

# ON SYMMETRIC BI-DERIVATIONS OF KU-ALGEBRAS

## ÖMER YILDIRIM, SULE AYAR ÖZBAL

**Abstract.** The notion of left-right (resp. right-left) symmetric bi-derivation of KU-algebras is introduced and some related properties are investigated.

**keywords**: KU-algebras; symmetric bi-derivation; Kernel; Fixed; trace.



# Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS Vol.11, No.9

www.cirjam.com, editorjam@gmail.com



# ISSN 2347-1921

## **1 INTRODUCTION**

BCK and BCI algebras are two important classes of algebras of logic introduced by Imai and Iseki and also have been deeply studied by many researchers in [6, 7, 8]. C. Prabpayak and U. Leerawat introduced a nwe algebraic structure that is called KU-algebra. Y. B. Jun and X. L. Xin applied the notion of derivation in ring and near ring theory to BCI-algebras [4]. And H. A. S. Abujabal and N. O. Al-Shehri investigated some fundamental properties and proved some results on derivations of BCI-algebras in [5]. S. M. Mostafa, R.A.K. Omar and A. Abd-eldayem defined the derivation on a KU-algebra and they studied some related properties in [3]. The concept of symmetric bi-derivation was introduced by Gy. Maksa in [9] (see also [10]). J. Vukman proved some results concerning symmetric bi-derivation on prime and semi prime rings [11, 12]. Y.Çeven introduced symmetric bi-derivation in lattices and investigated some related properties [13]. S. Ilbira and A. Firat [14] introduced the notion of left-right (resp. right-left) symmetric bi-derivation of BCI-algebras. In this paper the notion of left-right (resp. right-left) symmetric bi-derivation of KU-algebras is introduced and some of its properties are investigated.

#### 2 Preliminaries

#### Definition 2.1 [1]A KU-algebra is an algebra

where is a binary operation and is a constant satisfying the following axioms for all  $x, y, z \in X$ :

 $(KU_1) (x*y)*[(y*z)*(x*z)] = 0.$   $(KU_2) x*0 = 0.$   $(KU_3) 0*x = x.$  $(KU_4)$  If x\*y = y\*x = 0 implies x = y.

Define a binary relation  $\leq$  by :  $x \leq y \Leftrightarrow y^* x = 0$ , we can prove that (X, \*) is a partially ordered set. By the binary relation  $\leq$ , we can write the previous axioms in another form as follows:

 $(KU'_{1}) (y^{*}z)^{*}(x^{*}z) \leq (x^{*}y).$   $(KU'_{2}) 0 \leq x.$   $(KU'_{3}) x \leq y \Leftrightarrow y^{*}x = 0.$   $(KU'_{4}) \text{ If } x \leq y \text{ and } y \leq x \implies x = y.$ 

**Corollary 2.2** [2] In a KU-algebra X the following identities are true for all  $x, y, z \in X$ :

(i)  $z^*z = 0$ (ii)  $z^*(x^*z) = 0$ (iii) If  $x \le y$  then  $y^*z \le x^*z$ (iv)  $z^*(y^*x) = y^*(z^*x)$ (v)  $y^*[(y^*x)^*x] = 0$ 

**Definition 2.3** [1] A nonempty subset *S* of a KU-algebra *X* is called a sub-algebra of *X* if  $x^* y \in S$ , whenever  $x, y \in S$ .

**Definition 2.4** [1, 2] A nonempty subset A of a KU-algebra X is called ideal of X if it satisfies the following conditions:

- (i)  $0 \in A$
- (ii)  $y^*z \in A$  iplies  $z \in A$  for all  $y, z \in X$ .

For a KU-algebra X we will denote  $x \wedge y = (x * y) * y$ .



**Proposition 2.5** [3] Let (X, \*, 0) be a KU-algebra then the following identities are true for all  $x, y, z \in X$ :

(i)  $(x^*y)^*(x^*z) \le y^*z$ (ii) If  $x \le y$  then  $z^*x \le z^*y$ (iii)  $z^*(x^*y) \le (z^*x)^*(z^*y)$ (iv)  $x \land y \le x$  and  $x \land y \le y$ .

