

A NOVEL SYNTHETIC PROTOCOL FOR THE BIS-TRIAZOLONES DERIVATIVES THROUGH CORRESPONDING N¹-ETHOXYCARBONYL-N¹-TOSYLHYDRAZONATES

Bochra Ben Salah^{1,*}, Salwa Hamzaoui¹, Awatef Rekik¹ and Mohamed Kossentini¹

1/Laboratoire de Chimie Appliquée:Hétérocycles, Corps gras et polymères à la Faculté des Sciences de Sfax.Route de SoukraKm 3.5.BP802.Sfax 3000.Tunisia Email: bensalah_bochra@yahoo.fr *corresponding author: bensalah_bochra@yahoo.fr

ABSTRACT

A simple method has been developed for the synthesis of bis-triazolones **2a-n** starting from N¹-ethoxycarbonyl-N¹tosylhydrazonates **1** and aliphatic diamine. It affords a number of bis-triazolones **2a-n** in reasonable yields. The structures of all new compounds were elucidated using infrared, ¹H and ¹³C NMR studies as well as elemental analysis. Some of these reactions provide successful means to produce biologically important structures.

Keywords

N¹-ethoxycarbonyl-N¹-tosylhydrazonates; Bis-Triazolones; Infrared spectroscopy; Nuclear magnetic resonance.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Chemistry

Vol. 10, No. 1 editorjaconline@gmail.com www.cirjac.com

INTRODUCTION

The synthesis of bis-heterocyclic compounds has received considerable attention as it demonstrates a broad spectrum of biological activities such as anticancer, antibacterial, anti-tumor, and anti-mycobacterial activities [1-10]. Among these compounds, we can mention the bis-triazoles derivatives [11-15].

Various methods of the synthesis of 1,2,4- triazolones have been described in the literature [16-18]. Recently, the synthesis of Bis-triazolones, yielded by the reaction of bis-amidrazones with ethyl chloroformate has been illustrated [19].

The present paper proposes a novel method for obtaining Bis-triazolones $\mathbf{2}$, as a result of the reaction of N¹- ethoxycarbonyl-N¹-tosylhydrazonates $\mathbf{1}$ with diamine derivatives.

RESULTS AND DISCUSSION

The N^1 -ethoxycarbonyl- N^1 -tosylhydrazonates **1a-b**, used in this study, were prepared by the addition of N^1 -tosylhydrazonates to the ethyl chloroformate using a previously reported method [20].

These compounds have two electrophilic centers at positions 1, 4 that are very reactive compared with compounds containing a nucleophilic center (e.g., diamines).

In fact, the condensation of two equiv. of N¹-ethoxycarbonyl-N¹-tosylhydrazonates **1a-b** in ethanol with one equiv. of diamine derivatives, in the presence of a catalytic amount of glacial acetic acid produced, with a good yield, a cyclized product. The latter is identified as 1,Y-bis-(5-alkyl-2-tosyl-1,2,4-triazol-3-one-4-yl) alkane **2** (Scheme 2).

Scheme 2:Synthetic route to bis-triazolones 2 a-n

The structural assignments of the new compounds were based on their elemental analysis and spectral (IR, ¹H NMR and ¹³C NMR) data. The characterisation data of all new compounds is presented in the experimental section. The IR spectra of compounds **2** shows absorption bands in the range of 1590-1610 cm⁻¹, which are attributed to the C=N group. However, carbonyl stretching vibration bands are found to appear at around 1735cm⁻¹. The NMR spectrum of **2** essentially shows the absence of the signal of ethoxy group of the parent N¹-ethoxycarbonyl-N¹-tosylhydrazonates **1**. It also illustrates the presence of the characteristic resonance signals of protons introduced by the diamine derivatives. The ¹³C NMR signal for the C=O group is observed at around 151 ppm, whereas the signal of the C=N group is noted at values in the range of 147-150 ppm. Moreover, the elemental analyses are consistent with the proposed formula.

Some of these compounds have already been synthesized from the condensation of bis-amidrazones with ethyl chloroformate as described above[19]. Given the substantially reduced number of bis-amidrazones, the synthesis presented in this paper is found to be advantageous following a more general and lower-cost approach. Furthermore, the proposed method is also proven to have better yields than the others.

