

AN EFFICIENT SYNTHESIS OF GEM-DIHYDROPEROXIDES AND 1,2,4,5-TETRAOXANES CATALYZED BYCHLOROSULFONIC ACIDAS A NEW CATALYST

Kaveh Khosravi* Atefeh Asgari

Department of Chemistry, Faculty of science, Arak University, Arak 38156-8-8349, Iran

khosravi.kaveh@gmail.com and k-khosravi@araku.ac.ir

*Corresponding author: E-mail: k-khosravi@araku.ac.ir; Tel: +9808632777400 - 4

ABSTRACT

Chlorosulfonic acid was used as an active, low-cost and reusable solid catalyst for conversion of ketones and aldehydes to corresponding gem-dihydroperoxides using 30% aqueous hydrogen peroxide at room temperature. The reactions proceed with high rates and excellent yields.

Keywords

Gem-dihydroperoxide; Aldehyde; Ketones; Chlorosulfonic acid; Hydrogen peroxide.

Academic Discipline And Sub-Disciplines

Organic chemistry

SUBJECT CLASSIFICATION

Synthetic Organic Chemistry

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Chemistry

Vol. 11, No. 3 editorjaconline@gmail.com www.cirjac.com

1. INTRODUCTION

Gem-dihydroperoxides (DHPs) which are interested closely durable peroxidic derivatives of ketones and aldehydes, have important roles in synthesis of peroxidic antimalarial drugs [1, 2, 3]. Furthermore, gem-dihydroperoxides are critical fundamental intermediates in synthesis of some categories of peroxides as well as tetraoxanes [4-6], silateraoxans [7], spirobisperoxyketals [8,9], bisperoxyketals [10], and 1,2,4,5- tetraoxacycloalkanes [11,12]. Also, similar to other peroxides such as 3-chloropebenzoic acid, gem-dihydroperoxides have been utilized as the initiators in radical polymerization procedures [13]. Additionally, newly, these compounds have been employed as the powerful oxidants in several organic reactions such as epoxidation of α,β-unsaturated ketones [14,15,] oxidation of sulfides [16-17], oxidation of alcohols [18], enantios elective oxidation of 2-substituted-1,4-naphtoquinones [19] oxidative aromatization of 2-pyrazolines and isoxazolines [20] and some similar reactions [21]. Normally, there are two reported methods for synthesis of gemdihydroperoxides: (I) reaction of ketals with H2O2 in the presence of tungstic acid [22], or BF3.Et2O [23], (II) ozonolysis of ketone enol ethers or α-olefines in the presence of aqueous H2O2 [11, 24]. Unfortunately, these methods clearly suffer from notable drawbacks inluding needing for concentrated H₂O₂ and surplus acid, minimal substrate range and formation a mix of peroxidic products, low yield, long reaction time and strong reaction condition [25]. Moreover, little selectivity and drawbacks from existence of ozone sensitive functional groups in the substrates are additional deficiencies in ozonolysis reaction. As a result, to eliminate these disadvantages, lately, in modified method, gem-dihydroperoxides have been synthesized via peroxidation of aldehydes and ketones by aqueous H2O2 in the presence of molecular iodine as the catalyst. [26,27] currently, some Lewis or Bronsted acids, including ceric ammonium nitrate (CAN) [28], camphor sulfuric acid (CSA) [29], NaHSO4.SiO2 [30], Re2O7 [31], Bismuth (III) triflate [32] and PMA [33] have been utilized as the catalysts for synthesis of these compounds. As the importance of gem-dihydroperoxides and also 1,2,4,5-tetraoxanes that are key precursors in synthesis of anti-malaria drugs, in duration of our efforts to adapt this methodology and apply novel and more appropriate catalysts, [34], herein, we wish to report using Chlorosulfonic acid as an effective catalyst (Scheme 1) for synthesis of gem-dihydroperoxides from ketones and aldehydes with 30% aqueous H₂O₂ at room temperature. Besides, we successfully used Chlorosulfonic acid for catalyzing facile synthesis of 1,2,4,5-tetraoxanes from direct condensation of obtained gem-dihydroperoxides with different ketones (scheme 2)

Chlorosulfuric acid is commercially available acid that has been used as a proper catalyst in several chemical reactions [35].

