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ABSTRACT 

The main purpose of this paper is to introduce a new discrete compound distribution, namely Poisson Transmuted Lindley 
distribution (PTL) which offers a more flexible model for analyzing some types of countable data. The proposed distribution 
is accommodate unimodel, bathtub as well as decreasing failure rates. Most of the statistical and reliability measures are 
derived. For the estimation purposes the method of moment and maximum likelihood methods are studied for PTL. 
Simulation studies are conducted to investigate the performance of the maximum likelihood estimators. A real life 
application for PTL is introduced to test its goodness of fit and examine its performance compared with some other 
distributions.  
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1. INTRODUCTION 

A random variable X is said to have transmuted distribution if its cumulative distribution function (cdf) is given by 

;            

where G(x) is the cdf of the base distribution; Shaw and Buckly [8]. Merovci [5] studied the transmuted Lindley distribution 
as an extension to Lindley distribution, firstly introduced by Lindley [4]. The first discretization of Lindley distribution was 
made by Sankaran [6] who derived a new compound distribution using Lindley and Poisson distribution.  The transmuted 
Lindley distribution can be used for analyzing more complex data and it generalizes some of the widely used distributions. 
The probability density function of the transmuted Lindley distribution is given by: 

,    

In the present study, a mathematical formulation of Poisson transmuted Lindley distribution (PTL) and some of its 
properties was derived. The paper is organized as follows: Sections 2 and 3 are devoted to study the probability mass 
function and its behavior, moments, hazard and survival functions, size biased, length biased and zero truncated Poisson 
Transmuted Lindley distributions. Both maximum likelihood estimators (MLE) and method of moment’s estimators (MME) 
are discussed in Section 4. The simulation schemes for PTL parameters are presented in in Section 5. Finally, in Section 
6, two real life applications are introduced to illustrate the PTL performance. 

2. STATISTICAL MEASURES 

In this Section, some important statistical measures of the PTL will be derived. 

2.1 Probability mass function 

PTL is a result of the compound between Poisson distribution with parameter  and transmuted Lindley distribution with 

two parameters , as follows; 

  

From the above equation, the probability mass function of PTL is given by   

 

  

 

                        (2.1) 

where  

The cumulative distribution function of  PTL is defined by 

 (2.2) 

The next figure illustrates the behavior of the probability mass function of PTL for different values of c and .  
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Fig. (1): p.m.f. of PTL at different parameter values 

2.2 Moments and related measures 

The r
th

 moments, the moment generating function, the characteristic function and coefficient of variation besides the 
Skewness and kurtosis of PTL are derived as follows 
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Moments about the origin (raw moments) 

The first four moments about the origin for PTL are  

The Mean  

  

  

 

 Central moments. 

The central moments of PTL are defined as follows 

The variance 

  

  

  

The CV of PTL is: 

  

The moment-generating function  and of PTL can be derived as: 

  

  

 Measures of Skewness and Kurtosis. 

The Skewness  is a measure of the asymmetry of the probability distribution of a real valued random variable about its 

mean. The Kurtosis is any measure of the peakedness of the probability distribution of a real-valued random variable. In a 
similar way to the concept of Skewness, kurtosis is a descriptor of the shape of a probability distribution just as 

Skewness. The Skewness, kurtosis can be written as follows: 

  

  

http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Skewness
http://en.wikipedia.org/wiki/Skewness
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3. RELIABILITY MEASURES  

3.1 Survival and Hazard functions 

The survival function is defined as the probability that a subject survives to time t without experiencing the event of 
interest. The survival function for PTL is derived as: 

  

where  

The hazard rate function is the total number of failures within an item population, divided by the total time expended by 
that population, during a particular measurement interval under stated conditions.   

For PTL, the hazard rate function is 

   

3.2 Size and length biased distribution 

Let X be a discrete random variable having PTL with p.m.f given in (2.1). The size –biased function of is defined by  

 

  

where  

                                  

                                 

                                    

and  is the Hurwitz–Lerch transcendent function defined as an analytic continuation of 

.  

