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ABSTRACT 

 

This paper presents the mathematical and computational formulations of the stochastic Vortex Blobs Method (VBM). It is 

show that how the method can be used to cover axisymmetric flows of incompressible viscous fluid. Also, the initial-
boundary problem is solved by using the Lagrangian vortex method. This method seems to be an extension of the well 
known two dimensional vortex blob method. When applying and extending this method two steps are required. First, we 
have to design an axisymmetric vorticity carrier by using the standard functions as complete elliptic integrals and Legendre 
polynomials. Second, it is necessary to formulate the appropriate Neumann problem and boundary integral equation to 
find the potential velocity fields. Both steps are used to describe and compute the total velocity field and formulate the Ito 
stochastic equations which describing the motion of vorticity carriers. 
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INTRODUCTION 

The study of the flow field in case of an axisymmetric incompressible viscous fluid by using stochastic approach will be 
presented. It seems to be the same idea and an extension of the Hedar and Styczek [6] paper concerning the random 
vortex method approach to axisymmetric jet in a large tank. In that paper the vortex blobs method has been applied to 
description of an axisymmetric viscous flow. Also, they presented the stochastic interpretation of the vorticity equation 
which leads to the Ito differential equations determining the movement of large numbers of the blobs. The main idea of 
that is to approximate the vorticity by a large set of small vortex creatures called vortex blobs being transported in velocity 
field and performing random walks according to Wiener process. The velocity field evolves in time due to change of 
vorticity distribution. In order to satisfy the boundary conditions, new vortex blobs are continuously created on the 
boundary. Of course, the velocity field contains also a proper potential component. This component allows formulating 
boundary integral equation for the vorticity created at the moment. Thus, the Neumann boundary problem should be 
solved. Suitable considerations can be found in the papers [7, 10]. This is showed how to reduce the problem to the 
boundary integral equation with the vorticity distribution on the boundary as an unknown function. 

Generally, the vortex method is a type of numerical methods for approximating solution of Helmholtz’s equation. This 
method can be regarded as a discretization of this equation in a special form. The vortex method brings some advantages 
as the result of elimination of pressure and is believed to belong to a new class of powerful numerical techniques for 
simulation of fluid motion. Chorin [3] was first to propose the vortex blobs approach. Since that time the formulation of 

random vortex method became a standard. Styczek [10] proposed a new approach to the boundary conditions. The 
results can be found in the papers published latter [11, 12, 13, 14]. This method is useful especially when the vorticity is 

created in small regions of the domain. 

Theoretically the vortex motion forms the continuous family of Ito's stochastic processes governed by Ito’s stochastic 

differential equations. Of course, this continues family must be cut off to finite one. In an axisymmetric viscous flow, this 

method requires to study the mathematical and computational formulations of the problem. This enables us to study the 
construction of axisymmetric vorticity carrier and find the solution of potential velocity field. Finally, the formulations of Ito 
stochastic differential equations describing the motion of vorticity carriers are considered. The complete details and final 
results of this problem will be formulated and discuss in next paper. 

2. FORMULATION OF THE PROBLEM 

For an incompressible viscous fluid, any flow must be satisfying the governing equations. They are “conservation equation 
of mass” and “momentum equation”, which they written as 
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where ,, pV  stand for velocity vector, pressure and density  ( 1 ). The kinematic viscosity coefficient is denoted 

by   and F  represents the external body force field. 

In the case of an axisymmetric incompressible viscous fluid, we assume that the external body force is negligible )0( F  

and consider the task of determining the velocity field. We have velocity vector with radial and axial components 

 ),,(,),,( zrtVzrtVV zr . In this case the above system of equations can be written as 
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The equations (2.1) are known continuity and Navier - Stokes equations, which they are valid for  0,0,0  zrt . 

The initial-boundary data can be formulated as  

 There is no motion at the initial instant )0( t  and by setting the constraints )0( z  at the boundary we can 

write the set of equations of initial-boundary data in the form                                               
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 We can also impose the symmetry condition for the velocity 0),0,( ztVr
 and the requirement for tangential 

stress at 0r  is 
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It may be noticed that there is no boundary condition imposed on pressure field. It can be evaluated when the gradient of 
pressure field is known in the entire flow domain. It means that velocity field and pressure field can be determined 

independently. Having calculated velocity and vorticity fields it is possible to find  pgrad  and then the function p  itself. 