CONCLUSION

The present research study reports the success of a novel strategy in the synthesis and characterization of new 1,Y-bis(5-alkyl-2-tosyl-1,2,4-triazol-3-one-4-yl) alkane derivatives in good yields.

EXPERIMENTAL

The melting points were determined by Electrothermal 9100 apparatus. The infrared spectra were determined on a Perkin Elmer Spectrum Version 10.00.00 with a precision of 2 cm⁻¹ covering field 400-4000 cm⁻¹. NMR spectra were recorded in CDCl₃ or in DMSO-d6 on a Bruker Avance spectrometer (400 MHz for ¹H, 100 MHz for ¹³C). ¹H and ¹³C chemical shifts are given on the δ scale (ppm) and referenced to internal T.M.S. The multiplicities of the signals are indicated by the following abbreviations: s: singlet, d: doublet, t: triplet, q: quadruplet, m: multiplet, br: broad and coupling constants are expressed in Hz. The elemental analyses were performed on a Thermo Finnigan EA 1112 apparatus, both at the Service Commun d'Analyses, University of Lorraine, Nancy.

GENERAL EXPERIMENTAL PROCEDURE

A mixture of compound 1 (0.01 mol), diamino-alkane (represented in the scheme 1) (0.005 mol) and 4–5 drops of glacial acetic acid in ethanol was heated to reflux for 8 h. The resulting solution was cooled to room temperature and the precipitated solid was filtered and washed with cold ethanol, then dried to get pure product.

Spectral Data of New Compounds

1,3-bis(5-methyl-3-tosyl-1,3,4-triazol-2-onyl)propane (2a). yield (67%), mpq 130–132 °C; IR spectrum (v/cm⁻¹): 1711 (C=O), 1602 (C=N); ¹H NMR spectrum (CDCl₃): \bar{o} (ppm): 1.99 (m, 2H), 2.19 (s, 6H), 2.44 (s, 6H), 3.54 (t, J= 6.9 Hz, 4H), 7.34-7.97 (2AB(Ts), J=7.8 Hz, 8Harom); ¹³C NMR spectrum (CDCl₃): \bar{o} (ppm): (150.7, 2C=O), (146.1, 2C=N), (21.2, 2CH₃(Ts)), (11.4, 2CH₃), (38.7, 2CH₂-N), (26.9, CH₂), Carom 127.6-145.5; Anal. Calcd. for C₂₃H₂₆N₆O₆S₂: C, 50.54; H, 4.79; N, 15.37. Found: C, 50.90; H, 5.00; N, 15.60.

1,3-bis(5-ethyl-3-tosyl-1,3,4-triazol-2-onyl)propane (2b). yield (57%), mp 136–138 °C; IR spectrum (v/cm⁻¹): 1709 (C=O), 1597 (C=N); ¹H NMR spectrum (CDCl₃): δ (ppm): 0.83 (t, J= 7.5Hz, 3H), 1.53 (m, 2H), 1.98 (q, J= 7.5Hz, 4H), 2.28 (s, 6H), 3.21 (t, J= 6.9 Hz, 4H), 7.39-7.65 (2AB(Ts), J=8.1 Hz, 8Harom); ¹³C NMR spectrum (CDCl₃): δ (ppm): (151.4, 2C=O), (145.4, 2C=N), (21.4, 2CH₃(Ts)), (9.0, 2CH₃), (13.8, 2CH₂), (38.3, 2CH₂-N), (26.2, CH₂), Carom 127.6-139.0; Anal. Calcd. for C₂₅H₃₀N₆O₆S₂: C, 52.25; H, 5.26; N, 14.62. Found: C, 52.50; H, 5.50; N, 14.85.