**Definition 2.6** Let X be a KU-algebra. A mapping  $D(.,.): X \times X \to X$  is called symmetric if

D(x, y) = D(y, x) for all  $x, y, z \in X$ .

**Definition 2.7** Let X be a KU-algebra. A mapping  $d: X \to X$  defined by d(x) = D(x, x) is called the trace of D(.,.), where  $D(.,.): X \times X \to X$  is a symmetric mapping.

### 3 The Symmetric Bi-Derivations on KU-algebras

The following definition introduces the notion of symmetric bi-derivation for Ku-algebras.

**Definition 3.1** Let X be a KU-algebra and  $D(.,.): X \times X \to X$  be a symmetric mapping. If D satisfies the identity  $D(x*y,z) = D(x,z)*y \wedge x*D(y,z)$  for all  $x, y, z \in X$ , then D is called *left - right symmetric bi - derivation* (briefly (l,r) - *symmetric bi - derivation*). If D satisfies the identity  $D(x*y,z) = x*D(y,z) \wedge D(x,z)*y$  for all  $x, y, z \in X$ , then we say that D is *right - left symmetric bi - derivation* (briefly (r, l) - *symmetric bi - derivation*). Moreover if D is both an (r, l) - and a (l, r) - *symmetric bi - derivation*, it is said that D is *symmetric bi - derivation*.

**Example 3.1** Let  $X := \{0, 1, 2, 3, 4\}$  be a set in which the operation \* is defined in as follows with the Cayley table[3];

| * | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 |
| 1 | 0 | 0 | 2 | 2 | 4 |
| 2 | 0 | 0 | 0 | 1 | 4 |
| 3 | 0 | 0 | 0 | 0 | 4 |
| 4 | 0 | 1 | 1 | 1 | 0 |

The mapping  $D(.,.): X \times X \to X$  will be defined by

$$D(x, y) = \begin{cases} 4, & \text{if } x = y = 4, \\ 0, & \text{otherwise} \end{cases}$$

Then it can be checked that D is both (l,r)-symmetric bi-derivation and (r,l)-symmetric bi-derivation on X.

**Example 3.2** Let  $X := \{0, 1, 2, 3, 4\}$  be a set in which the operation \* is defined in as follows with the Cayley table[3];



| * | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 |
| 1 | 0 | 0 | 2 | 3 | 4 |
| 2 | 0 | 1 | 0 | 3 | 3 |
| 3 | 0 | 0 | 2 | 0 | 2 |
| 4 | 0 | 1 | 0 | 0 | 0 |

The mapping  $D(.,.): X \times X \rightarrow X$  will be defined by

$$D(x, y) = \begin{cases} 3, & \text{if } x = y = 4, \\ 0, & \text{otherwise} \end{cases}$$

It is easy to check that D is (l,r) - symmetric bi - derivation on X. But since

$$D(1*4,4) = D(4,4) = 3$$

and

$$1*D(4,4) \land D(1,4)*4 = 1*3 \land 3*4 = 3 \land 2 = (3*2)*2 = 2*2 = 0$$

D is not (r,l) – symmetric bi – derivation.

**Proposition 3.2** Let *D* be a symmetric bi-derivation on *X*. Let  $x \in X$  and by using the definition of (l,r)-symmetric bi-derivation on *X* we have

$$D(0, x) = D(x*0, x) = (D(x, x)*0) \land (x*D(0, x))$$
  
=  $0 \land (x*D(0, x))$   
=  $(0*(x*D(0, x))*(x*D(0, x)))$   
=  $(x*D(0, x))*(x*D(0, x))$   
=  $0$ 

Similarly, by using the definition of (r, l) – symmetric bi – derivation on X we can find D(0, x) = 0.