According to the theory of vortex method we introduce the vorticity field  Vrot


 . For axisymmetric flow 
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, there 

is only one non-zero component of vorticity  . This component is directed in   direction which it is has the value   
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It is well known that the vorticity satisfies the Helmholtz equation 
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After substitution 
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 in the equation (2.4), we obtain the well known Planck-Fokker-Kolmogorow equation 

[5] 
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Function   can be represented in the integral form 

 0000000 ),(),,0,,(),,( dzdyzyzyzytzyt  p                                                                              (2.6) 

where ),( 000 zy  describes initial vorticity field and p  is a transition probability density function of the family of certain 

stochastic process. 

The diffusion process determines the infinitesimal element r


  

)(),(),( tWrttrtVr 


A                                                                                                 (2.7) 

in which the vector  

r  consists of components ),( zy ,  A  is the symmetric matrix 2: ii

AA  and 0ik
A  for  i k , 

the vector W


  is the increase of Wiener process [10]. These processes are described by Ito equations 
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with the initial conditions  0000
, zzyy

tt



. 

The family of process can be interpreted as the motion in )( zy   plane. At the initial instant of time the process starts at 

the point ),( 00 zy  and reaches the point ),( zy  during the time t . Next, we write 

    ydxdyxyxtyyxxAyxt
A

 0000 ,,0,,,,,
00

pP
 

The transition probability density function p  of the family of certain stochastic process satisfies Planck-Fokker-

Kolmogorow equation [5] 
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We can formulate equation (2.6) as a result of ordinary convolution of p  and the initial data. 

The whole plane into elementary subregions 
m  can be divided and we can approximate the transition probability density 

function p  in the way 
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where 
mp  denotes ),,0,,(),,( 00 mmm zyzytzyt pp  , 

mmm zy ),( 00
 and 

m  is the characteristic function of  
m . Thus 

the vorticity written as 

                                                                                       (2.10) 

Associating the movement of a point  omom zy ,  with the movement of a small region 
m  we get motion of elementary 

vorticity carrier. This carrier transports a small charge of vorticity 






m

dzdyzym 00000 ),(
 

The charge of vorticity 
m  and ),,( zytmp  define vorticity 
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This interpretation brings us the vortex blobs understood as small, moving carriers of the vorticity. 

We consider the outline of the area of motion filled with vorticity carriers. They move and are continuously created on the 
boundary. Vorticity carriers created previously are carrying with the known charge of vorticity. The position of each carrier 
is known and results from the solution of the set equations (2.8) which becomes 
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The initial conditions complete the equation (2.12). They express the position of the carriers at the moment 
mot  when they 

were created ),( 00
0

mtmmtm zzyy
omm

 . This point ),( 00 mm zy  defines the position where carrier is created. There are also 

carriers created at the given moment. These are indicated as “n” (new) class and the others carriers are called “o” (old) 
were created before. In order to determine velocity field we have to take into account all carriers being in the domain. 
Furthermore, velocity field must contain a potential term. Let us write the velocity field in the following form 

Asonp VVVVVV


                                                                                                               (2.13) 

where 
pV


 and 
AV


 are potential velocity fields, 
nV


 velocity field induced by the carriers marked with “n” (new blobs), 
oV


 

velocity field induced by the carriers marked with “o” (old blobs) and 
sV


 is the self induced velocity. 

We define the velocity fields mentioned above. First, we define the potential term: 
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Equations (2.14) defining Neumann problem where the function )(rf  has been defined with the boundary condition (2.2). 

The solution of this problem will be discussed in section four. 

