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Abstract 
This article’sgoal is to support the existence of the dual in a Linear Fuzzy Real environment and focus on its application 
to linear fuzzy program problems. This concept will apply to linear fuzzy programming problems that contain fuzzy 
constraints with a crisp objective function, crisp constraints with a fuzzy objective function, or fuzzy constraints with a 
fuzzy objective function. It is also proposed here that optimizing fuzzy constraints and objectives of the dual linear 
program that consist of a triplet and are much like triangular fuzzy numbers, but differ in that they are a hybrid fuzzy 
number that contains characteristics that are both fuzzy and crisp. 
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1 INTRODUCTION 

An idea in decision making is to maximize gains and minimize. This also applies to the world of fuzzy decision making. 
Fuzzy set were initially introduced by Bellman and Zadeh [1]. This concept was then adopted to mathematical 
programming by Tanaka et al. [9]. Fuzzy linear programming problem with fuzzy coefficients was formulated by Negoita 
[6]. Zimmerman [10] presented a fuzzy approach to multi-objective linear programming problems. Dubois and Prade [2] 
studied linear fuzzy constraints. Tankaka and Asai [8] proposed a formulation of fuzzy linear programming with fuzzy 
constraints and gave a method for its solution. Neggers and Kim researched fuzzy posets [4] and created Linear Fuzzy 
Real numbers [5]. Linear Fuzzy Real numbers were used by Monk [3] and Prevo [7] in the study of fuzzy random 
variables and used to optimize the primal problems of linear programs with fuzzy constraints[8]. The relationships 
between the primal and the dual is clear in a crisp environment. The objective of this paper is to show that the 
relationship is valid for an LFR environment as well.  

In general, the optimal solution of the primal contains the solution of the dual. However, knowledge of the dual 
is important. The economic interpretation of the dual is useful in making future decisions in the activities being 
programmed. Also, the solution of a linear programing problem may be easier to obtain through the dual than through 
the primal problem.  

The paper is outlined as follows. Operations on LFR are considered in Section 2. In Section 3, the study of the 
dual of linear programming problems with linear fuzzy real constraints. In Section 4, applications of LFR optimization 
are considered. 

2 Linear Fuzzy Real Numbers 

Considering the real numbers R, one way to associate a fuzzy number with a fuzzy subset of real numbers is as a 
functionμ ∶ R → [0,1], where the value µ(x) represents a degree of belonging to the subset of R. The Linear Fuzzy Real 
numbers as described by Neggers and Kim [5, 3] is a triple of real numbers (a,b,c) where a ≤ b ≤ c of real numbers, 
See Fig. 1, such that: 

1. µ(x) = 1 if x = b; 

2. µ(x) = 0 if x ≤ a or x ≥ c;  

3. µ(x) = (x − a)/(b − a) if a < x < b; 

4. µ(x) = (c − x)/(c − b) if b < x < c. 

For a real number c, we letϵ c =  μ with associated triple (c,c,c). Then µ is a linear fuzzy real number with µ(c) = 1 

and µ(x) = 0 otherwise. As a linear fuzzy real number we consider ϵ(c)= μ to represent the real number c itself. Thus by 
this interpretation we note that the set R of all real numbers is a subset of the set containing the linear fuzzy real 
numbers. The set of the linear fuzzy real numbers is a hybrid set showing intermediate properties, 
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                                                 Fig. 1. Linear Fuzzy Real number µ(a,b,c) 

which are unique to the set and not those of either the real numbers or the “general” fuzzy numbers. 

LetLFR = {μ ∶ R →  0,1 | μ is a linear fuzzy real number}. Each µ has a set of descriptive parameters. The base is 

defined as the triple (a,b,c) that occurs in the definition of a linear fuzzy real number. Thus one may write an element of 
LFR as µ = µ(a,b,c). 

