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Proteolytic Regulation of Epithelial Sodium Channels by
Urokinase Plasminogen Activator
CUTTING EDGE AND CLEAVAGE SITES*
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Hong-Long Ji‡§1, Runzhen Zhao‡, Andrey A. Komissarov‡, Yongchang Chang¶, Yongfeng Liu�,
and Michael A. Matthay**
From the ‡Department of Cellular and Molecular Biology and the §Texas Lung Injury Institute, University of Texas Health Science
Center, Tyler, Texas 75708, the ¶Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona 85013,
the �College of Public Health, Xinxiang Medical University, Xinxiang, Henan 453100, China, and the **Departments of Medicine
and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California 94143

Background: Depressed fibrinolysis and edema concurrently exist in edematous injury.
Results: Divergent regulation of ENaC by urokinase and tPA was observed. Both the catalytic domain of urokinase and cleavage
sites in ENaC were identified.
Conclusion: Urokinase activates ENaC through catalytic activity-dependent proteolytic modification of � subunit.
Significance: Activation of ENaC by urokinase but not tPA provides a novel mechanism for the alleviation of lung edema and
pleural effusion.

Plasminogen activator inhibitor 1 (PAI-1) level is extremely
elevated in the edematous fluid of acutely injured lungs and
pleurae. Elevated PAI-1 specifically inactivates pulmonary
urokinase-type (uPA) and tissue-type plasminogen activators
(tPA). We hypothesized that plasminogen activation and fibrino-
lysis may alter epithelial sodium channel (ENaC) activity, a key
player in clearing edematous fluid. Two-chain urokinase
(tcuPA) has been found to strongly stimulate heterologous
human ��� ENaC activity in a dose- and time-dependent man-
ner. This activity of tcuPA was completely ablated by PAI-1.
Furthermore, a mutation (S195A) of the active site of the
enzyme also prevented ENaC activation. By comparison, three
truncation mutants of the amino-terminal fragment of tcuPA
still activated ENaC. uPA enzymatic activity was positively cor-
related with ENaC current amplitude prior to reaching the max-
imal level. In sharp contrast to uPA, neither single-chain tPA
nor derivatives, including two-chain tPA and tenecteplase,
affected ENaC activity. Furthermore, � but not � subunit of
ENaC was proteolytically cleaved at (177GR2KR180) by tcuPA.
In summary, the underlying mechanisms of urokinase-medi-
ated activation of ENaC include release of self-inhibition, pro-
teolysis of � ENaC, incremental increase in opening rate, and
activation of closed (electrically “silent”) channels. This study
for the first time demonstrates multifaceted mechanisms for
uPA-mediated up-regulation of ENaC, which form the cellular
and molecular rationale for the beneficial effects of urokinase in
mitigating mortal pulmonary edema and pleural effusions.

Urokinase-type plasminogen activator (uPA)2 initiates fibrinol-
ysis by converting plasminogen to plasmin. In the respiratory
system, uPA is expressed in the airway epithelium, alveolar epi-
thelial cells, macrophages, and pulmonary capillary endothelial
layer (1– 6). uPA released from these cells is a single-chain mol-
ecule (scuPA), which can be further proteolytically cleaved to
form active two-chain enzyme (tcuPA). uPA is readily detecta-
ble in bronchoalveolar lavage and pleural fluid in mammals and
is a primary contributor of fibrinolytic activity in lungs (3, 7, 8).
Tissue-type plasminogen activator (tPA), however, is not
expressed in lung epithelial tissues and cannot be detected in
luminal fluid lining the airways and air sacs. Both uPA and tPA
are endogenous plasminogen activators. To maintain fibrino-
lytic homeostasis, inhibitors of plasminogen activators 1 and 2
(PAI-1 and PAI-2) and plasmin (�2-antiplasmin and �2-macro-
globulin) coordinately fine tune the plasminogen activation
system.

The balance between plasminogen activators and their cor-
responding inhibitors is disrupted in edematous lungs and
pleural injuries, including acute lung injury, acute respiratory
distress syndrome, high altitude pulmonary edema, and pleural
effusions (1, 9, 10). Accumulating evidence from clinical studies
and animal models has confirmed a depression in plasminogen
activation in bronchoalveolar lavage or pleural fluid (11–13).
This is primarily attributable to a tremendous elevation in
PAI-1 level (a prognostic biomarker) and a significant reduc-
tion in uPA and plasmin (14 –18). Concurrently, the balance
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tPA, tissue-type plasminogen activator; scuPA and sctPA, single-chain uPA
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between fluid turnover and resolution in the airways, alveolar
spaces, and pleural cavity is lost. Accumulation of edematous
fluid mainly results from fluid reabsorption that cannot be
compensated for by fluid leakage (19 –21). This pathogenic sce-
nario can be illustrated with alveolar fluid clearance. Alveolar
fluid removal is driven by the osmotic sodium gradient as well
as electrical potential difference across the alveolar epithelium.
Vectorial transalveolar salt transport generates both chemical
and electrical differences between luminal and interstitial com-
partments. Epithelial sodium channels (ENaC) at the apical
membrane and ATP-consuming Na�/K�-ATPase at the baso-
lateral membrane coordinately control sodium inward move-
ment and depolarize the epithelial layer (22, 23).

Reduced ENaC expression and activity have been described
in both edematous pulmonary diseases and animal models (19,
24). Defective lung fluid clearance has been confirmed in mice
with deficient scnn1 genes (25). uPA and tPA decreased the
severity of lung injury and pleural effusion (26 –32). Whether
delivered plasminogen activators evoke ENaC-mediated edema
resolution, however, is unknown to date.

The concurrent edema formation and suppressed fibrinoly-
sis in injured lung and pleural cavity suggest a potential contri-
bution of fibrinolysis to ENaC function. Indeed, ENaC activa-
tion by plasmin has been recently demonstrated (33, 34). Both
uPA (abbokinase) and tPA (alteplase) are extensively used for
fibrinolytic therapy for asthma, pleural effusion, and other res-
piratory diseases. However, to the best of our knowledge, the
effects and underlying mechanisms of tPA and uPA on ENaC
function remain obscure. This study therefore aims to
understand the molecular pharmacological mechanisms by
which these serine proteases resolve edema fluid. Herein we
determined whether tPA and uPA affect ENaC activity. Electri-
cal measurements of amiloride-inhibitable sodium ion flow
were used to determine channel opening status upon exposure
to plasminogen activators. Human tcuPA, but not tPA nor
tenecteplase (TNK), activates human ��� ENaC expressed in
Xenopus oocytes. The catalytic domain of tcuPA is responsible
for its stimulatory effects. Furthermore, tcuPA releases self-
inhibition, increases activation rate, and activates electrically
“silent” channels. � ENaC is proteolytically cleaved by tcuPA
through hydrolysis of a unique domain. Activation of ENaC
specifically by uPA may contribute to fluid clearance under
physiological conditions and in injured tissues. These are novel
mechanisms for uPA whereby it could be an effective clinical
intervention in edematous respiratory injury.