1,4-bis(5-methyl-3-tosyl-1,3,4-triazol-2-onyl)butane (2c). yield (55%), mp 260–262 °C; IR spectrum, v, cm⁻¹: 1716 (C=O), 1593 (C=N); ¹H NMR spectrum (DMSO-d6): δ (ppm): 1.44 (m, 4H), 2.16 (s, 6H), 2.41 (s, 6H), 3.47 (m, 4H), 7.45-7.83 (2AB(Ts), J= 8.1Hz, 8Harom); ¹³C NMR spectrum (DMSO-d6): δ (ppm): (151.1, 2C=O), (148.4, 2C=N), (21.0, 2CH₃(Ts)), (11.5, 2CH₃), (41.5, 2CH₂-N), (24.7, 2CH₂), Carom 127.3-145.7; Anal. Calcd. for C₂₄H₂₈N₆O₆S₂: C, 51.42; H, 5.03; N, 14.99. Found: C, 51.75; H, 5.35; N, 15.30.

1,4-bis(5-ethyl-3-tosyl-1,3,4-triazol-2-onyl)butane (2d). yield (64%), mp 226-228°C; IR spectrum (v/cm⁻¹): 1735 (C=O), 1591 (C=N); ¹H NMR spectrum (DMSO-d6): δ (ppm): 1.12 (t, J= 7.5Hz, 3H), 1.43 (m, 4H), 2.40 (s, 6H), 2.51 (q, J= 7.5Hz, 2H), 3.45 (m, 4H), 7.44-7.84 (2AB(Ts), J= 7.8Hz, 8Harom); ¹³C NMR spectrum (DMSO-d6): δ (ppm): (152.0, 2C=O), (151.3, 2C=N), (9.0, 2CH₃), (18.5, 2CH₂), (21.0, 2CH₃(Ts)), (24.8, 2CH₂), (38.9, 2CH₂-N), Carom 127.3-145.7; Anal. Calcd. for C₂₆H₃₂N₆O₆S₂: C, 53.05; H, 5.48; N, 14.28. Found: C, 53.05; H, 5.62; N, 13.99.

1,6-bis(5-methyl-2-tosyl-1,2,4-triazol-3-one-4-yl)hexane (2e). yield (80%), mp 190-192 °C; IR spectrum (v/cm⁻¹): 1722 (C=O), 1601 (C=N); ¹H NMR spectrum (CDCl₃): δ (ppm): 1.24 (m, 4H), 1.54 (m, 4H), 2.18 (s, 6H), 2.40 (s, 6H), 3.45 (t, J=6.9 Hz, 4H), 7.31-7.93 (2AB(Ts), J= 7.8Hz, 8Harom); ¹³C NMR spectrum (CDCl₃): δ (ppm): (151.3, 2C=O), (147.1, 2C=N), (21.8, 2CH₃(Ts)), (12.2, 2CH₃), (41.6, 2CH₂-N), (28.4, 2CH₂), (25.8, 2CH₂), Carom 128.2-145.9; Anal. Calcd. for C₂₆H₃₂N₆O₆S₂: C, 53.05; H, 5.48; N, 14.28. Found: C, 53.05; H, 5.62; N, 13.99.

1,6-bis (5-ethyl-2-tosyl-1,2,4-triazol-3-one-4-yl)hexane (2f). yield (75%), mp 194-196 °C; IR spectrum (v/cm⁻¹): 1735 (C=O), 1594 (C=N); ¹H NMR spectrum (CDCl₃): δ (ppm): 1.20 (m, 10H), 1.49 (m, 4H), 2.35 (s, 6H), 2.42 (q, J=7.2 Hz, 4H), 3.39 (t, J=7.2 Hz, 4H), 7.27- 7.89 (2AB(Ts), J= 8.1 Hz, 8Harom); ¹³C NMR spectrum (CDCl₃): δ (ppm): (152.0, 2C=O), (151.3, 2C=N), (22.2, 2CH₃(Ts)), (19.9, 2CH₂-CH₃), (10.2, 2CH₃-CH₂), (41.8, 2CH₂-N), (28.8, 2CH₂), (26.2, 2CH₂), Carom 128.5-146.2; Anal. Calcd. for C₂₈H₃₆N₆O₆S₂: C, 54.53; H, 5.88; N, 13.63. Found: C, 54.49; H, 5.81, N, 13.42.

