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Abstract 

Ultrasonic irradiation was used to induce the Knuevenagle reaction between aromatic aldehydes and 3-
methylacetylacetone to synthesize curcumin analogues with moderate to good yields. The structures of the compounds 
were established by elemental analysis and from their mass and 

1
HNMR spectra. In situ curcumin-gold nanoparticles were 

synthesized. The solutions of the prepared nanoparticles have purple to deep-red colors and their UV-vis spectra were 
characterized by the Surface Plasmon Resonance bands within the range 538-554 nanometer. 
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Introduction 

     Due to its practical benefits compared to conventional methods large numbers of compounds have been synthesized 
by ultrasound waves irradiation of the reactants. The benefits include higher yields, shorter reaction time and milder 
conditions. The synthesized compounds by this technique span over wide spectrum including organics [1-3]inorganics [4-
6], polymers [7,8] and nanoparticles [9,10]. 

     Curcumin is of considerable interest and is well-known compound because of its antioxidant [11-13], anti-inflammatory 
[14], antimicrobial [15] and anticarcenogenic activities [16-19]. In addition it is unique among active compounds because it 
is extremely safe even at very high doses. On the other hand and due to the presence of the olefinic groups in it structure 
this β-diketone of poor aqueous solubility rendering it of relatively low bioavailability [20]. This reason prevents curcumin to 
be approved as pharmaceutical agent. In order to overcome this shortage, synthesis of compounds with the same or even 
hopefully with better activities but with reasonable water solubility are continuously in progress. The best choice in this 
case is the synthetic analogues or derivatives less or more related to curcumin. Curcumin nanoparticles as pure curcumin 
or as adsorbed curcumin on gold surfaces were reported to enhance the solubility of curcumin in water and its biological 
activities [21-28]. 

     In this work we report the synthesis of curcumin analogues via the reaction of aromatic aldehydes and 3-
methylacetylacetone under ultrasound irradiation (Scheme I) as well as the synthesis of the nanoparticles of some 
curcuminoids. 

2. Results and discussion 

     The curcumin analogues were synthesized by altrasonic-assisted Knuevenagle reaction of 3-methylacetylacetone with 
variety of aromatic aldehydes in the presence of boric oxide and aminoethanol. The reactions were done with relatively 
short times (20 min) as compared to the conventional reaction. The general synthesis procedure is shown in scheme I. 
The synthesized compounds were confirmed by elemental analysis and by mass and 

1
H NMR spectra. The infrared 

spectra were characterized by a strong band within the range 1618 – 1625 cm
-1

 due to the stretching vibration of the 
carbonyl group which is shifted to lower frequencies due to both its conjugation with the unsaturated ethylinic system and 
participation in the intrahydrogen bonded chelated ring. This proved that the compounds are present mainly in the enolic 
form. The mass spectra showed the peak of the parent ion and a base peak results from the ion due to fragmentation at 
the methylene group of the chelated ring. The spectra were also characterized by a general peak due to the ion resulted 
by losing the Ar-CH=CH- fragment. The 

1
H NMR spectra confirms the enolic structure of the compounds by two notes. 

First the absence of the methylene signal which must be present in the spectra of the keto form and such a signal 
presents at 2.34 ppm in the spectrum of the keto form of acetylacetone. Second the presence of the much more downfield 
peak (17.04 -17.84 ppm) which attributed to the intrahydrogen bonded chelated proton of the enolic OH group as it is the 
case with β-diketones [29]. 

 

Scheme 1. Synthesis of curcumin analogues, reaction conditions and prepared compounds. 

 

