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ABSTRACT  

When blood flow through artery, the two-phase nature of blood as a suspension becomes  important as the diameter of the 
red blood cell (RBC) becomes comparable to the tube diameter. The aim of the present study  is to analyzed the effect of 
magnetic field on the plug flow region, shear stress in the core and plasma layer in two-fluid flow of blood through stenosed 
artery. Besides magnetic field, the effect of Womersley parameter, thickness of stenosis and width of plasma layer are also 
discussed. Generated data are analyzed and discussed through graphs. 
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INTRODUCTION 

Quantitative understanding of the blood flow through arterioles is necessary for assessing the hemodynamic resistance 
and its regulation in the microcirculation as well as for analyzing mass transport processes. When blood flow through 
tubes, the two-phase nature of blood as a suspension becomes  important as the diameter of the red blood cell (RBC) 
becomes comparable to the tube diameter. Womersley [20] studied the method for the calculation of velocity, rate of flow 
and viscous drag in arteries when the pressure gradient is known. Chaturani and Upadhya [3] studied a two fluid model for 
blood flow through small diameter tubes with the consideration as a couple stress fluid in the core and the plasma layer as 
a Newtonian fluid and observed that effective viscosity increases with tube radius. Srivastava and Srivastava [15] studied 
two-phase model of pulsatile blood flow with entrance effects. Sharan, and Popel, [13] studied a two-phase model for the 
flow of blood in narrow tubes. The model consists of a central core of suspended erythrocytes and a cell-free layer 
surrounding the core. It is assumed that the viscosity in the cell-free layer differs from that of plasma as a result of 
additional dissipation of energy near the wall caused by the red blood cell motion near the cell-free layer. Srivastava [16] 
studied particulate suspension blood flow through stenotic arteries, to analyze the effects of hematocrit and stenosis. 
Srivastava[16] studied a flow of a couple stress fluids representing blood through stenotic vessels with a peripheral layer 
and observed that the magnitudes of the flow characteristics increase with non-Newtonian behaviour of the core fluid, 
presence of a peripheral layer causes significant reduction in the magnitude of the flow resistance. The pulsatile flow of 
blood through a catheterized artery is analyzed by Sankar,[9], assuming the blood as a two-fluid model with the 
suspension of all the erythrocytes in the core region as a Casson fluid and the peripheral region of plasma as a Newtonian 
fluid. The estimates of the increase in the longitudinal impedance are considerably lower for the present two-fluid model 
than those of the single-fluid model. Shankar, and Lee, [10] analysed the pulsatile flow of blood through catheterized 
arteries by treating the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a non-
Newtonian fluid and the plasma in the peripheral layer as a Newtonian fluid. The non-Newtonian fluid in the core region of 
the artery is represented by (i) Casson fluid and (ii) Herschel-Bulkley fluid. Kumar et al.[6] studied mathematical model of 
flow through a variable shape stenosed artery under the influence of magnetic field and discussed  the effect of stenosis 
shape and maganetic field on the resistance to the flow. Sharma et al[12] worked on pulsatile unsteady flow of blood 
through porous medium.In their study the distribution of fatty  cholesterol and artery-clogging blood clots in the lumen of 
the coronary artery is assumed as a porous medium. Sankar  et al.[11] investigated Blood flow in the presence of a 
composite stenosis by examining the effects of red cell concentration, stenosis height and a peripheral layer  on blood flow 
characteristics. A two-layered model with a particle-fluid suspension in the core region and a peripheral plasma layer 
without any particles is used to represent blood in there study . Srivastav [18] studied flow of blood through a narrow 
catheterized artery with axially non-symmetrical stenosis. In this study a two-layered model consisting of a core region of 
suspension of all the erythrocyte assumed to be a particle-fluid suspension and a peripheral layer of plasma .The aim of 
the present problem is to analyzed the effect of magnetic field on the plug flow region, shear stress in the core and plasma 
layer in two-fluid flow of blood through stenosed artery. Besides magnetic field, the effect of Womersley parameter, 
thickness of stenosis and width of plasma layer are also discussed. 

 FORMULATION OF THE PROBLEM   

 In the present study a long circular axisymmetric vessel is considered. The vessel is orienting in the z-direction. 

The radial and azimuthal co-ordinates are r and  respectively. The wall of the vessel is impermeable and due 
symmetric condition the non-vanishing component of flow velocity is axial velocity w in the positive z-direction. The 
imposed magnetic field, B0 is transverse to z-direction and of moderately small strength so that induced field be 
negligible.  Under these considerations the flow in unidirectional, axisymmetric with no swirl in a circlular rigid  

vessel, its velocity can be taken as  0, 0, ,q q w r t   
 

.Thus, the fluid pressure is a function of the  position z 

and time t. The external magnetic field in applied transversally, so  00, 0,B B B  
 

.  

