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ABSTRACT 

In this paper we define another Newton-type method for finding simple root of quadratic equations.  It is proved that the 

new one-point method has the convergence order of  2k   requiring only three function evaluations per full iteration, 

where k is the number of terms in the generating series. The Kung and Traub conjecture states that the multipoint iteration 

methods, without memory based on n function evaluations, could achieve maximum convergence order 
12n

 but, the new 
method produces convergence order of nine, which is better than the expected maximum convergence order.  Finally, we 
have demonstrated that our present method is very competitive with the similar methods. 

Keywords: Newton method; Quadratic equations; Kung-Traub’s conjecture; Efficiency index; Optimal order of 

convergence. 

Subject Classifications: AMS (MOS): 65H05. 

1 INTRODUCTION 

In this paper, we present a new one-point  2k  -order iterative method to find a simple root of the nonlinear equation. 

Many higher order multi-point variants of the Newton method have been developed based on the Kung and Traub 
conjecture [4].  Here we present a new iterative method which has a better efficiency index than the classical Newton 
method [3,5,6,9] and is equivalent to the Thukral [8], the Ahmad [1] and Babajee [2] method.  We have found that the main 
difference between the proposed method and the methods given in [1,2] is that the proposed method is based on one-
point and is much simpler to construct.  For the purpose of this paper, we improve the classical Newton method and to 

construct a new  2k  -order iterative method for finding simple roots of quadratic equations.  The new method 

presented in this paper only uses three evaluations of the function per iteration.  Kung and Traub conjectured that the 

multipoint iteration methods, without memory based on n evaluations, could achieve optimal convergence order 
12 .n

  In 

fact, we have obtained a higher order of convergence than the maximum order of convergence suggested by Kung and 
Traub conjecture [4]. We demonstrate that the Kung and Traub conjecture fails for a particular case. 

2 PRELIMINARIES 

Here we state the essential definitions applicable to an iterative method. 

Definition 1 Let  f x  be a real function with a simple root   and let  nx  be a sequence of real numbers that 

converge towards .   The order of convergence p is given by 

 
1lim 0n

pn
n

x

x











 


         (1) 

where p   and   is the asymptotic error constant.   Let n ne x    be the error in the nth iteration, then the 

relation 

 1

1 ,p p

n n ne e e 

             (2) 

is the error equation. If the error equation exists, then p is the order of convergence of the iterative method, [3,5,6,9]. 

Definition 2 Let n be the number of function evaluations of the iterative method.  The efficiency of the iterative method 

is measured by the concept of efficiency index and defined as 

  , nE n p p           (3) 

where p is the order of convergence of the method, [6]. 
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Definition 3 (Kung and Traub conjecture) Let  1n nx g x   define as an iterative function without memory with n-

evaluations.  Then 

   12 ,n

optp g p             (4) 

where optp  is the maximum order, [4]. 

Definition 4 Suppose that 1,n nx x  and 1nx    are three successive iterations closer to the root    .  Then the 

computational order of convergence may be approximated by the following; 

1

1

1 1

1 2

ln
ˆ

ln

n n

n n

p
 

 







 

 ,          (5) 

   

   

1

1

2 1

1 2

ln
ˆ

ln

n n

n n

f x f x
p

f x f x







 

 ,         (6) 

  

  

1

1

3 1

1 2

ln
ˆ

ln

n n

n n

x x
p

x x







 

 


 
,         (7) 

  

  

1

1

4 1

1 2

ln
ˆ

ln

n n

n n

x x
p

x x

 

 







 

 


 
,        (8) 

where    
1
,i i if x f x


   1 .i i ix x x    The formulas (5)-(8) are given in [5,7-9]. Let k be the total number of 

function evaluations per iteration.  

3 NEW ONE-POINT METHOD AND ANALYSIS OF CONVERGENCE 

In this section we define a new class of one-point  2k  -order method for finding simple roots of a quadratic equation.  

In fact, the new Newton-type iterative method is an improvement of the classical Newton method.  We shall demonstrate 
that the new two-point method can be constructed to produce any desired order of convergence and is equivalent to the 
Thukral [8], the Ahmad [1] and Babajee [2] two-point methods. The order of convergence the new iterative method is 
determined by the k, number of terms in the generating series, which improves the classical Newton method.  First, we will 
state the essentials of the Thukral, Ahmad and Babajee methods, hence we will illustrate the equivalency of the new one-
point method. 

