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ABSTRACT 

Iron in oxidation states (+2 and +3) is very essential element for human body, and its concentration significantly 
altered in cardio vascular disease. So the aim of the present work is to study the interaction of Fe(II) and Fe(III) with very 
commonly used antihypertensive drug hydralazine through potentiometric and spectrophotometric methods. The 
objectives of the work is to study the stoichiometry, behavior of the complexes in aqueous solution, effect of pH and 
behavior of this drugs towards both oxidation states of Iron. Both methods show that hydralazine forms a stable complex 
with both oxidation states of the metal, but the nature of complex changes with change in pH, ligand concentration and 
with time span. Both methods confirms 1:2 stoichiometry for Fe(II)-Hydralazine while 1:3 for Fe(III)-Hydralazine. Stabilities 
of both complexes were also calculated. For Fe(II)-Hydralazine complex values of log β1 and log β2 were found to be 4.99 
and  7.58 respectively. For Fe(III)-Hydralazine complex log β1, log β2 and log β3 values were found to be 2.74, 7.39 and 
11.32 respectively. At high ligand concentration hydralazine also show reducing properties. The study suggests a strong 
interaction of hydralazine with iron; however the nature of interaction is different with both oxidation states of iron. 

Keywords: Ferrous, ferric, hydralazine, complex, potentiometric study, spectrophotometric Study  

INTRODUCTION 

Cardiovascular diseases are thought to be a major reason of mortality. Iron is the first and the most important 
trace element in cellular metabolism (Bahi et al., 2017). There is a strong relation between cardiovascular diseases and 
concentration of iron in the body. It has been reported that high iron levels may lead to an increased risk of cardiovascular 
disease (Eftekhari et al., 2013). An important and early event in the development of atherosclerosis is the initiation of lipid 
peroxidation by redox active iron (Stephen et al., 2001). Deposition of vascular iron is found to be closely associated with 
the atherosclerosis progression and LDL oxidation. Platelet and endothelial cell activation is a consequence of redox 
activity of iron. A potential mechanism for iron-related cardiovascular

 
disease risk may be endothelial dysfunction.

 
Serum 

ferritin is one of the strongest risk predictors of overall progression of atherosclerosis, probably due to increased oxidation 
of LDL cholesterol. Changes in iron stores during the follow-up period modified atherosclerosis risk; in that a lowering was 
beneficial and further iron accumulation exerted unfavorable effects. The increased risk of death from cardiovascular 
disease is a consequence of high LDL cholesterol and serum ferritin levels (Bachschmid et al., 2013). 

Hydralazine is a direct acting vasodilator, with brand names of Apo-Hydral, Apresoline, Novo-Hylazin, and Apo-
Hydralazine etc (Cohn et al., 2011). Its Chemical name is 1 -hydrazinophthalazine monohydrochloride (Katherine, 2004). 
It is a white to off-white, odorless, crystalline powder. It is soluble in water, slightly soluble in alcohol, and very slightly 

soluble in ether. It melts at about 275 
o

C, with decomposition, and has a molecular weight of 196.84. It has pKa value 7.3 
(Thomas and David, 2012). Hydralazine has the following structure.   

N

N

NH NH2

.HCl

 

Number of side effects has been observed in the use of some antihypertensive drugs. Many of these symptoms 
are typical of trace elements deficiencies, and it seems probable that these drugs complex metal ions in vivo. So the aim 
of this study is to confirm these kinds of interactions of one selected antihypertensive drug Hydralazine with two common 
oxidation states of iron.  The objective of the study is to estimate the composition and structure of the complexes formed, 
and to try and correlate, at least partially, the biological action with the complexation processes that alter the homeostasis 
of metals such as Iron. Hydralazine may have an effective interaction with iron, so it is likely to be explained through the 
stability of the complexes and to analyze if this interaction may restrict the activity of this drug or not. As a result deficiency 
of iron may appear in living body. This interaction depends upon the nature of the donor atom present in the drug 
structure. 
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MATERIALS AND METHODS 

All the chemicals used were of analytical grade (from Merck and Sigma), and employed without further 
purification. CO2 free distilled deionized water was used for all experiments. Iron solution was standardized by 
spectrophotometric method using 1, 10-phenanthroline as coloring reagent (ε = 1.011x10