EXPERIMENTAL PROCEDURES

Proteins and Reagents—Wild type (WT) uPA, truncated
mutants (�GFD, �kringle, and �CPD) and a site-directed
mutant (S195A) of uPA, and PAI-1-resistant TNK-tPA were
obtained from Attenuon LLC (San Diego, CA) or were pro-
duced and purified as described (35, 36). By convention, these
proteases are numbered based on the chymotrypsin sequence
numbers. Human recombinant WT sctPA was obtained from
Genentech (South San Francisco, CA). High (HMW) and low
molecular weight (LMW) tcuPA compounds were obtained
from Abbott. HMW tcuPA activity standard (100,000 IU/mg)
was purchased from American Diagnostica (Stamford, CT).

The concentrations of proteins were calculated either from
absorbance at 280 nm (uPA, tPA, and PAI-1), using Mr of
54,000, 63,500, and 43,000 and �280

1% of 1.36, 1.90, and 0.93, or
from measurements with a BCA protein assay kit (Pierce).

Measurements of uPA and tPA Amidolytic Activity—Amido-
lytic uPA and tPA activity was determined using fluorogenic
substrates (Pefafluor uPA and Pefafluor tPA, respectively; Cen-
terchem, Basel, Switzerland). Aliquots (10 –25 �l) of samples
were mixed with 0.05 M HEPES buffer (pH 7.4, 20 mM NaCl,
50 �l) in 96-well white flat bottom Costar plates (Corning Inc.).
50 �l of 100 �M Pefafluor uPA or 200 �M Pefafluor tPA in the
same buffer were added to each well and mixed. Time traces of
changes in the fluorescence emission at 440 nm (excitation 344
nm) in each well were registered using a Varian Cary Eclipse
fluorescence spectrophotometer equipped with a 96-well plate
reader accessory (Varian Inc.). The results were fitted to a linear
equation using Varian software to determine the rates of sub-
strate hydrolysis, which were recalculated to arbitrary units
(AU) of enzymatic activity. Amidolytic enzyme activities were
analyzed using Varian Eclipse Kinetic software. S.E. values were
less than 10%.

Conversion of Single-chain Proenzymes into Two-chain
Mature Form—Single-chain uPA was converted to the two-
chain form by incubation with immobilized plasmin (Molecu-
lar Innovations), as described previously (37). scuPA could also
be cleaved by plasmin at Lys158-Ile159 to produce potent tcuPA,
accompanied by a conformational change in proteins. As
shown in Fig. 2B (top, inset), a single disulfide bond connects
the amino-terminal A-chain to the catalytically active, carbox-
yl-terminal B-chain. This two-chain derivative is also called
HMW uPA. HMW uPA can be further processed into LMW
uPA by cleavage of chain A into a short amino-terminal frag-
ment. LMW-uPA is proteolytically active but does not bind to
the uPA receptor. scuPA and its mutant variants were con-
verted to the two-chain mature form by treatment with immo-
bilized plasmin. Enzymes (1–5 mg) were incubated with plas-
min-agarose (0.1– 0.4 ml) at 37 °C in 0.5–2.0 ml of 0.1 M HEPES
(pH 7.4). Aliquots were withdrawn to monitor amidolytic activ-
ity using fluorogenic substrate Pefafluor uPA. As soon as enzy-
matic activity in the preparation peaked, resin was removed,
and enzyme was precipitated with ammonium sulfate, dis-
solved in 0.1 M HEPES, pH 7.4, passed through a P-10 gel filtra-
tion column, aliquoted, and stored at �80 °C. The conversion
(more than 95%) of single-chain enzymes to the two-chain form
and the absence of degradation were confirmed by SDS-PAGE
under reducing conditions (4 –12% gradient gel, NuPage; Invit-
rogen) using the XCell SureLock Mini-Cell (Invitrogen).

Construction of ENaC Mutants—Deletion and site-directed
mutants were generated in human � ENaC cDNA cloned into
pGEM HE vector using the QuikChange II site-directed
mutagenesis kit (Stratagene) (38, 39). cRNAs of human �, �,
and � ENaC were prepared as described previously (40).

Oocyte Expression and Voltage Clamp Studies—Oocytes
were surgically removed from appropriately anesthetized adult
female Xenopus laevis (Xenopus Express). Briefly, the ovarian
tissue was removed from frogs under anesthesia by ethyl 3-ami-
nobenzoate methanesulfonate salt (Sigma) through a small
incision in the lower abdomen. Ovarian lobes were removed
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and digested in OR-2 calcium-free medium (82.5 mM NaCl, 2.5
mM KCl, 1.0 mM MgCl2, 1.0 mM Na2HPO4, and 10.0 mM

HEPES, pH 7.5) with the addition of 2 mg/ml collagenase
(Roche Applied Science). Defolliculated oocytes were injected
with ENaC cRNAs into the cytosol (25 ng/oocyte in 50 nl of
RNase-free water) and incubated in regular OR-2 medium at
18 °C. The two-electrode voltage clamp technique was used to
record whole-cell currents 48 h postinjection. Oocytes were
impaled with two electrodes filled with 3 M KCl, having resis-
tance of 0.5–2 megaohms. A TEV-200 voltage clamp amplifier
(Dagan) was used to clamp oocytes with concomitant recording
of currents. Two reference electrodes were connected to the
bath. The continuously perfused bathing solution was ND-96
medium (96.0 mM NaCl, 1.0 mM MgCl2, 1.8 mM CaCl2, 2.5 mM

KCl, and 5.0 mM HEPES, pH 7.5). Whole-cell currents were
recorded as reported previously (41). Experiments were con-
trolled by pCLAMP version 10.1 software (Molecular Devices),
and currents at �40, �100, and �80 mV were continuously
monitored with data recorded at intervals of 10 s. Data were
sampled at a rate of 200 Hz and filtered at 500 Hz.

To study the effects of fibrinolytic proteases on ENaC activ-
ity, both WT and mutant uPA and tPA were incubated with
oocytes in serum-free OR-2 medium over a time course fol-
lowed by measurements of whole-cell currents.

Self-inhibition and Gating Analyses—To induce self-inhibi-
tion of ENaC activity by external Na� ions, bath solution was
switched from a low Na� (1 mM Na� ions � 95 mM NMDG) to
regular ND-96 solution (96 mM Na� ions) with an SF-77B Per-
fusion Fast-Step System (Warner Instruments). Cells were held
at �60 mV. Current and voltage levels were digitized as
described previously (39). Based on a two-state model (open-
close), the maximal current levels at the zero time point and
gating rates were computed according to the equation,

I�t� � Imax
0

ka � e��ka � ki� � tki

ka � ki
(Eq. 1)

where I(t) represents experimental data for current, Imax
0 is the

maximal channel activity at the zero time point, ka and ki are
activation and inactivation rates, respectively, and t is recording
time.

