime and a censoring time, respectively. We work 

with log times, 𝑌𝑖 = log 𝑍𝑖 , log lifetimeY has p.d.f. and survival functions 

𝑓(𝑦 𝑥, 𝑡) =  𝛾𝑒𝑥𝑝 𝛾 𝑦 − (𝑥𝛽0 + 𝑔(𝑡) − 𝑒𝛾 𝑦−(𝑥𝛽0+𝑔(𝑡)   5   

 

and 

   𝑆(𝑦 𝑥, 𝑡) = exp⁡ −𝑒
𝛾 𝑦− 𝑥𝛽0+𝑔 𝑡   

   ,                                               (6)    

respectively, where 𝛽0 is the true parameter value. 

The likelihood function for a censored sample based on nindividuals is 

𝐿 𝛽, 𝜃 =   𝑓(𝑦𝑖 𝑥𝑖 , 𝑡𝑖) 
𝛿𝑖 𝑆(𝑦𝑖 𝑥𝑖 , 𝑡𝑖) 

1−𝛿𝑖

𝑛

𝑖=1

 

As discussed by Hunsberger[2], let the parameter𝜆𝑖 = 𝑥𝑖𝛽0 + 𝑔(𝑡𝑖), then 𝑥𝛽0 is the parametric portion,with 𝛽0being the 

unknown parameter to be estimated that relates the covariate 𝑥 to the response. Here 𝑔 is the nonparametric portion of 

the model, with the only assumption on 𝑔 that it be a smooth function of𝑡 with𝜐 ≥ 2 continuous derivatives. Several 
assumptions are made that allow an association between x and t (Rice[5] andSpeckman[7]).  

Assume the regression model 𝑥𝑖 = 𝑟 𝑡𝑖 + 𝜂𝑖where 𝑟(𝑡) is a smooth function with 𝜐 continuous derivatives and 𝜂𝑖are 

independent random error terms with 𝐸 𝜂𝑖 = 0and 𝐸 𝜂𝑖
2 = 𝜎2. Now 𝜆𝑖can be rewritten using the model for the 𝑥’𝑠 to 

obtain𝜆𝑖 = 𝜂𝑖𝛽0 + 𝑕(𝑡𝑖), where 𝑕 𝑡𝑖 = 𝑟 𝑡𝑖 𝛽0 + 𝑔 𝑡𝑖 is the portion that depends on t. The main result of this research is to 

estimate 𝛽0and 𝑕𝑖 =  𝑕(𝑡𝑖),(𝑖 =  1, . . ., 𝑛) in the Weibullsemiparametric regression model by maximizing the weighted 

likelihood function 

𝑊𝐿 𝛽, 𝜃 =
1

𝑛
   𝑤(

𝑡𝑖 − 𝑡𝑗

𝑏
) ∕ 𝑤(

𝑡𝑖 − 𝑡𝑗

𝑏
)

𝑛

𝑗=1

 

𝑗=1𝑖=1

 log 𝑓(𝑦𝑖 𝑥𝑖 , 𝑡𝑖) 
𝛿𝑖  1 − 𝐹(𝑦𝑖 𝑥𝑖 , 𝑡𝑖) 

1−𝛿𝑖  

   =  
1

𝑛
 𝑊𝐿(𝛽, 𝜃𝑖)

𝑖

(7) 

with respect𝛽𝑎𝑛𝑑𝜃, where 𝜃 =  [𝜃1 , . . ., 𝜃𝑛 ]′ . Here 𝜃𝑖 is used to indicate thefunction of parameters of 𝑕𝑖 . Expressions are 
given in terms of log lifetime 𝑦and its p.d.f. (5). that independent observations (𝑦𝑖 , 𝑥𝑖 , 𝑡𝑖),𝑖 =  1, . . ., 𝑛 areavailable, where 

𝑦𝑖 is either a 𝑙𝑜𝑔 lifetime or a 𝑙𝑜𝑔 censoring time; 𝛿𝑖 = 1and 𝛿𝑖 = 0 denote the individuals for which 𝑦𝑖  is a log lifetime and a 

𝑙𝑜𝑔censoring time, respectively.Throughout this article the sum is assumed to be from 1 to n. 𝑊𝐿 𝛽, 𝜃  depends on the 

unobserved_i’s, which can be estimated. In 𝑊𝐿(𝛽, 𝜃𝑖), 𝑤(. ) is a kernel that assigns zero weights to the observations 𝑌𝑗  that 

correspond to 𝑡𝑗  outside a neighborhood of 𝑡𝑖. The neighborhood is defined by the bandwidth 𝑏. The estimates of 𝛽0 and 

𝑕𝑖 =  𝑕(𝑡𝑖)(𝑖 =  1, . . ., 𝑛) are found by choosing the 𝛽  and𝑕𝑖 tosimultaneously maximize 𝑊𝐿 𝛽, 𝜃 with respect to 𝛽 and𝜃.To 

understand the motivation for the weighted likelihood function, one can refer to the approaches of Staniswalis [3] and 
Hunsberger[5]. First we examine 𝑊𝐿(𝛽, 𝜃𝑖), this can be seen as the portion estimating 𝑕𝑖 =  𝑕(𝑡𝑖)by using the Nadaraya–

Watson estimator. The kernel governs those observations are used to estimate 𝑕𝑖 =  𝑕(𝑡𝑖). That is, because only the 
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observations 𝑌𝑖with 𝑡𝑗close to 𝑡𝑖have information about 𝑕𝑖 , only the 𝑦𝑗  close to the 𝑡𝑖 of interest are used to estimate 𝑕𝑖 . 