The Thukral two-point Method [8] 

The two-point  2k  -order Newton-type method is expressed by 

 n n ny x u x              (9) 

   1 ,n n nx x u x G z k              (10) 

where 

 
1

, 1
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z
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The first eight constants coefficients of the terms of (11) are 



I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 2  N u m b e r  0 9  

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

6580 | P a g e                                    
S e p t e m b e r  2 0 1 6                                            w w w . c i r w o r l d . c o m  

1 2 3 4 5 6 7 81, 2, 5, 14, 42, 132, 429, 1430a a a a a a a a            (13) 

where 
0x  is the initial guess and provided that denominators of (12) are not equal to zero. Now, we shall verify the 

convergence property of the new two-point  2k  -order iterative method (10). 

The Ahmad and Babajee two-point Method [1,2] 

Ahmad and Babajee presented a two-point  2k  -order method which is expressed by 

 
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            (14) 

   1 ,n nx x u x H k              (15) 
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The first six constants coefficients of the terms of (16) are 

0 1 2 3 4 5

3 9 135 567 5103 24057
, , , , , ,

4 8 64 128 512 1024
a a a a a a          (17) 

and the coefficients ia  is calculated by  

1
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
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  

 
            (18) 

where kC   is the asymptotic error constant, obtained by the previous order of the iterative method [2].  

The new one-point Method 

The one-point  2k  -order Newton-type method is expressed by 

      1 , ;n n n n nx x u x J u x v x k             (19) 

where 
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The first eight constants coefficients of the terms of (20) are 

1 2 3 4 5 6 7 81, 2, 5, 14, 42, 132, 429, 1430a a a a a a a a            (22) 

where 
0x  is the initial guess and provided that denominators of (21) are not equal to zero. Now, we shall verify the 

convergence property of the new one-point  2k  -order iterative method (19). 

Theorem 1 : Let D  be a simple zero of a sufficiently smooth function :f D
 
for an open interval 

D.  If the initial guess 0x  is sufficiently close to ,  then the convergence order of the new one-point iterative method 

defined by (19) is  2k  . 
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Proof     

Let    be a simple root of  f x , i.e.   0f    and   0f   , and the error is expressed as  

e x   .            

The Taylor series expansion and taking into account   0f   , we have 

  2

2( )n n nf x f e c e  .         (23) 

  2( ) 1 2n nf x f c e   .         (24) 

  2( ) 2nf x f c  .          (25) 
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 .           (26) 

Dividing (23) by (24), we have 
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Substituting (27) in (9), we obtain 

 

 
1 ,

n

n n

n

f x
e e

f x
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
          (29) 

  2

21 .nAEC c e           (30) 

It is well known that (30) is the asymptotic error constant for the classical Newton method. Therefore, we take the 

coefficient of the error equation (30) as our first coefficient of the generating series given in (20) as 1 1.a    Furthermore, 

we obtain a family of higher iterative method by increasing the terms of summation series of (20).  Hence, we show the 

asymptotic error constant  1AEC k 

 

for the  2k  -order Newton-type method.  The next seven members of (19) 

with their error equation are 

1. 1k  : One-point third-order iterative method is given by 

     1 1n n n n nx x u x u x v x                (31) 

and the error equation

 

 

  2 3

22 2 .nAEC c e            (32) 

2. 2k  : One-point fourth-order iterative method is given by 

          
2

1 1 2n n n n n n nx x u x u x v x u x v x
    
 

        (33) 

and the error equation

 

 

  3 4

23 5 .nAEC c e            (34) 

3. 3k  : One-point fifth-order iterative method is given by 
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               
2 3

1 1 2 5n n n n n n n n nx x u x u x v x u x v x u x v x
     
 

      (35) 

and the error equation

 

 

  4 5

24 14 .nAEC c e            (36) 

4. 4k  : One-point sixth-order iterative method is given by 

                    
2 3 4

1 1 2 5 14n n n n n n n n n n nx x u x u x v x u x v x u x v x u x v x
      
 

 (37) 

and the error equation

 

 

  5 6

25 42 .nAEC c e            (38) 

5. 5k  : One-point seventh-order iterative method is given by 

               
2 3

1 1 2 5n n n n n n n n nx x u x u x v x u x v x u x v x
    


 

         
4 5

14 42n n n nu x v x u x v x  


      (39) 

and the error equation

 

 

  6 7

26 132 .nAEC c e            (40) 

