
I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 2  N u m b e r  1  

    J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

5858 | P a g e                                   c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  

M a r c h  2 0 1 6                                                 w w w . c i r w o r l d . c o m  

On Ray’s theorem for weak firmly nonexpansive mappings in Hilbert 
Spaces

Tamer Nabil1  and Ahmed H. Soliman2 

1
Suez Canal University, Faculty of Computers and Informatics, Department of Basic Science, Ismailia, Egypt 

1
t_3bdelsadek@yahoo.com 

2
Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt 

2
ahsolimanm@gmail.com

ABSTRACT 

In this work, we introduce notions of generalized firmly nonexpansive (G-firmly nonexpansive) and fundamentally firmly 
nonexpansive (F-firmly nonexpansive) mappings and utilize to the same to prove Ray’s theorem for G-firmly and F-firmly 
nonexpansive mappings in Hilbert Spaces. Our results extend the result due to F. Kohsaka [ Ray’s theorem revisited: a 
fixed point free firmly nonexpansive mapping in Hilbert spaces, Journal of Inequalities and Applications (2015) 2015:86 ]. 
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1.  INTRODUCTION and PRELIMINARIES   

Let H  be a real Hilbert space. The inner product and the induced norm on H  are denoted by .., and .  respectively. 

The dual space of a Banach space X is denoted 
*X . Consider K is nonempty closed convex subset of H . A mapping 

KKT : is said to be nonexpansive mapping if 

                                                                              yxTyTx                                                                               (1) 

for all Kyx , .  

In 1965, Browder [1] showed that if K is bounded, then every nonexpansive mapping on K has a fixed point. In 1980, 

Ray [2] showed that the converse of Browder’s theorem is true, i.e. every nonexpansive self mapping on K  has a fixed 

point, then K  is bounded. There are many versions of Ray’s theorem for  nonexpansive mapping. For examples, in 1987, 
Sine [3], proved Ray’s theorem by applying a version of the uniform boundedness principle (see, for instance, [6]) and the 
convex combination of a sequence of a metric projections onto closed and convex sets. In 2010, Aoyama et al. [4], 

obtained a strong version of Ray’s theorem for the class of  −hybrid mappings in Hilbert spaces.  

Recently, Kohsaka [5] given another proof of a strong version of Ray’s theorem [4] ensuring that every unbounded closed 
convex subset of a Hilbert space admits a fixed point free firmly nonexpansive mapping. He used in his proof a version of 
uniform boundedness principle and single metric projection onto a closed and convex set.  

In this paper, we define two new class of weaker firmly nonexpansive called G-firmly and F-firmly nonexpansive. We 
present new two versions of Ray’s theorem for mappings satisfying the conditions of weaker firmly nonexpansive.  

We begin with some notations and preliminaries. 

Definition 1.1. [5]  A mapping KKT :  is said to be firmly nonexpansive if 

                                           yxTyTxTyTx  ,
2

                                                                                (2) 

for all ., Kyx   

Definition 1.2. [7]  A linear subspace M  of a normed space X  is called proximinal (resp. Chebyshev) if for each 

,Xx the set of best approximations to x  from ,M   

},inf:{: mxyxMyP
Mm

M 


 

 is nonempty (resp. a singleton). It well know that for each element of the Hilbert space there exist Chebyshev convex 
subset. 
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Definition 1.3. [5]  The mapping KHPK : which is defined by xK zxP  for Hx such that   

xyxxPK   for all Ky is called the metric projection of H  onto K , therefore, xPz K if and only if 

0,sup 


zxzy
Ky

  for all .),( KHyx   

Theorem 1.1. (A strong version of Rays theorem [4]) Let K  be a nonempty closed convex subset of a Hilbert space 

H . If every firmly nonexpansive self-mapping on K  has a fixed point, then K  is bounded. 

2.  MAIN RESULTS 

We now present our new conditions of weak nonexpansive. 

Definition 2.1. A self mapping T  on K  is said to be G-firmly nonexpansive if 

yxTyTxTyTxyxTyTxTxx  ,,
3

1 22
, ., Kyx                                           (3) 

Proposition 2.1.  Every firmly nonexpansive is G-firmly nonexpansive. 

Remark 2.1. The converse of proposition 2.1 is not true as we will see in the following example. 

Example 2.1. Define a mapping T on [0, 4] such that 0Tx  as 4x and 5.0Tx as 4x . Then T  is G-firmly 

nonexpansive but T  is not firmly nonexpansive. Where the inner product yxyx .,   for all real numbers x  and y . 