Self-inhibition was divided into two phases: fast and slow.
The rate for each phase was calculated as follows.

� fast �
ki

ka � ki
(Eq. 2)

� slow � 1 	
Isus

Imax
0 (Eq. 3)

Computation of Electrically Detectable Channel Density at
Cell Surface—To compute electrically detectable channel den-
sity (Ne) at the plasma membrane, the following equation was
applied,

Ne �
Imax

0 /Em

r � A
(Eq. 4)

where Em is transmembrane potential difference, r is the cell
diameter, and A represents area.

Biotinylation and Western Blots—Biotinylation experiments
were adapted from previous publications (34, 42), using 20 – 40
oocytes/group. In some experiments, oocytes were preincu-
bated in either ND-96 solution or low sodium solution (1 mM

NaCl, 96 mM NMDG). Oocytes were incubated in freshly pre-
pared biotinylation buffer (1.5 mg/ml EZ-Link Sulfo-NHS-SS-
Biotin (Pierce) in Dulbecco’s PBS solution (Hyclone), pH 8.0)
for 30 min with gentle agitation. The biotinylation reaction was
stopped by washing the oocytes three times for 5 min each with
quenching buffer (192 mM glycine and 25 mM Tris-Cl, pH 7.5).
Subsequently, the oocytes were incubated in ND-96 solution or
supplemented with 10 �g/ml tcuPA for 60 min or designated
periods for time-dependent study. After washing the oocytes
three times with ND-96 solution, treated cells were lysed by
passing them through a 27-gauge needle in lysis buffer (500 mM

NaCl, 5 mM EDTA, 50 mM Tris, 1% Triton X-100, 1% Igepal
CA-630, pH 7.4) and supplemented with Complete Mini
EDTA-free protease inhibitor mixture (Roche Applied Science)
according to the manufacturer’s instructions. The lysates were
incubated in a shaker for 1 h and centrifuged at 16,000 � g for
15 min at 4 °C. Supernatants were transferred to 1.5-ml tubes
(Eppendorf). Biotinylated proteins were precipitated with 50 �l
of prewashed high capacity neutravidin-agarose resin (Pierce).
After overnight incubation at 4 °C with overhead rotation,
supernatants were removed, and beads were washed three
times with lysis buffer. 50 �l of 2� SDS-PAGE sample buffer
(Pierce) containing protease inhibitors was added to the beads.
Samples were boiled for 5 min at 95 °C, centrifuged for 1 min,
and loaded on a 7.5% SDS-polyacrylamide gel. To detect small
peptides by anti-HA antibody, samples were run on a 16.5%
Tris-Tricine gel (Bio-Rad). To detect � ENaC proteins, the
membrane blots were blocked in 5% blocking buffer (5% nonfat
dry milk, Bio-Rad, in TBST) for 1 h at room temperature. Then
both anti-V5 and anti-HA monoclonal antibodies were added
to the samples (1:5,000 and 1:1,000 dilution, respectively).
Horseradish peroxidase-labeled secondary antibodies (Jackson
Immunoresearch) were used (1:10,000). Chemiluminescence
signals were detected using ECL Plus (Millipore). The frag-
ments created by furin cleavage from Arg-135 and Arg-138 to
Arg-178 could not be detected due to loss of HA tag.

In Silico Prediction of Cleavage Sites—Specific cleavage sites
for both uPA and tPA were confirmed with phage substrate
libraries (43– 47). The consensus motif in substrates for proteo-
lytic cleavage by urokinase is GR2(S�N/K/R)(A��S) from P2
to P2	. These sequences were used as custom input for the
SitePrediction server (48) to predict potential cleavage site spe-
cifically for uPA in the extracellular loop of human � ENaC.
Default settings were used for all parameters except cleavage
position (
 2) and cleavage sequences. The predicted sites must
meet these criteria: 1) the cleavage site is located at the ectodo-
main of ENaC; 2) the size of the predicted carboxyl-terminal
protein is close to those observed in Western blots; 3) the P1
protein must be Arg; 4) average score is �1; and 5) specificity is
�99%.
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Structural Analysis of Interactions between uPA and �
ENaC—The three-dimensional uPA-cleaved sites from P3 to
P2	 in human � ENaC (TGR2KR) was generated by using
“Tools�Build and Edit Protein” in Discovery Studio Visualizer
version 4.0 (Accelrys, San Diego, CA). The surface view of
chicken ASIC1 (Protein Data Bank code 3HGC) was adapted
from Sherwood et al. (49), which was originally proposed by the
Gouaux group (50, 51). The three-dimensional structure of
uPA (Protein Data Bank code 1W12) reported by Zeslawska et
al. was adapted (52). Following removal of the ligand from uPA,
docking of the cleavage site in ENaC to uPA was performed
with Autodock Vina version 1.1.1 (Scripps Institute, San Diego,
CA) in a Pyrx (version 0.85) environment (Scripps Institute).
The top-ranking pose with minimal energy in the docking
results was selected and saved as a Protein Data Bank file. Final
presentation was accomplished with Discovery Studio Visual-
izer version 4.0 by inserting the selected docking pose of the
cleavage sites into the catalytic triad of uPA protein. The dock-
ing structure of uPA and cleavage site was further energy-min-
imized by “clean geometry.” The uPA-ENaC interactions
between the enzymatic domain and cleavage sites were visual-
ized by a “non-bond interaction monitor” for a ligand-receptor
mode.

All results were presented as mean � S.E. Dose-response
curves were fitted to the Hill equation (53). ENaC activity is the
difference of the total and amiloride-resistant current fractions.
Association of ENaC currents and uPA activity was computed
for Pearson correlation. One-way analysis of variance compu-
tation combined with the Bonferroni test was used to analyze
the difference of the means for significance. A probability level
of 0.05 or less was considered significant.

RESULTS

Strong Up-regulation of ENaC Activity by tcuPA but Not
tPA—Fibrinolytic activity is depressed in injured organs (e.g. in
acute lung injury and pleural effusion). These organ injuries are
characterized by fluid accumulation in the luminal cavities,
where ENaC is critical for fluid resolution (54 –56). uPA and
tPA initiate fibrinolysis by converting plasminogen to plasmin.
Although it is known that plasmin also activates ENaC, it is
unknown whether or not ENaC activity is affected by plasmin-
ogen activators. To examine the effects of uPA on ENaC activ-
ity, oocytes expressing human ��� ENaC were incubated with
tcuPA (10 �g/ml) in OR-2 medium for 12 h. Compared with the
control (Fig. 1A), total inward current generated by positively
charged Na� ion flow was markedly greater in oocytes prein-
cubated with tcuPA (Fig. 1B). Amiloride-resistant current frac-
tion that was not mediated by ENaC appeared unaltered, indi-
cating specific effects of the plasminogen activator. In contrast,
amiloride-sensitive (AS) currents (i.e. ENaC activity) increased
significantly (Fig. 1C).

