

SOME RESULTS OF GENERALIZED LEFT (θ , θ)-DERIVATIONS

ON SEMIPRIME RINGS

Ikram A. Saed

Applied Mathematics, Department of Applied Science University of Technology, Baghdad ,Iraq .

akraam 1962 @yahoo. com

ABSTRACT

Let R be an associative ring with center Z(R). In this paper, we study the commutativity of semiprime rings under certain conditions, it comes through introduce the definition of generalized left (θ , θ)-derivation associated with left (θ , θ)-derivation, where θ is a mapping on R.

Keywords

Semiprime ring; left derivation; generalized left derivation; left (θ , θ)-derivation; generalized left (θ , θ)-derivation.

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol .11, No.8

www.cirjam.com, editorjam@gmail.com

INTRODUCTION

This paper consists of two sections . In section one, we recall some basic definitions and other concepts , which be used in our paper ,we explain these concepts by examples, remarks . Yass in [1] introduced the definition of generalized left derivation associated with left derivation on a ring R . In section two , we will introduce the definition of generalized left (θ, θ) -derivation associated with left (θ, θ) -derivation on a ring R . And we will give some related results in commutativity

of semiprime ring ,where heta is a mapping on R .

1.BASIC CONCEPTS

Definition 1.1: [1] A ring R is called a semiprime ring if for any $a \in \mathbb{R}$, $aRa = \{0\}$ implies that a = 0.

Definition 1.2 : [1] Let R be an arbitrary ring. If there exists a positive integer n such that na = 0, for all $a \in R$, then the smallest positive integer with this property is called the characteristic of the ring, by symbols we write char R = n.

Definition 1.3 : [1] A ring R is said to be n-torsion-free where $n \neq 0$ is an integer if whenever na = 0 with $a \in \mathbb{R}$, then a = 0.

Definition 1.4 : [2] Let R be a ring . Define a Lie product [,] on R as follows

[x,y] = xy - yx, for all $x,y \in \mathbb{R}$.

Properties 1.5 : [2] Let R be a ring , then for all x,y,z∈R, we have :

1. [x,yz] = y[x,z] + [x,y]z2. [xy,z] = x[y,z] + [x,z]y2. [xy,z] = [x,z] + [y,z]

3.
$$[x+y,z] = [x,z] + [y,z]$$

4.
$$[x,y+z] = [x,y] + [x,z]$$

Definition 1.6 : [2] Let R be a ring . Define a Jordan product on R as follows

 $a \circ b = ab + ba$, for all $a, b \in \mathbb{R}$.

Properties 1.7 : [2] Let R be aring .Then for all $x,y,z \in \mathbb{R}$, we have

1. $x_0(yz) = (x_0 y)z - y[x,z] = y(x_0 z) + [x,y]z$

2. (xy) $_{0} z = x (y _{0} z) - [x,z]y = (x _{0} z)y + x[y,z]$

Definition 1.8 : [2] Let R be a ring, the center of R denoted by Z(R) and is defined by: $Z(R) = \{x \in R : xr = rx, \text{ for all } r \in R\}$

Definition 1.9 : [3] Let R be a ring .An additive mapping d : $R \rightarrow R$ is called a left derivation if d(xy) = xd(y) + yd(x), for all x,y, $\in R$ and we say that d is a Jordan left derivation if $d(x^2) = 2xd(x)$, for all $x \in R$.

Example 1.10 : [3] Let R be a commutative ring and let $a \in R$ such that xay=0, for all x, $y \in R$ such that $x \neq y$.

Define a map d : $R \rightarrow R$ as follows d(x) = xa + ax

Then d is a left derivation of R.

It is clear that d is an additive mapping .

Now , we have to show that d is satisfies

d(xy) = xd(y) + yd(x), for all x, y $\in R$.

d(xy) = xya + axy = xay + xay = 0, for all x,y $\in R$. And

xd(y) + yd(x) = x(ya + ay) + y(xa + ax) = xay + xay + xay + xay = 0, for all x,y $\in \mathbb{R}$.

Hence d(xy) = xd(y) + yd(x), for all x, y $\in \mathbb{R}$.

Then d is a left derivation of R.