2.1 Addition and Subtraction 

Given the linear fuzzy real numbers µ1 = µ(a1,b1,c1) and µ2 = µ(a2,b2,c2), 

µ1 + µ2 is defined by 

µ1 + µ2 = µ(a1 + a2,b1 + b2,c1 + c2). 

This operation is not the usual definition of addition of functions. It is also clear thatμ +  ϵ 0 = µ for all µ ∈LFR. For 

subtraction, we have  

μ1 − μ2 = μ(a1 − c2,b1 − b2,c1 − a2). 

2.2 Law of trichotomy 

A linear fuzzy real number µ(a,b,c) is defined to be positive if a >0, negative if c <0, and zeroic if a ≤ 0 and c ≥ 0. The 
following properties also hold: 

1. If µ is positive , then −µ is negative; 

2. If µ is negative, then −µ is positive; 

3. If µ is zeroic, then −µ is also zeroic; 

4. If µ1 and µ2 are positive, then so is µ1 + µ2; 

5. If µ1 and µ2 are negative, then so is µ1 + µ2; 

6. If µ1 and µ2 are zeroic, then so is µ1 + µ2; 

7. For any µ, µ − µ is zeroic. 

2.3 Multiplication and Division 

Given the linear fuzzy real numbers µ1 = µ(a1,b1,c1) and µ2 = µ(a2,b2,c2), 

µ1 · µ2 is defined by 

µ1 · µ2 = µ(min{a1a2,a1c2,a2c1,c1c2},b1b2,max{a1a2,a1c2,a2c1,c1c2}). 

Given the linear fuzzy real numbers µ1 = µ(a1,b1,c1) and µ2 = µ(a2,b2,c2), 
μ1

μ2
 is defined by 

, 
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2.4 Functions on LFR 

Given a function f: R → R and µ(a,b,c) ∈LFR, f∗(µ) : LFR → LFR is defined as 

f∗(µ) = µ(a∗,b∗,c∗), 

where a∗= min{f(a),f(b),f(c)},b∗=median{f(a),f(b),f(c)},c∗= max{f(a), 
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f(b),f(c)}. If a = b or b = c, then a∗= b∗or b∗= c∗. Therefore if a = b = c then it follows that a∗= b∗= c∗, i.e., f ∗ ϵ b  =

 ϵ(f b ). Hence f∗is an extension of the function f. 

2.5 Linear equations on LFR 

Before discussing linear programming in full detail, we must discuss linear equations in the LFR system. A linear 
equation over LFR is an equation of the form 

µ1 · µx + µ2 = µ3 · µx + µ4, 

where the µiare LFR’s for i= 1,2,3,4 and µx is an unknown LFR with a triple of unknown real numbers (α,β,γ). The 
solution set of the general linear equation can be roughly classified as 

1. empty set, 

2. singleton set, 

3. not a singleton set but a bounded set: 

β1 ≤  α ≤  β ≤  γ ≤  β2 for β1, β2 ∈ R,, 

4. an unbounded set but not all LFR’s are included, 

5. all possible LFR’s are included. 

An acceptable solution, given the choices of the solution set, depends on the parameters of the linear program. For 
the purpose of solving fuzzy linear programs, classification 2, 3, and 5 are acceptable. A solution set that is bounded 
but not a singleton would imply that µx is not equal to the solution set in a crisp sense. Solving these equations through 
traditional means can be a daunting task. If we define a relation µ1 ≡ µ2 (mod θ) iffµ1 −µ2 is zeroic, thenμ  a, b, c  ≡
 ϵ b  (mod θ) since μ  a, b, c −  ϵ b =  μ a − b, 0, c − b . Therefore if we define [[μ1 ] = {μ2|μ2 ≡  μ1(mod θ), then 
[µ(a,b,c)] = [ ϵ(b)]. Furthermore, in order thatϵ a ≡  ϵ  b (mod θ), we must have ϵ a − ϵ b =  ϵ a − b zeroic, which 

can only happen if a = b. Hence, we have a mapping Φ :µ → [µ] with the property that if we compose this with the 

mappingb →  ϵ(b) then we obtain the sequence R
ϵ
→ LFR

φ
→ LFR/Z, where Z is the set of zeroic elements of LFR, whence 

LFR/Z is seen to be isomorphic to  itself. If :Z → LFR is the inclusion mapping, then we obtain a further diagram: 

Z
σ
→ LFR

φ
→ LFR/Z

ϵ
→ LFR. 