We analyzed the effect of tcuPA on ENaC activity. tcuPA
stimulated ENaC activity in a dose-dependent manner. A linear
relationship was seen between tcuPA concentration above 5
�g/ml (100 nM) and ENaC currents (Fig. 1D). Furthermore, we
characterized the time course for the activation of ENaC func-
tion by tcuPA. ENaC activity was determined in oocytes incu-
bated for up to 24 h. As shown in Fig. 1E, ENaC activity was

quickly elevated at 2 h, followed by a slow increment, finally
reaching maximal activity at 8 h post-treatment. The ENaC
currents subsequently declined slightly but were still signifi-
cantly greater than the control (p � 0.05) at 24 h. The uPA
enzyme activity was 80 and 20% of the initial level, at 8 and 24 h,
respectively (Fig. 1E). Insufficient enzyme, altered endocytosis
of channel proteins, and time-dependent expression of exoge-
nous ENaC channels may contribute to the slight decline of
current level after the 8 h time point.

Surprisingly, neither sctPA nor tctPA at a dose of 10 �g/ml
altered ENaC activity (Fig. 1F). Tenecteplase was tested next to
determine whether exosite interactions contribute to a sharp
difference in the effects of tPA and uPA on ENaC activity.
Tenecteplase is a mutant variant (T103N/N117Q/K296A/
H297A/R298A/R299A) of tPA, which has higher than WT tPA
fibrin specificity, and almost 2 orders of magnitude lower
affinity for PAI-1 due to the elimination of positive charges in
the 37-loop (57–59). However, neither sctPA nor tctPA nor
tenecteplase in doses as high as 25 �g/ml affected ENaC activity
(Fig. 1F), whereas enzymatic amidolytic activity toward LMW
substrates (Fig. 1G) and plasminogen-activating activity (not
shown) remained intact. Our study hereby adds a novel endog-
enous target to the uPA substrate pool.

uPA�PAI-1 Inhibitory Complex Does Not Affect ENaC
Activity—A serpin, PAI-1, is a major specific endogenous
mechanism-based inhibitor of uPA and tPA. Unlike tcuPA, nei-
ther active PAI-1 alone nor preformed uPA�PAI-1 inhibitory
complex (10 �g/ml) had any effect on ENaC activity (Fig. 2A).
These data indicate a lack of contribution of endogenous plas-
minogen activators to ENaC activity and indicate that the cat-
alytic site of tcuPA contributes to the enhancement of ENaC
activity.

Stimulation of ENaC Correlates with uPA Enzymatic
Activity—The two polypeptide chains of an uPA molecule
(amino-terminal fragment (ATF) and protease domain) are
connected by a single disulfide bond between two cysteine res-
idues (Fig. 2B, top inset).

To evaluate the contribution of uPA catalytic and ATF
domains to activation of ENaC, a catalytically inactive S195A
(chymotrypsin numbering) tcuPA and three uPA domain-de-
letion mutants, �kringle, �CPD, and �GFD uPA, were com-
pared with WT tcuPA. Oocytes expressing ENaC cRNA cul-
tured in medium without uPA or its mutants were used as a
negative control (Fig. 2B). Whereas inactive S195A tcuPA did
not elevate ENaC current, all three mutant variants, which
include the catalytic domain and possess enzymatic activity,
activated ENaC (Fig. 2C). Therefore, there is only minimal (if
any) contribution of ATF to ENaC activation by uPA.

We repeated these experiments by incubating oocytes with
both wild type and mutant tcuPA preparations that, except for
the S195A mutant, have equivalent enzymatic activity (Fig. 2D).
Consistent with the previous experiment, the S195A tcuPA
(negative control) did not affect ENaC activity. The three
domain deletion mutants enhanced ENaC to an extent similar
to WT tcuPA. These data demonstrate that the amino-terminal
fragment is not involved in the activation of ENaC by tcuPA.
Moreover, the same level of enzymatic activity associated with
both wild type and mutant tcuPA, instead of identical mass,
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determined the amplitude of ENaC currents. These results sug-
gested a possible correlation between activated ENaC current
levels and uPA enzyme activity.

We pooled experimental paired data for WT and mutated
uPA as well as tPA constructs to compute the Pearson correla-
tion. A correlation co-efficient of 0.93 was derived with a p

FIGURE 1. tcuPA activates human ��� ENaC activity. A and B, representative inward current traces recorded in a control cell (A) and an oocyte incubated with
tcuPA (10 �g/ml, 12 h) (B). The traces represent total sodium influx in the absence (total) and presence of amiloride (�Amil, 10 �M). Broken lines, zero current levels.
Oocytes were held at�60 mV and sequentially stepped to�100 and�80 mV. C, average current levels for total, amiloride-resistant (�Amil), and amiloride-inhibitable
(ENaC activity) fractions. The difference between the total and amiloride-insensitive currents reflects ENaC function. AS, amiloride-sensitive. n 
 25; *, p � 0.05; **, p �
0.01 when compared with control oocytes. D, dose-effect relationship. Cells were incubated with tcuPA for 12 h. n 
 16. E, time dependence of tcuPA-mediated
activation of ENaC function. uPA activities at 0, 8, and 24 h are included in parentheses. n 
 14; *, p � 0.05; **, p � 0.01 compared with the initial values at time 0. F, tPA
does not alter ENaC activity. Shown are current levels in oocytes preincubated with 10 �g/ml tcuPA, 10 �g/ml single-chain tPA (sctPA10), 25 �g/ml tctPA, 25 �g/ml
sctPA (sctPA25), and TNK. Control was cells in the absence of PA, and positive control was cells incubated with tcuPA. n 
 21; **, p � 0.01. G, corresponding tPA activity
in the culture medium. *, p � 0.05 versus control medium without plasminogen activators. Error bars, S.E.
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value of 3.5E�6 between tcuPA and ENaC activity (Fig. 2E,
open symbols). In sharp contrast, tPA enzyme activity showed
no correlation with ENaC function (Fig. 2E, closed symbols).

uPA Receptor Does Not Mediate the Activation of ENaC by
uPA—uPA, but not tPA, binds to uPA receptors (uPAR). Given
that LMW uPA does not bind to uPAR but is still proteolytically
active, we compared the effects of both HMW and LMW uPA
on ENaC activity. As shown in Fig. 2E, both HMW and LMW
tcuPA activate ENaC with comparable efficacy, suggesting that
uPAR is not required for uPA to activate ENaC. To corroborate
these observations, we compared the stimulatory effects of
these two enzymes with identical activity. ENaC activity was

activated to a similar extent by both LMW and HMW tcuPA
(Fig. 2F). Taken together, it is unlikely that uPAR could affect
this process unless it was situated in close proximity to the
cleavage site to decrease the entropic barrier of the reaction.