The summation over 𝑖 uses all of the individual 𝑊𝐿 𝛽, 𝜃𝑖 to estimate𝛽0 , because all of the observations contain information 

about𝛽0. The weighted likelihood function can be writtenas 

𝑊𝐿 𝛽, 𝜃 =
1

𝑛
  𝑤𝑖,𝑗

𝑗𝑖

 𝛿𝑖 log 𝑓(𝑦𝑖 𝜂𝑖 , 𝑡𝑖) +  1 − 𝛿𝑖 log 𝑆(𝑦𝑖 𝜂𝑖 , 𝑡𝑖)  

=
1

𝑛
  𝑤𝑖,𝑗

𝑗𝑖

{𝛿𝑖 logγ +  𝑦𝑖 −  𝜂𝑖𝛽 + 𝑕(𝑡𝑖  − 𝑒𝑥𝑝 𝛾 𝑦𝑖 −  𝜂𝑖𝛽 + 𝑕(𝑡𝑖     

− 1 − 𝛿𝑖 𝑒𝑥𝑝 𝛾 𝑦𝑖 −  𝜂𝑖𝛽 + 𝑕(𝑡𝑖   }                                              (8) 

=
1

𝑛
  𝑤𝑖,𝑗

𝑗𝑖

{𝛿𝑖 logγ +  𝑦𝑖 −  𝜂𝑖𝛽 + 𝑕(𝑡𝑖   − 𝑒𝑥𝑝 𝛾 𝑦𝑖 −  𝜂𝑖𝛽 + 𝑕(𝑡𝑖   } 

where𝑤𝑖,𝑗 = 𝑤(
𝑡𝑖−𝑡𝑗

𝑏
)  𝑤(

𝑡𝑖−𝑡𝑗

𝑏
)𝑛

𝑖=1 . A Newton–Raphson algorithm is used to approximate𝛽 and𝑕 . Now 𝜂is unobservable but 

can be estimated as follows:𝜂 = 𝑥 − 𝑟  𝑡 , with 𝑟  𝑡 being the nonparametric kernel estimate of 𝑟(𝑡). In this paper, the 

Nadaraya–Watson estimator is used. This is defined as 

𝑟  𝑡, 𝑏 =  𝑤(
𝑡 − 𝑡𝑖
𝑏

)𝑋𝑖
𝑖

∕ 𝑤(
𝑡 − 𝑡𝑖
𝑏

)

𝑖

 

with respect to 𝛽 𝑎𝑛𝑑 𝜃are The first and second derivatives of 𝑊𝐿(𝛽, 𝜃) 

𝜕𝑊𝐿(𝛽, 𝜃)

𝜕𝛽
=

1

𝑛
  𝑤𝑖,𝑗

𝑗𝑖

 −𝛿𝑖𝜂𝑖 + 𝛾𝜂𝑖𝑒𝑥𝑝 𝛾 𝑦𝑖 −  𝜂𝑖𝛽 + 𝑕(𝑡𝑖               (9)   

 

𝜕𝑊𝐿(𝛽, 𝜃)

𝜕𝜃𝑖
=

1

𝑛
  𝑤𝑖,𝑗

𝑗𝑖

 −𝛿𝑖 + 𝛾𝑒𝑥𝑝 𝛾 𝑦𝑖 −  𝜂𝑖𝛽 + 𝑕(𝑡𝑖                  (10) 

 

𝜕2𝑊𝐿(𝛽, 𝜃)

𝜕𝛽2 =
1

𝑛
  𝑤𝑖,𝑗

𝑗𝑖

 −𝛾2𝜂𝑖
2𝑒𝑥𝑝 𝛾 𝑦𝑖 −  𝜂𝑖𝛽 + 𝑕(𝑡𝑖                  (11) 

 

𝜕2𝑊𝐿(𝛽, 𝜃)

𝜕𝜃𝑖
2 =

1

𝑛
  𝑤𝑖,𝑗

𝑗𝑖

 −𝛾2𝑒𝑥𝑝 𝛾 𝑦𝑖 −  𝜂𝑖𝛽 + 𝑕(𝑡𝑖                    (12) 

 

𝜕2𝑊𝐿(𝛽, 𝜃)

𝜕𝛽𝜃𝑖
=

1

𝑛
  𝑤𝑖,𝑗

𝑗𝑖

 −𝛾2𝜂𝑖𝑒𝑥𝑝 𝛾 𝑦𝑖 −  𝜂𝑖𝛽 + 𝑕(𝑡𝑖                  (13) 

The maximum likelihood equations  

𝜕𝑊𝐿 𝛽, 𝜃 

𝜕𝛽
= 0                                                                      14  

 

and 

𝜕𝑊𝐿(𝛽, 𝜃)

𝜕𝜃𝑖
= 0                                                                      (15) 

 For each fixed 𝑡 𝑎𝑛𝑑 𝛽, 𝑕  𝑡𝑖 , the estimator of 𝑕  𝑡𝑖 , is obtained by solving  10 . 