2. EXPERIMENTAL

2.1 Material and instruments

Solvents, reagents, and chemical materials were obtained from Aldrich and Merck chemical companies and purified prior to use. Nuclear magnetic resonance spectra were recorded on JEOL FX 90Q using tetramethylsilane (TMS) as an internal standard. Infrared spectra were recorded on a PerkinElmer GX FT IR spectrometer (KBr pellets).

Caution: Although we did not encounter any problem with gem-dihydroperoxides, peroxides are potentially explosive and should be handled with precautions; all reactions should be carried out behind a safety shield inside a fume hood and heating should be avoided.

2.2 General procedure for synthesis of gem-dihyroperoxides: To a mixture of carbonyl compound (1 mmol) and CISA (0.0066 mI, 0.1mmol) in MeCN (3 mI) 30% aqueous H_2O_2 (1 mI) was added, and the mixture was stirred at room temperature for an appropriate time (Tables 2,3 and 4). After completion of reaction as monitored by thin-layer chromatography (TLC), the mixture was diluted with water (5 mI) and extracted by ethyl acetate (3x5 mI). Aqueous layer which contains SA and organic layer that contains products, was separated, dried over anhydrous Mg₂SO₄, and

evaporated under reduced pressure. The residue was purified by silica-packed column chromatography (hexane–EtOAc) to afford pure gem-dihydroperoxides (Tables 2,3 and 4). Products were characterized on the basis of their melting points, elemental analysis and IR, ¹H NMR, and ¹³C NMR spectral analysis and amount of peroxide in products has been determined by iodometric titration.

2.3 General procedure for synthesis of teraoxanes: To a mixture of ketone (1 mmol) and CISA (0.0066 ml, 0.1 mmol) in MeCN (3 ml) gem-dihydroperoxide (1 mmol) was added and the mixture was stirred at room temperature for an appropriate time (Tables 5). After the completion of the reaction as monitored by thin-layer chromatography (TLC), the mixture was diluted with water (5 ml) and extracted with CH_2Cl_2 (3×5 ml). Then, aqueous layer and organic layer was separated, dried over anhydrous Mg₂SO₄ and evaporated under reduced pressure. The residue was purified by silica-packed column chromatography (hexane–EtOAc) to afford pure 1,2,4,5-tetraoxanes (Tables 5). Products were characterized on the basis of their melting points, elemental analysis and IR, ¹H NMR, and ¹³C NMR spectral analysis.

The characteristic data for new products are given below.

4-(dihydroperoxymethyl)-N,N-dimethylaniline (table 4, entry 3k): Sticky brown oil. IR vmax /cm⁻¹ (nujol mull): 3400, 3092, 1592, 1425, 1363, 1221, 1111, 979; ¹H NMR (CDCI₃, 90 MHz): δ 10.47 (br, s, 2H, OOH), 7.32-8.17 (m, 4 H), 6.28 (s, 1H), 3.00, (s, 6H); ¹³C NMR (DMSO-d₆, 22.5 MHz), δ : 143.4, 138.0, 130.5, 127.7, 101.0, 38.5; Anal. Calcd for C₉H₁₃NO₄: C, 54.26; H, 6.58 % Found: C, 54.44; H, 6.83 %.

2-(1,1-dihydroperoxyethyl)thiophene (table 4, entry 3m): White solid, m.p.: 98-101 °C. IR vmax /cm⁻¹ (KBr pellet): 3420, 2922, 2829, 1635, 1558, 1458, 1363, 1271, 987, 721, 599, 435, 353; ¹H NMR (CDCI₃, 90 MHz): δ 8.21 (br, s, 2 H,OOH), 7.20-7.90 (m, 3 H), 2.55 (s, 3H); ¹³C NMR (DMSO-d₆, 22.5 MHz): δ 142.7, 130.0, 129.3, 126.7, 100.4, 31.5; Anal. Calcd for C₆H₈O₄S: C, 40.90; H, 4.58; S, 18.20% Found: C, 41.18; H, 4.60, S, 19.12%