uPA Strengthens the Open Conformation of ENaC—A two-
state model (closed-open) has been proposed to analyze the
gating kinetics of ENaC channels (60). We postulated that
tcuPA opens closed channels and facilitates maintenance of
activated ENaC in the open state. To analyze this possibility,
gating kinetics were computed by measuring self-inhibition of
external Na� ions (Fig. 3A). In addition to stable channel activ-
ity (reflected by sustained current level), the maximal channel

FIGURE 2. Catalytic domain is required for the specific activation of ENaC by urokinase. A, specificity of tcuPA-mediated regulation of ENaC activity.
Enzymatic inhibition of tcuPA with PAI-1 prevents the activation of ENaC by tcuPA. Oocytes were incubated with tcuPA (10 �g/ml), PAI-1 (10 �g/ml), and their
complexes (tcuPA � PAI-1) for 12 h. n 
 18; **, p � 0.01 when compared with control oocytes. B, identification of critical domains in urokinase. Top inset,
schematic linear structure of a tcuPA molecule. Two fragments of single-chain uPA are bridged by a disulfide bond. ATF is made up of GFD, kringle domain, and
CPD. The catalytic site, serine 195, is located in the protease domain. Shown is ENaC activity in oocytes incubated with WT, catalytic site mutant (S195A tcuPA,
chymotrypsin numbering), and three ATF-truncated tcuPA mutants �kringle, �CPD, and �GFD. n 
 9 –17; *, p � 0.05 versus controls. C, corresponding uPA
activity in culture medium. D, activation of ENaC by tcuPA and mutants possessing identical catalytic activity. *, p � 0.05 compared with controls; n 
 17. E,
correlation between ENaC and plasminogen activator activity. Open symbols, tcuPA; from left to right, control, S195A, �kringle, LMW, HMW, �GFD, and �CPD.
Closed symbols, tPA; from left to right, control, sctPA (10 �g/ml), tctPA, sctPA (25 �g/ml), and TNK. Pearson’s correlation constant was 0.93; p � 0.001; n 
 12.
F, equivalent activation of ENaC by LMW and HMW tcuPA. *, p � 0.05; n 
 14. Error bars, S.E.
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activity (measured as peak current) was significantly greater
than in control cells (Fig. 3B). The ratio of sustained over max-
imal current levels is 0.5 for ENaC channels in control cells,

which is consistent with previous observations (39, 61, 62). By
comparison, the value was close to 1.0 following exposure to
tcuPA (Fig. 3C). These results suggest that self-inhibition is

FIGURE 3. uPA increases electrically detectable channel number and opening kinetics. A, external Na� self-inhibition. Shown are representative traces for
control (���) and tcuPA-treated cells. The maximal current level (Imax

0 ) at the zero time point (illustrated with vertical broken lines) and suspended amplitude
(Isus) were computed by fitting the climbing branch (red lines). See “Experimental Procedures” for details. B, average computed maximal suspended activation
of ENaC by tcuPA. ***, p � 0.001 compared with controls; n 
 12. C, ratio of stable and maximal current magnitudes. ***, p � 0.001 compared with controls; n 

12. D, gating kinetics of ENaC channels. Left, Ka (activation rate) and Ki (inactivation rate). Right, fast and slow phases of self-inhibition (SI) process. **, p � 0.01;
***, p � 0.001 compared with controls. n 
 12. E and F, simulation of maximal opening level for control (E) and tcuPA-treated cell (F). Top, broken black lines
indicate background current level at 0 mM external Na� ions. Symbols in blue, experimental data. Red broken lines were created by fitting raw data points with
Equation 1. Green lines, simulation levels for maximal level in the absence of self-inhibition in control cells (E) and pseudo-self-inhibition in the presence of
self-inhibition. G, effects of tcuPA on ��S520C� ENaC activity. Traces showing application of MTSET and amiloride (Amil, 10 �M) to tcuPA-incubated and control
cells. H, comparison of ENaC activity before and after the addition of MTSET. ***, p � 0.001 versus basal current level in the presence of MTSET. n 
 19. Error bars,
S.E.
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diminished by tcuPA. There are two components of self-inhi-
bition: a fast phase followed by a slow phase (Fig. 3A). The rate
of activation process after incubation with tcuPA was almost an
order of magnitude faster than that for untreated cells (1.17 and
11.9 s�1 for control and tcuPA treatment, respectively; Fig. 3D,
left). Moreover, treatment with tcuPA completely eliminated
inactivation (the inactivation rate was reduced by tcuPA from
0.56 to 0.0 s�1). In addition, even with switched gating rates
between control and tcuPA-treated cells, the simulated maxi-
mal current level at the full open state for controls was still
much lower than the sustained current magnitude of tcuPA-
challenged cells (Fig. 3, E and F). These observations could not
simply be explained by full opening of activated channels in
untreated cells. On the other hand, irreversibility of the effect of
tcuPA on ENaC gates most likely reflects cleavage of ENaC by
tcuPA, resulting in transition to the “open” conformation of the
channel.

Channel activity recorded in whole-cell mode is the product
of single-channel activity and unitary conductance. The latter
was not altered during self-inhibition, as has been demon-
strated by self-inhibition mutations (39, 62). Single-channel
activity is the product of open probability and electrically
detectable channel density. The simulation leads us to ask
whether there is a potential increment in functional channel
density. The functional channel density was computed using
Equation 4 (see “Experimental Procedures.” Our calculation
found that the channel number that could be detected per unit
area was 410 channels/�m2 post-uPA exposure. This is 5-fold
greater than that in control cells (82 channels/�m2). It appears
that uPA increases functional channel density at the plasma
membrane. This is supported by studies of other serine pro-
teases (63– 65).

MTSET is a thiol-modifying reagent that activates ��S520C�
channels almost completely as evidenced by an open probabil-
ity of nearly 1.0 (66). If uPA activates ENaC activity via an incre-
ment in opening time, with a mechanism similar to that medi-
ated by MTSET, then uPA should not alter ENaC whole-cell
currents in MTSET-pretreated cells expressing ��S520C�
channels. Our results indicate that although MTSET does
increase channel activity in untreated cells to a level similar to that
in uPA-incubated cells (Fig. 3, G and H), it does not affect uPA-
activated ENaC activity. These observations provide evidence for
uPA maintenance of ENaC channels in the fully open state, with a
resultant effect equivalent to that of MTSET. uPA may proteolyti-
cally cleave ENaC, a common mechanistic translational modifica-
tion of ENaC proteins, as demonstrated by numerous proteases
(63–65). These observations prompted us to address the idea that
tcuPA selectively cleaves ENaC proteins.