Thus μ ∗  μ−1 =  μ ∗  μ−1 =  ϵ 1 , i.e., [µ] has a multiplicative inverse in LFR/Z. The properties of LFR/Z allow one to 
solve for the solution of fuzzy linear equations using the inverse order of operations. 

3 Linear fuzzy programming 

Linear programming models are a special kind of decision model: The decision space is defined by constraints and an 
objective function. Thus decisionmaking occurs under certainty. In linear fuzzy programming, optimization occurs under 
uncertainty. For linear fuzzy programming we will need to depart from the classical assumption of linear programming. 
The classical assumption is that our objective and constraints are “crisp”. In addition, the term “to maximize” or “to 
minimize” is used in its strictest sense. Despite the unique properties of the LFR system, it is nevertheless a fuzzy 
environment. 

Thus we can use the nature of LFR to solve linear programming problems in a fuzzy environment. This offers many 
possibilities for the decision maker. First he may not want to actually maximize or minimize the objective function. He 
may want to reach a decision that is not crisply definable as optimal. The actual purpose may be to improve the profit 
situation for example. 

Secondly, the constraints might be vague. The ≤ sign might not be defined in the traditional sense to the degree 
that smaller violations may be acceptable. This can happen when the constraints represent aspiration levels that are 
not definable crisply. 

Finally, the role of the constraints can be different from the ones in the classical sense in that the violation of any single 
constraint may not render the solution infeasible. The decision maker might accept small violations of constraint but 
might define different degrees of importance to violations of different constraints. 

3.1 Maximal/Minimal element 

If U ⊆LFR, then it is a partially ordered set. An element µmin ∈U is called a minimal element of U if no element is less 
than µmin. Similarly an element µmax ∈U is called a maximal element of LFR if no element is greater than µmax. Note that 

since the LFR’s are not linearly ordered it can have more than one minimal or maximal element. The ac tual search for 
this element requires a series of calculations. However, before further discussing this we will need the following 
definitions and propositions. 

Definition 3.1. A set V in R
n
 is said to be a linear variety if given any x,y∈V we have λx+ (1 − λ)y ∈V for all real 

numbers λ. 
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Definition 3.2. A hyperplane inR
n
is an (n−1) dimensional linear variety. 

Proposition 3.3. Let H = {µx ∈ [LFR/Z]
n
: p

T
µx = q}. Then H is a linear variety. 

Proof. Suppose µx1,µx2 ∈H, then p
T
(λµx1 + (1 − λ)µx2) = λp

T
µx1 + p

T
µx2 − λp

T
µx2 = λq+ q − λq= q. Therefore H is a linear 

variety. 

Proposition 3.4. Let H = {µx ∈ [LFR/Z]
n
: p

T
µx = q}. Then H is a hyperplane. 

Proof. It follows from the previous proposition that H is a linear variety. Let µx1 be any fuzzy vector in H. We can obtain 
the set G = H − µx1 which is a linear subspace of [LFR/Z]

n
. This subspace consists of all vectors µx satisfying p

T
µx = 0; 

thus the vectors µx are orthogonal to p. Therefore H is an (n − 1) dimensional subspace (hyperplane).  

We have observed above that “up to Zeroic” the solution of linear equations depends on the solution of crisp 
equations involving the middle values, i.e., the b’s in µ(a,b,c). The subsequent analysis depends on dealing with the 
inequalities of the type a ≤ b ≤ c. The same principle underlies our present observations. 