4
) at λ = 510nm (Murthy et al., 

2002 and Perveen and Naqui, 2004). The acid concentration was determined by titrating against standard NaOH (Jaffery, 
1989). Orion pH-meter, model SA-720, having a resolution of ± 0.001 pH unit, was used for all pH measurements. 
Shimadzu spectrophotometer, model UV-160A, was used to record spectra in the ultraviolet and visible region. Quartz cell 
with a 1-cm path length was used. Potentiometric titration was carried out in a laboratory made double walled glass cell. 
The temperature was controlled by circulating water, through a thermostat. The capacity of this cell was 100mL. The 
rubber stopper of the cell contains four holes, one for micropipette, one for purging inert gas (Nitrogen 99.999% purity), 
one for oxygen removal and one for the glass electrode. The solution was completely deareated by passing N2 gas for 15 
minutes in a sealed flask and was protected with atmosphere. During experiment regular stirring was maintained by 
means of magnetic stirrer. The pH was measured with a combination glass electrode attached to pH meter having a 

resolution of  0.001 pH units. In each titration, the ligand solution was added first, and then the metal ion solution was 
added second, followed by the addition of enough water to make desirable volume. This sequence of ligand addition 
followed by metal addition ensured minimum metal ion hydrolysis at the start of the titration. Before each titration, the 
analyte solution mixture was allowed to stand for 20-30 minutes for complete equilibration. 

RESULTS  

To study the protonation of the ligand and complexation properties potentiometric titration was used. Initially 
titration was performed with hydralazine hydrochloride and the pKa of ligand was found to be 7.50 (Figure 1). Same 
titrations were performed with Fe(II) and Fe(III)-Hydralazine complexes (Figure 1). Potentiometric titrations of Fe(II)-
Hydralazine was  also performed with varying metal to ligand (M:L) ratio (Figure 2).  In equimolar solution of ligand and 
metal, three prominent twists near pH 5.0, 6.0 and 10.0 were observed. While when ligand was doubled in concentration, 
two prominent curves were found one at pH 6.0 and other at pH 9.5. In 3

rd
 and 4

th
 set there again two twists near pH 6.0 

and 9.0 were observed. In 5
th
 and 6

th
 set only one depression at pH 5.5 was found. To compare the interaction of Fe(II) 

and Fe(III) with hydralazine, potentiometric titration was performed with complexes of both of them, keeping all the 
conditions same (please see experimental). These complexes were prepared in 1:1, 1:6 and 1:10 metal to ligand ratio and 
titrated against standard base (Figure 3, 4 and 5). pH of Fe(III)-Hydralazine complex was found to be lower than the pH of 
Fe(II)-Hydralazine complex in all ratio i.e. in 1:1, 1:3 and 1:6. For spectrophotometric study complexes were prepared in 
different M:L ratios ranging from 1:1 to 1:8 in distilled deionized water and scanned from 400 to 700 nm on double beam 
spectrophotometer, (Shimadzu UV-160). The absorbance of complexes was found to be increasing with increasing M:L 
ratio. To study the effect of pH, solution having 1:7 metal to ligand (M:L) ratio in buffers of pH 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 
9.0 and in distilled deionized water was selected. The spectra showed for both complexes that there was slight change in 
the λmax at different pH values but the absorbance was found to be increasing with increasing pH. For the stoichiometry of 
complexes Mole ratio and Jobs plot methods were performed. The stoichiometry of Fe(II)-Hydralazine was studied at pH 
5.0, 8.0 and in distilled deionized water at selected  λmax . Stoichiometry was also studied by Job’s Plot method at pH 5, pH 
8 and in distilled deionized water. Stoichiometry for Fe(III)-Hydralazine was employed at pH 3.0 by Mole ratio and Job’s 
Plot method.  

 

 

Figure 1: Potentiometric titration of Hydralazine, Fe(II)-Hydralazine and Fe(III)-Hydralazine. 
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Figure 2: Potentiometric titration of Fe(II)-Hydralazine in different M:L ratio. 

 

Figure 3: Comparison between Fe(II) and Fe(III)-Hydralazine complexes(1:1). 

 

Figure 4: Comparison between Fe(II) and Fe(III)-Hydralazine complexes (1:6). 
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Figure 5: Comparison between Fe(II) and Fe(III)-Hydralazine complexes (1:10). 

