Computing Atom-Bond Connectivity (ABC_{4}) index for Circumcoronene Series of Benzenoid

Mohammad Reza Farahani
Department of Applied Mathematics, Iran University of Science and Technology (IUST),
Narmak, Tehran 16844, Iran
Mr_Farahani@Mathdep.iust.ac.ir

Abstract

Let $G=(V ; E)$ be a simple connected graph. The sets of vertices and edges of G are denoted by $V=V(G)$ and $E=E(G)$, respectively. In such a simple molecular graph, vertices represent atoms and edges represent bonds. The Atom-Bond Connectivity $(A B C)$ index is a topological index was defined as $A B C(G)=\sum_{w \in E(G)} \sqrt{\frac{d_{u}+d_{v}-2}{d_{u} d_{v}}}$, where d_{v} denotes degree of vertex v. In 2010, a new version of Atom-Bond Connectivity $\left(A B C_{4}\right)$ index was defined by M. Ghorbani et. al as $A B C_{4}(G)=\sum_{w v \in E(G)} \sqrt{\frac{S_{u}+S_{v}-2}{S_{u} S_{v}}}$, where $S_{u}=\sum_{v \in N_{G}(u)} d_{v}$ and $N_{G}(u)=\{v \in V(G) \mid u v E(G)\}$. The goal of this paper is to compute the ABC4 index for Circumcoronene Series of Benzenoid

Indexing terms/Keywords

Atom-Bond Connectivity $\left(A B C_{4}\right)$ index, Molecular Graph, Circumcoronene Series of Benzenoid.

SUBJECT CLASSIFICATION

E.g., Mathematics Subject Classification; 05C05, 05C12

Council for Innovative Research

Peer Review Research Publishing System
Journal: Journal of Advances in Chemistry
Vol 2, No. 1
editor@cirworld.com
www.cirworld.com, member.cirworld.com

INTRODUCTION

Let $G=(V ; E)$ be a simple molecular graph without directed and multiple edges and without loops, the vertex and edge sets of it are represented by $V=V(G)$ and $E=E(G)$, respectively. In chemical graphs, the vertices correspond to the atoms of the molecule, and the edges represent to the chemical bonds. Note that hydrogen atoms are often omitted. If e is an edge of G, connecting the vertices u and v, then we write $e=u v$ and say " u and v are adjacent". A connected graph is a graph such that there is a path between all pairs of vertices.

Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. Chemical graph theory is a branch of mathematical chemistry which applies graph theory to mathematical modeling of chemical phenomena [1-3]. This theory had an important effect on the development of the chemical sciences.
In mathematical chemistry, numbers encoding certain structural features of organic molecules and derived from the corresponding molecular graph, are called graph invariants or more commonly topological indices.
Among topological descriptors, connectivity indices are very important and they have a prominent role in chemistry. One of the best known and widely used is the connectivity index, introduced in 1975 by Milan Randić [4], who has shown this index to reflect molecular branching.
where d_{u} denotes G degree of vertex u.
One of the important classes of connectivity indices is atom-bond connectivity (ABC) index defined as [5]

$$
A B C_{\text {general }}(G)=\sum_{u v \in E(G)} \sqrt{\frac{Q_{u}+Q_{v}-2}{Q_{u} Q_{v}}}
$$

where Q_{v} is some quantity that in a unique manner can be associated with the vertex v of the graph G.
In 2009, Furtula et al. [6] introduced the first member of this class (atom-bond connectivity (ABC) index), by setting Q_{v} to be the degree of a vertex $v d_{v}$, which it has been applied up until now to study the stability of alkanes and the strain energy of cycloalkanes. This index is defined as follows:

$$
A B C_{1}(G)=\sum_{u v \in E(G)} \sqrt{\frac{d_{u}+d_{v}-2}{d_{u} d_{v}}}
$$

The second member of this class was considered by A. Graovac and M. Ghorbani [7], by setting Q_{u} to be n_{u} as follows:

$$
A B C_{2}(G)=\sum_{u v \in E(G)} \sqrt{\frac{n_{u}+n_{v}-2}{n_{u} n_{v}}}
$$

where n_{u} denotes the number of vertices of G whose distances to vertex u are smaller than those to other vertex v of the edge $e=u v\left(n_{u}=\{x \mid x \in V(G), d(u, x)<d(x, v)\}\right)$ and n_{v} is defined analogously.
The third members of this class was introduced by M.R. Farahani [8, 9], as follow:

$$
A B C_{3}(G)=\sum_{u v \in E(G)} \sqrt{\frac{m_{u}+m_{v}-2}{m_{u} m_{v}}}
$$

where m_{u} denotes the number of vertices of G whose distances to vertex u are smaller than those to other vertex v of the edge $e=u v\left(m_{u}=\{f \mid f \in E(G), d(u, f)<d(f, v)\}\right)$ and m_{v} is defined analogously.

