
5 http://journals.cihanuniversity.edu.iq/index.php/cuesj CUESJ 2019, 3 (2): 5-13

ReseaRch aRticle

A New Scheme for Removing Duplicate Files from Smart Mobile
Devices: Images as a Case Study
Ammar Asaad, Ali Adil Yassin Alamri*

Department of Computer, Education College for Pure Sciences, University of Basrah, 61004 Basrah, Iraq

ABSTRACT

The continuous development of the information technology and mobile communication world and the potentials available in the smart
devices make these devices widely used in daily life. The mobile applications with the internet are distinguished simple, essay to use in any
time/anywhere, communication between relatives and friends in different places in the world. The social application networks make these
devices received several of the duplicate files daily which lead to many drawbacks such inefficient use of storage, low performance of CPU,
RAM, and increasing consumption battery. In this paper, we present a good scheme to remove from the duplicate files, and we focus on
image files as a common case in social apps. Our work overcomes on the above-mentioned issues and focuses to use hash function and
Huffman code to build unique code for each image. Our experiments improve the performance from 1046770, 1995808 ns to 950000,
and 1981154 ns in Galaxy and HUAWEI, respectively. In the storage side, the proposed scheme saves storage space from 1.9 GB, 1.24 GB
to 2 GB, and 1.54 GB, respectively.

Keywords: Duplicating images, hash code, mobile device, performance, storage management

INTRODUCTION

One of the key things that can help us to build a scheme
to get rid of this issue is the features extracted from
images. It is difficult to observe and understand these

features by a human{Shyu, 1998 #2343}. These features
divide into two types global and local.[1] Image matching is the
method used either global features which describe the whole
image and can describe a whole image by only one vector, or
local features, which focus on important details in the image
and it is more powerful. To apply both methods, we need to
deal with the content of the images and extract information
from them; this means that both methods consume time to
treat with images and need to have hardware that has ability
and efficiency to get these features. This leads us to the fact
that the features extraction in the mobile device will consume
a lot of time, random memory, and cup time thus increasing
the consumption of the battery; as a result, effect on daily
use for the user.[2] Hence, the process of finding the best and
most efficient methods of retrieval and matching files is the
most important research topics in the era of mobile applied
technology.[3] Matching is one of the essential tasks that are
used to remove duplicated files. Mostly, it is selected the
appropriate features to reduce the computational time, and it
denotes to find the same file/s (image) save(s) in a database
that is/are same to an input file. Matching is one of the
indispensable processes in several applications.[4] In the past
decade, mobile technology and internet have become a hotspot
in scientific research and daily life.[5] Social media consider a

common element between internet and mobile devices; it plays
the main role to keep in touch with our colleagues/relatives
and discovering new persons.[6] In the past few years, social
network was not used in mobile devices in widely manner,
but with the rapid development in the internet and mobile
technologies, the social media become one of the important
factors in human life.[7] At present, there are several social
networks that work in mobile devices and personal computers
such as Facebook, WhatsApp, Twitter, Viber, imp, and others
called mobile apps.[5] The users of these apps exchange many
types of files such as photos, audios, and videos. Ultimately,
these files are stored in duplicity way led to lose of storage
space of the mobile device. In this paper, we focus on the
removal of duplicate images issued from social media apps to
mobile device based on proposed image matching scheme that
suits with mobile environment and deals of the whole image.
The main objectives of our purpose scheme are as follows:

Corresponding Author: Dr. Ali Adil Yassin Alamri,
Department of Computer Science, Education College for Pure
Science, University of Basrah, Basra, 6100, Iraq.
E-mail: en.uobasrah.edu.iq/ali.yassin@uobasrah.edu.iq

Received: Apr 08, 2019
Accepted: Apr 14, 2019
Published: Aug 20, 2019

DOI: 10.24086/cuesj.v3n2y2019.pp5-13

Copyright © 2019 Ammar Asaad, Ali Adil Yassin Alamri. This is an open-access
article distributed under the Creative Commons Attribution License.