6. 6k  : One-point eighth-order iterative method is given by 

               
2 3

1 1 2 5n n n n n n n n nx x u x u x v x u x v x u x v x
    


 

              
4 5 6

14 42 132n n n n n nu x v x u x v x u x v x   


    (41) 

and the error equation

 

 

  7 8

27 429 .nAEC c e            (42) 

It is well established that the maximum order of convergence of optimal methods with three functions evaluations is 4. As 
illustrated above we have obtained order of convergence greater than 4, hence the Kung and Traub conjecture fails for 
this particular case.  To produce the next one-point higher order of convergence with only three function evaluations, we 

use the previous coefficient of the error equation

 

as our coefficient ka  of the next term of the generating series, thus we 

can calculate the next higher order of convergence method.  

4 NUMERICAL EXAMPLES 

The present one-point  2k  -order method given by (11) is employed to solve quadratic equations with a simple root. 

To demonstrate the performance of the new one-point  2k  -order method, three particular quadratic equations are 

used.  The difference between the simple root 
 
and the approximation nx  for test functions with initial guess 0x are 

displayed in tables. In fact, nx  is calculated by using the same total number of function evaluations for all methods.  

Furthermore, the computational order of convergence approximations (COC) are displayed in tables. The numerical 
computations listed in the tables were performed on an algebraic system called Maple. In fact, the errors displayed are of 
absolute value. 

4.1 Numerical example 1 

In our first example we will demonstrate the convergence of the new one-point Newton-type method for the following 
quadratic equation  

   2 5 1f x x x   ,         (43) 
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and the exact value of the simple root of (43) is 0.208712153...    In Table 1 the errors obtained by the Newton-type 

method described, are based on number of terms used in (20) and taking the initial value 
1

0 2x   . 

 

Table 1 Errors occurring in the estimates of the root of (43) 

Method (19) 
1x   2x   3x   4x    4f x  

0k 
 

1k 
 

2k 
 

3k 
 

4k 
 

5k 
 

6k 
 

0.212e-1 

0.320e-2 

0.613e-3 

0.132e-3 

0.307e-4 

0.749e-5 

0.189e-5 

0.973e-4 

0.314e-8 

0.732e-14 

0.129e-20 

0.174e-28 

0.188e-37 

0.165e-47 

0.207e-8 

0.294e-26 

0.149e-57 

0.112e-105 

0.584e-174 

0.119e-265 

0.564e-384 

0.931e-18 

0.241e-80 

0.257e-232 

0.548e-531 

0.821e-1047 

0.482e-1863 

0.104e-3075 

0.427e-17 

0.111e-79 

0.118e-231 

0.251e-530 

0.3761046 

0.221e-1862 

0.475e-3075 

 

Table 2 Computational order of convergence ˆ
ip  

Method (19) 
1p̂  2p̂  3p̂  4p̂  optp

 

0k 
 

1k 
 

2k 
 

3k 
 

4k 
 

5k 
 

6k 
 

2.0000 

3.0000 

4.0000 

5.0000 

6.0000 

7.0000 

8.0000 

2.0000 

3.0002 

4.0000 

5.0000 

6.0000 

7.0000 

8.0000 

0.8505 

2.9474 

3.8553 

4.9679 

5.9458 

6.9761 

7.9678 

2.0000 

3.0001 

4.0000 

5.0000 

6.0000 

7.0000 

8.0000 

2 

4 

4 

4 

4 

4 

4 

 

4.2 Numerical example 2 

In our second example we will demonstrate the convergence of new Newton-type iterative method for a different type of 
quadratic equation 

   2 8 2f x x x   ,         (44) 

and the exact value of the simple root of (44) is 7.74165739....     In Table 1 the errors obtained by the Newton-

type method described, are based on number of terms used in (20) and taking the initial value 
0 8x   . 
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Table 3 Errors occurring in the estimates of the root of (44) 

Method (19) 
1x   2x   3x   4x    4f x  

0k 
 

1k 
 

2k 
 

3k 
 

4k 
 

5k 
 

6k 
 

0.834e-2 

0.530e-3 

0.418e-4 

0.369e-5 

0.347e-6 

0.342e-7 

0.349e-8 

0.928e-5 

0.532e-11 

0.365e-19 

0.303e-29 

0.313e-41 

0.413e-55 

0.711e-71 

0.115e-10 

0.537e-35 

0.213e-79 

0.115e-149 

0.169e-251 

0.154e-390 

0.212e-572 

0.177e-22 

0.554e-107 

0.244e-320 

0.885e-752 

0.416e-1513 

0.153e-2738 

0.136e-4584 

0.132e-21 

0.415e-106 

0.182e-319 

0.662e-751 

0.312e-1512 

0.115e-2737 

0.101e-4583 

 

