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Parkinson’s disease (PD) is a neurological disorder traditionally associated with

degeneration of the dopaminergic neurons within the substantia nigra, which results

in bradykinesia, rigidity, tremor, and postural instability and gait disability (PIGD). The

disorder has also been implicated in degradation of motor learning. While individuals

with PD are able to learn, certain aspects of learning, especially automatic responses to

feedback, are faulty, resulting in a reliance on feedforward systems of movement learning

and control. Because of this, patients with PD may require more training to achieve and

retain motor learning andmay require additional sensory information or motor guidance in

order to facilitate this learning. Furthermore, they may be unable to maintain these gains

in environments and situations in which conscious effort is divided (such as dual-tasking).

These shortcomings in motor learning could play a large part in degenerative gait and

balance symptoms often seen in the disease, as patients are unable to adapt to gradual

sensory and motor degradation. Research has shown that physical and exercise therapy

can help patients with PD to adapt new feedforward strategies to partially counteract

these symptoms. In particular, balance, treadmill, resistance, and repeated perturbation

training therapies have been shown to improve motor patterns in PD. However, much

research is still needed to determine which of these therapies best alleviates which

symptoms of PIGD, the needed dose and intensity of these therapies, and long-term

retention effects. The benefits of such technologies as augmented feedback, motorized

perturbations, virtual reality, and weight-bearing assistance are also of interest. This

narrative review will evaluate the effect of PD on motor learning and the effect of

motor learning deficits on response to physical therapy and training programs, focusing

specifically on features related to PIGD. Potential methods to strengthen therapeutic

effects will be discussed.

Keywords: Parkinson’s disease, motor learning, gait and balance, motor training, postural learning, physical

therapy, repeated perturbation training
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INTRODUCTION

Parkinson’s disease (PD), a neurological disorder characterized
by bradykinesia, rigidity, tremor and postural instability and
gait disability (PIGD), is known mainly as a degeneration
of the dopaminergic neurons of the substantia nigra pars
compacta. Resulting inhibition of the direct pathway and
excitation of the indirect pathway in turn excites the globus
pallidus interna (GPi), which leads to inhibition of the thalamus
and the pedunculopontine nucleus (PPN) (1). Up to 80% of
dopaminergic neurons may be destroyed before a patient exhibits
significant signs of PD. The loss of such a substantial portion of
dopaminergic cells affects the cardinal motor symptoms of PD
and contributes to non-motor symptoms, including autonomic
dysfunction, cognitive and neurobehavioral abnormalities, and
sleep disorders (1–3). While levodopa is extraordinarily helpful
for some of the symptoms of PD, others, especially related
to PIGD and non-motor features, are relatively unaffected
by current pharmacological or surgical treatments (4–10),
making physical therapy and motor training one of the most
promising current options for improving these symptoms (11–
16). However, research indicates that PD leads to degradation of
motor learning, which could limit the benefits of therapy (17–24).
Tomaximize the benefit that may be achieved, themechanisms of
learning affected by PD need to be understood and the strategies
that best circumvent these difficulties be researched.

While the dopaminergic system is the one most frequently

implicated in PD, other neurological systems are also affected,

including the cholinergic, noradrenergic, glutaminergic, and
GABAergic pathways (25–28). The cholinergic system in

particular has been intensely researched recently, though motor
learning literature specifically related to the PPN and other
cholinergic centers is still sparse. Research supports the effect
of cholinergic denervation on attention, fall history, levodopa
resistance, more advanced symptoms, and non-tremor dominant
subtypes of PD (24, 29–32). All of these factors have also
been related to motor learning degradation, suggesting that the
cholinergic system and possibly other affected systems may play
a role in modulating learning behavior (33–40). Multifactorial
influence helps to explain somewhat heterogenous results of
studies of both baseline gait and balance and motor learning
in PD (17–24). Understanding these interconnected pathways
and their effects in PD can help to identify the aspects of gait,
balance and motor learning that patients struggle with and help
to proscribe therapies and treatments most likely to benefit.

This paper will discuss previous research into the effects
of PD on motor learning, focusing on the types of learning
affected, the severity of these deficits, and modifications that
might negate some of these effects. Taking these factors
into account, recent research regarding the ability of patients
with PD to respond to physical, exercise, and repeated
perturbation training (RPT) therapies will be reported, with
specific focus given to those studies related to the training of
gait and balance. Methods utilized for literature review and
article selection are further detailed in the Appendix. Future
directions for research into the mechanisms related to gait,
balance, and motor learning in PD and potential training

strategies to improve motor learning and retention will also
be discussed.

MOTOR LEARNING IN PD

Studies have closely linked the striatal system to motor learning
(22, 41, 42), suggesting that patients with PD would, in addition
to the degradation of their movement patterns at baseline, have
difficulty acquiring movement schema to learn tasks. However,
studies examining the ability of patients with PD to learn and
adapt to motor tasks have been somewhat inconsistent (11–
24, 43–51). While studies indicate that individuals with PD are
still able to learn motor tasks, there is disagreement about the
amount and type of possible improvement. One explanation for
this is that conflicting studies utilized different types of learning.
Specific aspects of learning are more severely impacted by PD
than others, especially in the early stages of the disease. It has
been indicated that people with PD are able to learn specific tasks,
though they may need more practice than healthy controls to
do so, but that these skills are not easily generalizable to other
tasks, even if those tasks are similar (22, 43–48). The slower rate
of learning, lack of generalizability, and the difficulty individuals
with PD exhibit in dual-tasking imply that people with PD are
still able to learn in a feedforward manner, but that they are
unable to easily adjust to changes requiring use of automatic or
reactivemechanisms. Because of this inability, they have difficulty
adapting to changing conditions or monitoring multiple tasks,
both of which are often required for balance and gait. To better
understand why this is this case, it is important to differentiate
types of motor learning and how they are specifically affected
by PD.