Let X be a KU-algebra and  $D(.,.):X\times X\to X$  be a symmetric bi-derivation on X . Then D(0,x)=0 for all  $x\in X$ 

#### Proof.

**Corollary 3.3** Every symmetric bi-derivation on a KU-algebra is regular.

**Proof.** It is clear from Proposition 3.2.

**Proposition 3.4** Let X be a KU-algebra and  $D(.,.): X \times X \rightarrow X$  be a symmetric mapping. Then

• If *D* is a 
$$(l,r)$$
-symmetric bi-derivation, then  $D(x,z) = x \land D(x,z)$  for all  $x, z \in X$ 

• If 
$$D$$
 is a  $(r,l)$  – symmetric  $bi$  – derivation, then  $D(x,z) = D(x,z) \land x$  for all  $x, z \in X$ .

Proof. i) Let  $x, z \in X$  and D be a (l, r) – symmetric bi – derivation on X. Then we have



$$D(x, z) = D(0 * x, z)$$
  
=  $D(0, z) * x) \land (0 * D(x, z))$   
=  $(0 * x) \land D(x, z)$   
=  $x \land D(x, z)$ .

ii)Let  $x \in L$  and D be a (r,l) – symmetric bi – derivation on X . Then we have

$$D(x,z) = D(0*x,z) = (0*D(x,z)) \land (D(0,z)*x) = D(x,z) \land (0*x) = D(x,z) \land x$$

**Proposition 3.5** Let X be a KU-algebra and d be the trace of symmetric bi-derivation D on X. Then

•  $D(x,z) \leq x$ .

•  $d(x) \leq x$ .

- $D(x*y,z) \leq D(x,z)*y$ .
- $D(x*y,z) \leq x*D(y,z)$ .
- $d^{-1}(0) = \{x \in X \mid d(x) = 0\}$  is a subalgebra of X.

Proof. Let X be a KU-algebra and d be the trace of symmetric bi-derivation D on X.

[(i)] Let D be a (r,l)-symmetric bi-derivation on X by using Proposition 3.4(ii) and Corollary 2.2(ii) we have

$$x * D(x * z) = x * (D(x, z) \land x) = 0$$

So  $D(x,z) \leq x$ .

[(ii)] This can be easily obtained from (i).

[(iii)] Let D be a (l,r) – symmetric bi – derivation on X and by using Corollary 2.2(v) we have

$$(D(x,z)*y)*(D(x*y,z)) = (D(x,z)*y)*[(D(x,z)*y) \land (x*D(y,z))]$$
  
= (D(x,z)\*y)\*[(D(x,z)\*y)\*(x\*D(y,z)))\*(x\*D(y,z))]  
= 0

So  $D(x * y, z) \le D(x, z) * y$ .

[(iv)] Let D be a (r,l)-symmetric bi-derivation on X and by using Corollary 2.2(v) we have

$$(x * D(y * z)) * [D(x * y, z)] = (x * D(y * z)) * [(x * D(y, z)) \land (D(x, z) * y)]$$
  
= (x \* D(y \* z)) \* [(x \* D(y, z)) \* ((D(x, z) \* y)) \* (D(x, z) \* y)]  
= 0



So  $D(x * y, z) \le x * D(y, z)$ .

[(v)] Since d is regular we have  $d^{-1}(0) \neq \emptyset$ . Let  $x, y \in d^{-1}(0)$  then we have d(x) = d(y) = 0. By using the definition of symmetric bi-derivation and  $KU_1, KU_2$  and Corollary 2.2(*i*) we have

$$\begin{aligned} d(x*y) &= D(x*y, x*y) &= (x*D(y, x*y)) \land (D(x, x*y)*y) \\ &= (x*[(x*D(y, y)) \land (D(y, x)*y)]) \land ([(x*D(x, y)) \land (D(x, x)*y)]*y) \\ &= (x*[(x*0) \land (D(y, x)*y)]) \land ([(x*D(x, y)) \land (0*y)]*y) \\ &= (x*[0 \land (D(y, x)*y)]) \land ([(x*D(x, y)) \land y]*y) \\ &= (x*0) \land ([(x*D(x, y)) \land y]*y) \\ &= 0 \land ([(x*D(x, y)) \land y]*y) \\ &= 0 \end{aligned}$$

We have  $x * y \in d^{-1}(0)$  Hence  $d^{-1}(0)$  is KU-subalgebra of X.