Table 4 Computational order of convergence ˆ
ip  

Method (19) 
1p̂  2p̂  3p̂  4p̂  optp

 

0k 
 

1k 
 

2k 
 

3k 
 

4k 
 

5k 
 

6k 
 

2.0000 

3.0000 

4.0000 

5.0000 

6.0000 

7.0000 

8.0000 

2.0000 

3.0000 

4.0000 

5.0000 

6.0000 

7.0000 

8.0000 

2.0374 

3.0205 

4.0145 

5.0113 

6.0094 

7.0081 

8.0071 

2.0000 

3.0000 

4.0000 

5.0000 

6.0000 

7.0000 

8.0000 

2 

4 

4 

4 

4 

4 

4 

4.3 Numerical example 3 

In this subsection we take another cubic equation.  We will demonstrate the convergence of the new Newton-type iterative 
method for the following quadratic equation 

   2 3 9f x x x   ,         (45) 

and the exact value of the simple root of (45) is 1.85410197....     In Table 1 the errors obtained by the Newton-

type method described, are based on number of terms used in (20) and taking the initial value 
0 2x   . 

 

Table 5 Errors occurring in the estimates of the root of (45) 

Method (19) 
1x   2x   3x   4x    4f x  

0k 
 

1k 
 

2k 
 

3k 
 

4k 
 

5k 
 

6k 
 

0.304e-2 

0.125e-3 

0.644e-5 

0.370e-6 

0.227e-7 

0.146e-8 

0.970e-10 

0.138e-5 

0.877e-13 

0.285e-22 

0.477e-34 

0.423e-48 

0.204e-64 

0.549e-83 

0.283e-12 

0.300e-40 

0.109e-91 

0.171e-173 

0.177e-292 

0.214e-455 

0.576e-669 

0.119e-25 

0.120e-122 

0.237e-369 

0.101e-870 

0.958e-1759 

0.302e-3192 

0.847e-5357 

0.799e-25 

0.805e-122 

0.159e-368 

0.674e-870 

0.643e-1758 

0.203e-3191 

0.568e-5356 
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Table 6 Computational order of convergence ˆ
ip  

Method (19) 
1p̂  2p̂  3p̂  4p̂  

optp
 

0k 
 

1k 
 

2k 
 

3k 
 

4k 
 

5k 
 

6k 
 

2.0000 

3.0000 

4.0000 

5.0000 

6.0000 

7.0000 

8.0000 

2.0000 

3.0000 

4.0000 

5.0000 

6.0000 

7.0000 

8.0000 

2.0214 

3.0114 

4.0080 

5.0062 

6.0051 

7.0044 

8.0039 

2.0000 

3.0000 

4.0000 

5.0000 

6.0000 

7.0000 

8.0000 

2 

4 

4 

4 

4 

4 

4 

 

5 REMARKS AND CONCLUSION 

In this study, a new one-point  2k  -order Newton-type method has been presented.  The prime motive for presenting 

the new class of iterative method was to improve the classical Newton method. The new one-point iterative method 

requires three function evaluations and has the order of convergence  2k  .  The efficiency index of the new method is 

determined by definition 2. Hence, the efficiency index of the new iterative method given by (19) is 
3 2k   and the 

efficiency index of the classical Newton method is 
2 2.   The main difference between the new method and the 

established method [1,2,8] is that the new method is based on one-point iterative and formation of the generating series is 
completely different.  We have found that the error equations of the new method and the Thukral, Ahmad and Babajee 
methods are identical.  Furthermore, the coefficients of the generating series in the new method are obtained naturally, 
whereas the coefficients of the generating series in the Ahmad and Babajee method requires much more calculations.  
Therefore, it is evident that the coefficient in the generating series of the new method is much simpler than the Thukral, 
Ahmad and Babajee’ method. The essential advantages of the new method are: very high computational efficiency; the 
new method is not limited to the Kung and Traub conjecture; better efficiency index than the classical Newton method; 
simple one-step iteration method.  Finally, we conjecture that the proposed method may extended to higher order 
polynomials. 
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