In 2010, a new version of Atom-Bond Connectivity $\left(A B C_{4}\right)$ index was defined by M. Ghorbani et. al [10] as

$$
A B C_{4}(G)=\sum_{u v \in E(G)} \sqrt{\frac{S_{u}+S_{v}-2}{S_{u} S_{v}}}
$$

where S_{v} is the summation of degrees of all neighbors of vertex v in G. In other words, $S_{u}=\sum_{v \in N_{G}(u)} d_{v}$ and $N_{G}(u)=\{v \in V(G) \mid u v E(G)\}$.
The goal of this paper is to compute the fourth atom-bond connectivity index $A B C_{4}$ index for Circumcoronene Series of Benzenoid. Here our notation is standard and mainly taken from standard books of chemical graph theory [1-3].

Main Results and Discussions

The goal of this section is to computing the $A B C_{4}$ index for Circumcoronene Series of Benzenoid. The circumcoronene homologous series of benzenoid is family of molecular graph, which consist several copy of benzene C_{6} on circumference. The first terms of this series are $H_{1}=$ benzene, $H_{2}=$ coronene, $H_{3}=$ circumcoronene, $H_{4}=$ circumcircumcoronene, see Figure 1, where they are shown, also for more study and historical details of this benzenoid molecular graphs see the paper series [11-29].

Fig 1. The first three graphs H_{1}, H_{2}, H_{3} and general representation H_{k} of the circumcoronene series of benzenoid [16].

At frist, Consider the circumcoronene series of benzenoid H_{k} for all integer number $k \geq 1$ (Figure 1). From the structure of H_{k} (Figure 1), one can see that the number of vertices/atoms in this benzenoid molecular graph is equal to $\mid V\left(H_{k}\right) /=6 k^{2}$ and the number of edges/bonds is equal to $\left|E\left(H_{k}\right)\right|=\frac{3 \times 6 k k-1+2 \times 6 k}{2}=9 k^{2}-3 k$. Because, the number of vertices/atoms as degrees 2 and 3 are equal to $6 k$ and $6 k(k-1)$ and in circumcoronene series of benzenoid molecule, there are two partitions $V_{2}=\left\{v \in V(G) \mid d_{v}=2\right\}$ and $V_{3}=\left\{v \in V(G) \mid d_{v}=3\right\}$ of vertices. These partitions imply that there are three partitions E_{4}, E_{5} and E_{6} of edges set of molecule H_{k} with size $6,12(k-1)$ and $9 k^{2}-15 k+6$, respectively. Clearly, we mark the members of E_{4}, E_{5} and E_{6} by red, green and black color in Figure1.
From Figure 1, one can see that the summation of degrees of vertices of molecule benzenoid H_{k} are in four types, as follow:

- $\quad S_{v}=S_{u}=2+3=5$ for $u, v \in V_{2}$ and $u v \in E_{4}$
- $\quad S_{u}=d_{v}+d_{v}=6$ for $u \in V_{2,} v \in V_{3}$ and $u v \in E_{5}$
- $\quad S_{u}=d_{v}+d_{v}+3=7$ for $u \in V_{3,} v \in V_{2}$ and $u v \in E_{5}$
- $S_{u}=S_{v}=d_{v}+d_{u}+3=9$ for $u, v \in V_{3}$ and $u v \in E_{6}$

So, the fourth atom-bond connectivity index for circumcoronene series of benzenoid $H_{k}(\forall k \geq 1)$ will be

$$
\begin{aligned}
A B C_{4}\left(H_{k}\right) & =\sum_{u v \in E(G)} \sqrt{\frac{S_{u}+S_{v}-2}{S_{u} S_{v}}} \\
& =6 \sqrt{\frac{5+5-2}{5 \times 5}}+6 \sqrt{\frac{5+7-2}{5 \times 7}}+2 \times 6 k-2 \sqrt{\frac{6+7-2}{6 \times 7}}+6 k-1 \sqrt{\frac{7+9-2}{7 \times 9}}+\left|E \quad H_{k-1}\right| \sqrt{\frac{9+9-2}{9 \times 9}} \\
& =\frac{12 \sqrt{2}}{5}+\sqrt{30}+2 \sqrt{\frac{66}{7}} k-2+2 \sqrt{2} k-1+\frac{4}{3}\left(3 k^{2}-7 k+4\right)
\end{aligned}
$$

$$
=4 k^{2}+2\left(\sqrt{\frac{66}{7}}+\sqrt{2}-14\right) k+\left(\frac{2 \sqrt{2}}{5}+\sqrt{30}+16-4 \sqrt{\frac{66}{7}}\right)
$$