                                                                                                 1 R1= OCH3; R2= H             7 R1= CH3; 
R2= H 

                                                                                                 2 R1= Cl; R2= H                   8 R1= F; 
R2= H 

                                                                                                 3 R1= R2= H                         9 R1= Br; 
R2= H   

                                                                                                 4 R1= OH; R2= H                10 R1= 
NO2; R2= H 

                                                                                                 5 R1= OH; R2= H         11 R1= N(CH3)2; 
R2= H 

                                                                                                 6 R1= OH; R2= OCH3    12= 
NHCOCH3; R2= H   
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  The curcuminoid capped gold nanoparticles (AuNPs) were synthesized in situ by the adsorption of compounds on the 
gold nanoparticles surface. The formation of the nanoparticles was confirmed by their electronic spectra as follows. The 
electronic spectrum of the gold solution is characterized by a long and strong band at 287.9 nanometers while the 
electronic spectra of the curcuminoids are characterized by long bands at 419.9 - 458.4 nm and accordingly has yellow 
colors. When the species were brought to contact their solutions changed to purple or deep-red color depending on the 
curcuminoid. These solutions are characterized by bands appear at longer wavelengths which are not present in the gold 
or the curcuminoid solutions. The resulting bands were interpreted as a Surface Plasmon Resonance (SPR) [30] that 
characterizes the electronic spectra of nanoparticles of organic compounds adsorbed on the gold surface and the optical 
properties of the nanoparticles depend strongly on their size, shape and interaction between the nanoparticles and the 
adsorbed species on the surface of the nanoparticles. Figs. 1-5 show the UV-vis spectra of chloroauric acid (1), the 
curcuminoid (2) and AuNPs (3). In all cases a new band at longer wavelength is appeared which attributed to surface 
Plasmon absorption maxima and situated at 554.6, 553.1, 538.4, 539.0, and nm for the curcuminoids 4, 5, 6, a, and b 
respectively. The difference of SPR bands is due to the varied level of size distribution of the nanoparticles in the solution 
and their aggregation [27]. It is worthy to note that efforts to prepare nanoparticles from curcuminoids that not have 
phenolic OH groups were failed with us. 

 

Fig. 1 UV-vis spectra of AuNPs synthesized by compound 4 and chloroauric acid (1.5 x 10
-4

 M). 

 

 

Fig. 2 UV-vis spectra of AuNPs synthesized by compound 5 and chloroauric acid (1.5 x 10
-4

 M). 
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Fig. 3 UV-vis spectra of AuNPs synthesized by compound 6 and chloroauric acid (1.5 x 10
-4

 M). 

 

 

 

Fig. 4 UV-vis spectra of AuNPs  synthesized by  chlorocurcumin and chloroauric acid (1.5 x 10
-4

 M). 
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Fig. 5 UV-vis spectra of AuNPs synthesized by chloro-bisdemethoxycurcumin and chloroauric acid (1.5 x 10
-4

 M). 

3. Experimental 

3.1. General 

NMR spectra were recorded on a Bruker 500 in deurated DMSO with tetramethylsilane as an internal standard. Mass 
spectra were determined on a Funigan instrument at 70 eV. Melting points were measured in open capillary tubes in a 
Thermo scientific apparatus.  UV-vis spectra were measured with a CECIL CE7200 spectrophotometer in quartz matched 
cells of 1-cm pathlengths. Infrared spectra were recorded by Iraffinity-1 Shimadzu FTIR spectrophotometer. Elemental 
analyses were performed by Thermo Finnigan CHNS-O analyzer, 1112 series. 

3.2. The Synthesis of curcuminoids 

The compounds were synthesized according to the method described by Yingjie et al. [31]. A round-bottomed flask 

containing a mixture of boron oxide (0.013 mol), DMF (6 mL), monoethanolamine (0.37 mL) and trimrthylborate (2 mL) 
was set in an ultrasonic cleaner (40 kHz, 500 W). Aromatic aldehyde (0.025 mol) and 3-methyl-pentane-2,4-dione were 
added to the flask mixture and the contents were irradiated at 80 °C for 20 min. The progress of the reaction was 
monitored with TLC. After the completion of the reaction, the mixture was poured into 100 mL of 5% warm acetic acid. The 
crude product was filtered and separated by column chromatography on silica gel (200-300 mesh) using mixture of 1:3 
hexane:diethylether as an eluent. 

3.3. The synthesis of gold nanoparticles with curcumin (AuNPs) 

Five curcumin analogues namely: 4, 5, 6, as well as 3-chlorocurcumin (a) and 3-chloro-bisdemethoxycurcumin (b) were 
used with gold to prepare the curcumin-capped gold nanoparticles.  

The method described by Singh et al. [27] was employed. HAuCl4 was added into 500 mL of water to make 1.5 x 10
-4

 M. 
The mixture held at 90°C under constant sterring, followed by the addition of the curcuminoid (4 mg). The heating was 
stopped after the mixing of the reactants and allowed to cool to room temperature to form deep red to purple colored 
solutions depending on the curcuminoid used. The solution colors were purple for compounds 4 and 5 and deep red for 
compounds 6, a and b. 