**Definition 3.6** Let X be a KU-algebra. A nonempty subset A of X is said to be D-invariant if  $D(A, A) \subseteq A$ where  $D(A, A) = \{D(x, x) \mid x \in A\}$ .

**Proposition 3.7** Let D be a symmetric bi-derivation of the KU-algebra X. Then every ideal A is D-invariant. **Proof.** 

Let  $y \in D(A, A)$  then y = D(x, z) for some  $x, z \in A$ . We have  $D(x, z) \le x$  so x \* D(x, z) = 0 and  $x \in A$  and since A is an ideal then we have  $D(x, z) = y \in A$ . Therefore,  $D(A, A) \subseteq A$ .

**Proposition 3.8** Let X be a KU-algebra and D be the symmetric bi-derivation on X. Then

i) If  $x \le y$  then  $D(x, z) \le y$ .

ii) If  $y \le x$  then D((y \* z) \* (x \* z), t) = 0.

**Proof.** i) Let  $x \le y$ . then by Corollary 2.2 (iii) we have  $y * D(x, z) \le x * D(x, z)$ . Since  $0 \le y * D(x, z)$  and x \* D(x, z) = 0 we have y \* D(x, z) = 0. Hence  $D(x, z) \le y$ .

ii) Let  $y \le x$  then we have  $(y*z)*(x*z) \le x*y$ . So  $D((y*z)*(x*z),t) \le x*y$ . Hence  $D((y*z)*(x*z),t) \le 0$  and  $0 \le D((y*z)*(x*z),t)$ . So, D((y\*z)\*(x\*z),t) = 0.

**Proposition 3.9** If *D* is a (r, l) symmetric bi-derivation defined on the KU-algebra *X* then we have  $D(x * y, z) \le D(x, z) * D(y, z)$  for all  $x, y, z \in X$ .

**Proof.** Let  $x, y, z \in L$ . Then by using the definition of (r, l) symmetric bi-derivation, Corollary 2.2 (iv) we have

$$(D(x,z)*D(y,z))*D(x*y,z) = (D(x,z)*D(y,z))*[(x*D(y,z)) \land (D(x,z)*y)]$$
  
=  $(D(x,z)*D(y,z))*[((x*D(y,z))*(D(x,z)*y))*(D(x,z)*y)]$   
=  $((x*D(y,z))*(D(x,z)*y))*[(D(x,z)*D(y,z))*(D(x,z)*y)]$   
 $\leq (D(x,z)*D(y,z))*(x*D(y,z))$   
 $\leq x*D(x,z)=0$ 

But  $0 \le (D(x, z) * D(y, z)) * D(x * y, z)$ .

So 
$$(D(x,z)*D(y,z))*D(x*y,z) = 0$$
. Hence  $D(x*y,z) \le D(x,z)*D(y,z)$ .

**Definition 3.10** Let D be a symmetric bi-derivation of the KU-algebra X, and let d be the trace of D. We can define KerD;



$$Ker_D := \{x \in X \mid D(x, x) = d(x) = 0\}$$

**Theorem 3.11** Let D be a symmetric bi-derivation of the KU-algebra X. If  $y \in Ker_D$  and  $x \in X$  then  $x \wedge y \in Ker_D$ .

Proof. Let D be a symmetric bi-derivation of the KU-algebra X and  $y \in Ker_D$  and  $x \in X$ . By using the definition of (l, r)-symmetric bi-derivation on X and the property ( $KU_2$ ) of a KU-algebra we have;

$$d(x \wedge y) = D(x \wedge y, x \wedge y) = D((x * y) * y, x \wedge y) = D(x * y, x \wedge y) * y \wedge (x * y) * D(y, x \wedge y) = D(x * y, x \wedge y) * y \wedge (x * y) * D(y, (x * y) * y) = D(x * y, x \wedge y) * y \wedge ((x * y) * [D(y, y) * (x * y) \wedge (x * y) * D(y, y)]) = D(x * y, x \wedge y) * y \wedge ((x * y) * [0 * (x * y) \wedge (x * y) * 0] = 0$$

Therefore,  $x \wedge y \in Ker_D$ .