The flow of the blood then described by the Navier-stokes equations and governing equation of motion  by 
combining with Maxwell’s equation.  
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here astrics * denotes dimensional quantities.  

The no-slip and axis-symmetric conditions provides the boundary conditions 

                                         
* * * *0 atw r h z    ,

*
*

*
0 at 0

w
r

r


 


                                           (2.3) 

where 
* *h z   defines the wall of the vessel which is a function of z in the region of stenosis and equal to R0 the 

radius of the vessel outside the stenosis region.  

 

 

 

 

 

 

Fig. (1)  Physical model of problem 

The axis of the artery is coinciding with the z-axis. Considering the geometry of the stenosis as described 
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where R0 is the radius of artery in the region where stenosis is not present. L0 is stenosis length.   

The flow through a pipe using the relation         
*  

*w

r




 and equation (2) is given by 
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The blood is taken as two layered fluid comparising with plasma in the peripheral region and casson fluid in the 
core  region. Since in the plasma region the presence of RBC are considered negligible and in the core region the  
RBC are concentrated, therefore the effect of magnetic field will be only on the fluid that flowing in the core region. 
Using suffix p and c for plasma and core region respectively, then the governing equation of motion for core region 
and plasma region can be derived from (2.5) and given by as follows  

For core region  
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For plasma region  
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The corresponding boundary and interface conditions are  

Symmetric condition   
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Interface condition                 
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No-slip condition            
* * *0 atpw r h                   (2.8) 

Here 
* * * *

1 , and ,h t h t     are function of 
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METHOD OF SOLUTION 

Introducing following non-dimensional quantities  
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2 2
2 0 cB R

M



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v


   (Womersley parameter)  

 The pressure gradient in the vessel is taken pulsatile that in accordance of the  nature of flow through the heart,  
the amplitude of oscillation. Then the solution of  governing equation of motion in dimensionless form in  the core 
region and plasma region are given by : 
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1i h    at the interface  
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And 1 2 3, andf f f  are given by  
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  is dimension less yield stress.  

RESULTS AND DISCUSSION    

The data generated for the modeled problem are presented through figures to explain the effects of various 
physical parameters on the flow profiles. Figure 2 elaborate  the effects of magnetic field on the square root of the 
velocity gradient (SRVG). It is plausible from the figure that with the increase of magnetic field the SRVG increase. 
Also, the plug flow region, the region where SRVG is zero , decreases with the increase of magnetic field. It is an 

interesting output which support the application of magnetic field on hemodynamics. Figure 3 represent the 
variation is SRVG versus radial distance at different values of thickness of the core region where blood cells are 
concentrated. The increase in core region does not effects the plug flow region but outside the plug flow region. 
SRVG increases with the increase of core region thickness.  The increase in SRVG with the increase of core region 
thickness is reasonable which is caused due to the reduction is solid-fluid interfacial area per unit mass. In figure 4. 
Figure 5 and 6 we observe that the shear stress in core region as wall as in plasma layer increases with the 

increase of  Hertmann  member. But the variation in both the region are different in nature. In core region for small 
value of Hartmann number variation is linear but for higher value of Hartmann number linear variation not retained. 
While in the plasma layer, the variation in shear stress is linear. The physiological evidence that the low shear 
region is responsible for the atherosclerosis, the stenosis, in view of this, the applied magnetic field work in positive 
may to reduce the risk of atherosclerosis. In figure 7, the effect of plasma layer thickness on the shear stress in 
plasma layer is elaborated with the increase of plasma layer thickness the shear stress increases which is in favour 
to reduce the risk of atherosclerosis. The results are in good agreements with the results obtained by earlier 
researchers.  

 

 

Fig. (2)  Variation in square root of the velocity gradiant (SRVG) versus radial distance at     different values of 

Hartmann number, M (at   = 1.2, t = /6) 
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Fig. (3)  Variation in SRVG versus radial radial distance at different values of thickness of the core   region 

 

Fig. (4) Variation in shear stress in core region versus radial distance at different values of thickness of stenosis  (at 

M = 0.5,  = 1.2,  t = /6) 

               

                                      

 

 

 

Fig. (5) Variation in shear stress in core region versus radial distance at different values of Hartmann number 
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M (at  = 1.2, t = /6) 

 

Fig. (6) Variation in shear stress versus radial distance at different values of Hartmann number M (at  = 1.2, t = 

/6) 

 

 

Fig. (7) Variation in shear stress versus radial distance at different values of thickness of plasma layer 
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