4-Methyl-1,7-bis(4-methoxyphenyl)-1,6-hepta diene-3,5-dione (1). Yellow crystals; Yield 68%; m.p. 175-177 
o
C; EI-

MS: m/z =350 (M
+
); IR (KBr disk) υ cm

-1
: 1618; 

1
H-NMR δ ppm: 2.15(3H, s, CH3) ,3.78(6H, s, OCH3), 6.86(2H,d, J= 15 

Hz,CH=C),7.19(2H, d, J= 15 Hz, CH=C),  6.96-7.72(8H, m, Ar-H), 17.62(1H, s, enolic OH); Anal. Calcd. for C22H22O4: C, 
75.41; H, 6.33. Found: C, 75.32; H, 6.63. 
 

4-Methyl-1,7-bis(4-Chlorophenyl)-1,6-hepta diene-3,5-dione (2). Yellow powder; Yield 71%; m.p. 191-192 
o
C; EI-

MS: m/z = 359 (M
+
); IR (KBr disk) υ cm

-1
: 1625; 

1
H-NMR δ ppm: 2.18(3H, s, CH3), 7.04(2H, d, J= 15 Hz, CH=C), 7.37(2H, 

d, J= 15 Hz, CH=C), 7.44-7.8(8H, m, Ar-H), 17.13(1H, s, enolic OH); Anal. Calcd. for C20H16Cl2O2: C, 66.87; H, 4.49. 
found: C, 66.98; H, 5.13. 
 

4-Methyl-1,7-diphenyl-1,6-heptadiene-3,5-dione (3). Yellow crystals; Yield 65%; m.p. 153-154  
o
C; EI-MS: m/z = 290 

(M
+
); IR (KBr disk) υ cm

-1
: 1625; 

1
H-NMR δ ppm: 2.18(3H, s, CH3), 7.01(2H, d, J= 15 Hz, CH=C), 7.6(2H, d, J= 15 Hz, 
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CH=C), 7.4-7.76(10H, m, Ar-H), 17.40(1H, s, enolic OH). Anal. Calcd. For C20H18O2: C, 82.73; H, 6.25. Found: C, 82.92; 
H, 6.74.  
 

4-Methyl-1,7-bis(3-hydroxyphenyl)-1,6-hepta diene-3,5-dione (4). Yellow crystals; Yield 55%; m.p. 210-212 
o
C; EI-

MS: m/z = 322 (M
+
); IR (KBr disk) υ cm

-1
: 1625; 

1
H-NMR δ ppm: 2.15(3H, s, CH3), 6.82-7.54(12H, m, olefinic + Ar-H), 

9.50(2H, s, phenolic OH), 17.39(1H, s, enolic OH); Anal. Calcd. for C20H18O4: C, 74.52; H, 5.63. Found: C, 74.76; H, 5.32. 
 

4-Methyl-1,7-bis(4-hydroxyphenyl)-1,6-hepta diene-3,5-dione (5). Orange crystals; Yield 63%; m.p. 199-201 
o
C; EI-

MS: m/z = 322 (M
+
); IR (KBr disk) υ cm

-1
: 1620; 

1
H-NMR δ ppm: 2.12(3H, s, CH3), 6.78-7.53(12H, m, olefinic + Ar-H), 

10.03(2H, s, phenolic OH), 17,69(1H, s, enolic OH). Anal. Calcd. for C20H18O4: C, 74.52; H, 5.63. Found: C, 74.89; H, 
5.79. 
 

4-Methyl-1,7-bis(4-hydroxy-3-hydroxyphenyl)-1,6-heptadiene-3,5-dione (6). Yellow powder; Yield 75%; m.p. 184-

186 
o
C; EI-MS: m/z = 382 (M

+
); IR (KBr disk) υ cm

-1
: 1626; 

1
H-NMR δ ppm: 2.12(3H, s, 2.20(3H, s, CH3), 3.81(6H, s, 

OCH3), 6.82(2H, d, J= 8 Hz, Ar-H), 6.88(2H, d, J= 15 Hz, CH=C), 7.15(2H, d, J= 8 Hz, Ar-H), 7.58(2H, d, J= 8 Hz, CH=C), 
9.62(2H, s, phenolic OH), 17.77(1H, s, enolic OH). Anal. Calcd. for C22H22O6: C, 69.10; H, 5.80. Found: C, 69.63; H, 5.58. 
 