The velocity field 
oV


  has the form 
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The velocity field ),,,,( mm zrzrtV


 is induced by a carrier with the unit charge of vorticity. This carrier is located at the 

surroundings of the point with coordinates  mm zr , . The charge 
m  is constant and known. The velocity field 

nV


 has the 

form 
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The charge 
k  is unknown and  denotes the velocity induced by the carrier boring at the moment which is 

located at known point. Here velocity field V


 does not depend on time, because time increment is zero when appropriate 

carrier is created at the moment.  

The last term 
AV


  of equation (2.13) results from equations (2.14) which define the additional potential in the form 

)(,,0 0 rV
z

V zAz
A

AAA 


 



2                                                                              (2.15) 

It is the velocity field )(rV zA
 which causes that normal component of the total velocity field to be equal to zero )0.( nV


 

on the line )0( z . 

If we consider that self induced velocity is not found and by using the boundary conditions (2.2), the terms of velocity field 
components can be expressed in the form 

0)0,()0,,()0,(
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Function )(rf  was eliminated due to the features of the velocity field 
pV


. Both the components 
roV  and 

zoV  are known. 

Also the component 
rpV  is completely defined by means of the potential 

p  which is a solution of the problem (2.14). The 

components 
zAV  and 

rAV  are determined as the derivatives of the potential 
A  which is unknown. Taking into account 

that the components 
roV  and 

zoV  are known apart from 
A  we have to calculate the vorticity distribution induced by the 

“n” class of vortices. Of course, the components 
rnV  and 

znV  are unknown. But they are defined by boundary value of 

vorticity.  There are two equations with two unknown functions. One of them is the boundary value of vorticity and the 
second is the component 

zAV . It is possible to solve this problem. If these have been done, then the total velocity may be 

found. Then, all blobs move according to Ito’s equations (2.8). 

The idea of the vortex method consists in the calculation of above mentioned quantities. After determination of these 
variables we include the new class “n” of carriers into the old class “o”. Having calculated the velocity field we move the 
carriers according to Ito equations (2.8). In each instant of time there are new “n” classes of carriers to be generated. In 
the first instant of time there is no movement of the fluid and of course vortices of class “o” do not exist. This procedure is 
repeated again and again and it enables to evaluate time history of vorticity and velocity fields. As it seems to us, the 
present study will be complete to give the details, discussions and final results of this procedure in next paper. 

 

3. AXISYMMETRIC VORTICTY CARRIER 

For an axisymmetric incompressible viscous fluid flows, there is a relationship which defines the vorticity field   given in 

equation (2.3). The velocity field must be satisfying the continuity equation 
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This formula enables to find velocity field induced by vorticity. To obtain one equation with one unknown we introduce new 
unknown Stokes stream function  . We have 
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It is easy to notice that velocity components (3.2) reduce continuity equation to identity. Definition of vorticity leads to 
elliptic Poisson equation 




r
zrrr















2

2

2

2 1                                                                                                             (3.3) 

Since the hypothesis of an axisymmetric flow is used [9], the vorticity field is discretized using vortex elements in the form 
of vortex blobs. For an infinite domain, there is an analytical expression for the solution of equation (3.3) when the vorticity 
field is discretized with vortex blobs. The stream function induced by a vortex ring with circulation   and radius   on a 

point located at an axial distance z  and a radial distance r  from the center of the ring is given by the expression 
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where the definition of circulation is    dd  and by setting 
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Equation (3.4) can be written in the form 
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While )(kK  and )(kE  are the complete elliptic integrals from the first and second kinds belong to standard function are 

given by the following relations respectively 
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where 
np2
 is Legendre polynomials.  

The components of velocity induced by the vortex blob are obtained by using the equations {(3.2), (3.5)} as the following  
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The system of equations {(3.5)-(3.7)} can be calculated numerically with high level accuracy to obtain the stream function 
and induced velocity field for one vortex blob. 

The linearity of all equations makes it possible to invoke the principal of superposition to account for the presence of 

multiple point vortices in the flow. Tagging each point vortex by subscript i  and j , we can immediately repeat the 

expression of the stream function in equation (3.5) and the components of velocity field in equations (3.7) on the forms 
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                                                            (3.9)        

The system of equations {(3.8)-(3.9)} can be calculated numerically with high level accuracy to obtain the stream function 
and induced velocity field for multi-vortices.  