1,8-bis (5-methyl-2-tosyl-1,2,4-triazol-3-one-4-yl)octane (2g). yield (85%), mp 162-164 °C; IR spectrum (v/cm⁻¹): 1732 (C=O), 1593 (C=N); ¹H NMR spectrum (CDCl₃): δ (ppm):1.00 (m, 4H), 1.38 (m, 4H), 2.11 (s, 6H), 2.31 (s, 6H), 2.43 (m, 4H), 3.39 (t, J=6.8Hz, 4H), 7.39-7.74 (2AB(Ts), J= 7.9 Hz, 8Harom); ¹³C NMR spectrum (CDCl₃): δ (ppm): (151.5, 2C=O), (149.1, 2C=N), (21.5, 2CH₃(Ts)), (12.0, 2CH₃), (41.5, 2CH₂-N), (28.6, 2CH₂), (28.0, 2CH₂), (26.0, 2CH₂), Carom 127.8-146.2; Anal. Calcd for C₂₈H₃₆N₆O₆S₂: C, 54.53; H, 5.88; N, 13.63. Found: C, 54.50; H, 5.82; N, 13.59.

1,8-bis (5-ethyl-2-tosyl-1,2,4-triazol-3-one-4-yl)octane (2h). yield 82%, mp 174-176 °C; IR spectrum (v/cm⁻¹): 1727 (C=O), 1588 (C=N); ¹H NMR spectrum (CDCl₃): δ (ppm): 1.04-1.15 (m, 14H), 1.49 (m, 4H), 2.38(s, 6H), 2.53(q, J=7.5 Hz, 4H), 3.45(t, J=7.3 Hz, 4H), 7.46-7.82 (2AB(Ts), J= 8.2 Hz, 8Harom); ¹³C NMR spectrum (CDCl₃): δ (ppm): (151.6, 2C=O), (151.0, 2C=N), (21.5, CH₃(Ts)), (19.0, 2CH₂-CH₃), (9.3, 2CH₃-CH₂), (41.3, 2CH₂-N), (28.6, 2CH₂), (28.0, 2CH₂), (26.0, 2CH₂), Carom 128.1-146.7; Anal. Calcd for C₃₀H₄₀N₆O₆S₂: C, 55.88; H, 6.25; N, 13.03. Found: C, 55.61; H, 6.23; N, 12.92.

1,10-bis (5-methyl-2-tosyl-1,2,4-triazol-3-one-4-yl)decane (2i). yield (90%), mp 180-182 °C; IR spectrum (v/cm⁻¹): 1736 (C=O), 1603 (C=N); ¹H NMR spectrum (CDCl₃): δ (ppm): 1.20-1.28 (m, 12H), 1.54 (m, 4H), 2.18 (s, 6H), 2.40 (s, 6H), 3.45 (t, J=7.2 Hz, 4H), 7.31-7.93 (2AB(Ts), J= 8.4 Hz, 8Harom); ¹³C NMR spectrum (CDCl₃): δ (ppm): (151.3, 2C=O), (147.2, 2C=N), (21.8, 2CH₃(Ts)), (12.2, 2CH₃), (41.9, 2CH₂-N), (29.2, 2CH₂), (28.9, 2CH₂), (28.6, 2CH₂), (26.4, 2CH₂), Carom 128.2-145.9; Anal. Calcd for C₃₀H₄₀N₆O₆S₂: C, 55.88; H, 6.25; N, 13.03. Found: C, 55.57; H, 6.19; N, 12.82.

1,10-bis (5-ethyl-2-tosyl-1,2,4-triazol-3-one-4-yl)decane (2j). yield (76%), mp 188-190 °C; IR spectrum (v/cm⁻¹): 1735 (C=O), 1600 (C=N);¹H NMR spectrum (CDCl₃): \bar{o} (ppm): 1.08-1.23 (m, 18H), 1.51 (m, 4H), 2.31-2.48 (m, 10H), 3.41 (t, J=6.5 Hz, 4H), 7.26-7.92 (2AB(Ts), J= 7.3 Hz, 8Harom);¹³C NMR spectrum (CDCl₃): \bar{o} (ppm): (151.6, 2C=O), (150.9, 2C=N), (21.8, 2CH₃(Ts)), (18.2, 2CH₂-CH₃), (10.9, 2CH₃-CH₂), (41.9, 2CH₂-N), (29.2, 2CH₂), (28.9, 2CH₂), (28.6, 2CH₂), (26.4, 2CH₂), Carom 128.2-145.6; Anal. Calcd for C₃₂H₄₄N₆O₆S₂: C, 57.12; H, 6.59; N, 12.49. Found: C, 56.99; H, 6.41; N 12.32.

