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ABSTRACT 

Fault Detection and controlling is important in many industries to provide safe operation of a process. Heat Exchangers 
are generally used in process industries. Shell and Tube Heat Exchanger  is a common type of heat exchanger used in oil 
refineries, chemical processes .It is suited for higher-pressure applications. Actuator faults, sensor faults and process 
faults are the common faults occurring in chemical processes. To identify and remove these type of faults in the system 
fault detection and controlling techniques are proposed.  In this present work Sensor and Process faults of Shell and Tube 
Heat Exchanger is detected and controlled using Artificial Neural Network(ANN).NARX network (Nonlinear Auto 
regressive with External input) is used as ANN network structure. Network is trained using Levenberg Marquardt and 
Bayesian Regularization algorithms. The performance parameters such as Mean Square Error, Integral Absolute Error 
(IAE), Integral Time Absolute Error (ITAE) and Integral Square Error (ISE) are obtained for the above said methods which 
are shown in simulation results. Tabulated results shows the comparison between the three algorithms. Simulation results 
also shows the comparison between the controlled response obtained from ANN with and without PID Controller. 
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1.INTRODUCTION  

There has been an increasing interest in fault detection and diagnosis in recent years, as a result of the increased degree of 

automation and the growing demand for higher performance, efficiency, reliability and safety in industrial systems. Fault 

detection and diagnosis are important tasks in process industries. It deals with the timely detection, diagnosis and correction of 

abnormal condition of faults in the plant. Heat exchangers are generally used in process industries. Shell and Tube Heat 

Exchanger is a class of heat exchanger designs. It is a common type of heat exchanger used in oil refineries, chemical 

processes .It is suited for higher-pressure applications. Shell and Tube heat exchanger consist of a shell with a bundle of tubes 

within it where hot fluid flows through the tubes and cold fluid flows over the tubes through the shell to provide transfer heat 

between the two fluids. The term fault means that any unpermitted deviation occurring in a system .The faults present in the 

system affect the sensors, the actuators, or the system components [1]. Actuator fault, sensor fault and process fault are the 

common faults occurring in chemical process. Actuator faults represent partial or complete loss of control action. Total actuator 

fault can occur, for instance, as a result of a breakage, cut or burned wiring, shortcuts, or the presence of outer body in the 

actuator. Sensor faults represent incorrect reading from the sensors. Produced information is not related to value of the 

measured physical parameter in case of the total actuator fault. They can be due to broken wires, lost contact with the surface, 

etc. Process faults of heat exchanger includes Fouling, fault in volumetric flow rate etc. To identify and remove these types of 

faults in the system, Fault Detection and Diagnosis (FDD) techniques are proposed [1][7]. The basic tasks of fault diagnosis 

are to detect and isolate occurring faults and to provide information about their size and source. These techniques are 

generally classified as model-based approaches and data-driven approaches which is shown in Fig. 1. Some of the model-

based FDD techniques include observer-based approach, parity-space approach, and kalman based approach[4]. Data driven 

approaches include Fuzzy logic, Artificial Neural Network (ANN) and Genetic Algorithm (GA). While in most situations the 

occurrences of faults in the  complex systems cannot be prevented, the consequences of the faults could be avoided, or at 

least their severity could be minimized. In order to minimize the possibility of occurrences of catastrophic events, the most 

important step is the utilization of the means of FDD methods. FDD techniques provide early warning to the system operators 

and prevents the system causing   failures. Model Data driven methods use Soft computing techniques like Fuzzy, ANN and 

GA as it does not require model and it produce accurate results than model based  in fault detection purpose[2][3]. ANN are 
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used in various application areas such as fault detection and diagnosis, Pattern recognition, system identification, dynamic 

control purposes. ANN can used to solve non- linear complex problem since it does not require any information about input or 

output relationship.  

 

Fig. 1. Classification of FDD techniques 

2. FAULT DETECTION AND DIAGNOSIS 

    Hardware or physical redundancy methods use multiple sensors and actuators to measure and control a particular 

variable [8]. The major problems come upon with hardware redundancy is the extra equipment , maintenance cost and 

additional space is required to hold the equipment. These drawbacks of physical redundancy is overcome by analytical 

redundancy which is based on residuals [1][8].To achieve FDI, a set of residuals need to be generated. [5]The residual is 

defined as difference between the measured and estimated process output. To detect and diagnose the fault, FDD has to 

undergo two  step process namely Residual generation and Residual evaluation as in fig 2. The Residual generator 

generates a residual and the Residual evaluator compares the residual to determine the occurrence of fault with a 

threshold [20]. In the ideal case, the residual will be equal to zero when no fault is present and different from zero when a 

fault is present. 

     A well designed residual signal is defined such that it is equal to zero for fault free case and not equal to zero for faulty 

system[9].Fig 3 and Fig 4 shows the residuals generated for sensor and process faults. 