1,4-bis(dihydroperoxymethyl)benzene (table 4, entry 3j): White solid, m.p: 210-212 °C. IR vmax /cm⁻¹ (KBr pellet): 3338, 3085, 1687, 1611, 1580, 1416, 1387, 1248, 1088, 989, 833, 826, 641; ¹H NMR (CDCl₃, 90 MHz): δ 9.8-9.9 (br, s, 4 H, OOH), 7.32-7.91 (m, 4 H),(2H), 5.78 (s, 1H); ¹³C NMR (DMSO-d₆, 22.5 MHz): δ 137.4, 131.9, 131.4, 113.9; Anal. Calcd for C₈H₁₀O₈: C, 41.03; H, 4.30%; Found: C, 42.06; H, 4.25%

7,8,15,16-Tetraoxa-dispiro[5.2.5.2]hexadecane (4a): White solid; m.p: 70-72 °C.; IR vmax /cm⁻¹ (KBr pellet): 3338, 3085, 2920, 1697, 1612, 1579, 1419, 1319, 1275, 1203, 1014, 972, 835, 808, 621; ¹H NMR (CDCl₃, 90 MHz): δ 1.26-2.29 (m, 20H); ¹³C NMR (DMSO-d₆, 22.5 MHz): δ 108.5, 30.1, 25.8, 22.3; Anal. Calcd for C₁₂H₂₀O₄: C, 63.14; H, 8.83%; Found: C, 62.76; H,8.95%

3-Methyl-7,8,15,16-tetraoxa-dispiro[5.2.5.2]hexadecane (4b): White solid; m.p: 86-88 $^{\circ}$ C; IR vmax /cm⁻¹ (KBr pellet): 3338, 3085, 2920, 1697, 1612, 1579, 1419, 1319, 1275, 1203, 1014, 972, 835, 808, 621; ¹H NMR (CDCl₃, 90 MHz): δ 3.3 (s, 1H), 1.24-2.34 (m, 18H), 0.94 (d, 3H); ¹³C NMR (DMSO-d₆, 22.5 MHz): δ 108.38, 108.33, 35.1, 32.2, 32.0, 31.6, 26.0, 25.0, 24.1, 21.8; Anal. Calcd for C₁₃H₂₂O₄: C, 64.44; H, 9.15%; Found: C, 65.00; H,8.69%.

3,3'-di-Methyl-7,8,15,16-tetraoxa-dispiro[5.2.5.2]hexadecane (4d): White solid; m.p: 153-155 °C; IR vmax /cm⁻¹ (KBr pellet): 3338, 3085, 2920, 1697, 1612, 1579, 1419, 1319, 1275, 1203, 1014, 972, 835, 808, 621; ¹H NMR (CDCl₃, 90 MHz) δ : 3.32 (s, 2H), 1.22-1.60 (m, 16H), 0.90 (d, 6H); ¹³C NMR (DMSO-d₆, 22.5 MHz): δ 108.3, 32.0, 31.7, 30.5, 21.5; Anal. Calcd for C₁₄H₂₄O₄: C, 65.60; H, 9.44%; Found: C, 66.05; H, 9.13%

3-(4-chlorophenyl)-1,2,4,5-tetraoxaspiro[5.5]undecane (4j): White solid; m.p: 98-100 $^{\circ}$ C; IR vmax /cm⁻¹ (KBr pellet): 3338, 3085, 2920, 1697, 1612, 1579, 1419, 1319, 1275, 1203, 1014, 972, 835, 808, 621; ¹H NMR ¹H NMR (CDCI₃, 90 MHz) δ : 7.30-7.52 (m, 4H), 6.81 (s, 1H), 1.70-2.60 (m, 8H); ¹³C NMR (DMSO-d₆, 22.5 MHz): δ 137.8, 130.5, 129.6, 129.5, 109.52, 107.6, 32.4, 32.2, 30.7, 22.8, 22.5; Anal. Calcd for C₁₃H₁₅ClO₄: C, 57.68; H, 5.59%; Found: C, 58.12; H, 5.31%