1,12-bis (5-methyl-2-tosyl-1,2,4-triazol-3-one-4-yl)dodecane (2k). yield (87%), mp166-168 °C; IR spectrum (v/cm⁻¹): 1732 (C=O), 1605 (C=N); ¹H NMR spectrum (CDCl₃): δ (ppm): 1.14 (m, 16H), 1.50 (m, 4H), 2.14 (s, 6H), 2.36 (s, 6H), 3.41 (m, 4H), 7.26-7.90 (2AB(Ts), J= 6.9 Hz, 8Harom); ¹³C NMR spectrum (CDCl₃): δ (ppm): (150.8, 2C=O), (146.6, 2C=N), (21.3, 2CH₃(Ts)), (11.7, 2CH₃), (41.5, 2CH₂-N), (28.8, 2CH₂), (28.5, 2CH₂), (28.5, 2CH₂), (28.3, 2CH₂), (26.0, 2CH₂), Carom 127.7-145.3; Anal. Calcd for C₃₂H₄₄N₆O₆S₂: C, 57.12; H, 6.59; N, 12.49. Found: C, 57.11; H, 6.61; N; 12.58.

1,12-bis (5-ethyl-2-tosyl-1,2,4-triazol-3-one-4-yl)dodecane (2I). yield (47%), mp166-168 °C; IR spectrum (v/cm⁻¹): 1730 (C=O), 1607 (C=N); ¹H NMR spectrum (CDCl₃): δ (ppm): 0.98 (t, J= 7.5Hz, 3H),1.59 (m, 16H), 2.10 (q, J= 7.5Hz, 2H), 2.37 (s, 6H), 2.80 (m, 4H), 4.66 (m, 4H), 7.31-7.79 (2AB(Ts), J= 8.1 Hz, 8Harom); Anal. Calcd for C₃₂H₄₄N₆O₆S₂: C, 57.12; H, 6.59; N, 12.49. Found: C, 57.11; H, 6.61; N; 12.58.

1,2-bis(5-methyl-3-tosyl-1,3,4-triazol-2-onyl)cyclohexane (2m). yield (60%), mp 180-182°C; IR spectrum (v/cm⁻¹): 1721 (C=O), 1585 (C=N); ¹H NMR spectrum (CDCl₃): δ (ppm): 1.36 (m, 4H), 1.76 (m, 4H), 2.00 (s, 6H), 2.45 (s, 6H), 4.63 (t, J= 6.3 Hz, 2H), 7.33-7.82 (2AB(Ts), J= 8.1, 8Harom); ¹³C NMR spectrum (CDCl₃): δ (ppm): (150.4, 2C=O), (146.9, 2C=N), (11.2, 2CH₃), (21.7, 2CH₃(Ts)), (24.4, 2CH₂), (29.2, 2CH₂), (53.5, 2CH-N), Carom 127.5-145.6; Anal. Calcd. for C₂₆H₃₀N₆O₆S₂: C, 53.23; H, 5.25; N, 14.32. Found: C, 53.05; H, 5.62; N, 13.99.

1,2-bis(5-éthyl-3-tosyl-1,3,4-triazol-2-onyl)cyclohexane (2n). yield (30%), mp 190-192°C; IR spectrum (v/cm⁻¹): 1718 (C=O), 1595 (C=N); ¹H NMR spectrum (CDCl₃): δ (ppm): 1.09 (t, J= 7.5Hz, 6H), 1.18 (m, 4H), 1.57 (m, 4H), 1.97 (q, J= 7.5Hz, 2H), 2.23 (s, 6H), 3.97 (t, J= 6.9 Hz, 2H), 7.42-7.67 (2AB(Ts), J= 8.1, 8Harom); ¹³C NMR spectrum (CDCl₃): δ (ppm): (151.7, 2C=O), (148.6, 2C=N), (8.9, 2CH₃), (14.3, 2CH₂), (21.3, 2CH₃(Ts)), (29.2, 2CH₂), (42.4, 2CH₂), (61.4, 2CH-N), Carom 123.9-143.4; Anal. Calcd. for C₂₈H₃₄N₆O₆S₂: C, 54.71; H, 5.57; N, 13.67. Found: C, 54.49; H, 5.81, N, 13.42.