4. POTENTIAL VELOCITY FIELD 
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Generally, to find the potential velocity field we solve the Laplace equation (2.14) which becomes in an axisymmetric case 
as the following 
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The simpler way to obtain closed formula expressing potential field   is the Hankel transform method [1]. Thus, 
multiplying Laplace’s equation by   r J sr

0
( )  and integrating with respect to r  over the interval  ,0  we get 
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Here ̂  denotes Hankel transform and further 
kJ   stands for ordinary Bessel function. Then the integral solution of 

equation (4.2) is 
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Inverse transform is calculated as follows 
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The particular solution of the equation (4.2) which vanishes for  z  , 0s  has the form  zseCzs  ),(ˆ  and 

contains the transform of the function )(rf  as 
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For particular solution  f r( ) can be defined by the equation  
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Having determined boundary condition we have 
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Differentiating equation (4.7) enables to write 
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These components define the potential velocity field. 

We should notice that for )0( z  the integrals are convergent. This fact results from the limitation of the absolute values 

of Bessel function and exponentially vanishing damping factor  zse . After calculating the transform )(ˆ sf  we are able to 

solve the Neumann problem for arbitrary boundary condition 
)(0 rf

z
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 . For plane )0( z  the function   has the form 
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The convergence of this integral may be slow. Then it is necessary to apply accurate calculus. 

5. THE COMPUTATION METHOD 
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To compute the complete velocity field (2.13), we use the boundary integral equation and by returning to the Neumann 
problem (4.1), where the function )(rf  is specified completely by the potential   and 
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 . For regular 

boundary such as the plane )0( z  there exist the following formulas 
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Neumann problem (4.1) is linear; therefore a linear operator L  exists and satisfies equation 
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Operator L  has an integral form and is singular [10], thus 
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By using Schauder theorem [2] we express the equation (5.3) as the increment of potential  
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In order to transform equations (2.16) we apply the relationships given here. By expressing 
00 
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  in the 

second equation and applying the operator L  we can obtain 
0zrAV . Then substituting 

rAV  in the first equation one gets 

the following integral equation 

    0)0,,()0,()0,,()0,()0,(  rtVLrVLrtVrVrV zoznrornrp                                                   (5.5) 

Thus, there is only one unknown function in equation (5.5). It is boundary density of vorticity which determines boundary 
values of the field 

nV


. The above equation (5.5) written as 
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Right hand side of equation (5.6) is known and left hand side of it contains the components 
rnV  and 

znV  which will be 

calculated in next section. 

The solution of equation (5.6) enables to calculate the vorticity charges of new created vortices and at the same time the 
velocity satisfies boundary conditions. This solution is not easy in numerical calculation due to singular character of the 

operator L  [10], however there is a possibility to regularize equation (5.6). Namely, by integrating with respect to r  over 

the interval ),( 1ii rr  and using the properties of operator L , we obtain 
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The symbol  1i

i  is used to indicate potential increment over the section ),( 1ii rr  of the plane )0( z . We introduce 

the components 
rnV  and 

znV  according to the formula (2.16). 

Moreover, we denote 
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and evaluate the potential 
kn  from the potential term 
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Then we are able to write 
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Equation (5.10) it is represents the set of linear algebraic equations which enables to calculate the charge of vorticity of 
new vorticity carriers.  

Thus, all components of the total velocity field ),,( zrtV


 are known except for the circulation of velocity field for new blobs 

nV


. The circulations of new blobs which are created on the boundary are  k ,........,, 21
. The circulations obtained from 

the boundary integral equation for the boundary vorticity distribution by using the set of equations (5.10). The components 

of velocity field 
nV


 can be defined as 
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Both functions 
kT  and 

kN  are described by geometrical properties of blobs. These functions take the same formulas of 

rOV  and 
zOV  at the boundary. 