Remark 1.11 : [3] It is easy to see that every left derivation on a ring R is a Jordan left derivation . However , in general , a Jordan left derivation need not to be a left derivation .

Example 1.12 : [3] Let R be a commutative ring and let $a \in R$, such that xax = 0, for all $x \in R$, but $xay \neq 0$, for some x and y, $x \neq y$. Define a map d : $R \rightarrow R$, as follows : d(x) = xa + ax

Then d is a Jordan left derivation, but not a left derivation.

Definition 1.13 : [1] Let R be a ring , an additive mapping $F : R \rightarrow R$ is called a generalized left derivation associated with left derivation if there exists a left derivation $d : R \rightarrow R$, such that :

F(xy) = x F(y) + y d(x), for all $x, y \in R$.

Definition 1.14 : [4] Let R be a ring . An additive mapping d : $R \rightarrow R$ is called a left (θ , θ)-derivation , where θ : R \rightarrow R is a mapping of R , if

 $d(xy) = \theta(x) d(y) + \theta(y) d(x)$, for all $x, y \in R$ and we say that d is a Jordan left (θ, θ) -derivation if $d(x^2) = 2 \theta(x) d(x)$, for all $x \in R$.

2.GENERALIZED LEFT (θ, θ) - DERIVATIONS

Definition 2.1: Let R be a ring. An additive mapping $F : R \to R$ is called a generalized left (θ, θ) -derivation associated with left (θ, θ) -derivation , where

 θ : R \rightarrow R is a mapping of R, if there exists a left (θ , θ)-derivation d : R \rightarrow R, such that F(xy) = θ (x) F(y) + θ (y) d(x), for all x,y \in R.

Example 2.2 : Consider the ring :

 $R = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ a & 0 & 0 \\ b & c & 0 \end{pmatrix} : a, b, c \in S \right\}, \text{ where } S \text{ is a ring }.$

Define F,d : $R \rightarrow R$, by :

	/0	0	0	(0	0	0	
F	a	0	0 =	a	0	0	, for all a,b,c∈S . And
	b	с	0/	b	0	0)	
	(0	0	0	(0	0	0	
d	а	0	0 =	0	0	0	, for all a,b,c <mark>∈</mark> S
	b	С	0/	0/	С	0/	

Suppose that θ : R \rightarrow R is a mapping such that

$$\theta \begin{pmatrix} 0 & 0 & 0 \\ a & 0 & 0 \\ b & c & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ a & 0 & 0 \\ b & c & 0 \end{pmatrix}, \text{ for all } a, b, c \in S$$

It is clear that d is a left (θ, θ) -derivation of R.

Then F is a generalized left (θ, θ) -derivation associated with left (θ, θ) -derivation d.

Theorem 2.3: Let R be a 2-torsion free semiprime ring. If R admits a generalized left (θ , θ)-derivation F associated with left (θ , θ)-derivation d, where θ is an automorphism of R, then $d(x)\in Z(R)$, for all $x\in R$.

Proof:We have :

$$F(x^{2}y) = \theta(x^{2})F(y) + \theta(y)d(x^{2}), \text{ for all } x, y \in \mathbb{R}$$
(1)