ACKNOWLEDGMENTS

Thanks are due to the Ministry of Higher Education and Scientific Research and Technology in Tunisia and University of Sfax for financial support.

REFERENCES

[1] F. F. Barsoum, H. M. Hosni, A. S. Girgis, Bioorg. Med. Chem. 14(2006) 3929.

- [2] L. G. Mardenborough, X. Y. Zhu, P. Fan, M. R. Jacob, S. L. Khan, L. A. Walker, S. Y. Ablordeppey, Bioorg. Med. Chem. 13(2005) 3955.
- [3] M. P. Gajewski, H. Beall, M. Schnieder, S. M. Stranahan, M. D. Mosher, K. C. Rider, N. R. Natale, Bioorg. Med. Chem. Lett. 19 (2009) 4067.

[4] M. A. Ali, M. Shaharyar, Bioorg. Med. Chem. Lett. 17(2007) 3314.

ISSN 2321-807X

- [5] I. Stolić, K. Mišković, A. Magdaleno, A. M. Silber, I. Piantanda, M. Bajić, L. Glavaš-Obrovac, Bioorg. Med. Chem. 17(2009) 2544.
- [6] R. Filosa, A. Peduto, S. Di Micco, P. De Caprariis, M. Festa, A. Petrella, G. Capranico, G. Bifulco, Bioorg. Med. Chem. 17(2009) 13.
- [7] N. Kode, L. Chen, D. Murthy, D. Adewumi, S. Phadtare, Eur. J. Med. Chem. 42(2007) 327.
- [8] D. Maciejewska, M. Rasztawicka, I. Wolska, E. Anuszewska, B. Gruber, Eur. J. Med. Chem. 44 (2009) 4136.
- [9] Y-H. Yang, M-S. Cheng, Q-H. Wang, H. Nie, N. Liao, J. Wang, H. Chen, Eur. J. Med. Chem. 44 (2009) 1808.
- [10] P. Palit, P. Paira, A. Hazra, S. Banerjee, A. Das Gupta, S. G. Dastidar, N. B. Mondal, Eur. J. Med. Chem. 44(2009) 845.
- [11] M. M. Ghorab, A. M. Sh. El-Sharief, Y. A. Ammar, Sh. I. Mohamed, II Farmaco. 55 (2000) 354.
- [12] B. S. Holla, K. N. Poojary, B. S. Rao, M. K. Shivananda, Eur. J. Med. Chem. 37 (2002) 511.
- [13] G. Q. Hu, S. Q. Xie, W. L. Huang, Chin. Chem. Lett. 18 (2007) 124.
- [14] M. Damodiran, D. Muralidharan, P. T. Perumal, Bioorg. Med. Chem. Lett. 19 (2009) 3611-3614.
- [15] V. S. Palekar, A. J. Damle, S. R. Shukla, Eur. J. Med. Chem. 44 (2009) 5112.
- [16] S. Han, F-F. Zhang, X. Xie, J-Z. Chen, Eur. J. Med. Chem. 74 (2014) 73.
- [17] H. Bayrak, A. Demirbas, N. Demirbas, S- A. Karaoglu, Eur. J. Med. Chem. 45 (2010) 4726.
- [18] N. Fischer, K. Hüll, Th. M. Klapötke, J. Stierstorfer, J. Heterocyclic Chem. 51 (2014) 85.
- [19] S. Hamzaoui, A. Ben Salem, A. Ben Hsouna, N. Chaari, M. Trigui, M. Mourer, M. Kossentini, MedJChem. 5 (2012) 246.
- [20] B. Ben Salah, N. Chaari, A. Rekik, A. Ben Hsouna, M. Trigui, M. Kossentini, J. Heterocyclic Chem. (2014), in press, Corrected Proof.

