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Abstract 
In this paper, A new method proposed and coined by the authors as the natural variational iteration  transform method(NVITM) 
is utilized to solve linear and nonlinear systems of fractional differential equations. The new method is a combination of natural 
transform method and variational iteration method. The solutions of our modeled systems are calculated in the form of 
convergent power series with easily computable components. The numerical results shows that the approach is easy to 
implement and accurate when applied to various linear and nonlinear systems of fractional differential equations. 

Keywords: Natural transform, Natural variational iteration transform method (NVITM), Systems of fractional differential 

equations. 

1. Introduction 
The natural transform, initially was defined by Khan and Khan [1] as N - transform, who studied their properties and 

applications. Later , Belgacem et al. [2, 3] defined its inverse and studied some additional fundamental properties of this integral 

transform and named it the Natural transform. Applications of Natural transform in the solution of differential and integral 

equations and for the distribution and Bohemians spaces can be found in [3, 4, 5, 6,7, 8,9,10]. Now,we mention the following 

basic definitions of natural transform. 

1.1 Natural Transform 
over the set of functions 
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the natural transform [1, 15, 16] of f (t) is defined by 
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where )]([ tfN  is the natural transformation of the time function )(tf  and the variables

 

u and s are the natural transform 

variables. 

1.2 Natural – Laplace, and Sumudu Duality  

If ),( usR  is Natural transform and )(sF is Laplace transform of function )(tf in A then, )(uG is Sumudu transform of 

function )(tf in A ,then [17]: 

Natural- Laplace Duality (NLD) is 
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Natural-Sumudu Duality (NSD) is 
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1.3 Natural transform of  nth derivative 

If )(tf n
is the nth derivative of function )(tf then ,its natural transform is given by[17]: 
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1.4 Convolution theorem of Natural transform 

If ),( usF , ),( usG are the natural transform of respective functions )(tf , )(tg both defined in set A then[17],  

),(),(]*[ usGusuFgfN                                                                                                              (5) 

where gf * is convolution of two functions f and g  . 

1.5 Natural transform of fractional derivative 
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If )]([ tfN   is the natural transform of the function  )(tf  , then the natural transform of fractional derivative of order  is 

defined as [17]  :
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1.6 Weight shift property 

Let the function )(tf belongs to set A be multiplied with weight funtion
te
 then [16], 
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1.7 Change of scale property 

Let the function )(atf belongs to set A,where a is non zero constant then [16], 
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2. Analysis of  method 
In the case of an algebraic equation ( ) 0f x  , the Lagrange multipliers can be evaluated by an iteration formula for finding the 

solution of the algebraic Equation ( ) 0f x   that can be constructed as[18]; 

).(1 nnn xfxx                                                                                                             (9) 
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Where  is the classical variational operator. From (9) and (10), for a given initial value 0X  , we can find the approximate 

solution 1nX  by the iterative scheme for (9) as follows: 
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This algorithm is well known as the Newton-Raphson method and has quadratic convergence. To illustrate the basic idea of the 
natural variational iteration transform method, we consider the following fractional differential equation: 

  0),()]([)]([0 tKtUFtURUDt

c
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Where R  is a linear operator, F is a nonlinear operator and )(tK  is a given continuous function. Now, we extend this idea to 

finding the unknown Lagrange multiplier. The main step is to first take the natural transform to Eq. (12). Then the linear part is 
transformed into an algebraic equation as follows: 
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The iteration formula of (11) can be used to suggest the main iterative scheme involving the Lagrange multiplier as: 
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Considering )]([)]([[ tUNtURN nn   as restricted terms, one can derive a Lagrange multiplier as: 
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This yields the stationary conditions of Eq. (14) as follows; 
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With Eq. (14) and the inverse-natural transform
1N , the iteration formula (14) can be explicitly given as: 
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Consequently the exact solution may be procured by using 

),(),( txULimtxU n
n 

  

3. Applications 

In this section, we illustrate the applicability, simplicity, and efficiency of NVITM for solving systems of linear and nonlinear 
fractional differential  equations.  

3.1 Application  1 
Consider the following system of linear FPDEs[19]: 

  

,VUVUD xt 

                              

Rxt  ,10,0 
                                                                                     

 (16)  

VUUVD xt 
                                                                                                                                                              (17) 

with the initial condition: 

xxVxxU cosh)0,(,sinh)0,( 

 Applying the natural transform on both sides of Eq.(16)  and Eq.(17),then 
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Using the properties of natural transform we obtain; 
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The iteration formula of Eq.(16)  and Eq.(17)can be constructed as: 
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where  , * is a general Lagrange multiplier, which can be identified optimally via the variational theory, 0
~

0 U
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This yields the stationary conditions, which gives
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Substituting this value of Lagrangian multiplier in Eq.(20)  and Eq.(21),we get the following iteration formula: 
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Applying inverse natural transform on both sides of Eq.(22)  and Eq.(23),we get: 
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Finally, we approximate the analytical solution ),( txU  and ),( txV by: 
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  is the famous Mittag–Leffler function.  