4-Methyl-1,7-bis(4-methylphenyl)-1,6-hepta diene-3,5-dione (7). Yellow crystals; Yield 88%; m.p. 179-181 
o
C; EI-

MS: m/z = 318 (M
+
); IR (KBr disk) υ cm

-1
: 1620; 

1
H-NMR δ ppm: 2.16(3H, s, CH3), 2.31(6H, s, CH3), 6.95(2H, d, J= 16 Hz, 

CH=C), 7.21(4H, d, J= 9 Hz, Ar-H), 7.29(2H, d, J= 16, CH=C)), 7.66(4H, d, J= 9, AR-H), 17.84(1H, s, enolic OH); Anal. 
Calcd. For C22H22O2: C, 82.99; H, 6.96. Found: C, 83.29; H, 6.71. 
 

4-Methyl-1,7-bis(4-fluorophenyl)-1,6-hepta  diene-3,5-dione (8). Yellow crystals; Yield 77%; m.p. 187-189 
o
C; EI-

MS: m/z = 326 (M
+
); IR (KBr disk) υ cm

-1
: 1625; 

1
H-NMR δ ppm: 2.03(3H, s, CH3), 6.98(2H, d, J= 16 Hz, CH=C), 7.30(2H, 

d, J= 16 Hz, CH=C), 7.33(4H, d, J= 9 Hz, Ar-H), 7.76(4H, d, J= 9 Hz, Ar-H); Anal. Calcd. For C20H16F2O2: C, 73.61; H, 

4.94. Found: C, 73.98; H, 5.13. 
 

4-Methyl-1,7-bis(4-bromophenyl)-1,6-hepta diene-3,5-dione (9). Yellow powder; Yield 63%; m.p. 195-197 
o
C; EI-

MS: m/z = 448 (M
+
); IR (KBr disk) υ cm

-1
: 1625; 

1
H-NMR δ ppm: 2.17(3H, s, CH3), 7.05(2H, d, J= 15 Hz, CH=C); 7.39(2H, 

d, J= 15 Hz, CH=C); 7.45-7.81(8H, m, Ar-H); 17.30(1H, s, enoilc OH). Anal. Calcd. For C20H16Br2O2: C, 53.60; H, 3.60. 
Found: C, 53.34; H, 3.88. 
 

4-Methyl-1,7-bis(4-nitrophenyl)-1,6-hepta  diene-3,5-dione (10). Red crystals; Yield 66%; m.p. 215-217 
o
C; EI-MS: 

m/z = 380 (M
+
); IR (KBr disk) υ cm

-1
: 1622; 

1
H-NMR δ ppm: 2.24(3H, s, CH3); 7.24(2H, d, J= 15 Hz, CH=C); 7.58(2H, d, J= 

15 Hz, CH=C); 8.08-8.26(8H, m, Ar-H); 17.04(1H, s, enolic OH). Anal. Calcd. for C20H16N2O6: C, 63.16; H, 4.24, N, 7.37. 
Found: C, 63.91; H, 4.89; N, 7.90. 
 

4-Methyl-1,7-bis(4-(dimethylamino)phenyl)-1,6-hepta diene-3,5-dione (11). Red powder; Yield 45%; m.p. 220-223 
o
C; EI-MS: m/z = 376 (M

+
); IR (KBr disk) υ cm

-1
: 1618; 

1
H-NMR δ ppm: 2.10(3H, s, CH3); 2.92(6H, s, N(CH3)2); 6.97(2H, d, 

J= 15 Hz, CH=C); 7.01-7.55 (10H, m, olefinic + AR-H); 17.10(1H, s, enolic OH). Anal. Calcd. for C24H28N2O2: C, 76.56; H, 
7.50, N, 8.50. Found: C, 76.08; H, 7.73; N, 8.83. 
 

4-Methyl-1,7-bis(4-acetoamidophenyl)-1,6-hepta diene-3,5-dione (12). Red powder; Yield 60%; m.p. 248-249 
o
C; 

EI-MS: m/z = 404 (M
+
); IR (KBr disk) υ cm

-1
: 1662, 1625; 

1
H-NMR δ ppm: 2.03(6H, s, COCH3); 2.15(3H, s, CH3); 6.87(2H, 

d, J= 18 Hz, CH=C); 7.21(2H, d, J= 18 Hz, CH=C); 10.12(2H, s, NH); 17.56(1H, s, enolic OH); Anal. Calcd. for 

C24H24N2O4: C, 76.56; H, 7.50, N, 8.50. Found: C, 76.08; H, 7.73; N, 8.83. 

 

4. Conclusions 

The synthesis of curcumin analogues could be accelerated by synthesis under ultrasonic radiation conditions. The 
reaction time by this method is only 20 min compared to about 3 h in the conventional reflux method. Concerning 
nanoparticles the presence of the phenolic OH groups in curcumin analogues may be essential for the synthesis. 
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