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ABSTRACT 

The work considers the multiprocessors technologies of modeling for Monte 

Carlo tasks. It is shown that only application of the modern super productive 

systems permitted the new way to realize the mechanism of corresponding 

partitioned computations. The calculating schemes that supply to provide the 

increase of productivity and calculations' speed effectiveness are shown. In 
this article the modified algorithm of parallel calculations is offered based on 

the Monte Carlo method. Here every calculator has its own random 

generator of numbers. Thus intermediate calculations come true 

independently on the different, separately taken blades of cluster, 

"calculators". The results are already processed on some separately taken 

master -blades ("analyzer"). This allows to get rid from the necessary 

presence of router-communicator between the random generator of numbers 

and "calculator". Obviously, that such decision allows to accelerate the 

process of calculations. It is shown that the parallel algorithms of the Monte 

Carlo method are stable to any input data and have the maximal parallel 

form and, thus, minimal possible time of realization using the parallel 

computing devices. If it is possible to appoint one processor to one knot of 
calculation. Thus the realization of calculations becomes possible in all knots 

of net area in parallel and simultaneously. 
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Introduction. Among the variety of calculating methods in the modern mathematical 

solutions it is possible to put attention on the methods such as Monte Carlo [1 - 4]. This name unites 

the group of the calculative methods based on receiving the great amount of the stochastic process 
realizations. This process demands that its probability could correlate with the analogical values of the 

solved problem. Monte Carlo methods are widely used in areas of physics, mathematics, economics, 

optimization, management etc. The national works based on the Monte Carlo methods appeared in 
1955-1956. Since that time a lot of the scientific works describing the above mentioned method were 

written [5 – 10]. Even the superficial glance shows the efficiency of the Monte Carlo method for 

solving of applied tasks in the different science and techniques areas. Thus now these methods are 
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applied for solving for some classes of the differential equations in the partial derivatives, integral 

equations, problems of the eigen-values and linear algebraic equations. The important feature of the 

Monte Carlo method is its experimental characteristics. We will call this name the procedure including 

the use of ways of statistic sampling for the approximate solving of the mathematical and physics 
problems. 

Among all methods the Monte Carlo had and has the influence on the development of the 

methods of applied mathematics, e.g. on the development of the methods of numerical integrating. It 
also effectively coincides with other calculative methods and makes addition for them. It is widely 

used especially for the tasks having the theoretical-probable description because of the definite 

simplification of the solving. 
Monte Carlo method is widely used for its simplicity and universality. Low approximation is 

the essential shortcoming of the method but in this work we will describe its modifications which 

provide the high order of the convergence; which is possible with the help of special assumptions. 

Though the calculating procedure becomes more complicated. Monte Carlo approximation is the 
approximation based on probability. It is known that the approximate methods are often used for 

solving the practical tasks. 

At least we admit that solution accuracy of this method depends on the quality of the generator 
of the random values that describes the analyzed process and also on the productivity of the so called 

calculator. Today the tact frequency of the modern processors is higher than Gigabytes and the volume 

of the RAM of the PC is also very large. Taking in account that the definite class of tasks will be 
developed on the personal calculating cluster the calculator productivity is not a problem for solving 

for calculating algorithms used to solve multi dimensional tasks. The practical example of the 

mechanism for applying this method and some special features of its realizing will be considered for 

the typical thermo -physical tasks. 

Specialty of realization of the parallel calculations with the Monte Carlo Method.  
Among the other numerical methods the main role plays the Monte Carlo Method. We have to 

point that this method helps to get the closest solution of the task in one fixed point without knowing 
the solution for other points of the grid. This differs the Monte Carlo Method especially for solving the 

Dirichlet problem from other well-known ways. 

The simplified scheme is shown on the Fig.1. 

 

Fig. 1. Scheme of calculations with the Monte Carlo Method 

Application of this method gives the possibility to review the idea of making nonparallel 

calculations and using the cluster technologies. Intermediate results may be obtained independently on 

the different levels and the final results should be arranged on any separate master -blade or analyzer. 
Fig.2 shows the algorithm of parallel calculations. 

According to this scheme one generator of the random numbers outputs one random value to 

each "calculator". Information is permanently transferred via latent channels. So the productivity will 
be low as well as the data speed. Experience of operating of the calculating cluster for such schemes 

made it available to perfect the scheme on the Fig.2. 
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Fig. 2. Scheme of parallel calculations 

The Fig.3 shows the modified algorithm of calculations with Monte Carlo Method. Every user 

has its own generator of random values. This fact allows to escape the presence of the router 
communicator. This decision definitely accelerates the calculating process. The productivity may be 

evaluated experimentally. 