9-methyl-3-phenyl-1,2,4,5-tetraoxaspiro[5.5]undecane (4n): White solid; m.p: 101-103 °C; ; IR vmax /cm⁻¹ (KBr pellet): 3338, 3085, 2920, 1697, 1612, 1579, 1419, 1319, 1275, 1203, 1014, 972, 835, 808, 621; ¹H NMR (CDCl₃, 90 MHz) δ : 7.40-7.55 (m, 5H), 6.80 (s, 1H), 3.21-3.34 (m, 1H), 0.99-1.98 (m, 13H); ¹³C NMR (DMSO-d₆, 22.5 MHz): δ 132.0, 131.3, 129.1, 128.0, 109.2, 108.2, 32.5, 31.8, 30.9, 30.5, 29.9, 21.8; Anal. Calcd for C₁₄H₁₈O₄: C, 67.18; H, 7.25%; Found: C, 69.21; H, 7.03%

3-phenyl-1,2,4,5-tetraoxaspiro[5.5]undecane (4o): White solid; m.p: 78-80 °C; IR vmax /cm-1 (KBr pellet): 3338, 3085, 2920, 1697, 1612, 1579, 1419, 1319, 1275, 1203, 1014, 972, 835, 808, 621; ¹H NMR (CDCl₃, 90 MHz) δ : 7.40 -7.56 (m, 5H), 6.69 (s, 1H), 2.65-2.85 (m, 2H), 1.70-1.92 (m, 8H); ¹³C NMR (DMSO-d₆, 22.5 MHz): δ 131.9, 131.5, 129.1, 127.8, 109.1, 108.2, 32.0, 30.1, 25.9, 22.5, 22.0; Anal. Calcd for C₁₃H₁₆O₄: C, 66.09; H, 6.83%; Found: C, 65.78; H, 6.90%.

8-phenyl-6,7,9,10-tetraoxaspiro[4.5]decane (4p): White solid; m.p: 73-75 °C; IR vmax /cm⁻¹ (KBr pellet): 3338, 3085, 2920, 1697, 1612, 1579, 1419, 1319, 1275, 1203, 1014, 972, 835, 808, 621; ¹H NMR (CDCl₃, 90 MHz) δ: 7.38-7.44 (m, 5H), 6.80 (s, 1H),1.80-2.10 (m, 8H); ¹³C NMR (DMSO-d₆, 22.5 MHz): δ 132.0, 131.3, 129.0, 127.9, 114.5, 108.0, 35.5, 35.0, 25.5, 24.0; Anal. Calcd for C₁₂H₁₄O₄: C, 64.85; H, 6.35%; Found: C, 64.15; H, 6.77%

3. RESULTS AND DISCUSSION

In an effort to establish the reaction conditions, various reaction parameters were studied to produce 1,1dihydroperoxycyclohexane by the model reaction of cyclohexanone with 30 % aqueous H_2O_2 under catalytic effect of CISA, so the results are summarized in Table 1. As we have seen in this Table, the best result in terms of yield and

reaction time was provided using MeCN as a solvent at room temperature with 0.1 mmol of catalyst loading (entry 6, table 1).

Table 1. Screening the reaction parameters for the formation of 1,1- dihydroperoxycyclohexane ^a							
O H ₂ O ₂ (30%) Chlorosulfonic acid (cat)							
Entry	Solvent	CSA (mol%)	Time (min)	Yield [®] (%)			
1	Et ₂ O	0.1	25	70			
2	EtOAc	0.1	20	83			
3	CH ₂ Cl ₂	0.1	50	35			
4	CHCI ₃	0.1	50	45			
5	CCI ₄	0.1	65	40			
6	CH₃CN	0.1	9	98			
7	CH ₃ CN	0.08	15	92			
8	CH₃CN	0.05	28	68			
9	CH ₃ CN	0.15	8	90			
10	CH₃CN	0.2	8	70			
^a Conditiones: cyclohexanone (1 mmol), 30 % aqueous H ₂ O ₂ (1 ml), solvent (3 ml), room temperature.							