Cihan University-Erbil Scientific Journal (CUESJ)

Asaad and Alamri: A new scheme for removing duplicate files from smart mobile devices

6 http://journals.cihanuniversity.edu.iq/index.php/cuesj CUESJ 2019, 3 (2): 5-13

1. Our work can eliminate this repetition of images saved
in mobile’s storage from different social media apps with
high performance

2. Our scheme is offered cost of consumption energy of
battery and less used for both RAM and CPU

3. We use a hash function algorithm (message-digest algorithm
5 [MD5]) and Huffman code algorithm to build unique code
for each image which is used to delete all reputation images

4. Our proposed scheme is applied on real-word data using
two types of mobile devices (HUAWEI CUN-U29, Galaxy
A5 [2017] SM A520F) and we achieve good results to
increase storage space and improve the processing time.

Organization of the paper, Section 2 shows the relevant
literature on the topic of image matching. Section 3 refers to the
primitive tools of the proposed scheme while Section 4 explains
the proposed scheme. Section 4 focuses on experimental results
and discussions. The paper is concluded in Section 5.

RELATED WORKS

This section briefly discusses duplication files in a mobile device,
refers the several studies of deduplication schemes as follows.
Attractively, there are many fields to use deduplication such
as paging files, image redundancies, and memory sectors.[8,9]
This field has been applied primarily on data backup services
such as Microsoft Office and Google Drive.[10] In addition,
some researches in the field of removing duplicate files focus
on multiple deduplication schemes.[10] At present, with rapid
development in cloud computing and mobile device, there is
a platform to support low latency network access and extra
storage called mobile cloud computing (MCC).[10] Besides,
MCC enables to support mobile in extra storage based on pay-
as-you-go within cloud computing principle, but this technique
leads to pay cost by the customer,[9,11] In the same time, the
duplicate files are stayed in the storage of the cloud. Storer
et al.[12] suggested a good scheme eliminated redundancies
files depending on its type. However, the method of deleting
duplicate files is selected manually. It works well with known
files and suffers to deal with new files that do not exist in
the index file of their work.[10] Haustein et al.,[13] the patent
is about selecting a deduplication method depending on the
file type and deduplication rate, where the redundant deletion
is done by the server. They used the ratio of duplication files
and then the implemented scheme operates based on this
ratio to deduplication files from the server. Their works had
many drawbacks by working in server-side and they proposed
in a theoretical manner without executed in real-world
data. Widodo et al.[10] presented a scheme to reduce energy
consumption and the amount of data by detection duplicate
files. This scheme suffers from low of duplicate detection
performance and deduplication throughput for a few files in
the beginning. Although their works focused on using cloud
storage to duplicate files, the duplications files are stilled in
devices’ storage. There are several researchers focused on
detection of duplicate data using hash functions such as MD5
and SHA-256.[14,15] These schemes cannot face the collisions
growing the size of the signature increases as well as the
processing time is increased with the size of signatures.[16] In
this paper, we present a scheme that has been applied as mobile
apps to remove the duplicate files imported to mobile by social
media applications such as Facebook, WhatsApp, Viper or

mobiles camera. The image files are one of most commonly
used in social networks world, therefore, we focus on the
image files as a case study in our experimental results relied
on two types of mobile devices “Samsung and Hawawi.” Our
work focus to use hash function and Hffuman code to build
unique code for each image and overcomes the drawbacks of
collisions grows as the size of the signature increases. However,
the scheme generates a good search index file used to insert an
image or ignore in the repeating case. Moreover, our scheme is
offered cost of consumption energy of battery and less used for
both RAM and CPU of the mobile device. In addition, our work
can manage the storage of mobile and cloud storage (based on
some of Google’s application such as Google Drive and Google
Photos) by removing duplicate images.

PRIMARY TOOLS

In this section, we demonstrate the main tools used in our
work to achieve the vital goals of the research.

Huffman Code

Huffman coding considers one of the most important
algorithms proposed and published by David A. Huffman.[17]
It is based on the frequency of the amount of a data item.
Huffman algorithm works using the tree data structure to
generate an optimal binary tree called Huffman tree to acquire
encoding form.[17,18] The technical working of this algorithm
uses a lower number of bits to encode the input data that exist
more frequently.[19] Practically, Huffman considers an easy-to-
use algorithm because of its simpler mathematical computation
to obtain the several parameters.[20] Huffman coding algorithm
consists of two phases: Building binary tree and Generating
code. The result of the first phase is constructed through the
occurrence frequency of each item. To achieve the code of the
Huffman algorithm, each branch has a set (0 or 1) based on
its direction left (0) or right (1).[19,21] Figure 1 explains the
mechanism work of Huffman code algorithm.