� ENaC Is Cleaved by tcuPA—To identify what subunits are
cleaved by tcuPA, a well established measurement of amiloride-
sensitive sodium ion flow was applied (Fig. 4A). We expressed �
alone, � � �, and � � � in oocytes. tcuPA slightly stimulated
current level in cells expressing � ENaC alone (p � 0.05). The
change in cells co-expressing � � � ENaC subunits was not
significant. In sharp contrast, the activity of channels composed
of � � � ENaC subunits was increased 3-fold (p � 0.05).
These results indicate that the � subunit could be a target for
tcuPA.

As proposed and confirmed by several groups, there are three
putative cleavage domains (67–70). To narrow down the search
range for uPA cleavage sites, we constructed three deletion
mutants for both � (��131–138, ��178 –193, and ��410 –
422) and � ENaC subunits (��131–138, ��178 –193, and
��410 – 422) and expressed them in oocytes. We reasoned that
after removal of tcuPA cleavage sites from these ENaC sub-
units, channel activity associated with these cleavage site-miss-

FIGURE 4. Identification of tcuPA-regulated domains in ENaC subunits. A,
� subunit is required. tcuPA was incubated with cells expressing � ENaC alone
(�), co-expressing � and � subunits (� � �), and co-expressing � and � sub-
units (� � �). *, p � 0.05. n 
 6 –13. B, effects of tcuPA on deletion mutants of
the putative cleavage domains. The ratio of current level in the presence and
absence of tcuPA was computed to compare the -fold increase in currents. **,
p � 0.01; n 
 8 –24. Error bars, S.E.
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ing mutants should not be altered by tcuPA. Intriguingly, four
mutants, one of � ENaC and all three deletion mutants of �
ENaC subunit, did not respond to tcuPA (Fig. 4B). Because the
current levels between each construct vary before application
of uPA, as shown by the open bars in Fig. 4B, we computed -fold
increase in the ENaC activity and plotted normalized data in
Fig. 4C. These results suggest that a uPA-specific cleavage motif
may be located within these four deleted ectodomains.

We then constructed V5 (carboxyl-terminal) and HA (ami-
no-terminal) tagged � (HA�V5) and � ENaC (HA�V5) to examine
tcuPA-mediated proteolysis combining biotinylation and
Western blots. As shown in Fig. 5A, three bands of � ENaC were
recognized by anti-V5 monoclonal antibody. One small frag-
ment at 25 kDa in addition to a full-length signal was identified
by anti-HA antibody (Fig. 5B). Furthermore, three small bands
could be visualized on 16.5% Tris-Tricine gels by anti-HA anti-
body. The same signal patterns of � ENaC were found in the
absence and presence of tcuPA, either with anti-carboxyl ter-
minus (-COOH) or anti-amino terminus (-NH2) antibody.
These results exclude the cleavage of � ENaC proteins by
tcuPA, further substantiating the functional results in Fig. 4.

In strict contrast to � ENaC, two peptides of � ENaC were
visualized by anti-V5 antibody for full-length proteins (86 kDa)
and endogenous furin-cleaved carboxyl-terminal fragments (70
kDa) in the absence of tcuPA (Fig. 6A). By comparison, in the
presence of tcuPA, carboxyl-terminal fragments with a smaller
size (65 kDa) than that of furin-cut fragments along with the
full-length proteins were seen. Strikingly different from anti-V5
antibody-recognized signals, proteins detected by anti-HA
monoclonal antibody displayed a similar pattern, either on 7.5%
SDS-polyacrylamide gels (Fig. 6B) or 16.5% Tris-Tricine gels
(Fig. 6C). The same pattern for ENaC expression was found
between controls and tcuPA-treated groups, indicating that the
furin sites may precede the cleavage domains for tcuPA. Thus,
the subsequent Western blots were done with anti-V5 antibody
to examine uPA-cleaved carboxyl-terminal peptides as well as
full-length translations.

Proteolysis of Deletion Mutants Missing Consensus Motifs for
Proteolysis—Given the fact that tcuPA could not stimulate
channel activity associated with all three deletion mutants of �
ENaC (Fig. 4B), cleavage of these three deletion mutants by
tcuPA was examined with the full-length � ENaC as control
(Fig. 7A). The furin-cleaved band was very faint for ����131–
138 channels (Fig. 7B), supportive of previous reports that furin
sites are located within the first putative proteolysis tract (67–
70). tcuPA apparently could not cleave ENaC proteins of furin
site-defective ����131–138 channels. As to the cells express-
ing ����178 –193 channels (Fig. 7C), the same pattern of
ENaC proteins was seen in the presence and absence of tcuPA.
Removal of the third putative domain (�410 – 422) appeared to
alter the cleavage efficacy of uPA on furin-cut proteins (Fig.
7D). Compared with WT channels (Figs. 6A and 7A), the uPA-
cleaved band is weaker. Based on the identical migration of
cleaved bands associated with ����178 –193 channels in the
absence and presence of tcuPA, we postulated that uPA-spe-
cific cleavage sites could be within the second putative domain
(from amino acid 178 to 193).

Identification of uPA-specific Cleavage Sites in � ENaC—Sev-
eral serine proteases, including prostasin (RKRK178), human
neutrophil elastase (Val-182, Val-193), and plasmin (Lys-189)
trimmed the second consensus proteolysis motif (67–70). It is
conceivable that all of these residues are targeted by tcuPA (Fig.
8, top inset). This is at least the scenario for plasmin to cleave
human � ENaC (34). Indeed, the plasmin cleavage site com-
posed of five amino acid residues for prostasin and one for
murine plasmin (178RKRK181 � Lys-189), when substituted
with alanine (termed �5A, 178AAAA181 � Ala-189) was not
stimulated by tcuPA even after 24 h (Fig. 8A). Moreover, the
tcuPA-cleaved band disappeared compared with that of wild
type channels (Fig. 8C).

A series of classic studies on the specificity of uPA substrates
revealed a consensus cleavage motif, GR2(S�N/K/R)(A��S)

FIGURE 5. Proteolytic cleavage of � ENaC by tcuPA. A, detection of HA�V5

ENaC with anti-V5 monoclonal antibody. From left to right, lanes were loaded
with biotinylated plasma membrane proteins of noninjected oocytes (NI),
cells coexpressing HA�V5, �, and � ENaC subunits, and those treated with
tcuPA. Arrowheads, signals recognized by the antibodies. B, Western blot
probed with anti-HA antibody. C, analysis of short amino-terminal peptides
using 16.5% Tris-Tricine protein gel. These experiments were repeated at
least three times with similar results. Relative mobility of the standard mixture
of proteins is shown to the left.

