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ABSTRACT 

The aim of the present investigation is to study the peristaltic transport through the gap between coaxial tubes, 
where the outer tube is non uniform and the inner tube is rigid. The necessary theoretical results such as viscosity, 
pressure gradient and friction force on the inner and outer tubes have been obtained in terms of couple stress 
parameter. Out of these theoretical results the numerical solution of pressure gradient, outer friction, inert friction and 
flow rate are shown graphically for the better understanding of the problem. 
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1 INTRODUCATION 

Peristalsis is now well known to physiologists to be one of the major mechanisms for fluid transport in many biological 
systems. In particular, a mechanism may be involved in swallowing food through the esophagus, in urine transport form 
the kidney to the bladder through the urethra, in movement of chyme in the gastro –intestinal tract, in the transport of 
spermatozoa in the ductus efferent of the male reproductive tracts and in the cervical canal, in movement of ovum in the 
female fallopian tubes, in the transport of lymph in the lymphatic vessels, and in the vasomotion of small blood vessel such 
as arterioles, venules and capillaries. In addition, peristaltic pumping occurs in many practical applications involving 
biomechanical system. Also, finger and roller pumps are frequently used for pumping corrosive or very pure materials so 
as to prevent direct contact of the fluid with the pump’s internal surfaces. 

A number of analytical [1-8], numerical and experimental [9-13] studies of peristaltic flows of different fluids have been 
reported. A summary of most of the investigation reported up to the year 1983, has been presented by Srivastava   and 
Srivastava [14], and some imported contribution of recent year, are reference in Srivastava and Saxsen [15]. Physiological 
organs are generally observed have the form of a non-uniform duct [16, 17]. In particular, the vas deferens in rhesus 
monkey is in the form of a diverging tube with a ration of exit to inlet dimensions of approximately four [18]. Hence, 
peristaltic analysis of a Newtonian fluid in a uniform geometry cannot be applied when explaining the mechanism of 
transport of fluid in most bio-systems. Recently, Srivastava et al [19] and Srivastava and Srivastava [20] studied peristaltic 
transport of Newtonian and non-Newtonian fluids in non-uniform geometries.Asha and Rathod [23,24] studied the effect of 
magnetic on peristaltic motion in uniform and non-uniform annulus. Rathod and Sridhar [25] showed the effect of couple 
stress fluid on peristaltic transport in a uniform and non- annulus porous media. 

With the above discussion in mind, we propose to study the peristaltic transport of a viscous incompressible fluid (creeping 
flow) through the gap between coaxial tubes, where the outer tube is non-uniform and has a sinusoidal wave travelling 
down its wall and the inner one is a rigid, uniform tube and moving with a constant velocity. This investigation may have 

application in many clinical applications such as the endoscopes problem.       

 2 FORMULATION OF THE PROBLEM 

Consider the flow of an incompressible Newtonian fluid through coaxial tubes such that the outer tubes is non-uniform and 
has a sinusoidal wave traveling down and inner one rigid, and moving with a constant velocity. The geometry of the wall 
surface is  

'
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With  
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With 1a  is the radius of the inner tube 2a  (
'z ) is the radius of the outer tube at axial distance 

'z from inlet, 
20

a  is the 

radius of the outer tube at the inlet, k (<<1) is the constant whose magnitude depends on the length of the outer tube, b is 

the amplitude,   is the wave length, c is the propagation velocity, and t is the time. We choose a cylindrical coordinate 

system (
'r ,

'z  
) where the z-axis lies along the centreline of the inner and the outer tubes and 

'r is the distance 
measured radially. 
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The equation of motion of the flow in the gap between the inner and the outer tubes are 

2 '

2 2

'2
) } ( ( )) (2.5)

' ' '1 ( , ) ( )
0 (2.3)

' ' '

' ' ' ' ' ' 2 '1 ( , )' ' 2 2{ } { ( ) } ( ( )) (2.4)
' ' ' ' ' ' ' '2

' ' ' ' ' '1 ( , )' '{ } { (
' ' ' ' ' ' '

w
w

z

r u w

r r z

u u u p r u u
u w u

t r z r r r r z

w w w p r w
u w

t r z z r r r


  

 


   


 
 

 

      
        

      

     
    

     

 

Where 
2 1 ( )

{ [ ( )]}
r

r r r

 
 

   
 

Whereu  and ware the velocity components in the r and wdirection respectively,   is the density, p is the 

pressure and   is the viscosity,  is the couple stress parameter.  