 

r(t)=0 Fault free case; 

r(t) =0 faulty case; 

 

Fig. 2.  Fault detection and Diagnosis 

3.  ANN BASED FAULT DETECTION AND DIAGNOSIS 

    Fault Detection and Diagnosis (FDD) is essential in many industries to provide safe operation of a process. Actuator 

fault, sensor fault and process fault are the common faults occurring in chemical process. To identify and remove these 

type of faults in the system , various FDD techniques are proposed .Fault present in any system leads to failure of the 

equipment, false alarm. In order to determine the kind, size, location and time of fault, many Fault detection and Diagnosis 

(FDD) Techniques are proposed..The main aim of any FDD method is to raise an alarm if there is any change in the 

process and to determine the size, location and time of the occurrence of fault [10]. 
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   FDD performs two tasks Fault detection and Fault isolation. Fault detection is to determine whether the fault has 

occurred or not. The role of fault isolation is to locate and isolate the fault [14].In this work fault is detected and diagnosed 

by ANN.[11] Artificial neural networks (ANN) have the capability to learn the complex  relationships between the inputs 

and the outputs of the system. The   ANN learns these relationships on the basis of actual inputs and outputs. ANN 

provide more accurate results  as compared to the other methods which are based on   assumptions. [12][13]One of the 

great advantages of using a neural network in FDD is its ability to attain input-output mapping. Using input-output mapping 

a neural network is able to modify its weights by training samples. The training samples consist of an input signal and a 

desired response. During training the weights are modified in order to reduce the error between the desired response and 

actual response of the network. Fig 6 shows a general block diagram of ANN based Fault diagnosis. 

 

Fig. 6. Fault Detection using ANN 

4.   NEURAL NETWORK CONFIGURATION 

    ANN consists of number of interconnected units. The input characteristics and its interconnection with other units 

determines the output  of ANN. ANN consists of Input layer , Output layer and hidden layer with a number of nodes in it. 

Input layer has no input weights and activation function. The output response for a given input is determined by the output 

layer. Hidden layer has no connection with outside world. Increasing the number of hidden layer increases the complexity 

of the network but it results in accurate results. For fault detection and diagnosis purposes, the ANN has to be trained first. 

Back propagation , Nonlinear Auto regressive (NAR),Nonlinear Auto regressive with External Input(NARX), multilayer feed 

forward network , Multilayer perceptron network are some of the training methods of ANN. Among these training methods 

of ANN, Nonlinear Auto regressive with External Input(NARX) provide better results since it predicts past values of input 

and output. Neural networks are broadly classified as static networks and dynamic networks. The output of the static 

network depends only on the current input of the network and it has no delay elements and feedback elements. Dynamic 

network are more advantageous than the static networks because the output of the dynamic network depends on the 

current input as well as on previous inputs and outputs. NARX structure belongs dynamic network which have feedback or 

recurrent connections with delay input. Here NARX is used as network structure which shows more accurate results 

.These neural networks have the capability to predict the future values based on the values at the preceding instants.  

4.1.   Levenberg-Marquardt (LM) Algorithm 

    The Levenberg-Marquardt (LM) algorithm[17] is the most widely used optimization algorithm for detection and diagnosis 

of   sensor and process faults of heat exchanger, input and output data is loaded. Nonlinear Auto regressive with External 

Input(NARX) is used as a network structure to perform fault detection. Levenberg-Marquardt (LM) training function is used 

widely because it has the fastest convergence capability  [18]. trainlm is the training function for LM method which 

automatically update the weight and bias value . Fig 6 shows the general  block diagram of  LM method for sensor and 

process faults of heat exchanger with PID controller. The simulation results for above faults using LM  method is shown in 

Fig 11 and Fig 14.Fig 11 represent the simulation results  of LM methods using ANN with PID and without PID controller 

for sensor faults whereas Fig 14 represent the simulation results of LM methods ANN with and without  PID controller for 

process faults .In both cases ANN with PID controller provide a good results. Mean Square Error for sensor and process 

faults of LM method are shown in Fig 9 and Fig 12. Fig 10 and Fig 13 shows the error graph of sensor and process faults.
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Fig. 9.Mean square error graph of LM method for sensor fault 

 

 

Fig. 10. Error graph of LM method for sensor faults 

 

Fig. 11. Simulation results of LM method for sensor faults 

 

Fig. 12.Mean square error graph of LM method for process fault 
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Fig. 13. Error graph of LM method for process faults 

 