With optimized conditions in hand (aldehyde or ketones (1 mmol), aqueous 30% H₂O₂ (3 ml), 0.1 mmol catalyst, MeCN (3 ml, r.t)) we began to study the scope of the reaction using a range of cyclic aliphatic ketones (Table 2), side chain aliphatic aldehydes and ketones (Table 3) and aromatic aldehydes and ketones (Table 4). According to results summarized in these tables, generally, both cyclic and side chain aliphatic ketones react faster than the aromatic ketones because of the conjugating of carbonyl group with aromatic ring to afford the corresponding gem-dihydroperoxides comparatively in higher yields. This conjugating cause that benzophenone recovered intact after 200 minutes. For cyclic ketones, cyclohexanone reacts faster than cyclopentanone in higher yield (table 2, entries 1a and 1d). Also, interestingly, the aromatic aldehydes and ketones substituted by electron-withdrawing substituent didn't react at all or they reacted in very long time with nearly low yields. It has been explained by Katja Zmitek and Co-workers [28]. They reported that the transition state for this reaction has positive charge on carbonyl group. So, this reaction has high negative reaction constant (p= -2.76) that suggests a transition state with a more developed charge in the rate-determining step [28]. For example, we observed that 4-N,N-dimethylamino bebzaldehyde reacts faster than 4-chlorobenzaldehyde (table 4, entry 3k). On the other hands, 4-nitro benzaldehyde converted very slowly to gem-dihydroperoxide in very low conversion (13%) and decomposed after 0.5 hour because of the powerful electron-withdrawing effect of NO₂ group, (table 4, entry 3i). summing up, we suggest that Chlorosulfonic acid activates both carbonyl group and hydrogen peroxide. In fact, chlorosulfonic acid is a powerful acid, so generates H+ which activates the carbonyl group. On the other hands, the chlorine atom in chlorosulfonic acid is a powerful; electronegative atom, consequently it causes hydrogen peroxide (or gem-dihydroperoxide) more nucleophile via hydrogen bonding (scheme 3).

	Tabl	e 2. Peroxidation of	of different cycli	c ketones					
Entry	Ketone	Product ^⁰	Time (min)	Yield (%) ^c	Mp (°C)	Ref			
1a	○ =0	Оон	9	98	oil	34b			
1b	√ =∘	боон	13	91	oil	28			
1c		-С соон	11	95	oil	28			
1d	\bigcirc	С С оон	10	92	oil	34b			
1e) =0	Осон	20	90	64-66	26			
1f	\bigcirc -	Оон	14	94	oil	8			
1e	Cr (С С С С С С С С С С С С С С С С С С С	25	85	138-140 (decomposed)	26			
1h	4Qeo	A COH	14	95	148-150	26			
^a Conditions	^a Conditions: ketone and aldehyde (1 mmol), CH ₃ CN (3 ml), CISA (0.1 mmol), 30% aq. H ₂ O ₂ (1 ml), reactions are carried out at rt.								
^b The str ¹³ C NMR is determ	^b The structures of the products were established from their physical properties and spectral (¹ H NMR, ¹³ C NMR and IR) analysis and compared with the data reported in the literature and amount the peroxide is determined by lodometric titration								

^c Isolated Yield.

	Table 3 Peroxidation of side chain aliphatic ketones and aldehydes								
Entry	Ketone	Product [∞]	Time (min)	Yield (%) ^c	Mp (°C)	Ref			
2a	$\overset{\circ}{\prec} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	HOO OOH	10	94	oil	34b			
2b	<u>ال</u>	HOO OOH	12	93	oil	28			
2c	$\overset{\circ}{\searrow} \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \land \\ \land \\ \land \\ \land \\ \land$	ноо	12	91	31-33	26			
2d	\sim	ноо оон	16	90	oil	26			
2e	Ĵ,	HOO OOH	21	76	oil	26			
2f	, ,	HOO OOH	10	95	oil	36			
2g	ů,	HOO OOH	9	96	oil	34b			
2h	~~~ ⁰ H	но оон	50	92	oil	34b			
2i		HO OOH	45	97	oil	34b			
^a Conditi	ons: ketone and aldeh	yde (1 mmol), CH ₃ CN (3 m	nl), CISA (0.1	mmol), 30%	aq. H_2O_2 (1 ml),			

Conditions: ketone reactions are carried out at rt.

^b The structures of the products were established from their physical properties and spectral (¹H NMR, ¹³C NMR and IR) analysis and compared with the data reported in the literature and amount the peroxide is determined by lodometric titration.

^c Isolated Yield.