The propositions give us an idea of the geometry of a fuzzy linear program in this setting. Hence, they play an 
important role in searching for the fuzzy maximal/minimal point. 

3.2 Extreme points 

Because of the previous findings we know that a fuzzy linear program problem consists of fuzzy constraints of equality 
and inequality. The “Modulo Z” graph of each constraint defined by an inequality is a closed half space. Similarly, the 
graph of each fuzzy constraint defined by equality is a hyperplane or intersection of two closed half spaces. Hence, 
also in this manner the set of points that satisfy the constraints of the linear programming problem is the intersection of 
the closed half spaces determined by the constraints. We can find the optimal solution by evaluating the basic feasible 
solutions. These basic feasible solutions are the extreme points. The nature of this fuzzy algorithm developed for this 
problem is essentially an analog of its crisp counterpart with modifications naturally. 

3.3 Fuzzy algorithm 

A fuzzy algorithm seeks to solve a problem through a series of logical operations. With a fuzzy algorithm we do not 
seek precision answers. Problems of the precision class are naturally restrictive and thus there arises a need for fuzzy 
algorithms applicable to fuzzy situations. The following algorithm evaluates each of the extreme points in LFR/Z and 
stores its LFR counterpart. Thus our optimal solution has a fuzzy and a crisp version. 

Schematic representation of the simplex algorithm may be summarized in the following: 

• First Phase: Formulate the problem and the objective function. 

• Second Phase: Design an initial program. 

• Third Phase: Test the given program for optimality. 

– If optimal, the problem is solved. 

– If not, revise the program. 

We modify the simplex algorithm to LFR in the fuzzy algorithm in the following 4 steps. 

3.3.1 Step 1: Formulate the problem and the objection function 

(a) Translate the technical specification of the problem into a fuzzy inequalityand make a statement. Thus we should 
have a fuzzy objective and constraints, for example 

Minimize p
T
µx  

subject to: 

, 

(b) Convert the fuzzy inequality into a fuzzy equality by the addition of nonnegative slack variables. 

(c) Modify the objective function to include the slack variables. 

(d) Modify the main body to consist of a “tri-matrix”, such that one matrixof triplets becomes three matrices of singlets. 
Hence we let (µij) = (A,B,C), where A = (aij), B = (bij), and C = (cij). 

3.3.2 Step 2: Design an initial program (a basic feasible solution) 

Design the first program so that only the slack variables are included in the solution. Place this program in a simplex 
tableau. In the objective row, above each column variable, place the corresponding coefficient of that variable from 
Step 1(c). 
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3.3.3 Step 3: Test and revise the program 

(a) Use the matrix B = (bij) to calculate the net evaluation row. To get a number in the net evaluation row under a 
column, multiply the entries in that column by the corresponding numbers in the objective column, and add the 
products. Then subtract this sum from the number listed in the objective row at the top of the column. Enter the net 
evaluation row under the column. 

(b) Test the entries in the net evaluation row for the given simplex tableau.If all the entries are zero or positive, the 
optimal solution has been obtained. Otherwise, the presence of any positive entry in the evaluation row indicates 
that a better program can be obtained. 

(c) Revise the program: 

(c.1) Find the key column, which consists of the column under which fallsthe largest negative net-
evaluation. Find the key row using the key number. Divide the entries in the “quantity” column by the 
corresponding nonnegative entries of the key column to form replacement ratios, and compare these ratios. 
The row that contains the smallest replacement ratio is the key row and the key column is the key number. 

(c.2) Transform the key row. Divide all the numbers in the key row and thecorresponding row for A and C. 

(c.3) Transform the non-key rows. Subtract from the old row number of agiven non-key row (in each 
column) the product of the corresponding keyrow number and the corresponding fixed ratio formed by dividing 
the old row number in the key column by the key number. 

(c.4) Perform identical arithmetic operations on A and C. (Note that in key row the values of A and C will 
switch due to the nature of LFR.) The result will give the corresponding new row number. Make this 
transformation for all the non-key rows. 