FIGURE 6. Cleavage of � ENaC by tcuPA. A, tcuPA cleaves � ENaC. Plasma
membrane proteins with the carboxyl-terminal tail were detected with
anti-V5 monoclonal antibody after running on a 7.5% SDS-polyacrylamide
gel. B and C, Western blots probed with anti-HA antibody to detect mem-
brane proteins on 7.5% SDS-polyacrylamide gels (B) and 16.5% Tris-Tricine
gels (C). These experiments were repeated at least three times with similar
results. Relative mobility of the standard mixture of proteins is shown to the
left.
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from P2 to P2	 (43, 44). We further combined in silico predic-
tion and immunoblotting assays to narrow down the cleavage
site. Using the SitePrediction server (48), only one hit was pre-

dicted: 177GR2KR within the ectodomain of human � ENaC
with a specificity above 99%. In strict contrast, no specific cleav-
age sites in human � ENaC were found for tPA with its cleavage
motif, (F/Y/R)GR2R(A/G) from P3 to P2	 (data not shown). In
addition, there are no predicted cleavage sites in human �, �,
and 
 ENaC proteins for uPA to meet the prediction criteria
(see “Experimental Procedures”). Does uPA cut � ENaC pro-
teins into two fragments between Arg-178 and Lys-179? We
validated this prediction combining mutagenesis, functional
measurements, biotinylation, and immunoblotting assays. Nei-
ther �R178A nor �K179A could be significantly activated by
tcuPA in 24 h (Fig. 8B). We anticipated that the uPA-cleaved
band of R178A and K179A should migrate slower than that of
wild type if any. Intriguingly, this is the case for K179M, and
probably K179A but not R178A. This phenomenon is consis-
tent with the functional data shown in Fig. 8B. Combined with
the blot for the deletion mutant in Fig. 7C, we believe that
amino acid residues from P2 to P2	 (177GRKR180) coordinately
interact with uPA to serve as a catalytic triad. Of them, both

FIGURE 7. Proteolysis of � ENaC putative cleavage domain deletion mutants
by tcuPA. Blots A–D represent wild type, deletion of 131–138 (�131–138), dele-
tion of 178–193 (�178–193), and deletion of 410–422 (�410–422), respectively.
The lanes in each blot (from left to right) contain lysates from noninjected cells
(NI), wild type and mutated � ENaC, and tcuPA-treated cells. These experiments
were repeated at least three times with similar results. Relative mobility of the
standard mixture of proteins is shown to the left.

FIGURE 8. Identification of cleavage sites for tcuPA in the � subunit. Identified cleavage sites for furin, chymotrypsin, prostasin, elastase, and plasmin are
listed at the top. A, effects of tcuPA on �5A mutant (RKRK178AAAA � K189A). Shown is the ENaC activity in the absence and presence of tcuPA 2 and 24 h
postaddition. n 
 24. B, effects of tcuPA on R178A and K179A mutants. n 
 22; *, p � 0.05 versus controls prior to application of tcuPA. C, Western blots for
cleavage of �5A by tcuPA. NI, noninjected eggs. D, cleavage of Arg-178 and Lys-179 mutants by tcuPA. This blot represents four experiments with similar results.
Relative mobility of the standard mixture of proteins is shown to the left. Error bars, S.E.
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Arg-178 and Lys-179 amino acid residues are critical for uPA-
mediated proteolysis.

Structural Interactions between Catalytic Sites of uPA and
Cleavage Sites of � ENaC—The cleavage sites in the � ENaC
(Arg-178 and Lys-179) are located between �1 and �2 of the
finger, a hypervariate region. The confident docking of the
uPA-specific cleavage site into the enzyme active center of uPA
substantiates their protein-protein interactions (Fig. 9, A and
B). A network of hydrogen bonds within the catalytic triad of
uPA was visualized (inset between A and B of Fig. 9). Impor-
tantly, hydrogen bonding pairs are detected between His-57
(uPA) and Lys-179/Arg-180 (ENaC) and Ser-195 (uPA) and
Arg-178/Lys-179 (ENaC). In addition, Thr-176 (ENaC) inter-
acts with His-99 (uPA). Arg-178 (ENaC) protrudes down into a
deep cavity and interacts with other residues in the bottom of
the cavity (data not shown). Proteolysis of ENaC by uPA could
be divided into two steps: acylation and deacylation (71). As
shown in Fig. 9C, Ser-195 of uPA, together with His and Asp,
serves as a nucleophilic “edge” to separate Arg-178 from Lys-
179 of � ENaC, generating two fragments: the carboxyl-termi-
nal peptide and the amino-terminal peptide.

DISCUSSION

Fibrinolytic activity is depressed in edematous pulmonary
injury due to elevated PAI-1 level and depressed uPA. We set
out to examine the effects of tPA and urokinase on ENaC, a key

pathway for edema fluid resolution. Our results demonstrate
that uPA, a sole contributor of fibrinolysis in the airway and
alveolar sacs, but not tPA, activates heterologously expressed
human ��� ENaC function in a time- and dose-dependent
manner. The specificity of its stimulatory action is supported by
the following lines of evidence. uPA�PAI-1 complexes could not
alter ENaC activity. The uPA-mediated activation of ENaC can
be eliminated by mutating its catalytic domain (Ser-195) within
the protease peptide. uPA directly activates ENaC through an
increment in opening time and in functional channel density. �

ENaC proteins are proteolytically cleaved by uPA into two frag-
ments following hydrolysis of 177GR2KRK181, a motif possess-
ing uPA substrate specificity. Urokinase primarily cleaves
furin-trimmed proteins. Our results identified critical domains,
the cutting edge in urokinase and the cleavage motif in ENaC
through which urokinase up-regulates epithelial sodium
transport.

The striking difference between the effects of uPA and tPA
on ENaC activity (Fig. 2E) could reflect different mechanisms of
fine regulation of fluid absorption in the thoracic cavity and in
circulation. tPA is not expressed in alveolar or pleural spaces
but is predominantly expressed in capillary endothelial cells
and circulates in the blood stream. Both tPA and uPA could
activate plasminogen. However, only uPA is able to bind to
uPAR. Our results exclude uPAR as a mediator between ENaC

FIGURE 9. Structural interactions between uPA and human � ENaC. A, surface view of the catalytic triad of uPA (Protein Data Bank code 1W12) (52). The triad
residues (Asp-102, His-57, and Ser-195) along with His-99 line the back of the enzyme active center. Inset, measures of hydrogen (green and white dashed lines)
bonds among amino acid residues composed of the catalytic triad. B, docking of the cleavage site (P3–P2	) of � ENaC to the enzyme active pore of uPA. C,
uPA-induced cleavage of the � ENaC. Arg-178 and Lys-179 are located between the �1 and �2 domains. Domain coloration is as follows: transmembrane
domains 1 and 2 (TM1 and TM2) (red), wrist (red), palm (blue), knuckle (cyan), finger (purple), thumb (green), and � (orange).
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and uPA. The substrate pool for tPA is much smaller than that
for uPA. Moreover, in silico prediction for cleavage sites and
protein docking analysis reveal a difference between those two
types of plasminogen activators. Parallel analysis of tPA enzy-
matic activity in culture and experimental medium rules out
the possibility that tPA preparations are not active. We herein
demonstrate that � ENaC proteins contain a peptide serving as
uPA-specific substrate.