Explicit vs. Implicit Learning
Existing literature about the deficits of persons with PD in explicit
and implicit learning has been somewhat conflicting, due in part
to differing experimental definitions of the terms. Implicit, or
procedural learning, is generally defined as motor skill learning
acquired incidentally through practice and is often considered to
be due to unconscious or reactive mechanisms. Explicit learning,
on the other hand (or declarative learning), is more intentional
learning often defined as consciously learned. It is based on
past similar experience and has previously referred to cognitive
tasks, such as remembering lists of words, while motor tasks
would have been grouped with procedural learning. Because of
this, motor learning researchers, in adapting implicit vs. explicit
learning definitions to describe aspects of motor learning, have
often differed in exact usage, which has led to confusion about
what aspects are affected in PD. In order to better clarify the types
of learning affected by PD, this paper will discuss the results of
papers using differing definitions of explicit vs. implicit learning
separately and then attempt to unite these findings in a cohesive,
multifaceted whole.

The most commonly adopted definition of implicit learning is
the ability of subjects to learn a repeating task without awareness
of the pattern (in comparison with ability to learn a randomized
task), while explicit learning may be measured as the ability
to improve in the context of a known pattern. Studies have
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indicated that implicit and explicit learning of this type utilize
different neural pathways. Implicit learning is associated with
basal ganglia structures while explicit learning is more closely
associated with the medial temporal lobe, implying that patients
with PD should have difficulty mainly with implicit learning
(52–59). Most studies of motor learning in PD have found
that this type of implicit learning is affected by PD, though
whether this problem is an early symptom of the disease or
a progressive complication is still unclear (20, 23, 24, 60–64).
A recent study suggests that implicit learning involving the
integration of multiple components is more affected by PD
than single-component tasks (65), which might be related to
attentional resources. There is some disagreement about whether
explicit learning is spared in PD, with many studies finding
that both implicit and explicit learning are affected to some
extent (20, 61, 66). It is currently unknown to what degree
potential explicit learning degradation is affected by factors,
such as disease duration, degeneration of the cholinergic and
other neurotransmitter systems, and comorbidities, such as
dementia and cognitive decline. Studies appear to implicate PD
in attenuation of both implicit and explicit learning processes
defined in this matter. However, patients with PD still appear
to be better able to operate in explicit than implicit conditions.
While healthy controls completed a motor targeting task most
accurately with minimal outside feedback, PD subjects were
better able to complete the same task in the condition with the
highest amount of feedback (67).

Other studies define implicit vs. explicit learning based on the
amount of error present during learning trials. The generation
of a large, sudden error is considered explicit learning while
slow, gradual introduction of error, or restriction of error using
guidance systems, is considered to induce implicit learning. This
definition of learning found that patients were able to adapt to
implicit changes but struggled with or were completely unable
to adapt to explicit perturbations, especially in the context of
other tasks. A visuomotor perturbation study utilizing reaching
tasks found that individuals with PD adapted similarly to healthy
controls during introduction of small, gradual visuomotor
perturbations leading to minimal errors, but were slower to adapt
and displayed lowered magnitudes of adaptation during larger
perturbations (68). A study examining the ability of subjects
to learn a hammering task either with or without a guidance
system found that those that were constrained by the guidance
system showed increased learning and learning automaticity,
as evidenced by ability to translate the hammering motion to
dual-taking conditions. However, it is uncertain whether the
learning effects obtained through this method translate to non-
guided motions upon the removal of the guidance system (69).
This implies that slow, gradual initiation of perturbations may
be more helpful for patients with PD, such as through the use
of assisted or constrained training. However, these results may
not be easily translated to conditions outside of training unless
training conditions are slowly scaled to mirror them.

Together, these results indicate that people with PD, while
able to learn, have difficulty creating and switching between
motor sets. They may require explicit information and additional
practice relative to healthy age-matched controls to do so. The

use of augmented cues (19, 67) and gradual introduction of
perturbation (68, 69) may help patients to create feedforward
motor sets. Such cues may be especially helpful during conditions
that require attention to be divided or require reaction to
unexpected perturbations. The ability of individuals with PD
to retain training effects is also contested (19), possibly due to
inability to automate sets.

In addition to the above definitions of implicit vs. explicit
learning, a related concept of feedforward vs. reactive control of
movement patterns is often discussed. A distinction does need to
be made. One need not be consciously aware of a feedforward
adaptation, though feedforward movements may be less likely
to be fully automatized, and reactive mechanisms, while more
akin to implicit learning, can also be trained explicitly. For this
reason, feedforward and reactive mechanisms will be discussed
separately in the next section.

Feedforward vs. Reactive Mechanisms
Patients with PD are thought to have major difficulties in
staging reactive responses to motor perturbations. Bradykinesia,
akinesia, reduced proprioceptive inputs, and other factors likely
play a role in this disability. Impaired feedback mechanisms,
commonly noted in PD, also play a role. Individuals with PD
are known to have proprioceptive and tactile sensory deficits
(70), leading to decreased feedback and increased noise and
ambiguity during motor tasks. These deficits are thought to
cause increased reliance on visual feedback and attention-based
control (71). People with PD also have difficulty updating task
information based on discrete feedback in decision-making trials
(72), suggesting an inability to properly use feedback that is
received. Patients with PD appear to be unable to correctly
determine the importance of feedback and events (73), which
likely contributes not only to deficits in learning but also to
problems with attention and motivation.

However, it appears that an independent difficulty in
creating, automatizing, and switching between motor sets is
also involved. This progressive loss of automatic motor control
increases reliance on goal-directed control mechanisms, even
for habitual actions (22, 74). Many studies have found defects
in reactive responses and responses to novel scenarios in PD
but improvement with practice and feedforward planning (44,
45, 75–77). Similarly, it was found that people with PD react
differently to planned vs. unplanned stopping during gait,
whereas healthy controls do not. Patients with PD are better able
to stop during planned scenarios, suggesting that feedforward
modulation plays an effect (78). Specific defects in shifting
between sets are evidenced by reliance on greater cognitive
control (79, 80) and reduced automaticity, which causes dual-
tasking deficits during movement (81, 82). Difficulty in acquiring
and expressing habitual motor patterns has been shown to lead to
impairments expressing automatic components of behavior (83,
84), learning implicitly (60–66, 85), performing an unfamiliar
task (86), and combining information from different reference
frames in order to guide movement (77, 87). However, while
feedforward learning seems fairly intact, if slow, these learned
sets may not be retained, further indicating an impairment in
switching between motor sets (18, 21). In summary, patients with
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PD have difficulty rapidly and flexibly switching between motor
plans in a reactive or unconscious fashion. Such impairment
leads to difficulties in novel tasks, tasks in which external
factors may change needed forces and trajectories, and dual-
tasks, in which two sets must be held simultaneously and rapidly
switched between.