(c.5) Enter the result of Step 3 above in a tableau representing the revisedprogram. 

3.3.4 Step 4: 

Obtain the optimal program by repeating Step 3 until an optimal program has been derived. 

3.4 Support of the dual in LFR 

The application of LFR to the primal problem was shown in my previous article. Here we shall discuss the dual 
problem.  The dual problem shall be defined as follows:   

Given that the primal problem: 

Minimize c
T
x 

Such that 

Aµx≤ µb 

µx ≥ ε(0) 

Then the dual problem is: 

Maximize b
T
w 

Such that 

Aµw≤ µc 

µw ≥ ε(0) 

For dual and primal problems in LFR the following is true. 

1. Given a primal problem the dual of its dual problem is again the primal problem. 

2. If either the primal or dual problem has a feasible solution with a finite optimal objective value, then the other 
problem has a feasible solution with the same objective value. 

3. If µx0 is a feasible solution to the primal problem and if µw0 is a feasible solution to the dual problem then the 
primal and dual problem have an optimal solution and c

T
x0= b

T
w0.   To prove this we must introduce the 

following proposition: 

Proposition 3.5: 

Let C be a convex set such that C (LFR/Z)
n nLFR)( .  Also, let µy be an LFR point exterior to the closure of C.  Then 

for some vector v, v
T
µy<infv

T
µx.  

Proof: 

Let S be a closed ball centered at µy with radius large enough such that s intersects X. Then the intersection formed by S 
and X is compact.  If we let  
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∂ = inf |µx - µy|>0, there exist a µx0 such that ∂ = | µx0 - µy |.  This follows since  

f(µx )= | µx - µy | assumes it minimum value there.  

If µx ЄX and 0<α<1, then µy = α µx  + (1- α) µx0 Є Ĉ. 

Thus  

| µx0 - µy |
2
 ≤| α µx  + (1- α) µx0 - µy |

2
 =|µx0  - µy + α (µx - µx0)|

2
= 

|µx0  - µy  |
2
+ 2 α (µx - µx0) (µx0 - µy)

T  
+ α

 2
 |µx - µx0|

2
 

Therefore 

0≤2 α (µx - µx0) (µx0 - µy)
T
+ α

 2
 |µx - µx0|

2 

0≤ (µx - µx0) (µx0 - µy)
T
+ (α /2)|µx - µx0|

2  

If we take the limit as α → 0 we obtain 

0≤(µx - µx0) (µx0 - µy)
T  

 

0≤(µx0 - µy)
T
µx - (µx0 - µy)

T
 µx0 

(µx0 - µy)
T
µx ≥ (µx0 - µy)

T
 µx0 

 =(µx0 - µy)
T
 (µy  + µx0 - µy) 

                     = (µx0 - µy)
T
µx +(µx0 - µy)

T
 (µx0 - µy) 

          = (µx0 - µy)
T
µx + ∂

2 

Let us set v = (µx0 - µy) 

Then v
T
µy<infv

T
µx 

Proposition 3.6: 

LFR Programming and the dual Problem  

If µx is a feasible point for a linear programming problem and µy is a feasible point for the dual problem then c
T
 µx ≤ µy

T
A µx 

≤ b
T
 µy. 

Proof: 

Since µx and µy satisfies 

µx≥0, A µx ≤ b, µy≥0, -A
T
µy ≤-c 

thusc
T
 µx ≤ (A

T
µy)

T
 µx =µy 

T
 A µx ≤ µy 

T
* b= b

T
 µy. 

With proposition 3.5 and 3.6 in place we now introduce the following proposition.  

Proposition 3.7: 

If the primal and dual problem have feasible solutions then the primal problem has an optimal solution µx0, and the dual 
problem has an optimal solution µw0, and  

c
T
 µx0 = b

T
 µw0.   