 

Fig. 3. Modified algorithm of parallel calculations based on Monte Carlo Method 

Thus Monte Carlo Method based algorithms are the stable relating to any input data, have the 
maximal parallel form and the minimal time for realization of calculations. 
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Investigation of efficiency of the cluster system simulation of tasks by the Monte Carlo Method. 

Analysis of the problem of search and solution for boundary value problems. 

Boundary problems and problems with initial conditions for linear differential equations are 

the one of the most interesting areas of using the Monte Carlo Method. The connection between two 
types of these problems is known for long time (5-9). But only the computers' appearance gave the 

possibility of using this connection for finding the results of this problem.  

To clear the main idea of the method we consider the Dirichlet problem for Laplace equation. 
We have the definite G-area on which boundary the function f(Q) is defined. We have to find the 

function U(P) that satisfies the Laplace equation: 

 

∆U = 0,                                                               (1) 

 

on boundary of area P accepts values: 

.                                                                  (2) 

 
Generally this problem is brought to a finite-difference scheme. G-area is covered by the square 

grid nodes. We look for values of the function U(Р) from the following system. 

 

.                                (3) 

 
Symbols {P1, P2, P3, P4} mean four nodes next to the internal node P: they are arranged inside 

the G-area or on its bound. 

We consider the theoretical probable scheme which is connected with the problem. Imagine 
the participle that has to move between the grid nodes with integer coordinates (i, j) on the area: 

 

, 

 

and the step is  

Let's say that the grid of Sη consists of internal and boundary nodes in which boundary 
conditions of the first kind are set. Boundary nodes represent a set of the linear points of Mpq(xp,yq) 

which approximate the curvilinear Г boundary of the area G which approximate the curvilinear 

boundary of the area G to with accuracy η. The particle M realizes the uniform accidental movement 

between nodes of the grid [3]. In particular, being in the internal node Mi0,j0 of a grid Sη, this particle 
for one transition with identical probability equal to ¼ can move to one of adjacent nodes. In particular 

in Mi-1,j(xi-η ,yj), one step back, in Mi+1,j(xi+η , yj) one step to the right, in Mi,j-1(xi , yj - η) -one a step down 

or Mi,j+1(xi , yj +η) - one step up. Each such transition is absolutely accidental and doesn't depend on the 
position of a particle and its previous relocation. Let's allow that relocation of М will end as soon as it 

reaches the boundary Гη. In this case Гη is "the absorbing screen". It is possible to prove [5] that М 

relocation through a finite number of steps will finish on this boundary. 

If the particle of М began the relocation with the fixed point of Mi0,j0 on  the grid Sη that can be 
written as: 

Mi0,j0, Mi1,j1, … , MiS,jS , 
and 

. 

Here expression  displays a particle path in case of quantity of steps equal to S. 

This value is accepted to be called "history of relocation". 

Uniform accidental relocation of a particle can be organized by means of uniformly distributed 

sequence of random numbers [5, 7 – 10] which are equal to: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 
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For this purpose it is enough to carry out random check from numbers (0 – 9), adhering to the 

instruction shown in the table 1. 

Table 1. Determination of the particle step depending on a random number 

Random number Determination 

0 or 4 ∆хi = η (step right) 

1 or 5 ∆YY = η (step up) 

2 or 6 ∆∆хi = – η (step left) 

3  or 7 ∆∆YY = – η (step down) 
 

Random numbers are taken from the ready tables or turn out by the pseudorandom number 

generator [7]. The last method became popular as it doesn't allow to overload the system memory. The 

particle which has begun relocation from a point Mi0,j0 after the first step will occur in one of the nodes  

I. Mi,j, Mi-1,j, … , ; 

II. Mi,j, Mi+1,j, … , ; 

III. Mi,j, Mi,j-1, … , ; 

IV.  Mi,j, Mi,j+1, … . 

By the formula of full probability we have 

                                     (4) 

Having multiplied two members of equation (4) on boundary values γpq and having 

summarized all possible p and q values, we will receive. 
 