For the special case α = 1, we obtain (See Figures (1, 2)) 
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)cosh(),( txtxV                                                                                                                                                (37) 

Which is the exact solution and is same as obtained by  [19]. 

3.2 Application  2 
Consider the following system of time-fractional coupled Burgers equations[20]: 

RxtUVUUUUD xxxxt  ,10,0,0)(2 
,                                                                                (38) 

0)(2  xxxxt UVVVVVD
,                                                                                                                           (39) 

with the initial condition: 

xxU sin)0,(   and
   

xxV sin)0,(                                                                   (40) 

where  is parameter describing the order of the fractional derivative. The functions ),,( txU ),,( txV are the unknown 

functions, t  is the time and x  is the spatial coordinate.The derivative is understood in the Caputo sense. The general response 

expression contains parameter describing the order of the fractional derivative that can be varied to obtain various responses.  
By applying the natural transform on both sides of Eq.(38)  and Eq.(39)  ,then 
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Using the properties of natural transform we obtain; 
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The iteration formula of Eq.(38)  and Eq.(39)  can be constructed as: 
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where  , * is a general Lagrange multiplier, which can be identified optimally via the variational theory, 0
~
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This yields the stationary conditions, which gives
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Substituting this value of Lagrangian multiplier in Eq.(43)  and Eq.(44)we get the following iteration formula:  
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Applying inverse natural transform on both sides of Eq.(45)  and Eq.(46)we get: 
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xU sin0  ,      ,sin0 xV                                                                                                                                                    (49)     



I S S N  2 3 4 7 - 1 9 2 1 

V o l u m e  1 2  N u m b e r  1 

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s 

5802 | P a g e                                                                                 

   2 0 1 6  F e b r u a r y                            c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  

                                                        w w w . c i r w o r l d . c o m             

       

,sin
)1(

sin1 x
t

xU







                                                                                                                                               (50)

 

x
t

xV sin
)1(

sin1







,                                                                                                                                              (51)                                                                                                            

,sin
)12(

sin
)1(

sin
2

2 x
t

x
t

xU










                                                                                                                (52)  

.sin
)12(

sin
)1(

sin
2

2 x
t

x
t

xV










                                                                                                                (53)                                                                                                                                      

Finally, we approximate the analytical solution ),( txU  and ),( txV by: 
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For the special case α = 1, we obtain[See Figures (3,4,)] 

,sin),( xetxU t   
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which is the exact solution of obtained by [20] . 
6.  Conclusion 
In this paper, a novel approach was introduced and utilized to solve linear and nonlinear systems of fractional differential  
equations. In this research work, it was  emonstrated through different examples how the new method can be used for solving 
various systems of fractional differential  equations. When compared with the existing published methods, it is easy to notice 

that the new method has many advantages. It is straightforward, easy to understand, and fast, requiring much less 
computations to perform a limited number of steps of the simple procedure that can be applied to find the exact solution of a 
wide range of types of systems of fractional differential  equations. Furthermore, there is no need for using linearization or 
restrictive assumptions when employing this new method.                                                                                                                
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Figure 1:The surface plot of the solution 𝑈(𝑥, 𝑡) or V(x,t)  of  application1 when  (a) 𝛼 = 0.75, (b) 𝛼 =0 .90, (c) 𝛼 =1 which is the 

exact solution and  Plots of 𝑈(𝑥, 𝑡) or V(x,t) versus 𝑡 at 𝑥 = 1 for different values of  

  ) 𝛼 =1 which is the exact solution.  ــــــ 𝛼 = 0.75,  (- -) 𝛼 =0 .90,  ((ــــــ ـــــ) 
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Figure 2:The surface plot of the solution 𝑈(𝑥, 𝑡) or V(x,t)  of  application 2   when  (a) 𝛼 = 0.75, (b) 𝛼 =0 .90, (c) 𝛼 =1 which is the 

exact solution and  Plots of 𝑈(𝑥, 𝑡) or V(x,t) versus 𝑡 at 𝑥 = 1 for different values of  

  ) 𝛼 =1 which is the exact solution.  ــــــ 𝛼 = 0.75,  (- -) 𝛼 =0 .90,  ((ــــــ ـــــ) 

                                                                      

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 