I hat is :	
$F(x^2y) = \boldsymbol{\theta}(x^2)F(y) + 2 \boldsymbol{\theta}(y) \boldsymbol{\theta}(x)d(x) \text{, for all } x, \boldsymbol{y} \in R$	(2)
On the other hand , we find that :	
$F(x.xy) = \boldsymbol{\theta}(x)F(xy) + \boldsymbol{\theta}(x) \boldsymbol{\theta}(y)d(x) \text{, for all } x, \boldsymbol{y} \in R$	(3)
That is :	
$F(x^2y) = \boldsymbol{\theta}(x^2)F(y) + 2 \boldsymbol{\theta}(x) \boldsymbol{\theta}(y)d(x) \text{, for all } x, \boldsymbol{y} \in R$	(4)
Comparing (2) and (4) , we obtain :	
2[θ (y), θ (x)]d(x) = 0, for all x, $y \in \mathbb{R}$	(5)
Since R is 2-torsion free ,we have :	
$[\theta(y), \theta(x)]d(x) = 0$, for all x, $y \in \mathbb{R}$	(6)
This can be written as :	
$[\boldsymbol{\theta}(\mathbf{x}), \boldsymbol{\theta}(\mathbf{y})]\mathbf{d}(\mathbf{x}) = 0$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}$	(7)
Linearizing (7) on x , we find that :	
$[\boldsymbol{\theta}(\mathbf{x}), \boldsymbol{\theta}(\mathbf{y})]d(\mathbf{w}) + [\boldsymbol{\theta}(\mathbf{w}), \boldsymbol{\theta}(\mathbf{y})]d(\mathbf{x}) = 0$, for all $\mathbf{x}, \mathbf{y}, \mathbf{w} \in \mathbb{R}$	(8)
Replacing y by yz in (7) and using (7) , we have :	
$[\theta(x), \theta(y)] \theta(z)d(x) = 0$, for all x, y, z $\in \mathbb{R}$	(9)
Replacing $\theta(z)$ by d(w) $\theta(z) [\theta(w), \theta(y)]$ in (9), we have :	
$[\boldsymbol{\theta}(\mathbf{x}), \boldsymbol{\theta}(\mathbf{y})] d(\mathbf{w}) \boldsymbol{\theta}(\mathbf{z}) [\boldsymbol{\theta}(\mathbf{w}), \boldsymbol{\theta}(\mathbf{y})] d(\mathbf{x}) = 0$, for all $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w} \in \mathbb{R}$	(10)
Comparing (8) and (10) , we obtain :	
$[\theta(\mathbf{x}), \theta(\mathbf{y})]d(\mathbf{w}) \theta(\mathbf{z}) [\theta(\mathbf{x}), \theta(\mathbf{y})] d(\mathbf{w}) = 0$, for all $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w} \in \mathbb{R}$	(11)
Since R is semiprime , we obtain :	
$[\boldsymbol{\theta}(\mathbf{x}), \boldsymbol{\theta}(\mathbf{y})] \mathbf{d}(\mathbf{w}) = 0$, for all $\mathbf{x}, \boldsymbol{y}, \boldsymbol{w} \in \mathbb{R}$	(12)
By [1,Lemma 2.1.16], we get $d(w) \in Z(R)$, for all $w \in R$.	

Theorem 2.4: Let R be a 2-torsion free semiprime ring. If R admits a generalized left (θ, θ) -derivation F associated with left (θ, θ) -derivation d, where θ is an automorphism of R, such that $[d(x),F(y)] = [\theta(x), \theta(y)]$, for all x, y, $\in \mathbb{R}$. Then R is commutative.

Proof: We have :	
$[d(x),F(y)] = [\theta(x), \theta(y)], \text{ for all } x, y, \in \mathbb{R}$	(1)
By Theorem 2.3 , (1) gives :	
$[\boldsymbol{\theta}(\mathbf{x}), \boldsymbol{\theta}(\mathbf{y})] = 0$, for all $\mathbf{x}, \mathbf{y}, \in \mathbb{R}$	(2)
$\theta(x) \theta(y) = \theta(y)\theta(x)$, for all x, $y \in \mathbb{R}$	(3)

Thus R is commutative .

Theorem 2.5: Let R be a 2-torsion free semiprime ring. If R admits a generalized left (θ, θ) -derivation F associated with left (θ, θ) -derivation d, where θ is an automorphism of R, such that $[d(x),F(y)] = \theta(x)_0 \theta(y)$, for all $x, y, \in \mathbb{R}$. Then R is commutative.

Proof : We assume :