.                                           (5) 

 

Values allow the experimental determination, for this purpose it is necessary to replace 

mathematical expectation by empirical. Then expression will look as: 

 

.                                                         (6) 

 
The formula (6) gives a statistical assessment of values U i, j and can be used as the best 

approximation to the solution of the Dirichlet problem. 

Example 1. To find value U(2, 2) with the application of the Monte Carlo method where  

 in the area 

G {0 ≤ x ≤ 4; 0 ≤ y ≤ 4},                                                  (7) 

and conditions are: 

                                                      (8) 
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Solution. For the square G with the boundary Г we will build the square grid S with the step η =1. 

Coming from the initial position (2,2) the movement finishes on the boundary Г in the area Gк, at the given 

conditions (8) (see table 1). Appearance of numbers 8 and 9 we consider as a stop on one place. 

Table 2 shows trajectories of 10 histories for two-dimension random movement at N = 10. 
Due to (8) we get that: 
 

. 

 

In this case the exact solution of the Dirihlet problem is known (7, 8): 
 

. 

 

thus 

. 

This is a way we received the exact solution for U(2,2) applying the statistic method. 

Table 2. Trajectory of the motion for the working point 

Number of motion, k 

 
Trajectory of wandering 

Value of the function 
u(x,y) at exit point on the 

border G 

1 

(2,2)   >   (2,3)   >   (2,2)   >   (2,1)   > 
> (3,1)   >   (3,2)   >   (3,1)   >   (3,2)   > 

> (2,2)   >   (2,3)   >   (2,3)   >   (2,2)   > 

> (2,1)   >   (2,0); 

0 

2 
(2,2)   >   (2,3)   >   (3,3)   >   (3,2)   > 

> (4,2); 
2 

3 
(2,2)   >   (2,3)   >   (2,2)   >   (2,3)   > 

> (2,4); 
2 

4 (2,2)   >   (1,2)   >   (1,2)   >   (0,2); 0 

5 (2,2)   >   (2,3)   >   (2,4); 2 

6 (2,2)   >   (2,1)   >   (2,0); 0 

7 

(2,2)   >   (1,2)   >   (2,2)   >   (3,2)   > 

> (3,1)   >   (3,2)   >   (2,2)   >   (1,2)   > 
> (0,2); 

0 

8 (2,2)   >   (1,2)   >   (0,2); 0 

9 

(2,2)   >   (2,1)   >   (2,2)   >   (3,2)   > 

> (3,3)   >   (3,3)   >   (2,3)   >   (1,3)   > 
> (0,3); 

0 

10 (2,2)   >   (1,2)   >   (0,2); 0 
 

Conclusions. The article describes the process of mathematical design of the applied tasks on 

the basis of the use of the Personal Cluster System. Experience of exploitation of the first parallel 

systems showed that their effective work needs the radically change of the structure of numerical 
methods. In this connection this article shows the features of design of the applied tasks which are 

described on the basis of application of the Personal Cluster System. 

Nowadays it is possible to talk about the revival of the method of Monte Carlo. It is explained 

by the fact that this method ideally approximates the cluster system. Thus, the more processors will be 
in a cluster, the more effective the task will be solved. The method of Monte Carlo produced and 

continues to produce substantial influence on development of methods of calculable mathematics (for 

example, development of methods of numerical integration). It also is successfully solving many tasks 
combined with other calculable methods and complements them. The method's application is justified, 
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first of all, to the decision of such tasks as admit assume of theoretical-probable description. It is 

explained by both: the tasks with the certain set probability and in tasks with probabilistic maintenance 

and substantial simplification of procedure of decision. The Monte Carlo method is also used to solve 

the multidimensional tasks of metallurgy.  
Slow convergence of method is its little defect. However in this article we show that with forming 

selective random numbers in relation to separate groups the accuracy of this method allows to use it widely. 

In addition it was shown that the method of Monte Carlo is enough successful adjusted to 
solve multidimensional tasks. For example, at applying the ordinary method for solving the systems of 

linear algebraic equalizations for a calculation of one unknown value it is necessary to define also the 

other ones. In the Monte Carlo method it is not necessary because at each time moment only one 
necessary co-ordinate is determined. 

Regional tasks and tasks with initial conditions for linear differential equalizations are one of 

the most interesting application of the method of Monte Carlo. It became possible only due to the 

development of the cluster computer systems. In this work the examples of solution for tasks of 
Newman and Dirihlet are made by means of the method of Monte Carlo. 
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