**Definition 3.12** Let D be a symmetric bi-derivation on a KU-algebra X. Then for a fixed element  $a \in X$  we can define a set  $Fix_D(L)$  by

$$Fix_D(X) := \{x \in X \mid D(x, a) = x\}$$

**Proposition 3.13** Let D be a symmetric bi-derivation on a KU-algebra X. Then  $Fix_D(X)$  is a subalgebra of X.

**Proof.** Let  $x, y \in Fix_D(X)$  we have D(x,a) = x and D(y,a) = y and so by using the definition of (l,r) symmetric bi-derivation we get

$$D(x * y, a) = D(x, a) * y \land x * D(y, a)$$
$$= x * y \land x * y$$
$$= x * y$$

Hence  $x * y \in Fix_D(X)$ .

**Proposition 3.14** Let *D* be a symmetric bi-derivation on a KU-algebra *X*. If  $x, y \in Fix_D(X)$  then  $x \land y \in Fix_D(X)$ .

**Proof.** Let  $x, y \in Fix_D(X)$ . Then we have D(x,a) = x and D(y,a) = y. By using the definition of (l,r) symmetric bi-derivation and Proposition 3.13 we have

$$D(x \land y, a) = D((x * y) * y, a)$$
  
=  $D(x * y, a) * y \land (x * y) * D(y, a)$   
=  $((x * y) * y) \land ((x * y) * y)$   
=  $(x * y) * y$   
=  $(x * y) * y$   
=  $x \land y$ 

Therefore,  $x \wedge y \in Fix_D(X)$ .

# ISSN 2347-1921



## References

[1] C. Prabpayak and U. Leerawat, On Ideals and Congruence in KU-Algebras, Scientia Magna International Book Series, Vol. 5 (2009), No.1, 54-57.

[2] C. Prabpayak and U. Leerawat, On Isomorphisms of KU-Algebras, Scientia Magna International Book Series, Vol. 5 (2009), No.3, 25-31.

[3] S.M. Mostafa, R.A.K. Omar, A. Abd-eldayem Propeties of Derivations on KU-Algebras, Journal Of Advances in Mathematics, Vol.9, No 10,3085-3097.

[4] Jun, Y. B. and Xin, L., On Derivations of BCI-Algebras, Information Sciences 159(2004), 167-176.

[5] Abujabal, H. A. S. and Al-Shehri, N. O., Some Results on Derivations of BCI-Algebras., J. Nat. sci. Math., 46:1 & 2(April & October 2006), 13-19.

[6] Y. Imai and Iseki K., On Axiom Systems of Propositional Calculi, XIV, Proc. Japan Acad. Ser A, MAth Sci., 42(1966),19-22.

[7] Iseki K., An Algebra related with a Propositional Calculi , Proc. Japan Acad. Ser A, MAth Sci., 42(1966), 26-29.

[8] Iseki K. and Tanaka S., An Introduction to Theory of BCK-Algebras, Math. Japo., 23(19789,1-26.

[9] Maksa Gy., A Remark on Symmetric Biadditive Functions Having Nonnegative Diagonalization, Glasnik Math., 15:35(1980), 279-282.

[10] Maksa Gy., On the Trace of Symmetric Bi-Derivation, C. R. Math. Rep. Acad. Sci. Canada, 9(1987), 303-307.

[11] Vukman J., Symmetric Bi-Derivations on Prime and Semi-Prime Rings, Aequations Math., 38(1989), 245-254.

- [12] Vukman J., Two result Concerning Symmetric Bi-Derivations on Prime Rings, Aequations Math., 40(1990), 181-189.
- [13] Çeven, Y., Symmetric bi-derivations of lattices, Quaestiones Mathematicae 32(2009), 241-245.

[14] S. Ilbira and A. Firat, ON Symmetric bi-derivations of BCI-Algebras, Applied Mathematical Sciences, Vol. 5, 2011, no. 60, 2957-2966.