Factors Affecting Motor Learning in PD
A number of factors related to PD might have a major
impact on the severity of impact on motor learning: severity
and duration of disease, disease subtype (tremor dominant,
PIGD dominant, etc.), amount of degeneration in dopaminergic
and non-dopaminergic neurotransmitter systems, and cognitive
symptoms. Most of these factors have not yet been well-
researched. Research suggests that motor learning worsens with
disease severity, though these trends are still characterized as
weak to moderate. Worsening cognitive and axial symptoms
especially appear to predict a decrease in motor learning
ability (24, 30, 32). Axial symptoms in particular have been
directly linked to worsening motor learning performance, even
independently of overall disease severity (88). Specifically,
patients with freezing of gait (FOG) seem to exhibit worse
learning, retention, and generalization in motor learning tasks
(29, 89, 90), though confounds make it difficult to determine the
exact influence of a generally longer disease course and worsened
disease severity, fall risk, and cognitive profile associated with
FOG (91–93). Subtype of PD, as characterized by symptom
profile, may play a role in impact on motor learning (31).
Laterality of symptoms of PD may also affect acquisition of
motor skills in PD, with left-onset PD being correlated with more
errors during task acquisition than right-onset PD (94). However,
motor learning is affected early in PD and learning deficits appear
to be present on both sides, even before traditional symptoms are
evident on the less-affected side (95).

Cognitive features of the disease, such as impairments in
memory, attention, and executive function (EF) also play a
role in motor learning. Memory and other components of
EF are notably affected in PD, even early in the disease and
with no apparent cognitive impairment (96, 97). These deficits
have been attached to deficits in both motor symptoms (97–
100) and in learning (101, 102), demonstrating that more
widespread frontostriatal system involvement might be related
to defects of motor learning in PD. Many of the specific aspects
of EF impacted in PD, including planning and attentional
deficits, information organization and retrieval, task-switching
and establishment of a motor set, feedback-based learning, and
sensitivity to interference during learning, directly affect the
ability of individuals with PD to learn and modulate motor
patterns (97, 98, 103, 104). Dual-tasking may be especially
affected by these problems (105). Studies have shown that
procedural and spatial memory is especially affected in PD, while
verbal and episodic memories remain largely intact (103, 104,
106, 107), suggesting that areas of cognition associated with
motor planning and execution may be preferentially affected by
the disease. Deficits within attentional networks, and specifically
the connections between the putamen and the motor cortex,
prevent the sustained switch from controlled to automatic

behavior (108). The close interplay between the cortical and
subcortical areas regulating motor, cognitive, and motivational
aspects of habitual, automatic movement are dysfunctional in
PD (109).

In addition to direct effects of PD on motor learning, it has
been suggested that external changes, such as medication and
environment can impact the ability of patients to learn, retain,
and update motor information. One of the most-researched
factors affecting learning in PD is levodopa. While levodopa is
remarkably beneficial in treating many aspects of PD, including
tremor, rigidity, and bradykinesia, it is thought not to improve,
or possibly even to worsen, certain aspects of motor learning.
Additional deficits in motor learning while in the “on”-state (that
is, while the short-term effects of levodopa are active) have been
noted in upper (110) but not lower (111–114) extremity learning.
However, differences in study design suggest that this difference
may be due to the stage and type of learning studies, with specific
portions of the acquisition phase of learning most affected (30).
Levodopa may attenuate some of the motor deficits in learning
while worsening cognitive aspects (115–117). This suggests that
while dopaminergic dysfunction plays a role in motor learning,
other systems, such as the frontostriatal system, are also key.
While not yet well-researched, early data suggests that deep brain
stimulation (DBS) might have a positive effect on learning (118).
Environmental and task characteristics may also significantly
affect ability to learn in PD. One study found that task difficulty
significantly affected the ability of people with PD to learn relative
to healthy controls. Dual-task and reactive tasks significantly
reduced or even eliminated the ability of PD subjects, but not
controls, to learn and retain improvements (119).

Increasing the amount of external information provided to
individuals with PD, such as through cueing, can significantly
improve acquisition, automaticity, and retention of motor tasks,
even once cues are removed (67, 120). The beneficial effects of
cueing on gait and motor learning (121, 122) in PD are likely
largely caused by addressing cognitive factors of the disease, such
as attention (71). By directing attention to the motor action
being practiced and giving feedback about its correctness, cueing
can facilitate feedforward learning. Reward and motivational
pathways are also likely affected. PD is known to cause apathy,
blunting subjective value of reward (123). This leads to a reduced
tendency to evaluate and monitor outcomes and negatively
impacts feedback-learning. By providing an external, objective
reward, cueing may allow PD patients to incorporate the benefits
of positive movement patterns (51).

EFFECT OF TRAINING ON PIGD

Based on studies of motor learning in PD, it is expected that
training or therapy specifically targeting gait and balance would
lead to significant improvement in these areas. However, these
improvements might be less drastic, require more repetition,
and be less generalizable to other tasks when compared to
healthy controls. Current research appears to support this, as
will be discussed in the proceeding sections. Still, there is still
need for additional research to discern the types, quantity and
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intensity of training that is most helpful to people with PD, the
generalizability of this training to other tasks, the effectiveness
of this training during novel or complex tasks, and the effect of
both disease and external factors on learning rate and ability.
The following sections will discuss results showing the effects
both of traditional therapies, such as PT and exercise (when
specifically focused on gait and balance practice) and of repeated
perturbation training (an experimental concept that attempts to
train individuals how to respond to unexpected perturbation by
repeatedly eliciting such events) on gait and posture in PD.