DISCUSSION 

Potentiometric study 

The potentiometric titration curves were used to study the protonation of the ligand and complexation properties. 
As a reference titration was initially performed with hydralazine hydrochloride, which showed one break with pKa 7.50 
(Machado et al., 2002). Same titrations were performed with Fe(II) and Fe(III)-Hydralazine complexes (Figure 1). The pH 
of both (Fe(II)-and Fe(III)-hydralazine complexes ) was found to be less than the ligand which may be due to the release 
of H

+
 ion as a result of complex formation or by acidic pH of metal. In both cases a prominent depression in titration 

curves of the complexes as compared to the ligand is suggestive of stable complex formation between metal and ligand 
(Skoog et al., 2004). Potentiometric titrations were also performed with varying metal to ligand (M:L) ratio. The titration 
curves showed that complex formation between iron (II) and (III) and Hydralazine is possible at wide pH range, but at 
different pH different species might occur. The shapes of the potentiometric titration curves were used to study the steps 
of complexation. The features of the curve showed the average number of ligand bound to metal and gave indications 
about species likely to account for experimental data and a rough estimation of their stabilities (Figure 1).  

For Fe(II)-Hydralazine complex in equimolar solution of ligand and metal, three prominent twists near pH 5.0, 6.0 
and 10.0 were observed. While when ligand was doubled in concentration, two prominent curves were found one at pH 
6.0 and other at pH 9.5, which may be due to the formation of two types of species that is ML and ML2 respectively. In 3

rd
 

and 4
th

 set there again two twists near pH 6.0 and 9.0 were observed. In 5
th

 and 6
th

 set only one depression at pH 5.5 was 
found. This is noticeable in all titration curves that with increasing ratio of ligand the curves were becoming steeper, 
showing an increase in the buffering action (Figure 2). For Fe(III)-Hydralazine complex, the titration curve showed three 
breaks near pH 3.0, 5.0 and 10.0. It showed the formation of three types of species (Figure 1). To compare the interaction 
of Fe(II) and Fe(III) with hydralazine, potentiometric titration was performed with complexes of both of them, keeping all 
the conditions same (please see experimental). These complexes were prepared in 1:1, 1:6 and 1:10 metal to ligand ratio 
and titrated against standard base. pH of Fe(III)-Hydralazine complex was found to be lower than the pH of Fe(II)-
Hydralazine complex. It might be due to the fact that aqueous solution of Fe(III) salt has pH lower than Fe(II) salt (Figure 
3).   

As mentioned earlier that, the Fe(II)-Hydralazine complex showed the formation of three types of species. The ML species 
was forming between the pH ranges 4 to 5, and then the complex stabilizes itself and the second species, most probably 
ML2 present from pH 6 to 8. Third species might be ML3 seemed to be formed in very low concentration, or having very 
low stability. Hence, the dominating species are ML and ML2. Fe(III)-Hydralazine complex also showed the formation of 
three types of species, but the dominating species are ML and ML3 .The first species i.e. ML formed between pH 2 to 4. 
The second species might be ML2 forms between pH 4 to 5. The third species ML3 showing high stability forms between 
pH 5 to 10 (Figure 3). .Fe(II)-Hydralazine favors more tendency to form 1:2 complex. While in Fe(III)-Hydralazine ML3 
stoichiometry shows high stability. This behavior can also be explained in terms of charges of ferrous and ferric. Due to 
more positive charge (+3) of ferric, it has more attraction towards the lone pairs of ligand as compared to ferrous. So, it 
binds three ligand molecules more strongly than Fe(II), which can bind two ligand more strongly due to its less positive 
charge (+2). When potentiometric titration of Fe(II) and Fe(III) hydralazine was compared in high M:L ratios, it was 
observed that as the ligand concentration was increasing, both curves were becoming similar. When M:L ratio was 1:10, 
both curves were overlapped. This observation suggests that with high concentration of ligand, hydralazine may reduce 
iron from +3 to +2 state, and Fe(III)-Hydralazine complex converted to Fe(II)-Hydralazine complex (Figure 4 and 5). 

Spectrophotometric study 
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For spectrophotometric study complexes were prepared in different M:L ratios ranging from 1:1 to 1:8 in distilled 
deionized water and scanned from 400 to 700 nm on double beam spectrophotometer, (Shimadzu UV-160). The 
absorbance of complexes was found to be increasing with increasing M:L ratio. The value of λmax was selected from these 
spectra (Table 1). The value of molar absorptivity constant (ε) was calculated for both complexes, which was found to be 
13,000 LM

1-
cm

1-
 and 1700 LM

1-
cm

1-
 for Fe(II)-Hydralazine and Fe(III)-Hydralazine complexes (non-buffered aqueous 

medium) respectively. To study the effect of pH, solution having 1:7 metal to ligand (M:L) ratio in buffers of pH 3.0, 4.0, 
5.0, 6.0, 7.0, 8.0, 9.0 and in distilled deionized water was selected. The spectra showed for both complexes that there was 
slight change in the λmax at different pH values but the absorbance was found to be increasing with increasing pH. At low 
pH, due to the excess of H