Figure 1: Explain the Huffman code algorithm

Asaad and Alamri: A new scheme for removing duplicate files from smart mobile devices

7 http://journals.cihanuniversity.edu.iq/index.php/cuesj CUESJ 2019, 3 (2): 5-13

MD5 (Hash)

MD5 is one of the most algorithms worked to compress
data files such as images, videos, and audios. The output
of this algorithm is a fixed value (128-bit) when the
algorithm is implemented once or many times on the same
data.[22,23] This algorithm was developed by the Rivest[24]
and considered simple to compute the MD5 value. The MD5
processes 512-bit blocks and breaks into 32-bit words. It
includes 64 rounds. The MD5 steps as follows:[8] The first
process is to add the bits to the block to equal the value of
(448 mod 512), start with 1, followed by 0’s, the second
process is adding the length of the message to the value
(448 mod 512), the third step set the MD5 register values
(A, B, C, and D), each one 32 bits (hexadecimal number),
and the fourth step is the heart of the algorithm; its four
pressure functions each of these pressure functions have
logical operations [Figure 2].

PROPOSED PROTOCOL

Our proposed work consists of two phases: Creating index
file and removing daily images. The first phase focuses on
detecting and creating an index file (IF see Table1 explain
the Notification of symbols) without duplicate images, while
the second one is implemented to remove images on a daily
basis. Our work focuses on a vital part of smartphone when
receives daily hundreds of photo files, video clips, audio, and
others. There are many of these files repeated in mobile’s
storage. The proposed scheme plays the main role in deleting
duplicated photos that caused to lose a large space of storage.
Each a new photo checked inside IF (index file), it removes
from storage when it saved in IF previously. Otherwise, a
new photo inserts to the IF. As a result, the mobile device
works more efficiently and performance as well as reduce
energy consumption and disposal of redundancy of photos
in the memory. The limited of hardware components of the

mobile device makes the proposed scheme dealing with
photos in light and high-performance manner. Therefore, we
used MD5 hash function and Huffman code to build unique
code for each photo. Figure 3 explains the main aims of our
work.

Figure 2: Algorithm mechanism and steps

Table 1: Notification of symbols

Symbol Description

MD Mobile device such as smartphone and tablet…

MS Mobile’s storage (external, internal)

IMGi Image that is saved inside MD

S Set of images (IMGi)

pi IMGi’s path

P Set of IMG’s path

Size() Function to get size of each IMG

IF Index file has path of IMG and its details

Code1 Number created by convert hash to ASSCI code
and compute code by multiply ASSCI by position

Code2 Number obtained by Huffman coding and
convert to decimal number

H MD5 hash function

hi Hash code for IMGi

UCi Final code resulted by XOR Code1 and Code2

DelDuplicate() Function to delete all duplicate IMG and save
one only

Search() Function to detect duplicate IMG

DFDS() Function to delete IMG from device storage

DeleteRowIF() Function to delete a row from IF

Save() Save details in index file (UCi, pi, Size (pi),)

GetImg() Get IMGi based on its pi

GetImages() Get all pi

Asaad and Alamri: A new scheme for removing duplicate files from smart mobile devices

8 http://journals.cihanuniversity.edu.iq/index.php/cuesj CUESJ 2019, 3 (2): 5-13

Creating Index File Phase

In the era of information technology, all smartphones
have several folders related to photos which received from
different mobile applications such as WhatsApp and Facebook.
Therefore, there are many duplicated images saved in mobile
storage. These duplicated images have several drawbacks such
slow mobile completion, the difficulty of communication, loss
of flexibility to handle more than one application and slow the
mobile response of the received orders from another device
as well as power consumption due to slow performance.
However, this phase is used once to create an index file and
removing all duplicate images from mobile storage. The main
steps of this phase are as follows:
a. Generate set of all mobile’s images S = {img1, img2,…

imgn} and their paths P = {p1,p2,…pn} based on extension
of images file such as JPEG, BMP.

b. Create unique code for each image (imgi ∈ S) based on hash
(Eq.1 and Eq2.) and Huffman code functions as follows.
Hi = h(IMGi) (1)

n

1 i i
j=1

Code = ASCII(H (j)) * position H j
 (2)

•	 Apply	Huffman	code	function
•	 Code2 = Huffman(hi),
•	 Unique	Code	=	Code1 XOR Code2 (3)
•	 Figure 4 shows a code generation technique.

c. Create index file (IF) that each record consists of UCi, Pi,
Size(IMGi). Algorithm 1 demonstrates the mechanism of
generating IF to all mobile device images, [Figure 4].