Physical Therapy and Exercise Therapy
Studies of motor learning indicate that repeated and continued
physical training may be the best method to counteract the
degradation in motor behavior seen in PD. Physical and exercise
therapy have long been noted to be beneficial for patients
with PD, improving cardinal symptoms activities of daily living
and increasing subjective quality of life (124–134). Recently,
technological advancements in therapy delivery (such as through
the use of virtual reality and other gamification elements) and
ability to calculate objective outcome measures (using IMUs and
similar technology) has led to an increasing interest in the effects
of such therapies on PIGD features of PD. Many studies have
noted improvements in gait and balance following these therapies
(11, 127, 135–138). Studies have focused on determining the
best types, intensity, and duration of therapy, the effects of the
incorporation of technology (both in increasing duration and
intensity of exercise and in improving PIGD symptoms), and the
duration of sustained effect or need for repeated doses of therapy.

While there is great interest in the types of exercises and
techniques that might be best applied to improve specific
features of PD, controlled research studies documenting the
comparative successes of different options are still relatively
few in number. They have mostly utilized small sample sizes
and have had somewhat conflicting results. Direct comparisons
between studies are made more difficult by the lack of
homogeneity between treatments (an example of differing
treatment parameters may be seen in Table 1 and outcomes are
compared in Table 2). Many studies have differing definitions of
treatments even when using the same name, and the duration,
intensity, and frequency of training differ between studies. This
is made more difficult by the fact that most trials compare
results only to control groups (usually similar subjects not given
any therapy regiment, but sometimes patients provided with
therapy not intended to specifically improve balance) instead of
other balance interventions. In the future, it will be important
to compare intensity-matched treatment options directly in a
controlled manner.

Research from motor learning shows that training should
ensure enough repetition to allow adequate time for feedforward
learning. Introducing exercises using scaffolding in the form
of physical assistance, cueing, or enhanced information that
is initially given but progressively removed may prove useful.
It is also important that exercises be individually relevant but
collectively diverse enough to provide meaningful change in
multiple aspects of PIGD (188). The use of technology in training
of gait and balance for PD has been of interest. Several studies

have utilized gamification of training, technology to assist, resist
or create movements or perturbation, augmented feedback and
VR (119, 121, 139, 144, 155, 169, 172, 173, 179, 180, 182, 183,
189). Cueing in particular shows promise and is an important
area of research (120, 145, 155, 157–162, 171, 173, 190).

The main therapy options that have been researched related
to improvement of PIGD symptoms of PD are balance training,
treadmill training, and resistance or strength training. Generally,
strength training, including that focusing on the lower-limbs,
has been found to be less likely to improve features of PIGD
and is sometimes used as a control group in studies focusing
on gait and balance therapies. However, a study comparing the
effects of 7 weeks (2 h-long sessions per week) of resistance
vs. balance training found that resistance training but not
balance training contributed to significant improvements in the
Fullerton Advanced Balance (FAB) scale and Unified Parkinson’s
Disease Rating Scale (UPDRS) scores, though between-group
statistical comparison did not differ between the therapies
(142). Gait speed and TUG have also shown improvement
(129, 191).

A large number of studies regarding the effects of therapy
of gait and balance have been related to the use of treadmill
therapy (192, 193). Improvements in gait speed, stride length,
and symptomatic scales have been noted both immediately and
in the long-term following treadmill therapy (126, 146–148, 167).
Additionally, some studies have noted improvement in post-
urography following treadmill training, suggesting some level
of generalizability (146). Improvements appear to be obtained
long-term (146). These changes were noted in some studies
after only a single session of training. Adverse events were not
observed within these studies, and patients were able to achieve a
high-intensity of training (149, 192). Treadmill training utilizing
virtual reality to simulate dual-tasks and obstacles has been
found to improve gait measures under diverse conditions (144).
Studies also showed that treadmill therapy compared favorably
to other therapy techniques. Pohl et al. comparing speed-
dependent treadmill training, limited progressive treadmill
training, conventional gait training, and non-intervention
controls, found that treadmill training significantly improved
gait parameters compared to both controls and conventional gait
training (149). However, Myers et al. found that, while treadmill
therapy, tango dance, and guided stretching all improved walking
velocity and stride length, there was no difference between the
three groups (150). Sale et al. found that robot-assisted walking,
but not traditional treadmill training, improved gait velocity and
stride length, though this result conflicts with all other such
studies (151).

The addition of body-weight support to allow for increased
intensity of training may help to increase the effect of treadmill
therapy (151, 192). Miyai et al. reported that body-weight
supported treadmill training significantly improved UPDRS
scores, ambulation speed, and number of steps needed to
complete a 10-meter walk when compared to traditional physical
therapy (163, 164). Another study analyzing the effect of high-
intensity body-weight supported treadmill training vs. lower
intensity exercise or education, found that, while all three groups
improved UPDRS scores, only the high-intensity treadmill
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TABLE 1 | Comparison of study design from studies regarding the effect of therapy and training on quantitative measures of gait and balance.