 

𝑕  𝑡𝑖 = −
1

𝛾
log  

 𝑤𝑖,𝑗𝛿𝑖𝑗

𝛾 𝑤𝑖,𝑗  𝑒𝑥𝑝 𝛾 𝑦𝑖 − 𝛽𝜂𝑖   𝑗
                                        (16) 
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i 

Hence  

𝜕𝑕  𝑡𝑖 

𝜕𝛽
= −

 𝑤𝑖,𝑗𝜂𝑖 𝑒𝑥𝑝 𝛾 𝑦𝑖 − 𝛽𝜂𝑖   𝑗

 𝑤𝑖,𝑗  𝑒𝑥𝑝 𝛾 𝑦𝑖 − 𝛽𝜂𝑖   𝑗
                              (17) 

In (14), let θ is replaced by 𝜃 (𝛽),  the estimator of θ,  then we can obtain the estimator of βby solving  

𝜕𝑊𝐿(𝛽, 𝜃  𝛽 )

𝜕𝛽
= 0                                                   (18) 

Since  

𝜕

𝜕𝛽
 
𝜕𝑊𝐿(𝛽 ,𝜃  𝛽 )

𝜕𝛽
 =

1

𝑛
  𝑤𝑖,𝑗𝑗𝑖  𝛾𝜂𝑖𝑒𝑥𝑝 𝛾 𝑦𝑖 −  𝜂𝑖𝛽 + 𝑕(𝑡𝑖    −𝛾𝜂𝑖 − 𝛾

𝜕𝑕  𝑡𝑖 

𝜕𝛽
       (19) 

 

Equation (18) can be solved by the Newton-Raphson procedure to get the estimator of β: 

𝛽 = 𝛽𝑔 −  
𝜕

𝜕𝛽
 
𝜕𝑊𝐿 𝛽 ,𝜃  𝛽  

𝜕𝛽
  

−1

 
𝜕

𝜕𝛽
 
𝜕𝑊𝐿 𝛽 ,𝜃  𝛽  

𝜕𝛽
  |𝛽=𝛽𝑔

(20) 

4. SIMULATION 

Asmallsimulationstudywasconductedtostudythefinite 

samplepropertiesofthe𝛽 and𝑕 inthesemiparametricmodeldefinedinSection2.Thestandardextremerandomnumberisgenerated
usingthefollowingtransformation: 

𝜀 = log − log 1 − 𝑢  , 

Accordingtothemodel (4):𝑦 = 𝑥𝛽 + 𝑔 𝑡 + 𝜀. If𝑢∼𝑈[0,1],then 𝜀follows the standardextremedistributionwith p.d.fequalto 

𝛾 exp 𝛾𝑠 − exp 𝛾𝑠  ,          − ∞ < 𝑠 < ∞ 

Inthissimulation,the𝑡𝑖
,𝑠areequallyspacedas𝑡𝑖 = 𝑖  𝑛,for𝑖 = 1,… . ,100.AsingleMonte-Carlo realizationconsistsof𝑛 =

100observations.Forthegenerateddataset,𝑥 = 𝑟(𝑡) + 𝜂,𝑟(𝑡) = 1, 𝜂 ∼ 𝑁(0, 0.12), 𝛽 = 15and𝑔(𝑡) = 6(1 − 3𝑡)2, 
hence,𝑕(𝑡) = 𝑟(𝑡)𝛽 + 𝑔(𝑡),themodel(4)becomes 

𝑦 = 𝑥𝛽 + 𝑔 𝑡 + 𝜀 

Thesimulatedcensoringrandomvariable𝑈wasuniformon[0,80],resultinginabout22%censoringof 
thegenerateddata.Akernelandabandwidthmustbechosentouseintheweightedlikelihood.TheMüllerquadratickernelwith𝜈 =
2wasusedthrough: 

𝐰 υ =  

15

16
(1 − υ)2, −1 ≤ υ ≤ 1

 0,                              elsewhere

  

andb = 0.05 for estimating 𝑕 𝑡 were used, respectively. The simulation shows that the WMLE method estimating 𝛽0 = 15 

and 𝑕(𝑡) well. We obtain 𝛽 = 15.034.  Fig. 1 plots the estimates of the function 𝑕(𝑡) versus t, it indicates the estimated 
curve captures the true curve closely. 

 

 

Fig. 1. Plot for the estimated nonparametric function 𝑕(𝑡) from the simulation study. The dotted line 

is the estimated function; the solid line is the true function. 
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