+
 ions the donor nitrogen atoms of the ligand were less accessible than at high pH. In acidic pH 

i.e. at pH 4.0, the complex with 1:7 metal to ligand ratio had absorbance less than 0.2 at its λmax, while at pH 5.0 it was 
more than six times greater and in basic pH it became ten times of that. At pH 9.0 a sharp peak was not obtained (Figure 
6, Table 1).Table 1 shows that at pH 3.0 both complexes Fe(II)-Hydralazine and Fe(III)-Hydralazine,  behave separately, 
but at pH 5.0 and above, both complexes have almost same λmax values (Table 1). At pH 5.0 and above, the spectra of 
Fe(II) and Fe(III)-Hydralazine complexes are  almost same, but after pH 5.0 the absorbance of Fe(II)-hydralazine complex 
is more than Fe(III)-hydralazine.  

 

Figure 6: Effect of pH on Fe(II)-Hydralazine complex (1:7). 

Table 1: Wave lengths selected at different pH values for Fe(II) and Fe(III)- Hydralazine complexes. 

pH λmax selected for Fe(II)-Hydralazine 

(nm) 

λmax selected for Fe(III)-Hydralazine 

(nm) 

3.0 ---- 575 

4.0 536 556 

5.0 540 540 

6.0 536 540 

7.0 532 536 

8.0 410 410 

9.0 410 410 
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Fe(II)-hydralazine and Fe(III)-hydralazine complexes were compared in buffer of pH 3.0. It was observed that 
initially at pH 3.0 Fe(II)-hydralazine formed in very small amount as compared to Fe(III)-hydralazine (Figure 7). But in high 
concentration of ligand, the formation of complex is faster (Figure 8). It was also observed that in highly acidic medium 
Fe(III)-hydralazine complex formed instantaneously, but Fe(II)-hydralazine complex did not form even after couple of 
hours (Figure 9). The spectra of both complexes were recorded at different time intervals at pH 3.0 and it was found that 
Fe(II)-hydralazine formed very slowly and absorbance increased gradually and slowly. Fe(III)-hydralazine complex formed 
instantaneously at this pH, but after 24 hours its absorbance decreased (Figure 10 and 11). 

 

 

Figure 7: Spectra of Fe(II)-Hydralazine and Fe(III)-Hydralazine at pH 3.0 after 30 minutes. 

 

Figure 8: Spectra of Fe(II)-Hydralazine and Fe(III)-Hydralazine with high ligand concentration. 
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Figure 9: Spectra of Fe(II)-Hydralazine and Fe(III)-Hydralazine in highly acidic medium after 6 hours. 

 

 

Figure 10: Spectra of Fe(II)-Hydralazine  at pH 3.0 at different time intervals. 
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Figure 11: Spectra of Fe(III)-Hydralazine at pH 3.0 at different time intervals. 

These observations suggest that the rate of formation of Fe(II)-hydralazine is very slow at pH 3.0. At pH 4.0 it 
increases a bit, that’s why we got λmax in between 540 and 575, i.e. 556 nm. At pH 5.0 and above the rate of formation of 
Fe(II)-hydralazine was higher. So after pH 3.0 hydralazine reduced iron from +3 to +2 state instantaneously after 
formation of complex and the final complex is Fe(II)-Hydralazine complex. In case of Fe(III)-Hydralazine some ligand was 
used to reduce iron, while the remaining made complex with Fe(II), that’s why the absorbance of Fe(III)-Hydralazine was 
lesser than Fe(II)-Hydralazine. 

Stoichiometry of iron- hydralazine complexes 

Mole ratio and Jobs plot methods were performed to study stoichiometry of complexes. The stoichiometry of 
Fe(II)-Hydralazine was studied at pH 5.0, 8.0 and in distilled deionized water at selected  λmax . Stoichiometry was also 
studied by Job’s Plot method at pH 5, pH 8 and in distilled deionized water. The metal to ligand ratio (M:L) for Fe(II)-
Hydralazine was found to be 1:2 (Figure 12 and 14).Stoichiometry for Fe(III)-Hydralazine was employed at pH 3.0 by Mole 
ratio and Job’s Plot method. The stoichiometry for Fe(III)-Hydralazine was found to be 1:3. The absorbance readings were 
taken at 575 nm, which was the selected λmax of Fe(III)-Hydralazine complex at this pH. According to the mole ratio 
method the stoichiometry was found to be 1:3 (ML3) (Figure 13 and 15). 

 

Figure 12: Mole Ratio Plots of Fe(II)-Hydralazine at pH 5, 8 and Deionized Water. 
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Figure 13: Mole Ratio Plots of Fe(III)-Hydralazine at pH 3. 