Therapy type Sample size (per

group)

Treatments Control/Comparison

groups

# of Weeks # of

Sessions/Week

Session duration

Strength/resistance

training

10–15 (139, 140) High-intensity

quadriceps (129)

Exercise (129, 141) 4 (140) 1–2 (141–143) 40–60min

(12, 129, 139–142)

20–25

(12, 129, 142, 143)

Lower limb

(12, 139–142)

Multi-component

(12, 139, 141, 142)

7 (142) 3 (129, 140) 60–90min (143)

65–70 (141) PRE (143) Balance (142) 12 (12, 129, 139) 3–5 (12, 139)

RPT (140) 24 (141)

104 (143)

Gait training <10 (126) Treadmill walking

(126, 144–154)

Overground walking

(146, 155, 156)

1 (149) 1(149) 20–30min

(120, 126, 145, 149,

154, 155, 157–161)

10–15

(145–147, 150, 152,

156, 157, 162–166)

Robot-assisted

(151, 153, 167)

Exercise/Conventional

therapy (147, 149,

164, 165, 167)

3 (120) 2 (154, 155) 40–60min (144,

147, 148, 151, 153,

156, 163–165, 167)

15–20 (149) BWSTT

(160, 161, 163–165)

Tango (150) 4

(151, 153, 157, 159–

161, 163, 164, 167)

2–3 (152) Progressive

(146, 152, 166)

20–25

(144, 148, 153,

159–161, 167, 168)

Backward gait (156) Stretching (150) 5 (146, 152) 3 (120, 144–148,

156–158, 163–166)

Not given (150)

150–160 (120) Cued gait (120, 145,

152, 155, 157–162)

Education/Normal

Treatment

(160, 161, 165)

6 (126, 144, 145,

155, 166)

4 (126, 160, 161)

Cued treadmill

walking (159)

RPT (154) 8

(154, 156, 158, 165)

5 (151, 153)

None (120, 126,

144, 148, 149, 153,

156–158, 166)

12 (148, 150) 6 (167)

24 (147) 7 (159)

Not given (150)

Balance training <10 (169, 170) Cued (169, 171) Exercise (172) 4 (171) 2 (142, 173, 174) 20–30min

(170, 171, 173)

10–15

(171, 173, 174)

Weight-shift

(142, 174)

Resistance (142) 6 (169, 173) 3

(13, 169–172, 175)

30–40min (169)

20–25 (142, 175) Sensory

perturbation (13,

170, 172, 173, 175)

Balance +

resistance (170)

7 (13, 142, 172) 40–60min (13, 142,

172, 174, 175)

30–35 (13) Virtual reality (173) Home-based

balance

(13, 174, 175)

8 (174, 175)

35–40 (172) No training

(171, 173)

10 (170)

None (169)

Multi-component

training

<10 (170) Balance +

resistance (170)

Balance (170) 3 (176) 1–2 (141, 143, 177) 40–60min (12, 139,

141, 170, 177, 178)

10–15

(143, 177, 178)

Treadmill +

obstacles + balance

(178)

Resistance

(12, 137, 139, 141)

4 (168, 178) 3 (170, 178) 60–120min

(143, 168)

25–30 (12, 139) Gait + balance

(12, 139, 168, 176)

Stretching (141) 10 (170, 177) 3–5 (12, 139) Not given (176)

30–35 (168, 176) mFC (177) No training

(168, 177, 178)

12 (12, 139) 3–14 (168)

65–70 (141) Tai chi (141, 177) None (176) 24 (141) 6 (176)

104 (143)

(Continued)
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TABLE 1 | Continued

Therapy type Sample size (per

group)

Treatments Control/Comparison

groups

# of Weeks # of

Sessions/Week

Session duration

Home-based gait

training

10–15 (179) Home-based cueing

(179, 180)

Conventional gait

and cognitive

(in-home) (181)

2 (179) 3 (180) 20–30min

(179–181)

20–25 (180) Walking (180) None (179) 6 (180, 181) 4 (181)

55–65 (181) Dual-tasking (181) 7 (179)

Home-based

balance training

10–15

(162, 174, 182–184)

Sensory

perturbation (175)

Therapist-guided

balance

(172, 174, 175)

6 (182–184) 2

(174, 182, 183, 185)

20–30min (185)

20–25 (175) Tailored exercise

(162)

Exercise

(182, 183, 185)

7 (172) 3

(140, 172, 175, 184)

40–60min

(140, 172, 174, 175,

182–184)

35–40 (172) Wii Fit

(172, 182–185)

Education (182, 183) 8 (174, 175) Not given (162) Not given (162)

Kinect (174) None (162, 184) 10 (162)

12 (185)

Repeated

perturbation training

(RPT)

<10 (15, 186) Postural

perturbation

(16, 187)

Treadmill walking

(14, 154)

1 (14, 186, 187) 1 (14, 186, 187) 20–30min

(14, 16, 154)

10–15

(16, 140, 187)

Treadmill

perturbation

(14, 15, 154)

Resistance (140) 2 (16) 2 (154) 40–60min (15)

20–25 (14, 154) Step training

(140, 186)

No training (15) 4 (140) 3 (15) Not given (186, 187)

None (16, 186, 187) 8 (15, 154) 14 (16)

BWSTT, body-weight supported treadmill training; PRE, progressive resistance exercise; mFC, modified fitness counts.

This table documents the study characteristics of each therapeutic study reviewed for this paper. Papers were characterized by type of therapy provided, and approximate sample size

of each group per study (many studies had slightly unequal group sizes), control or comparison groups utilized, number of weeks and sessions of therapy and the duration of each

therapy session were noted. Both the therapeutic method used and the duration/intensity of therapy varied widely between studies, showing a need for more standardized protocols in

the future.

training significantly improved gait measures (165). Cueing also
appears to improve results of treadmill training (152).

Other types of gait therapy have also shown to be effective.
Overground walking, both backward and forward, have been
evaluated and found to improve gait characteristics (156). Cued
gait training appears to increase stride length, walking speed,
dynamic post-urography, and Berg Balance Scale scores (120,
145, 155, 157–159). Wearing a home-based cueing system for
as little as 30min per session has been found to increase gait
velocity and stride length and improve FOG (179, 180). Home-
based dual-tasking therapy has been shown to improve stride
length and cadence (181). Robotic-assisted gait therapy, in which
a wearable robot assists in locomotion during training has also
been shown effective in improving mobility (153, 160, 167).
Studies comparing robot-assisted gait training with other gait
therapies found than robot-assisted training may actually be
more effective than treadmill therapy (153) and overground gait
training with verbal cueing (160, 161).