Proof. It is clear that T  is not continuous, therefore it is not firmly nonexpansive . If yx  and }4{]2,0[ x and 

)4,0[y , then yxTyTxTyTx  ,
2

holds. If )4,2(x and ,4y then 

1
33

1 2
2


x

Txx , 1,  yxTyTx  and .1
3

1 2
Tyy  

Thus T  is generalized firmly nonexpansive mapping.■ 

Definition 2.2.  A self mapping T on K  is said to be F-firmly nonexpansive if 

                                yTxTyxTTyxT  ,2
2

2
, ., Kyx                                                                           (4) 

Proposition 2.2. Every firmly nonexpansive is F-firmly nonexpansive. 

Remark 2.2.  The converse of proposition 2.2 is not true as we will see in the following example. 

Example 2.2. Define the mapping T  on [0, 2] by 










.2   if   1

,2   if   0

x

x
Tx  

And the inner product yxyx .,  for all real numbers x  and .y  

Then T  is F-firmly nonexpansive but T  is not firmly nonexpansive. 

Proof. Let 2x  and 5.1y . Then 1
2
TyTx , but 5.0,  yxTyTx . Thus T  is not firmly 

nonexpansive mapping. 

If )2,0[, yx , then 02 TyxT and .0,2  yTxTyxT  If 2x and ),2,0[y  then we have that:  

12 TyxT  and 1,2  yTxTyxT . 

Last case, if )2,0[x  and 2y  , we get that: 
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12 TyxT  and  .2,2  yTxTyxT   

Therefore T is F-firmly nonexpansive. ■ 

Lemma 2.1. 

(1) the metric projection mapping KP  (as in definition 1.3) of a Hilbert space H  onto a nonempty closed  

     subset K  of H  is F-firmly nonexpansive, 

(2) if K  be a nonempty closed convex subset of ,H  ,Ha  and KKT : such that )( axPTx K   for 

     all Kx . Then T  is a F-firmly nonexpansive self -mapping on K , 

(3) Ku  is fixed point of T  if and only if ay

Ky

au ,sup,



 . 

Proof.  (1) Let ,, Hyx   thus we have that: 

0,sup
22 



xPxPxPw KKK
Kw

  and  0,sup 


yPyyPk KK
Kk

 and hence 

0.                                                            

,sup,sup                                                          

,,                                                          

,,                                                          

,                                                          

,,,

22

222

222

22

2222
2

2















xPxPxPkyPyyPw

xPxPxPyPyPyyPxP

xPxPyPxPyPyyPxP

yxPyPxPyPxP

yxPyPxPyPxPyPxPyxPyPxPyPxP

KKK
Kk

KK
Kw

KKKKKKK

KKKKKKK

KKKKK

KKKKKKKKKKKK

 

 Which implies that: .,2
2

2 yxPyPxPyPxP KKKKK    Thus KP  is F-firmly nonexpansive. 

(2)  .,),()()()(
22

yxTyTxayaxayPaxPayPaxPTyTx KKKK  . 

      Put, Tux  and yv  , hence T  is a F-firmly nonexpansive self-mapping on K . 

(3) ayauuauuyuauPTFu
KyKy

K ,sup,0,sup)()(


 . ■ 

Lemma 2.2. The metric projection mapping of a Hilbert space H  onto a nonempty closed subset K  of H  is G-firmly 

nonexpansive. Furthermore, if K  be a nonempty closed convex subset of H , and Ha , and  KKT :  such that   

)( axPTx K  for all Kx . Then T  is a G-firmly nonexpansive self-mapping on K such that : Ku  is fixed point 

of T  if and only if ayau
Ky

,sup,


 . 

Proof. Let Kyx ,  , we have that: 

yxTyTxayaxayPaxPayPaxPTyTx KKKK  ,),()()()(
22

. 

Hence  T  is a firmly self mapping on K . Then the same argument as in the proof of lemma 2.1 leads to )(TFu  if 

and only if ayau
Ky

,sup,


 . ■ 
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We are now ready to introduce our new versions of Ray’s theorem for weak firmly nonexpansive self-mappings. 

Theorem 2.1 . ( F-firmly version of Ray’s theorem ) Let K  be a nonempty closed convex of a Hilbert space 

H . If the following fixed point property (F) hold then K  is bounded. 

(F) If every F-firmly nonexpansive mapping KKT : has a fixed point.  

Proof. Suppose that K  is unbounded. Thus there exist Hx *
such that )(* Kx is unbounded (see, for 

instance, [6]). Then we have Ha such that :  


ay
Ky

,sup .  Define )( axPTx K  and by (3) in Lemma 2.1, 

then T  is a fixed point free F-firmly nonexpansive self mapping on K . ■                                

Theorem 2.2. ( G-firmly version of Ray’s theorem) Let K  be a nonempty closed convex of a Hilbert space H . If the 

following fixed point property (E) hold then K  is bounded. 

(E) If every G-firmly nonexpansive mapping KKT :  has a fixed point. 
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