Proof: 

Let µx be a feasible solution to the primal and µw be a feasible solution to the dual.  By Proposition 3.6 c
T
 µx ≤ b

T
 µw.  Since 

the object function of the primal problem is bounded and the set of feasible solutions is not empty, there is a finite optimal 
solution µx0.  By Proposition 3.5 there exists a feasible solution µw0 such that c

T
 µx0 = b

T
 µw0. Now suppose µw1 is any 

feasible solution to the dual problem, then by theorem A  

b
T
 µw0 = c

T
 µx0 ≤ b

T
 µw1, and thus µw0 is an optimal solution to the dual. 

3.5 Example of the dual linear fuzzy programming problem 

Given the primal problem  

Maximize 

μ 1.75,4,5.25 μx1 +  μ 1,3,4 μx2 +  μ 2.5,3,5 μx3 

Subject to   

μ 0.5,1,1.5 μx1 +  μ 1,2,2 μx2 ≤  −2 

 3μx1 +  μx2 +  μx3 ≤ −4 



I S S N  2 3 4 7 - 1 9 2 1  

V o l u m e  1 2  N u m b e r  2  

    J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

5901 | P a g e                            c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  
A p r i l  2 0 1 6                                             w w w . c i r w o r l d . c o m                                                         
 
 

 4μx3 ≤ −1 

 μ 0.5,1,1.5 μx1 + μx3 ≤ −1 

Then the dual with slack variables yield. 

Minimize −2µy1 − 4µy2 − µy3 − µy4  

Subject to : 

µ(0.5,1,1.5) · µy1 + 3µy2 + µ(0.5,1,1.5) · µy4 + µy5 = µ(1.75,4,5.25) 

µ(1,2,2) · µy1 + µy2 + µy6 = µ(1,3,4) 

µy2 + 4µy3 + µy4 + µy7 = µ(2.5,3,5)  

µyi≥ 0 for i= 1,··· ,7. 

Using the Fuzzy algorithm given above, we solve this minimization problem in the following Tables 1 through 4. 
Each table shows a “tri-matrix” of tableaus. 

 

 

 

 

 

Table 1. First set of tableaus 

Tableau basic µy1 µy2 µy3 µy4 µy5 µy6 µy7 µb 

A (−z) -2 -4 -1 -1 0 0 0 0 

µy5 0.5 3 0 0.5 1 0 0 1.75 

µy6 1 1 0 0 0 1 0 1 

µy7 0 1 4 1 0 0 1 2.5 

B (−z) -2 -4 -1 -1 0 0 0 0 

µy5 1 3∗∗ 0 1 1 0 0 4 

µy6 2 1 0 0 0 1 0 3 

µy7 0 1 4 1 0 0 1 3 

C (−z) -2 -4 -1 -1 0 0 0 0 

µy5 1.5 3 0 1.5 1 0 0 5.25 

µy6 2 1 0 0 0 1 0 4 

µy7 0 1 4 1 0 0 1 5 

(∗∗ indicates the pivot element in Table 1 through Table 8.) 
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                 Table 2. Second set of tableaus 

Tableau basic µy1 µy2 µy3 µy4 µy5 µy6 µy7 µb 

A (−z) -1.33 0 -1 -0.33 1.33 0 0 2.33 

µy2 0.17 1 0 0.17 0.33 0 0 0.58 

µy6 0.5 0 0 -0.5 -0.33 1 0 -0.75 

µy7 -0.5 0 4 0.5 -0.33 0 1 0.75 

B (−z) -0.67 0 -1 0.33 1.33 0 0 5.33 

µy2 0.33 1 0 0.33 0.33 0 0 1.33 

µy6 1.67 0 0 -0.33 -0.33 1 0 1.67 

µy7 -0.33 0 4∗∗ 0.67 -0.33 0 1 1.67 

C (−z) 0 0 -1 1 1.33 0 0 7 

µy2 0.5 1 0 0.5 0.33 0 0 1.75 

µy6 1.83 0 0 -0.17 -0.33 1 0 3.42 

µy7 -0.17 0 4 0.83 -0.33 0 1 4.42 

 