Balance therapies utilizing static and dynamic stance are
common and appear to be effective in improving many gait and
balance measures. Atterbury et al. found that both therapist-
led and home-based balance training improved walking velocity,
cadence and stride length and Berg Balance Scale scores,
though therapist-led therapy was more effective (175). A study

comparing balance training with augmented feedback to a
control group of lower-limb strength training found that balance
training more significantly improved measures of limits-of-
stability, one-leg stance, and gait, and was the only group to
improve balance confidence (139). Cued sit-to-stand training
has also been shown to improve balance and stability (171).
Cued training during practice on courses involving turns reduced
FOG (166). A study comparing the training of compensatory
stepping using a dancing game with visual cues to a control
group receiving strength training found that the step training
significantly improved reaction time, movement velocity, limits
of stability and UPDRS gait sub-score relative to the control
group, but both groups improved gait velocity and only strength
training improved cadence during gait (140).

Home-based balance therapies have often been researched
in recent years, often using virtual reality and video game
technology, such as Wii Fit (194). This type of training has
been found to be effective in improving multiple features of
gait and static stance, suggesting that home-based therapies
may be an effective supplement or alternative to in-person
therapies (172, 182–185). Dynamic balance is also improved,
as measured by the Sensory Organization Test (SOT) (162). A
trial using the Xbox Kinect found comparable improvements
in TUG and Berg balance scores and a significantly greater
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TABLE 2 | Quantitative gait and balance outcomes from training studies.

Therapy type Results demonstrating improvement Results not showing

improvement

Ambiguous/Conflicting

results

Strength/resistance

training

Walking velocity (12, 129, 139–141, 143) Stride length (139, 140, 143)

Cadence (143) Double-support time (143)

TUG (129, 141, 142) Dynamic posturography

(140, 142)

FAB (142) CGI (142)

ABC (139)

Gait training Walking velocity

(120, 126, 144, 146, 148, 150–152, 154–159, 161–165, 167)

ABC (145) Gait symmetry (161, 165)

Stride/step length

(126, 144, 146–148, 150–152, 155–159, 161, 163–165)

Fall frequency (145) Gait variability

(126, 144, 148, 162)

Kinematic analysis (149, 153, 155) Mini-BESTest (154) FOGQ (152, 153, 159)

FOG Assessment (166) Cadence (144, 146–148,

152, 156, 158)

Walking distance (timed) (144, 154, 155, 159, 161, 162) TUG (146, 152, 154)

Static posturography (146)

Dynamic posturography (145, 160)

Sit-to-stand (165)

Double support time (148, 149, 162, 165)

POMA (155, 160, 167)

BBS (145, 155, 160)

DGI (155)

RST (145)

Balance training Cadence (175) Double support time (175) TUG (142, 169, 174)

Stride length (175) FAB (142) Dynamic posturography

(13, 142, 174)

FGA (175) CGI (142) Fall frequency (13, 172)

Static Posturography (171) ABC (13, 169, 172, 175)

Sit-to-stand (171)

BBS (13, 169, 172, 174)

Walking velocity (172, 175)

DGI (172)

Multi-component

training

Kinematic analysis (176) Double-support time (143) Dynamic posturography

(170, 178)

Cadence (143) DGI (178) Walking velocity (12, 139,

141, 143, 168, 178)

Fall frequency (12) Step/stride length

(139, 141, 143, 168)

Dynamic posturography (12, 141) ABC (139, 178)

PPT (168) BBS (177, 178)

Turning (168)

TUG (141, 177)

Walking distance (timed) (177)

Home-based gait

training

Walking velocity (179, 180) Gait variability (181) FOGQ (179, 180)

Mini-BESTest (180) Walking distance (timed)

(180)

Stride length (179, 181) Falls Efficacy Scale (180)

Cadence (181)

Home-based

balance training

Stride length (175, 183) Double support time (175) ABC (172, 175, 184)

FGA (175, 183) Stride velocity (175)

TUG (182, 184) Cadence (175)

(Continued)
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TABLE 2 | Continued

Therapy type Results demonstrating improvement Results not showing

improvement

Ambiguous/Conflicting

results

Falls efficacy scale (182) Fall frequency (172)

Walking velocity (172, 183, 184) Walking distance (timed)

(185)

Sit-to-stand (184)

BBS (172, 185)

CBM (184)

Static Posturography (184)

Dynamic posturography (182, 184)

POMA (184)

DGI (172)

Obstancle clearance (182)

Dynamic balance (162, 182)

Repeated

perturbation training

(RPT)

Step initiation (16, 186) Static posturography (14) Dynamic balance

(15, 140, 187)

Compensatory step length (16) FOG (15)

Walking velocity (14–16, 140, 154) Mini-BESTest (154)

Walking distance (154)

Gait variability (14)

Stride/step length (15, 16, 140)

Cadence (15, 16)

Double support time (16)

Fall frequency (15)

TUG (154)

FGA, functional gait analysis; ABC, activities-specific balance confidence scale; TUG, timed-up-and-go; POMA, Tinetti performance oriented mobility assessment; CBM, community

balance and mobility assessment; FOGQ, freezing of gait questionnaire; BBS, Berg balance scale; DGI, dynamic gait index; RST, rapid step-up test, FAB, Fullerton advanced balance

scale; CGI, clinical global impression scale; PPT, physical performance test.

This table shows the aspects of gait and balance found to be helped or not to be helped by different types of therapy. The studies that researched each aspect of gait and balance are

recorded.

improvement in dynamic stability compared with traditional
balance training (174). Yen et al. randomized patients to receive
either virtual-reality based balance training, traditional balance
training, or no therapy (control group) found that both training
groups displayed improvements dynamic post-urography (SOT)
(173). A balance training program utilizing audio-biofeedback
was also found to improve Berg balance scores and TUG (169).