Fig. 14. Simulation results of LM method for process faults 

4.2.  Bayesian Regularization Algorithm 

    An extension of the Levenberg-Marquardt algorithm has been developed by Forsee and Hagan which aims at improving 
generalization of a neural network. By constraining the size of the network weights, the output of a neural network can be 
smoothed and this process is known as regularization. One of the main problems with regularizing a neural network is, it 
leads to over fitting of the data or poor generalization of the network. The solution to this problem is Bayesian 
regularization[17][19]. The network was trained in MATLAB by using Neural Network Toolbox. trainbr is the training 

function of Bayesian Regularization. This training function updates the weight and bias value and it minimizes a 
combination of squared errors and determines the correct combination to produce a network. Bayesian regularization 
algorithm reduces lengthy cross-validation. To train the network, Input and output data are fed in to the neural toolbox. 
Select the network training function as Bayesian Regularization, number of hidden layer and then train the network[15]. 
General block diagram of ANN based fault diagnosis of heat exchanger using Bayesian method for sensor and process 
faults are shown in Fig 6. The simulation results for above faults using BR method is shown in Fig 17 and Fig 20. Fig 17 
represent the simulation results of sensor faults using ANN with PID and without PID controller whereas Fig  20 represent 
the simulation results of process faults using  ANN with and without  PID controller for process faults .Mean Square Error 
for sensor and process faults are shown in Fig 15 and Fig 18.Error graph of BR method for sensor and process faults are 
shown in Fig 16 and Fig 19.  

 

Fig. 15.Mean square error graph of Bayesian regularization methods for sensor fault 
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Fig . 16. Error graph of BR method for sensor fault 

 

Fig. 17. Simulation results  of  BR  method for  sensor  fault 

 

 

                             Fig. 18. Mean square error graph of BR method for process fault 

 

Fig. 19. Error graph of BR method for process fault 
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Fig. 20. Simulation results  of  BR method for  process  fault 

5.   RESULTS AND DISCUSSION 

    The best neural network architecture is determined by the number and the size of hidden layer. LM provides improved 

accuracy than other algorithms. Levenberg-Marquardt algorithm is used to reduce the computational overhead where as 

Bayesian regularization algorithm reduces the long cross-validation. It gives a proficient criterion for stopping the training 

process and it prevents overtraining of the network. Various parameters of Levenberg-Marquardt and Bayesian 

regularization for sensor and process faults are compared which are shown in table T-1&T-2. LM methods have least 

mean square error when compared to Bayesian methods. Integral Absolute Error (IAE), Integral Square Error (ISE) and 

Integral of Time and Absolute Error (ITAE) is calculated for both sensor & process faults with PID controller  and without 

PID controller and their comparative results are shown in table  T-3 and T-4. Integral absolute Error (IAE) integrates the 

absolute error over time and it produce slower response. Integral Square Error (ISE) determine the system performance 

by integrating the square of the system error over a fixed interval of time. Integral of Time and Absolute Error (ITAE) 

integrates the absolute error multiplied by the time over time. LM methods produce less error when compared to Bayesian 

methods.  

Table1 Comparative results of training algorithms for sensor faults 

Parameters Levenberg-Marquardt Bayesian regularization 

Number of hidden neuron 55 50 

Delay 1 1 

Training Function Trainlm Trainbr 

Training Mean Square Error 3.48837e-1 6.43153 

Validation Mean square Error 1.9353 0.0000 

Testing Mean Square Error 15.19074 5.84859 

Epoch 5 146 

 

Table 2 Comparative results of training algorithms for process results 

Parameters Levenberg-Marquardt Bayesian regularization 

Number of hidden neuron 70 35 

Delay 1 1 

Training Function Trainlm Trainbr 

Training Mean Square Error 6.78037e-2 4.6666 

Validation Mean square Error 10.75698 0.0000 

Testing Mean Square Error 25.2367 8.0373 

Epoch 2 43 
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Table 3 Error calculation for sensor and process faults with PID 

Training method Sensor fault Process fault 

ITAE IAE ISE ITAE IAE ISE 

Levenberg-Marquardt 1322 661 4716 1454 727.2 5632 

Bayesian regularization 4764 2382 1.136×10
5 

6547 3273 2148×10
5
 

 

Table 4  Error calculation for sensor and process faults without PID 

Training method 
Sensor fault Process fault 

ITAE IAE ISE ITAE IAE ISE 

Levenberg-Marquardt 8315 415.8 1976 1426 7129 5443 

Bayesian regularization 4806 2403 1.15×10
5 

6635 3317 2207×10
5 

6.   CONCLUSION 

      In this paper Sensor fault and process fault for Shell and Tube Heat Exchanger is detected and controlled using ANN. 
Training of ANN is done through Levenberg-Marquardt and Bayesian regularization algorithm  Various parameters of 
network such as Mean Square Error, Number of hidden layer, Epoch ,Integral Absolute Error (IAE), Integral Square Error 
(ISE) and Integral of Time and Absolute Error (ITAE)  is compared for the above methods. These errors are comparatively 
less in LM algorithm than BR algorithm for sensor and process faults .Levenberg-Marquardt reduces computational 
overhead and Training Mean Square Error and Testing Mean Square Error and number of iterations are lesser and 
provide accurate results during training. Simulation  results also shows the comparison between the response obtained 
from ANN with and without PID Controller.  The response shows Levenberg-Marquardt algorithm  shows good results than 

Bayesian Regularization algorithm. 
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