Our functional data confirm that uPA increases the opening
time of ENaC channels and the channel density detected by
electrical approaches. The augmentation of functional channel
density could be due to activation of nearly “silent” channels.
We could not exclude potential accumulation of channel pro-
teins at the plasma membrane. This might result from facili-
tated exocytosis and weakened endocytosis. Based on the enzy-
matic activity of uPA, the time-dependent decrease in the
ENaC current (Fig. 1E) could reflect faster internalization of the
“opening” ENaC, when compared with delivery of freshly
expressed uncleaved ENaC to the plasma membrane.

It is well accepted that external serine proteases can only
access furin-cleaved ENaC proteins. Our data show that uPA, a
trypsin-like serine protease, is unable to cleave the proteins and
to increase the channel activity of the deletion mutant lacking
furin sites. Our data support the notion that external protease
could not cleave full-length translations of ENaC channels.
Additionally, we tried to examine the cleavage of furin-cut pro-
teins by tcuPA. We incubated oocytes in a low sodium medium
(1 mM NaCl) to eliminate full-length proteins, a strategy suc-
cessfully used in HEK293T cells and oocytes (34, 72). Unfortu-
nately, the full-length proteins could not be eliminated. There
was no difference in the protein signals for both full-length and
furin-cut fragments between controls and cells exposed to low
sodium medium.

Divergent specificity of substrates between uPA and tPA may
explain why uPA but not tPA cleaves human � ENaC. As pre-
dicted by the SitePrediction server, there is only one cleavage
domain specific for uPA in human � ENaC. These in silico pre-
dictions are experimentally confirmed with both functional and
immunochemical approaches. Although the P2P1 sequence for
both tPA and uPA is Arg-Lys, the hydrophilic amino acid
residues at P3 are required for tPA to access its cleavage site
(44), whereas it is tyrosine at the 176th amino acid residue.
Additionally, P1 and P2 positions of the tcuPA cleavage motif
(176TGR2KR180) are not favorable for tPA (R(A/G)).

Three putative domains for proteolysis in � and � subunits
have been proposed, and these predictions have been sup-
ported by accumulating experimental evidence across various
species (67–70). In addition, � ENaC could be cleaved by chan-
nel-activating protease 2, as shown by Stutts and co-workers
(73). It is unlikely that � and � ENaC subunits are cleaved by
uPA. We did not find cleaved bands for � ENaC. Although �
ENaC was not analyzed in this study, both functional and immu-
noblotting assays of the cleavage sites in � ENaC for uPA exclude
the potential involvement of additional domains/subunits.

The relationship between activated channels and furin cleav-
age is unknown. Determination of whether full-length proteins
are nearly “silent” functionally or furin-cut channels are all
open requires further experimental evidence. Although the

channel activity of MTSET-treated ��S520C� channels could
not be further augmented by external proteases, including uPA,
the channel activity associated with furin-cut proteins in H441
cells was still significantly activated by the subsequent addition
of trypsin.

Under our experimental conditions, furin-cut � ENaC frac-
tion counts for more than 50% of the total membrane proteins.
Intracellular proteolysis of ENaC proteins by endogenous furin
may favor subsequent cleavage by external uPA by exposing the
specific domains to urokinase.

It has been reported that the PAI-1 level is extremely elevated
in edema fluid, accompanied by a concurrent elimination of
fibrinolytic activity (14, 16, 18, 74, 75). Several groups reported
that edema fluid of infected lungs but not cardiogenic pulmo-
nary edema inhibits ENaC activity (76 – 80), which supports our
observations that uPA activates ENaC function. We recently
demonstrated that uPA deficiency leads to reduced cleavage of
mouse lung ENaC in vivo (81). In injured tissues, elevated PAI-1
would specifically bind to uPA to form plasminogen activator
inhibitor�uPA complexes (82). Subsequently, the uPA��-mac-
roglobulin complexes should be unable to trap ENaC and serve
as a trimer for ENaC molecules.

Both tPA (alteplase) and uPA (abbokinase) are broadly uti-
lized in fibrinolytic therapy of pleural effusions, acute lung
injury, acute respiratory distress syndrome, and airway injuries
(83, 84). The novel regulatory mechanism of ENaC activity
described here could potentially be used toward resolution of
edema and pleural effusions during fibrinolytic therapy.
Regarding the mechanisms of how tPA might regulate edema
fluid resolution although it neither activates ENaC nor uPAR,
we postulate that a tremendous dose of tPA may benefit edem-
atous injury through reduction of free PAI-1 levels post-
tPA�PAI-1 complex formation. tPA competitively binds to
PAI-1 with a greater affinity than its urokinase counterpart.

uPA is able to form complexes with its specific inhibitors,
PAI-1, PAI-2, and �2-macroglobulin; uPA receptors (uPAR and
plasminogen activator receptors); and plasmin and amiloride.
The uPA activity depends on free moles of two-chain uPA in
the presence of various binding proteins. Urokinase has been
used clinically and preclinically for the last 3 decades. The bolus
dose applied has been from 500 to 700,000 IU for empyema,
breast abscesses, pulmonary fibrosis, asthma, and pleural injury
(85–91). The physiological concentration in human bronchoal-
veolar lavage fluid is 0.129 � 0.06 IU/ml (15), which tends to
rise to the serum level (0.362 � 90 �g/ml) in injured lungs (92).
Under our experimental conditions, both the time course and
dose-dependent studies show that uPA at this concentration
fully activates ENaC up to 24 h (Fig. 1). The detectable uPA
activity is 4 AU. The dose below 10 �g/ml (600 –1,000 IU/ml)
would take several h to activate ENaC activity. It is hard to
separate the contributions of proteolysis from exocytosis of
channel proteins and to detect uPA enzymatic activity.

In summary, our results for the first time demonstrate that
tcuPA, but not tPA, specifically activates human ENaC. The
irreversible activation of ENaC by uPA is solely determined by
urokinase enzymatic activity. Moreover, uPA releases self-inhi-
bition of ENaC, increases the activation rate, activates “silent”
channels, and catalyzes the � subunit. Eventually, ENaC func-
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tion is fully up-regulated by tcuPA. Our data may help to
explain the differences in pharmaceutical efficiency and tissue
dependence between tPA and uPA. In ENaC-expressing epi-
thelial and mesothelial tissues (e.g. the airways, lungs, pleural
cavity, kidney, and distal colon), it should be kept in mind that
either endogenous or administered uPA may dehydrate the
lumen through excessive activation of ENaC-mediated salt/
fluid retention. uPA, as an ENaC activator, may be a potent
pharmaceutical agent to mitigate lung edema and pleural
effusion.
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