Combination therapies have also been utilized, but
experimental confounds have made it somewhat difficult to
interpret these results. Hirsch et al. compared combination
balance and resistance therapy vs. balance training. They
found that, while computerized dynamic post-urography
measured by the SOT and muscle strength improved in both
experimental groups, combination therapy demonstrated larger
improvements. However, patients in the combination group were
given 15min of resistance therapy three times a week in addition
to the thrice-weekly 30min balance training sessions experienced
by both groups, so it is difficult to determine how much of this
greater effect is due to combination therapy vs. greater duration
of therapy in the combination group. In addition, no comparison
was made to a group receiving resistance therapy alone (170).
A study which assigned the experimental group to complete

balance and gait training and the control group to complete
an equal number of sessions of strength training found that
the experimental group was less likely to fall, fell less often and
demonstrated greater reduction in postural response length
and increase in stride length compared to controls (12). Gait
and balance therapy has also been found to improve gait
kinematics (176), gait velocity, step length, turning, and Physical
Performance Test scores (168). A study comparing resistance
with a multi-modal training program found that both groups
similarly increased velocity and cadence of off-medication gait
and plantarflexion strength, though other measures of spatial
gait parameters were unaffected (143). Smania et al. found that
a balance training program with locomotor training, but not
a control group exposed to full body active joint mobilization,
muscle stretching, and muscle coordination exercises, showed
improvements in several measures of balance and balance
confidence (13). Tai chi, a martial art form that addresses many
components of gait and balance, has also been used with some
success (141, 177). However, not all multi-component therapies
have been found to be successful. Hirsch et al. found that a
4 weeks therapy utilizing treadmill training, obstacle course
training, and balance training did not significantly improve any
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features of gait relative to a treatment-free control group (178).
This could be due to short therapy duration, low intensity of
therapy, lack of sensitive outcomemeasures, or small sample size.

Repeated Perturbation Training
Traditional physical and exercise therapies have successfully
improved the gait and balance of patients with PD. Motor
learning challenges in PD demonstrate that specific, feedforward
practice of events related to PIGD and falls may be even
more effective than generic practice or strength training. This
evidence has elicited interest in the utilization of repeated
perturbation training (RPT) for the improvement of PIGD in
PD. Specifically, repeated training of reactions to the types of
unexpected perturbations that may lead to falls is thought to
show promise in improving balance and decreasing falls in daily
life. Because such perturbations take place in a controlled system,
with the provision of supports as needed, they can be practiced
safely. As noted in the section above, several successful therapy
programs have incorporated forms of perturbation training.
However, repeated perturbation testing, especially that using
technology-assisted protocols, has not yet been widely adopted
and research is still needed to determine the types of perturbation
that are most helpful. The duration, frequency, and intensity in
which these therapy sessions must occur and the generalizability
of reactions from practiced perturbation to another novel type
also need to be further researched.

Most of the studies of RPT within the PD population have
focused on the effects of training during static or dynamic
stance. Several studies utilizing the sudden and unpredictable
movement of a platform under subject’s feet have noted that
repeated perturbations of this type generate a training effect,
improving subject response in later trials. Visser et al. found
that, while patients with PD always differed from age-matched
healthy controls in kinematic and surface EMGmeasures of their
response to the sudden tilting of the platform they are standing
on, individuals with PD do show significant improvement in
these balance reactions following training (187). van Ooteghem
et al. achieved similar results when patients attempted to
maintain balance while the support platform oscillated at
random amplitudes (which repeated in sequence unknown
to the subjects). People with PD improved reactions to this
perturbation, shifted from feedback to feedforward mechanisms
as a strategy for improving performance, and generalized
learning to a different pattern of oscillatory movements. More
widespread generalizability to other types of perturbation (e.g.,
sudden translation or other movement) was not tested (195).

Several studies have tested improvement of compensatory
steps as a reaction to external perturbation. A study utilizing
mechanically applied perturbation using a weighted pulley
system attached to the shoulders found that the length of
compensatory steps increased and time to step initiation
shortened with repetition. Interestingly cadence and step length
during gait also improved, implying some level of generalizability
to normal gait (16). Peterson et al. found that people with
PD are capable of motor learning when repetitive forward and
backward translations are applied to the support surface and that
these improvements were retained a day later, but they did not

generalize to lateral translations. Interestingly, the patients in this
study were found to exhibit the most improvement in the first
trial, while most studies found that individuals with PD need
several trials before motor learning occurs (88). A study that
utilized a combination of treadmill therapy and RPT in which
perturbations found that this training resulted in a reduction in
falls and improvements in gait and dynamic balance (15).

Only a few studies have previously reported on the ability
of perturbations during dynamic gait to improve PIGD in
PD. Roemmich et al. found that people with PD are able to
adapt when split belts of a treadmill were rotated at differing
speeds beneath them, and aftereffects and shorter re-adaptation
indicated that these changes might be retained (17). Klamroth
et al. showed that perturbation treadmill training utilizing tilt, in
comparison to traditional treadmill walking, was able to induce
adaptation and improve gait velocity and variability. A small
effect was noted in static postural control, which could indicate
possibility for generalized effect (14). Steib et al. found that
treadmill perturbation therapy can induce changes in dynamic
balance and gait, generating greater effects than a treadmill
training control group (154). While these studies have been
promising, much more research is needed to determine the
clinical efficacy of RPT for gait, including the number, duration,
and intensity of sessions needed, the duration in which effects of
treatment may last, the types of changes induced by various types
of perturbations, and the effect these changes have on decreasing
both real-life fall incidents and simulated falls under different
conditions. Perturbation during step initiation could also be an
area of interest, possibly for reducing start hesitation, a form of
FOG. Rogers et al. found that perturbation, either through a drop
or an elevation of the support surface under the initiating foot,
timed directly at the point of step initiation, elicited adaptation of
stepping response to preserve stability and that this augmentation
could improve postural and locomotor coupling (186).