                           

                             

 

                               Table 3. Third set of tableaus 

Tableau basic µy1 µy2 µy3 µy4 µy5 µy6 µy7 µb 

A (−z) -1.46 0 0 -0.21 1.25 0 0.25 2.52 

µy2 0.17 1 0 0.17 0.33 0 0 0.58 

µy6 0.5 0 0 -0.5 -0.33 1 0 -0.75 

µy3 -0.13 0 1 0.13 -0.08 0 0.25 0.19 

B (−z) -0.75 0 0 0.5 1.25 0 0.25 5.75 

µy2 0.33 1 0 0.33 0.33 0 0 1.33 

µy6 1.67∗∗ 0 0 -0.33 -0.33 1 0 1.67 

µy3 -0.08 0 1 0.17 -0.08 0 0.25 0.42 

C (−z) -0.04 0 0 1.21 1.25 0 0.25 8.1 

µy2 0.5 1 0 0.5 0.33 0 0 1.75 

µy6 1.83 0 0 -0.17 -0.33 1 0 3.42 

µy3 -0.04 0 1 0.21 -0.08 0 0.25 1.1 
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                          Table 4. Fourth set of tableaus 

Tableau basic µy1 µy2 µy3 µy4 µy5 µy6 µy7 µb 

A (−z) -1.23 0 0 -0.43 1.1 0.45 0.25 2.18 

µy2 -0.2 1 0 0.2 0.4 -0.2 0 -0.1 

µy1 0.3 0 0 -0.3 -0.2 0.6 0 -0.45 

µy3 -0.1 0 1 0.1 -0.1 0.05 0.25 0.15 

B (−z) 0 0 0 0.35 1.1 0.45 0.25 6.5 

µy2 0 1 0 0.4 0.4 -0.2 0 1 

µy1 1 0 0 -0.2 -0.2 0.6 0 1 

µy3 0 0 1 0.15 -0.1 0.05 0.25 0.5 

C (−z) 0.78 0 0 1.13 1.1 0.45 0.25 9.64 

µy2 0.4 1 0 0.6 0.4 -0.2 0 1.9 

µy1 1.1 0 0 -0.1 -0.2 0.6 0 2.05 

µy3 0.05 0 1 0.2 -0.1 0.05 0.25 1.28 

Since the objective function row has nonnegative values in B tableau in the fourth set, this set is optimal. In LFR 
the optimal values are 

µy1 = µ(−0.45,1,2.05);µy2 = µ(−0.1,1,1.9);µy3 = µ(0.15,0.5,1.28). 

In LFR/Z the optimal values are 

μy1 =  ϵ 1 ; μy2 =  ϵ 1 ;   μy3 =  ϵ 0.5 . 

Thus the minimum value of the objective function is µ(2.18,6.5,9.64) in 

LFR and our “crisp” value isϵ 6.5 in LFR/Z. 

4 Conclusion 

From our example, it is clear that we can find a crisp optimum by projecting to the middle,µ(a,b,c) → ϵ(b). At the same 

time the method outlined produces a fuzzy solution in the form of an LFR expression, which can be used directly as a 
fuzzy value. In real world problems this may prove advantageous, particularly in situations where it is already known 
the “crisp optima” in the purest sense do not exist, but where µ(a,b,c) → ϵ(b) produces a “crisp good choice” for an 
optimum. Having done what has been done for linear optimization [8], in the future, LFR may be applied to not just 
single objective programming but multi-objective, multi-level, dynamic programming and goal programming in a Linear 
Fuzzy Real environment.  This of course is from a theoretical viewpoint, useful lines of advance may occur in the 
different applied fields such as supply-allocation problems,  production planning, scheduling, inventory networks, 
queuing systems, risk analysis, quality control, vehicle routing, finance, energy systems, capital budgeting, system 
reliability, manufacturing system, and pattern recognition. 
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