Table 4 Peroxidation of aromatic ketones and aldehydes									
Entry	Ketone	Product	Time (min)	Yield (%) ^c	Mp (°C)	Ref			
3a	Â	HOO OOH	93	75	75-77	34b			
	\bigcirc	\bigcirc							
3b	Q Q	ноо оон	80	60	oil	34b			
		\bigwedge							
	MeO	MeO							
3c		HOO OOH	78	55	oil	34b			
24	dr ❤	100 001	76	60	oil	246			
30	~Ľ	HOO OOH	70	60	OII	340			
3e	CHO	OOH	40	82	oil	34b			
	\lor	OOH							
3f	Сно	- OOH	38	86	54-56	34b			
1.1		У роон							
3g	сі-Сно	CI-COH	45	82	72-74	34b			
		Ноо Г				0.41			
3h	МеО-СНО	Meo-C-C-COOH	39	91	OII	34b			
3i	03N-СНО	O-N OOH	170	13	decompose	28			
		Ноо \	19		u .				
3j	онс-С-р-сно	HOO CH CH-CH OOH	340	91	210-212	new			
3k		HOO	31	70	Sticky oil	new			
	л сно	N-CH OOH	11						
31	°¥	HOO	48	93	oil	34b			
				15					
					-				
3m	\square	Q.	52	88	98-102	new			
	's T	ноо оон							
3n	0 0		200						
		_		_	_	_			
^a Cond	l itions: ketone and alde	ehyde (1 mmol), CH₃C	N (3ml), CISA	(0.1mmol), 3	1 30% aq. H ₂ O ₂	(1 mL),			
	reactions are carried out at rt.								
NMR a determi	nd IR) analysis and cor ined by lodometric titration	npared with the data re	ported in the li	terature and a	amount the per	oxide is			
^c Isolate	^c Isolated Yield.								

Moreover, It is interesting that aliphatic aldehydes react with only one molecule of hydrogen peroxide in carbonyl group, so 1,1- hydroxyhydroperoxide derivatives were formed instead of their expected DHPs (table 3, entries 2h and 2i, scheme 4).

Scheme 4. peroxidation of aliphatic aldehydes

For the first time, terephthalaldehyde was reacted as a dialdehyde and we observed that both of the aldehyde groups has been converted to gem-dihydroeperoxide after 360 minutes (table 3, entry 3j). In addition, we have successfully converted 2-methyltheilnyl ketone as a heterocyclic ketone to corresponding gem-dihydroperoxide without any by-product (table 3, entry 3m). Like other our reported works, benzophenone was recovered intact after 200 minutes (table 3, entry 3n).

In the next step, we used some of the synthesized gem-dihydroperoxides as nucleophiles. These gem-dihydroperoxides reacted with ketones and variety of 1,2,3,4-tetraoxanes were produced. (Scheme 2, table 5). Reaction's condition is similar to synthesis of gem-dihydroperoxides condition.

Table 5. Synthesis of tetraoxanes using of gem-dihydroperoxides									
Entry ^a	gem-dihydroperoxide	ketone	Product ^o	Time (min)	Yield (%) ^c	Mp (oC)	Ref		
4a	Сурон	$\bigcirc = 0$		9	88	70-72	new		
4b	ООН	- O =•		7	89	86-88	new		
4c	СХоон	1-Bu-		6	90	102-104	36		
4d	-СХоон	- > =•		5	90	153-155	new		
4e	t-Bu-	t-Bu	1-Ви	5	92	191-193	36		
4f	COOH OOH	$\bigcirc =$		8	84	58-62	36		
4g	C COOH	1-Bu		7	82	131-133	36		
4h	COOH OOH	\bigcirc	10°-10	6	85	Oil	36		
4i	сі-С-Коон	₹Q°°	a-CHC-D	16	70	73-75	36		
4j	с — Соон			11	82	98-100	new		
4k	сі-С-Соон	1-Bu -		9	80	114-116	36		
41	СНоон	ь-Ви- С		10	84	122-124	36		
4n	ООН		$\bigcirc + \vdots \\ \bigcirc - : \\ \bigcirc - $	11	86	101-103	new		
40	СНоон		\sim	12	86	78-80	new		
4р	СНоон	\supset		14	85	73-75	new		