To determine the circulations 
k , the system of equations (5.10) can be rewritten as: 
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                                                                                                                               (5.12) 

The unknown vector 
k   in equation (5.12) describes the scale of vorticity inside the boundary blobs, 

kiB  define the 

elements of matrix and 
iG  define the free terms [4]. Thus, the values of scale 

k  written as 
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                                                                                                                       (5.13) 

This system is introduced due to the vorticity creation on the boundary. By solving this system we obtain the circulations 
for new blobs. 

To solve the system (5.13) we assume that the geometry of the flow does not change in time, so that the matrix 
kiB  can 

be calculated and factorized in advance. It means that the matrix can be calculated only once and the boundary vortex 
array must be defined at the time-stepping calculations. Then the velocity induced by the vorticity field is known. So, it is 
possible to determine the velocity induced by carriers of the class “n” and class “o”. There is no difference in the way of 
calculating this induction. 

We simply sum up the contributions from the complete set of carriers 
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                                                                                                (5.14) 

Finally, we find 
A  , and as a result the additional velocity field 

AV


 by evaluating the boundary value of )0,,( rtV zA
. To 

obtain this field we use equation (5.5) and solving Neumann problem (2.15). Because the velocity field 
pV


 is already 

known it is enough to add the remaining components and obtain the complete velocity field ),,( zrtV


 which is 

responsible for the motion of carriers. 

 6. RESULTS OF THE COMPUTATION 

The tangent and normal components ),,( zrtVr
 and ),,( zrtVz

 of the complete velocity field are obtained from equation 

(2.13). By using equation (5.14) the components of this field can be rewritten as 
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Then all terms of total velocity field are given. 
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Finally, after calculating the total velocity field, we determine the positions of the blobs which they are borne at each time 
steps and they are moves with flow doing random walks. These blobs are consists in numerical integration of Ito equations 
(2.8). The Ito's equations can be found as the numerical process by using the Euler algorithm [8]. Thus, the system of Ito’s 
equations can be written numerically as the following 
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                                                               (6.2) 

where  21 , NN  denote the random numbers with Gaussian distribution )1,0(N . 

The system of equations (6.2) reduces the Wiener process to the standard form. Therefore, the solution of the vorticity 
transport equation is performed by imposing stochastic displacements of the vortex blobs in two orthogonal directions. 
Each displacement is generated randomly from two sets of independent Gaussian random numbers, with each set having 

a zero mean and a standard deviation  t2 . Performing random walks at each time step and adding the 

displacements to obtain the total displacement at time t  is possible. The centroids of the blobs are located over centers of 

corresponding segments of r-axis. The blobs change locations due to the numerical system of Ito’s equations (6.2). Some 
of blobs are canceled. The test for cancellation is  0,0  ii zr , where  ii zr ,  denote the location of blob centroid. 

Thus, the numerical calculations and the results can be computed. 

As it was mentioned before, the initial boundary problem is given by the set of equations {(2.1)-(2.4)}, where the first 
equation of the system (2.1) is known the continuity equation in an axisymmetric flow, equation (2.3) define the vorticity 

 , equation (2.4) is the vorticity transport equation and equation (2.2) defines the initial-boundary data. To solve this 

system we will repeat the initial-boundary data in the form 
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                                                  (6.3)                                           

By using the set of equations (6.3) of initial-boundary data in the computation of calculations for the equations which give 
the components of the velocity field for old blobs and the components of potential velocity field, we obtained the following 
results 

From figure (1) we observed that the structure of induced velocity field for one vortex blob at arbitrary location is strong 
around the center of the blob and is weak when it is far from blob. Also, from figure (2) we observed that the same 
phenomena for the structure of induced velocity field for multi-vortices at different locations which it is strong near the 
centuries of these blobs and is weak when it far from the blobs. From figure (3) we have the behavior of axial velocity 
component for potential velocity field at arbitrary points of z-axis. Also, from figure (4) we noticed that the distribution of 
radial velocity component for potential velocity field like Gaussian distributions.  
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Fig 1: 
Induced 

velocity field 
for one 

vortex blob 
at different 
locations 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig 2: 
Induced 

velocity field 
for multi-

vortices at 
different 

locations 
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Fig 3: Axial component of potential velocity field at different points 

 

Fig 4: Radial component of potential velocity field at different points 
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