CONCLUSIONS AND FUTURE
DIRECTIONS

Research related to motor learning in PD and effects of therapy
programs in PD populations indicate that patients with PD
are capable of motor learning. However, this learning may be
slower, of smaller magnitude, and less generalizable relative
to healthy individuals. A combination of sensory degradation
and neurological degeneration (affecting physical, attentional,
and learning capabilities) may make adaptation to feedback
difficult, forcing patients with PD to rely on feedforward
methods of learning. Gait and balance are inherently subject
to constantly changing environmental and other conditions,
making feedforward control difficult; however, training may
improve this ability. In order to more effectively train individuals
with PD in forming feedforward strategies, it is important that
therapies are targeted at the symptoms they intend to improve,
that patients be given ample feedback about their current
movement patterns and needed improvement, and that duration,
intensity, and timing of therapy sessions be set to maximize
motor learning. In this case, frequent and intense workouts,
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with duration long enough to achieve learning effect without
resulting in fatigue, would be ideal. Therapies should also attempt
to incorporate additional feedback (possibly in the form of verbal
prompts, cues, or augmented reality systems).

Current research has shown that therapy programs specifically
targeted to improve factors related to gait and balance can
significantly improve these features. Resistance training, balance
training, treadmill training, and repeated perturbation training
have all been shown to exhibit these effects. However, more
research is still needed to determine what therapies are more
effective for specific aspects of PIGD (e.g., resistance training
may help to increase voluntary muscle activation and movement
amplitude and improve bradykinesia while RPT may reduce
falls or FOG) and what aspects or exercises of these therapy
modalities are most helpful for these improvements. Efforts
should bemade to standardize treatments and outcomemeasures
from all treatment groups so that direct comparisons can be
made. Studies in which duration and intensity of different
types of therapies are as well-matched as possible are urgently
needed. The study of combination therapies, the use of varying
types of exercises in order to increase different aspects of gait
and balance, and the use of enhanced feedback, assistance and
body support, and cueing systems will be instrumental features
of study. The generalizability of therapeutic effect is also a
concern; for example, eliciting perturbations during stance may
not help to improve reactions to perturbations during gait. It
is important to research the generalizability of each type of
training in order to better target training to treat those specific
aspects of PIGD most bothersome to the patient. This would
maximize the benefit derived from therapy while minimizing
duration, avoid patient fatigue and more reasonably adhering
to insurance coverage as the research moves into the clinical
sphere.

Patients with PD seem to rely largely on feedforward learning,
even in cases, such as response to external perturbation or
changing conditions. The effects of situations that might interfere
with learning feedforward movement patterns, such as dual-
tasking or operating under reduced sensory feedback, need
to be studied. It has been seen that individuals with PD
have special difficulty with certain tasks, including gait and

balance under these conditions. Further research could reveal
interesting information about motor learning and maintaining
and updating motor loops in PD. The use of augmented
feedback to induce learning of proper patterns could help
to facilitate the transfer of feedforward methods learned to
situations that are likely to induce falls and is also of interest
for research. Because gait and balance both involve constantly
changing conditions and some degree of dual tasking is quite
common, assisting the improvement of these skills could be
vital to reducing falls. As of yet, little research has focused
upon this training or upon the limits of feedforward control in
managing PIGD.

Research into motor learning and control can directly
facilitate improvements in therapy. While preliminary, current
research suggests that as much exercise as possible, both through
therapy and through continued home and gym exercise, should
be recommended. Therapy should address as closely as possible
the active concerns patients with PD are experiencing (such as
balance, treadmill, or lower-limb focused resistance training for
patients known to be experiencing severe PIGD). At present, the
exact exercises prescribed are largely variable, but the addition of
more evidence-based research in the field will help to determine
the best potential options based on patient profile. A high level of
feedback is recommended, possibly through the use of VR, cueing
or other augmented feedback technologies.
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APPENDIX

Article Selection Methods
Keyword searches within the PubMed and Google Scholar
databases were used to identify articles of interest. Only articles
written in or translated into English with full text available were
considered. Additional papers of relevance were selected from
the citations given by those papers initially found during the
literature search.

For section Motor Learning in PD, articles related to
“Motor” + “Postural learning” or “Implicit learning” or “Explicit
learning” or “learning” + ”Parkinson’s disease” or “Parkinson
disease,” “Memory” or “Attention” or “Executive function” +
“Motor learning” + ”Parkinson’s disease” or “Parkinson disease,”
“Feedback” or “Perception” + “Motor learning” + ”Parkinson’s
disease” or “Parkinson disease,” and “Motivation” + “Motor
learning” + ”Parkinson’s disease” or “Parkinson disease” were
searched for. Abstracts were read to ascertain whether motor
learning deficits of idiopathic PD in human subjects were
discussed. For the relevant titles, the full papers were then
read to determine methods used and types and definitions of
learning analyzed. Because of the wide focus of titles related
to motor learning, which considered varying definitions and
perspectives of learning and the effects of various other cognitive
and perceptual systems, these articles were not synthesized into a
systematic review but grouped and discussed with other similar
research.

Within section Effect of Training on PIGD, searches were
made for “Physical therapy” or “exercise therapy” + “gait”
or “balance” + “Parkinson’s disease” or “Parkinson disease,”
“therapy” or “training” + “gait” or “balance” + ”Parkinson’s
disease” or “Parkinson disease,” “Perturbation” or “Perturbation
training” or “Perturbation training” + “gait” or “balance” +
”Parkinson’s disease,” and “Virtual reality training” + “gait”
or “balance” + “Parkinson’s disease” or “Parkinson disease.”
Articles that applied a specific non-pharmaceutical treatment
or treatments involving training or therapy, with quantitative
measures of overground gait and/or standing balance changes
as a primary outcome measure, were selected through abstract
review. Perturbation-based studies were also considered if they
measured learning effect to trained or generalized perturbations.
Review focused on articles relating to individual therapies,
not class-based techniques. Articles were not utilized if
pharmaceutical, surgical, or other treatments were tested in
conjunction with therapy. Only controlled studies, not case
studies or series, were considered. Full articles of selected
abstracts were then read to ensure relevance. While training
methods, intensity, and durations varied too widely for statistical
comparison, studies were analyzed and compared (as shown in
Tables 1, 2) to note basic trends in effective treatments. Reviews
of therapy and training methods in relation to gait and balance
were also considered and conclusions discussed in the body of
the paper, though only research studies were included in the
Tables.
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