$[d(x),F(y)] = \theta(x)_0 \theta(y)$, for all $x, y, \in \mathbb{R}$	(1)
By Theorem 2.3 , (1) gives :	
$\theta(x) \circ \theta(y) = 0$, for all x, y, $\in \mathbb{R}$	(2)
Replace $oldsymbol{ heta}(y)$ by $oldsymbol{ heta}(yr)$ in (2) , to get :	
$\theta(x) \circ \theta(yr) = 0$, for all x, y, $r \in \mathbb{R}$	(3)
This can be rewritten as : $(\boldsymbol{\theta}(x)_0 \ \boldsymbol{\theta}(y)) \ \boldsymbol{\theta}(r) - \boldsymbol{\theta}(y) [\boldsymbol{\theta}(x), \boldsymbol{\theta}(r)] = 0$, for all x, y, $r \in \mathbb{R}$	(4)
Using (2) , (4) gives :	
$\theta(y) [\theta(x), \theta(r)] = 0$, for all x, $y, r \in \mathbb{R}$	(5)
Left multiplication of (5) by [$m{ heta}({ m x}),m{ heta}({ m r})]$, and since R is semiprime , we get :	
$[\boldsymbol{\theta}(\mathbf{x}), \boldsymbol{\theta}(\mathbf{r})] = 0$, for all x, $\boldsymbol{r} \in \mathbb{R}$	(6)
Hence , R is commutative .	
Theorem 2.6 : Let R be a 2-torsion free semiprime ring. If R admits a gene with left (θ, θ) -derivation d, where θ is an automorphism of R, such that d(> Then R is commutative. Proof : We have :	eralized left (θ, θ) -derivation F associated () $_0$ F(y) = θ (x) $_0$ θ (y), for all x, y , \in R.
$d(x)_0 F(y) = \theta(x)_0 \theta(y)$, for all x, y, $\in \mathbb{R}$	(1)
By Theorem 2.3 , (1) gives :	
$2 d(x) F(y) = \theta(x)_0 \theta(y)$, for all $x, y, \in \mathbb{R}$	(2)
Replacing y by yz in (2), we obtain :	
$2 d(x) \theta(y) F(z) + 2 d(x) \theta(z) d(y) = \theta(x)_0 \theta(yz)$, for all x, y, z $\in \mathbb{R}$	(3)
Again , by Theorem 2.3 , (3) gives :	
$2 \theta(y) d(x) F(z) + 2 d(x) \theta(z) d(y) = \theta(x)_0 \theta(yz), \text{ for all } x, y, z \in \mathbb{R}$	(4)
Since $\theta(x)_0$ ($\theta(y)_0(z) = \theta(y)_0(\theta(x)_0_0(z)) + [\theta(x)_0(y)_0(z)]_0(z)$, then from	n (2) and (4), we obtain :
$2 d(x) \theta(z) d(y) = [\theta(x), \theta(y)] \theta(z)$, for all x, y, z $\in \mathbb{R}$	(5)
In particular, for $z = x$, (5) gives :	
$2 d(x) \theta(x) d(y) = [\theta(x), \theta(y)] \theta(x)$, for all $x, y \in \mathbb{R}$	(6)
Replacing y by ry in (6) , we obtain :	
$2 d(x) \theta(x) \theta(r) d(y) + 2 d(x) \theta(x) \theta(y) d(r) = [\theta(x), \theta(ry)] \theta(x)$	

for all x, $y, r \in \mathbb{R}$

Again , using Theorem 2.3 , (7) reduces to :

$$2 d(x) \theta(x) d(y) \theta(r) + 2 d(x) \theta(x) d(r) \theta(y) = [\theta(x), \theta(ry)] \theta(x),$$

for all x, y, r $\in \mathbb{R}$

From (6) and (8) , we obtain :

 $[\boldsymbol{\theta}(x),\boldsymbol{\theta}(y)] \boldsymbol{\theta}(x) \boldsymbol{\theta}(r) + [\boldsymbol{\theta}(x),\boldsymbol{\theta}(r)] \boldsymbol{\theta}(x) \boldsymbol{\theta}(y) = [\boldsymbol{\theta}(x),\boldsymbol{\theta}(r) \boldsymbol{\theta}(y)] \boldsymbol{\theta}(x),$

(7)

(8)