The boundary conditions are 
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It is convenient to non-dimensionalize the variable appearing in equation (2.1-2.6) sand introducing Reynolds number Re, 
wave number ratio , and velocity parameter 

0
V  as follows: 
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   where   
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(amplitude ratio) 1  
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The equation of motion and boundary conditions in the dimensionless form becomes  

  
1 ( )

0
ru w

r r z

 
 

 
                                                                                             (2.8) 

   

21 ( )3 2 4Re { } ( )
2

u u u p ru u
u w

t r z r r r r z
  

      
     

      
- 

2
2 2( ( ))

2
u




   

                                                                                                                                                                   (2.9) 



I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 2  N u m b e r  1  

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

5834 | P a g e                                                                                     
2 0 1 6  M a r c h                              c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  

w w w . c i r w o r l d . c o m                                                                                                                                                                                                            
 

21 ( ) 12 2 2Re { } ( ) ( ( ))
2 2

w w w p rw w
u w w

t r z z r r r z
 



      
        

      
           (2.10)                                                                                       

Where 
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 is the couple-stress fluid parameter  

The boundary conditions are: 
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2
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Using the long wavelength approximation and dropping terms of order    it follows from equation (2.8-2.11) that the 

appropriate equation describing the flow in the laboratory frame of reference are  
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with dimensionless boundary condition  
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Integrating equation and using the boundary condition one finds the expression for the velocity profile as 
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The instantaneous volume flow rate Q (z,t) is given by 

Q(z,t)=
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Where     
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The pressure rise )(tp
L

  and friction force (at the wall) on the outer and the inner tubes 
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respectively, in a tube of length L, in their non-dimensional forms, are given by 
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The limiting of equation (2.15-2.17) as 1r tends to zero gives the forms of the axial velocity and the pressure gradient for 

peristaltic flow in non uniform tube(without endoscope,  =0 ), these are 
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 Hence the pressure rise and the outer friction force, in this case respectively, take the 

 form 
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If k=0 in equations (2.26) and (2.27), we get expression for the pressure rise and friction force in a uniform tube. The 
analytical interpretation of our analysis with other theories are difficult to make at this stage, as the integrals in equation 
(2.21-2.23) and equation (2.26) and (2.27) are not integrable in closed form , neither for non-uniform nor uniform geometry 
(k=0).Thus further studies of our analysis are only possible after numerical evaluation of these integrals. 

 3. RESULT, DISCUSSION AND CONCLUSION  

To discuss the results obtained above quantitatively assume the form of the instantaneous volume rate of the flow Q (z, t), 
periodic in (z-t) as [2.14-2.16] 
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Q  is the time average of the flow over one period of the wave .This form Q(z, t) has been assumed in view of the 

fact that the constant value of Q(z,t) gives )(tP
L

  always negative, and hence will be no pumping action. Using this form of 

Q (z, t), we shall now compute the dimensionless pressure rise )(tP
L

 , the inner friction force )()( tF i

L
(on the inner 

surface) and the outer friction force )()( tF o

L
(on the outer tube) over the tube length for various value of the 

dimensionless time t, dimensionless flow average


Q , amplitude ratio    , radius ratio  , couple stress parameter   

,and the velocity of the inner tube V0.The average rise in pressure ,
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P outer friction force 

( )

( )

o

LF 
and the inner friction 

force ( ) ( )i

LF t   are then evaluated by averaging  )(tP
L

 , )()( tF o

L
,and )()( tF i

L
 over one period of the wave. As integrals 
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in equation (2.21-2.23) are not integrable in closed form, they are evaluated numerically using digital computer. Following 
Srivastava [15], we use the value of the various parameters in equation (2.21-2.23) as: 

                      a20=1.25cm,                L=  =8.01cm           .


20
a3

k   

 Furthermore, since most routine upper gastrointestinal endoscopes are between 8-11 mm in diameter as reported Cotton 

and Williams [22] and the radius of the small intestine is 1.25 cm as reported in Srivastava [20] then the radius ratio , 

take the values 0.32, 0.38, and 0.44. 

 Figure (1) and (4) represent the variation of the dimensionless pressure with dimensionless time t for  =0.4, V0= 0, 

0.2   and radius ratio  = 0.32, 0.38, and 0.44 in the case of uniform and non uniform tube respectively. The 

difference of the pressure for different values of   becomes smaller as the radius ratio increases, i,e as the inner radius 

of the tube increases. It can also be seen that the effect of increasing the flow rate is to reduce the pressure rise for 
various values of  

Fig (2) and (3) represent the variation of the dimensionless pressure rise with dimensionless time t for  =0.4, V0=0, 

0.2   and velocity V0=-1, 0, 1 for non uniform and uniform tube respectively. The result shows that the pressure rise 

increases as the inner tube velocity increases, i.e. pressure rise for the endoscope increases as the inner tube moves in 
the direction of the peristaltic waves. 

Fig (6)-(7) and (8) shows the inner friction force (on the inner surface) and outer friction forces (on the outer surface) are 
plotted versus dimensionless time t for different values of  = 0.32, 0.38, and 0.44. It observed that as the radius ratio 

increases there is decrease in the inner friction force. It is noticed that the inner friction force behaves similar to the outer 
friction force for the same values of the parameter. Moreover, the outer friction force is greater than the inner friction force 
at the same values of the parameter. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig  (1) Variation of of pressure rise over the length of a uniform annulus at 

0.2   0.4  ,   V0 =0   and different values of    
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Fig (2) Variation of Pressure rise over the length of a non-uniform   annulus  at 0.2   for different values of  V0 at 

0.4  , 0.38   

 

 

 

 

 

 

 

 

 

 

                  

 

 

 

 

 

 

 

 

Fig.(3)Variation of pressure rise over the length of a uniform annulus 

at  0.2  , 0.4  , 0.38   for different values of V0 
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Fig (4) Variation of pressure rise over the length of non uniform at 

at  0.2  0.4  ,  V0 =0   and different values of    
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