 

 

Figure 14: Job’s Plot Fe(II)-Hydralazine. 
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Figure 15: Job’s Plot Fe(III)-Hydralazine. 

 

Stability of complexes 

Stabilities of both complexes were calculated using potentiometric method and verified by computer program 
―BEST‖. In this method, theoretically calculated stability constant values were refined till the least σ fit value. An input data 
file ―FOR004.DAT‖ was written and with the help of various options of the program, the value of σ fit was refined. Program 
―BEST‖ also helped to calculate the species distribution. These results were generally obtained in terms of mole fraction of 
species with respect to pH. Species distribution at different pH was calculated, and finally their diagram was drawn (Figure 
16 and 17). 

Stability was also calculated by spectrophotometric method. Using the value of molar absorptivity, the concentration of the 
complex formed, and then concentration of the remaining metal and remaining ligand at equilibrium were calculated. 
These concentrations were calculated at different ratio and at different pH. 

Using the equation [Petrucci et al., 2007 and Ali et al., 2004]. 

 

 

 

Figure 16: Species distribution curve F(II)-Hydralazine Complex. 
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Figure 17: Species Distribution Diagram of Fe(III)-Hydralazine. 

For Fe(II)-Hydralazine complex stability was calculated at pH 5.0, 8.0 and in distilled deionised water from the 
observations obtained from mole ratio method, at each pH values. As the mole ratio (M:L) for Fe(II)-Hydralazine was 
obtained 1:2 at all pH values, so the values for β1 and β2 were calculated. Consistency was found in the results. The 
approximate log β1 and log β2 values obtained for Fe(II)-Hydralazine complex were 4.99 and  7.58 respectively (Table 2). 

Table 2: Stability constant values for Fe(II)-Hydralazine complex obtained from different methods. 

Spectrophotometric Average Potentiometric 

(BEST) 

 pH 5.0 pH 8.0 Distilled deionized 
water 

Logβ1 4.92 5.39 4.38 4.99 5.60 

Logβ2 7.56 7.89 7.28 7.58 7.50 

 

For Fe(III)-Hydralazine complex stability was calculated at pH 3.0. The log β1, log β2 and log β3 values for Fe(III)-
Hydralazine complex were found to be 2.74, 7.39 and 11.32 respectively (Table 3).The values of stabilities for Fe(II)-
Hydralazine and Fe(III)-Hydralazine complexes obtained from both potentiometric and spectrophotometric methods are in 
good agreement with each other. 

Table 3: Stability constant values obtained from different methods for Fe(III)-Hydralazine complex. 

Spectrophotometric Potentiometric (BEST) 

Logβ1 2.74 4.00 

Logβ2 7.39 6.50 

Logβ3 11.32 10.50 
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CONCLUSION 

The results obtained through this study confirm a strong interaction between the drug molecule and iron in both 
+2 and +3 oxidation states. This interaction is irrespective of the pH, as the H

+
 are not in competition with metal present in 

the surroundings due to particular coordination conditions required for the bonding. So it can be said that the variation in 
the pH in the gastrointestinal tract may not cause considerable changes on the complexation. The ratio of the 
concentration of metal and ligand is responsible for the stoichiometry and stability of the complex formed. It was found 
that Fe(II) may form trans- bis complexes. Therefore after addition of two drug molecules, further addition in the 
coordination sphere of metal is prohibited. On the other hand Fe(III) may be able to form 1:3 (ML3) type of complexes. 
Results composed from the potentiometric study and spectrophotometric findings for the β values of the species exhibit 
good stability of the complexes at various pH values. Stabilities of these complexes were found to be high as log β3 value 
for Fe(III)-hydralazine was nearly 10, while log β2 for Fe(II)-hydralazine is nearly 7. As hydralazine is also a reducing 
agent [1], so it may convert trivalent metal in to divalent. The reduction properties of hydralazine were found to be pH 
dependent. Therefore at low pH, i.e. at pH 3.0 reduction is very slow, and drug is able to form ferri complex, while with 
Fe(II) chelation was found to be very slow, so at this pH stability and stoichiometry of Fe(III)-hydralazine can be easily 
studied. Reduction may not help in release of metal from the resultant complex as divalent metals also have good affinity 
towards this drug, but some drug may be released because stoichiometry may change from 1:3 to 1:2, but above pH 3.0 
the complex exists only in Fe(II) form. Accordingly when concentration of ligand is high the rate of reduction increases and 
therefore degree of complexation decreases. 
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