for all x, $y, r \in \mathbb{R}$	(9)
This implies that :	
$[[\boldsymbol{\theta}(x), \boldsymbol{\theta}(y)] \boldsymbol{\theta}(x), \boldsymbol{\theta}(r)] + [\boldsymbol{\theta}(x), \boldsymbol{\theta}(r)] [\boldsymbol{\theta}(x), \boldsymbol{\theta}(y)] = 0 ,$	
for all x , y , $r \in \mathbb{R}$	(10)
Replacing r by sr in (10) , we obtain :	
$ \begin{aligned} \theta(s) &[\left[\theta(x), \theta(y) \right] \theta(x), \theta(r) \right] + \left[\left[\theta(x), \theta(y) \right] \theta(x), \theta(s) \right] \theta(r) + \theta(s) \left[\theta(x), \theta(s) \right] \theta(r) \\ &[\theta(x), \theta(y) \right] = 0 , \end{aligned} $	$\theta(\mathbf{r})] [\theta(\mathbf{x}), \theta(\mathbf{y})] + [\theta(\mathbf{x}), \theta(\mathbf{s})] \theta(\mathbf{r})$
for all x, $y, r, s \in \mathbb{R}$	(11)
From (10) and (11) , we obtain :	
$[\left[\boldsymbol{\theta}(x),\boldsymbol{\theta}(y)\right]\boldsymbol{\theta}(x),\boldsymbol{\theta}(s)]\boldsymbol{\theta}(r) + \left[\boldsymbol{\theta}(x),\boldsymbol{\theta}(s)\right]\boldsymbol{\theta}(r)\left[\boldsymbol{\theta}(x),\boldsymbol{\theta}(y)\right] = 0,$	
for all x, $y, r, s \in \mathbb{R}$	(12)
Replacing r by rt in (12) , we have :	
$[[\theta(x), \theta(y)] \theta(x), \theta(s)] \theta(rt) + [\theta(x), \theta(s)] \theta(rt) [\theta(x), \theta(y)] = 0,$	
for all x , y, r, s, t \in R	(13)
Again , right multiplying of (12) by $oldsymbol{ heta}(t)$, we have :	
$[[\boldsymbol{\theta}(x), \boldsymbol{\theta}(y)] \boldsymbol{\theta}(x), \boldsymbol{\theta}(s)] \boldsymbol{\theta}(rt) + [\boldsymbol{\theta}(x), \boldsymbol{\theta}(s)] \boldsymbol{\theta}(r) [\boldsymbol{\theta}(x), \boldsymbol{\theta}(y)] \boldsymbol{\theta}(t) = 0,$	
for all x , y, r, s, t \in R	(14)
Subtracting (14) from (13) , we obtain :	
$[\theta(x), \theta(s)] \ \theta(r) \ [\theta(t), [\theta(x), \theta(y)]] = 0, \text{ for all } x, y, r, s, t \in \mathbb{R}$	(15)
Replacing y by yx in (15) , we have	
$[\theta(x), \theta(s)] \theta(r) [\theta(t), [\theta(x), \theta(y)] \theta(x)] = 0, \text{ for all } x, y, r, s, t \in \mathbb{R}$	(16)
Now, (10) can be rewritten as :	
$-\left[\theta(\mathbf{r}), \left[\theta(\mathbf{x}), \theta(\mathbf{y})\right] \theta(\mathbf{x})\right] + \left[\theta(\mathbf{x}), \theta(\mathbf{r})\right] \left[\theta(\mathbf{x}), \theta(\mathbf{y})\right] = 0, \text{ for all } \mathbf{x}, \mathbf{y}$	<i>r, r</i> ∈R (17)
For $r = t$ in (17), we have :	
$-[\theta(t), [\theta(x), \theta(y)]\theta(x)] + [\theta(x), \theta(t)] [\theta(x), \theta(y)] = 0, \text{ for all } x, y$	$t, t \in \mathbb{R}$ (18)
Left multiplying of (18) by [$ heta$ (x) , $ heta$ (s)] $ heta$ (r) , we obtain :	
$- [\theta(x), \theta(s)] \theta(r) [\theta(t), [\theta(x), \theta(y)] \theta(x)] + [\theta(x), \theta(s)] \theta(r) [\theta(x), \theta(t)]$ x, y, r, s, t $\in_{\mathbb{R}}$ (19)] $\left[\theta(\mathbf{x}), \theta(\mathbf{y})\right] = 0$, for all
From (16) and (19) ,we obtain :	
$[\theta(\mathbf{x}), \theta(\mathbf{s})] \theta(\mathbf{r}) \left[\theta(\mathbf{x}), \theta(\mathbf{t})\right] \left[\theta(\mathbf{x}), \theta(\mathbf{y})\right] = 0, \text{ for all } \mathbf{x}, y, r, s, t \in \mathbf{F}$	R (20)
Replacing θ (r) by [θ (x) , θ (y)] θ (r) in (20) , we have :	
$\left[\theta(\mathbf{x}), \theta(\mathbf{s})\right] \left[\theta(\mathbf{x}), \theta(\mathbf{y})\right] \theta(\mathbf{r}) \left[\theta(\mathbf{x}), \theta(\mathbf{t})\right] \left[\theta(\mathbf{x}), \theta(\mathbf{y})\right] = 0,$	
for all x, $y, r, s, t \in \mathbb{R}$	(21)
For $s = t$ in (21) and since R is semiprime ring, we obtain :	