Finally, fourth atom-bond connectivity index for circumcoronene series of benzenoid H_{k} is

$$
A B C_{4}\left(H_{k}\right)=4 k^{2}-19.03038 k+9.76052 .
$$

REFERENCES

[1] D.B. West. An Introduction to Graph Theory. Prentice-Hall. (1996).
[2] N. Trinajstić. Chemical Graph Theory. CRC Press, Bo ca Raton, FL. (1992).
[3] R. Todeschini and V. Consonni. Handbook of Molecular Descriptors. Wiley, Weinheim. (2000).
[4] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97, 6609 (1975).
[5] E. Estrada, L. Torres, L. Rodriguez and I. Gutman, Indian J. Chem. 1998, 37A, 849-855.
[6] B. Furtula, A. Graovac and D. Vukičević, Atom-bond connectivity index of trees, Disc. Appl. Math. 157 (2009), 28282835.
[7] A. Graovac and M. Ghorbani. A New Version of Atom-Bond Connectivity Index. Acta Chim. Slov. 57, 609-612, (2010).
[8] M.R. Farahani. Computing a New Version of Atom-Bond Connectivity Index of Circumcoronene Series of Benzenoid H_{k} by Using Cut Method, J. Math. Nano Science, 2. 2012 (In press).
[9] M.R. Farahani. A New Version of Atom-Bond Connectivity Index of Circumcoronene Series of Benzenoid, Submitted for publication (2012).
[10] M. Ghorbani, M.A. Hosseinzadeh. Computing $A B C_{4}$ index of nanostar dendrimers, Optoelectron. Adv. Mater. - Rapid Commun. 4(9), (2010), 1419-1422.
[11] J. Brunvoll, B. N. Cyvin and S.J. Cyvin. Enumeration and Classification of Benzenoid Hydrocarbons. Symmetry and Regular Hexagonal Benzenoids. J. Chem. Inf. Comput. Sci. 27, 171-177. (1987).
[12] V. Chepoi and S. Klavžar. Distances in benzenoid systems: Further developments. Discrete Mathematics. 192, 27-39. (1998).
[13] J.R. Dias. From benzenoid hydrocarbons to fullerene carbons. MATCH Commun. Math. Comput. Chem. 4, 57-85. (1996).
[14] M.V. Diudea. Studia Univ. Babes-Bolyai. 4, 3-21. (2003).
[15] A. Dress and G. Brinkmann. Phantasmagorical fulleroids, MATCH Commun. Math. Comput. Chem. 33, 87-100. (1996).
[16] M.R. Farahani. Computing Randic, Geometric-Arithmetic and Atom-Bond Connectivity indices of Circumcoronene Series of Benzenoid. Int. J. Chem. Model. 5(4), In press (2013).
[17] M.R. Farahani. Using the Cut Method to Computing $G A_{3}$ of Circumcoronene Series of Benzenoid H_{k}. Int J Chem Model. 5(2) in press (2013).
[18] M.R. Farahani. Computing a New Connectivity Index for a Famous Molecular Graph of Benzenoid Family. Journal of Chemica Acta, 2, (2013) 26-31.
[19] M.R. Farahani and M.P. Vlad. On the Schultz, Modified Schultz and Hosoya polynomials and Derived Indices of Capra-designed planar Benzenoids. Studia Univ. Babes-Bolyai. 57(4) In press, (2012).
[20] M.R. Farahani. On the Schultz polynomial, Modified Schultz polynomial, Hosoya polynomial and Wiener index of circumcoronene series of benzenoid, J. Applied Mathe. \& Informatics. 31(3) in press, (2013).
[21] M.R. Farahani. Zagreb index, Zagreb Polynomial of Circumcoronene Series of Benzenoid. Advances in Materials and Corrosion. 2 (2013) 16-19.
[22] M. Goldberg. A class of multi-symmetric polyhedra. Tohoku Math. J. 43, 104-108. (1937).
[23] A. Ilic, S. Klavžar and D. Stevanovic. Calculating the Degree Distance of Partial Hamming Graphs. MATCH Commun. Math. Comput. Chem. 63, 411-424, (2010).
[24] S. Klavžar and I. Gutman. Bounds for The Schultz Molecular Topological Index of benzenoid Systems in Terms of Wiener Index. J. Chem. Inf. Comput. Sci. 37, (4), 741-744. (1997).
[25] S. Klavžar. A Bird's Eye View of The Cut Method and a Survey of Its Applications in Chemical Graph Theory. MATCH Commun. Math. Comput. Chem. 60, 255-274. (2008).
[26] S. Klavžar, I. Gutman and B. Mohar. Labeling of Benzenoid Systems which Reflects the Vertex-Distance Relations. J. Chem. Inf. Comput. Sci. 35, 590-593. (1995).
[27] S. Klavžar and I. Gutman. A Comparison of the Schultz Molecular Topological Index with the Wiener Index. J. Chem. Inf. Comput. Sci. 36, 1001-1003. (1996).
[28] K. Salem, S. Klavžar and I. Gutman. On the role of hypercubes in the resonance graphs of benzenoid graphs. Discrete Mathematics. 13(8) 306, (2003).
[29] A. Soncini, E. Steiner, P.W. Fowler, R.W.A. Havenith, and L.W. Jenneskens. Perimeter Effects on Ring Currents in Polycyclic Aromatic Hydrocarbons, Circumcoronene and Two Hexabenzocoronenes. Chem. Eur. J. 9, 2974-2981. (2003).