The length -biased distribution is a special case of the size-biased distribution at  and is derived as 

  

3.3. Zero truncated Poisson Transmuted Lindley Distribution 

Ghitany et al. [1] introduced the zero truncated Poisson Lindley distribution. Zero-truncated Poisson Transmuted Lindley 
distribution (ZTPTL) is used to model countable data for which the zeroes cannot occur or doesn’t recorded. This case 
occurs in many applications for example; a study of length of hospital stays in days; the length of hospital stay is recorded 
as a minimum of at least one day. The zero-truncated Poisson transmuted Lindley distribution (ZTPTL) p.m.f. is defined by 

 

 

The cumulative distribution function of ZTPTL is: 

  

 

The first four moments about the origin for ZTPWLD are:  

The Mean  

  

http://en.wikipedia.org/wiki/Statistical_population
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The variance of ZTPTL is given by: 

  

4. PARAMETER ESTIMATION 

4.1 Method of Moments 

Let be a random sample of size n from PTL, the method of moment estimates (MME), for are given by 

solving the following two equations simultaneously  

                 

  

4.2 Maximum-Likelihood Estimation 

Let  be a random sample with size n from PTL distribution, the log –likelihood function is given by 

  

The partial derivatives of the log-likelihood for the parameters can be expressed by the following equations 

 

  

The MLEs can be obtained by equating the derivatives of the log likelihood function to zero and solving for the 
parameters and . For PTL, the solution of the nonlinear equations has no closed form and some numerical methods are 

needed for the solution. 

5. SIMULATION STUDY 

In this section, a complete simulation study for PTL will be made by generating 1000 samples for each pair of the 
parameters  at different sample sizes. The simulation nodes was chosen at at different 

sample sizes . The next tables presents the average bias and the MSE of the estimates 

at different values of n. It is observed that bias and the MSEs decreases while the sample size increases. 
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Table 1. Bias and MSE for the parameters  
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6. APPLICATION 

Two real data sets based on a portfolio of automobile insurance claims are considered. These data were taken from a 
sample of 298 automobile liability policies (Klugman et al., [3]) for the first example and, from a sample of 7842 automobile 
liability policies that appeared in Seal [7] for the second case. To make a comparison with the proposed distribution PTL, 
the expected frequencies are provided for Poisson (Po), negative binomial (NB) and DGL (Góméz-Déniz and Calderín [2]) 
distributions obtained after estimating parameters by maximum likelihood. The obtained results are summarized in tables 
2 and 3. The results showed greater Log-likelihood for PTL compared with other distributions. We can conclude that PTL 
provides better fits than some other known distributions. 
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Table 2. Fitted estimates for the first data set 

 

  Expected frequencies 

Claim number 
Observed 

frequencies 
Po NB DGL PTL  

0 99 54 95.85 96.65 98.29 

1 65 92.24 75.83 74.29 72.81 

2 57 78.77 50.35 50.23 49.34 

3 35 44.85 31.29 31.71 31.57 

4 20 19.15 18.79 19.17 19.39 

5 10 8.95 11.04 11.26 11.55 

6 4 ------ 6.39 6.47 6.70 

≥7 8 ------ 8.14 7.95 8.21 

 ------ ------ 1.473 0.501 -0.2875 

 ------ 1.708 0.463 0.695 0.9947 

- Log-likelihood ------ 577.002 528.769 528.619 528.595 

 ------ 151.73 3.14 2.64 0.4772 

p-value ------ 0.000 0.533 0.618 0.8105 

 

Table (3): Fitted estimates for the second data set 

   Expected frequencies 

Claim number 
Observed 

frequencies 
Po NB DGL PTL  

0 5147 4783.18 5147.94 5149.94 5160.36 

1 1859 2364.75 1859.84 1852.33 1839.62 

2 595 584.55 586.33 591.902 590.32 

3 167 96.33 175.85 177.28 178.77 

4 54 11.90 51.39 50.96 52.24 

5 14 1.26 14.78 14.24 14.91 

≥6 5 ------ 5.82 5.32 5.863 

 ------ ------ 0.730 0.239 -0.3601 

 ------ 0.494 1.341 0.621 2.9699 

- Log-likelihood ------ 7068.77 7429.60 7429.85 7426.83 

 ------ 809.59 0.75 0.90 0.0916 

p-value ------ 0.000 0.944 0.923 0.9784 
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CONCLUSION 

A new two-parameter distribution, called Poisson Transmuted Lindley distribution (PTL) is proposed and investigated 
through most statistical and reliability measures. The new distribution has a property that its hazard rate has unimodel, 
bathtub as well as decreasing shapes. Simulation studies provides less bias and mean square error of the maximum 
likelihood estimators as the sample size increases. The proposed distribution PTL provides the better fit model and more 
flexibility. 
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