$[\theta(\mathbf{x}), \theta(\mathbf{t})] [\theta(\mathbf{x}), \theta(\mathbf{y})] = 0$, for all $\mathbf{x}, \mathbf{y}, \mathbf{t} \in \mathbb{R}$	(22)	
Replacing $ heta(t)$ by $ heta(yt)$ in (22) and using (22) , we have :		
$[\theta(\mathbf{x}), \theta(\mathbf{y})]\theta(\mathbf{t})[\theta(\mathbf{x}), \theta(\mathbf{y})] = 0$, for all $\mathbf{x}, \mathbf{y}, \mathbf{t} \in \mathbb{R}$	(23)	
Since R is semiprime ring , (23) gives :		
$[\theta(x), \theta(y)] = 0$, for all x, $y \in \mathbb{R}$	(24)	
Thus R is commutative.		
Theorem 2.7 : R be a 2-torsion free semiprime ring . If R admits a	generalized left (θ, θ) -derivation F associated w	ith
left (θ, θ) -derivation d , where θ is an automorphism of R , such that Then R is commutative .	at $d(x)_0 F(y) = [\theta(x), \theta(y)]$, for all $x, y, \in \mathbb{R}$.	
Proof : We assume :		
$d(x)_{0} F(y) = [\theta(x), \theta(y)], \text{ for all } x, y, \in \mathbb{R}$	(1)	
By Theorem 2.3 , (1) gives :		
$2d(x)F(y) = [\theta(x), \theta(y)], \text{ for all } x, y, \in \mathbb{R}$	(2)	
Replacing y by yz in (2) we obtain :		
$2d(x) \boldsymbol{\theta}(y) F(z) + 2d(x) \boldsymbol{\theta}(z) d(y) = \boldsymbol{\theta}(y) [\boldsymbol{\theta}(x), \boldsymbol{\theta}(z)] + [\boldsymbol{\theta}(x), \boldsymbol{\theta}(y)] \boldsymbol{\theta}(z)$	z) ,	
for all x , y , $z \in \mathbb{R}$	(3)	
Again , Theorem 2.3 ,(3) gives :		
$2 \theta(y) d(x)F(z) + 2d(x) \theta(z) d(y) = \theta(y) [\theta(x), \theta(z)] + [\theta(x), \theta(y)] \theta(z)$	z),	
for all x , y , $z \in \mathbb{R}$	(4)	
From (2) and (4) , we obtain :		
$2d(x) \theta(z) d(y) = [\theta(x), \theta(y)] \theta(z)$, for all x, y, z $\in \mathbb{R}$	(5)	
In particular , (5) gives :		
$2d(x) \theta(x) d(y) = [\theta(x), \theta(y)] \theta(x)$, for all x, $y \in \mathbb{R}$	(6)	
This implies (see how relation (24) was obtained from relation (6) in	the proof of	
Theorem 2.6) that R is commutative.		
REFERENCES		

 $\ensuremath{\left[1\right]}$ Yass,S., Strongly Derivation Pairs on Prime and Semiprime Rings , MSC.Thesis,

Baghdad University ,(2010).

[2] Herstein, I.N., Topics in ring theory, University of Chicago Press, Chicago , 1969 .

[3]Ashraf, M. and Ali, S., On generalized Jordan left derivations in rings, Bull. Korean Math. Soc . 45 (2)(2008), 253 - 261 .

[4] Zaidi,S.M.A.,Ashraf,M. and Ali,S., On Jordan ideals and left (θ , θ)-derivations in

Prime rings , Internat. J. Math. Sci. 37 (2004), 1957 - 1964 .