4q	СНООН	<i>₽</i> °		15	72	61-63	36
^a conditio	on: gem-dihydroperoxide (*	1 mmol), keto	ne (1 mmol), MeCN (3 m	I), CISA (0.1mr	nol), reactic	ons are ca	rried out at
rt.	0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,				,.		
^b The str	uctures of the products we	ere establishe	d from their physical prop	erties and spe	ctral (¹ H NM	1R, ¹³ C N N	(IR and IR)
analysis	and compared with the d	ata reported	in the literature and amo	ount the peroxi	de is deterr	nined by	lodometri c
titration.							
^c Isolated	d Yield.						

Finally, this method for peroxidation of cyclohexanone (entry 1a, table 2) is compared with other reported methodologies in the table 6. As has been noted, this methodology is clearly better which really improves the time reaction, yields and reaction condition.

	Table 6. Co	omparing reporte	d results for peroxidation of cycloh	exanone		
Entry	Catalyst	Condition	Concetration of H ₂ O ₂	Time (min)	Yield (%)	Ref
1	This method (CISA)	r.t		11	98	-
2	Silica sulfuric acid	r.t		20	98	34b
3	Bi(OTf)₃	r. t		18	78	32
4	phosphomolybdic acid	r. t		150	95	33
5	Re ₂ O ₇	r. t		30	79	31
6	CAN reagent	r.t		120	87	28
7	NaHSO ₄ ·SiO ₂	r.t		20	98	30

CONCLUSIONS

In conclusion, chlorosulfonic acid was explored as a high active, commercially available and simple catalyst towards the conversion of ketones and aldehydes to corresponding gem-dihydroperoxides. These reactions proceeded smoothly with low reactions time at room temperature to furnish the titled products in high to excellent yields. Chlorosulfonic acid catalyst exhibited a high reusability potential and has shown no significant loss of activity after three consecutive runs (entry 1, Table 2). This catalyst makes the process affordable and economical.

ACKNOWLEDGEMENT

We thank Arak University for financial support this work.

REFERENCES

- [1] Zmitek, K.; Zupan, M.; Iskra, J. Org. Biomol. Chem. 2007, 5, 3895.
- [2] Iskra, J.; Bonnet-Delpon, D.; Begue, J. P. Tetrahedron Lett., 2003, 44, 6309.
- [3] Tang, Y. Q.; Dong, Y. X.; Vennerstrom, J. L. Med. Res. Rev., 2004, 24, 425.
- [4] Dong, Y.; Mini-Re, V. Med. Chem., 2002, 2, 113.
- [5] Terent'ev, A. O.; Kutkin, A. V.; Starikova, Z. A.; Antipin, M. Y.; Ogibin, Y. N.; Nikishina, G. I. Synthesis, 2004, 2356.
- [6] Amewu, R.; Stachulski, A. V.; Ward, S. A.; Berry, N. G.; Bray, P. G.; Davies, J.; Labat, G.; Vivas, L.; O'Neill, P. M. Org. Biomol. Chem., 2006, 4, 4431.
- [7] Terent'ev, A. O.; Platonov, M. M.; Tursina, A. I.; Chernyshev, V. V.; Nikishin, G. I. J. Org. Chem., 2008, 73, 3169.
- [8] Ghorai, P.; Dussault, P. H.; Hu, C. Org. Lett., 2008, 10, 2401.
- [9] Zhang, Q.; Li, Y.; Wu, Y.-K. Chin. J. Chem., 2007, 25, 1304.
- [10] Y Hamada, Y.; Tokuhara, H.; Masuyama, A.; Nojima, M.; Kim, H. S.; Ono, K.; Ogura, N.; Wataya, Y. J. Med. Chem., 2002, 45, 1374.

- [11] Kim, H-S.; Nagai, Y.; Ono, K.; Begum, K.; Wataya, Y.; Hamada, Y.; Tsuchiya, K.; Masuyama, A.; Nojima, M.; McCullough, K. J. J. Med. Chem., 2001, 44, 2357.
- [12] Masuyama, A.; Wu, J.-M.; Nojima, M.; Kim, H.-S.; Wataya, Y. Mini-Re, V. Med. Chem., 2005, 5, 1035.
- [13] Hansma, H.; Schroeder, A. AKZO N. V. Belg. Patent 868,681, 1978; Chem. Abstr. 1979, 90, 153037a.
- [14] Jakka, K.; Liu, J.; Zhao, C. G. Tetrahedron Lett., 2007, 48, 1395.
- [15] Aarifar, D.; Khosravi, K.; Synlett, 2010, 2755.
- [16] Azarifar, D.; Khosravi, K.; *Eur. J. Chem* 1., **2010**, 1, 15.
- [17] Selvam, J. P.; Suresh, V.; Rajesh, K.; Chanti Babu, D.; Suryakiran, N.; Venkateswarlu, Y.; Tetrahedron Lett., 2008, 49, 3463.
- [18] Azarifar, D.; Khosravi, K.; Najminejad, Z. J. Iran. Chem. Soc. 2013, 10, 979.
- [19] Bunge, A.; Hamann, H-J.; McCalmont, E.; Liebscher, J. Tetrahedron Lett., 2009, 50, 4629.
- [20] Khosravi, K. Res. Chem. Intermed., 2015, in press, DOI: DOI 10.1007/s11164-014-1626-5.
- [21] (a) Azarifar, D.; Golbaghi, M.; Pirveisian, P.; Najminejad, Z. J. Advanc. Chem., 2014, 10, 3088. (b) Azarifar, D.; Khatami, S.M.; Najminejad, Z. J. Iran. Chem. Soc. 2014, 11, 587. (c) Azarifar, D.; Khosravi, K.; Najminejad, Z.; Soleimani, K. Heterocycles 2010, 81, 2855.
- [22] Jefford, C. W.; Li, W.; Jaber, A.; Boukouvalas, J. Synth. Commun., 1990, 20, 2589.
- [23] Terent'ev, A. O.; Kutkin, A. V.; Troizky, N. A.; Ogibin, Y. N.; Nikishin, G. I. Synthesis, 2005, 2215.
- [24] Ito, T.; Tokuyasu, T.; Masuyama, A.; Nojima, M.; McCullough, K. J. Tetrahedron, 2003, 59, 525.
- [25] Kharasch, M. S.; Sosnovsky, G. J. Org. Chem., 1958, 23, 1322.
- [26] Zmitek, K.; Zupan, K.; Stavber, S.; Iskra, J. J. Org. Chem., 2007, 72, 6534
- [27] Zmitek, K.; Zupan, K.; Stavber, S.; Iskra, J. Org. Lett., 2006, 8, 2491.
- [28] Das, B.; Veeranjaneyulu, B.; Krishnaiah, M.; Veeranjaneyulu, B.; Ravikanth, B. Tetrahedron Lett., 2007, 48, 6286.
- [29] Bunge, A.; Hamann, H. –J.; Liebscher, J. Tetrahedron Lett., 2009, 50, 524.
- [30] Das, B.; Veeranjaneyulu, B.; Krishnaiah, M.; Balasubramanyam, P. J. Mol Catal A: Chem., 2008, 284, 116.
- [31] Ghorai, P.; Dussault, P. H. Org. Lett., 2008, 10, 4577.
- [32] Sashidhara, K.V.; Avula, S. R.; Singh, L. R.; Palnati, G. R. Tetrahedron Lett., 2012, 53, 4880.
- [33] Li, Y.; Hao, H. -D.; Zhang, Q.; Wu, Y. Org. Lett., 2009, 11, 1615.
- [34] (a) Azarifar, D.; Khosravi, K.; Soleimanei, F. Synthesis, **2009**, 2553. (b) Azarifar, D.; Najminejad, Z.; Khosravi, K. *Synth. Comm.* **2013**, 43, 826.
- [35] (a) Shirini, F.; Mamaghani, M.; Atghia, S. V. Journal Of Nanostructure in Chemistry, 2012, 3, 2. (b) Jagtap, P. G.; Chen, Zh.; Southan, G. J. Tetrahedron Lett., 2009, 50, 2057.
- [36] Ghorai, P.; Dussault, P. H. Org. Lett., 2009, 11, 213.