Algorithm 1 of creating index file

Input:	{Pi}	1	≤i	1;	where	n	is	number	of	P

Output: Index File

Compute H1 based on Equation (1)

Compute UC1 based on Equation (2,3)

Save (UC1, p1, Size(p1))

For i=2 to n do

Table 2: Some of the rules have been implemented on images
entered into MD

Rules Details

1 This rule describes receiving a picture through more than
one program, and this image is in IF. All copies are deleted

2 This rule describes receiving a picture through more than
one program, and this image is not found in IF. A single
copy is saved and the rest of the copies are deleted

3 This rule describes receiving a picture through a single
program and this image is not found in IF. This version
is saved

4 This rule describes receiving a picture through a single
program, and this image is found in IF. This version is
deleted

5 This rule explains the reception of the same image more than
once through a single program, and this image does not exist
in IF. Hence, one copy is saved and the rest is deleted

6 This rule explains the reception of the same image more
than once through a single program, and this image is in
IF. All copies are deleted

Figure 4: Demonstrates the process of generating unique code

Figure 3: (a) Receiving daily images, (b) applying our work, and
(c) the results of work

a b c

Asaad and Alamri: A new scheme for removing duplicate files from smart mobile devices

9 http://journals.cihanuniversity.edu.iq/index.php/cuesj CUESJ 2019, 3 (2): 5-13

Compute Hi as in Equation (1)

Compute UCi as in Equation (2, 3)

If (Search (UCi) =True)

DFDS (pi)

Else

Save (UCi, pi, Size(pi))

End for

End Algorithm 1 of Creating Index File.

Removing Daily Images Phase

All smartphones receive many messages on a daily these
messages may be pictures or audio clips or video files or other

and thus affect the storage space of the device as well as the
performance of the device. Our scheme helps us get rid of the
repetition for the images and thus let the machine work better.
The removing of the repeated images depends on the code of
image which has been computed in the first phase [Figure 5].
The main steps of this phase are as follows:
a. Generate set paths P’ = {p’

1, p
’
2,…p’

n } of mobile’s image
that incoming to device after creating an index file. These
images have been imported to the device in daily.

b. Create set of unique code (UC’ = {uc’
1, uc’

2,…uc’
n}) for

each a new image based on the same procedure in step 2
of create index file phase.

c. Check uc’
I ∈ IF(UC); if the result is false then extract a new

record (p’
i, uc’

i) of img’i added to IF; otherwise, remove
IMGi from MDS. Tables 2 and 3 and Figure 3 denote to the

Table 3: Some scenarios for receiving images and how to process them

IMG WhatsApp Viper Messenger Download Telegram IF Add
to IF

Non add and
removed

from MDS

Rule
apply

√ √ × √ √ √ × √ Rule 1

√ √ × √ √ × √ × Rule 2

√ × × × × × √ × Rule 3

× √ × × × √ × √ Rule 4

√ × × × × × √ × Rule 5

× √ × × × √ × × Rule 6

Asaad and Alamri: A new scheme for removing duplicate files from smart mobile devices

10 http://journals.cihanuniversity.edu.iq/index.php/cuesj CUESJ 2019, 3 (2): 5-13

mechanism of processing (adding/removing to IF) images
which incoming to a mobile device (MD).

Algorithm 2 of adding new images

Input:	{Pi}	1≤i≤n;	where	n	is	number	of	P,

Output: Add new images to Index File

For i=1 to n do

Compute Hi as in Equation (1)

Compute UCi as in Equation (2, 3)

If (Search (UCi) =True)

DFDS (pi)

Else

Save (UCi, pi, Size(pi))

End for

End Algorithm 2 of Adding new image

EXPERIMENTAL RESULTS

In this part, we evaluate the proposed scheme and use the images
of the mobile device to guarantee the reproducibility of practical
results. The experiments are implemented using Android Studio
3.3.1 running on Windows 10 64–bit operating system with an

Intel Core i5-2450M CPU at 2.50GHz 250GHz, 8 GB RAM, and
2.4 GHz CPU, and mobile HUAWEI CUN-U29 RAM 956.52 MB
internal storage 4.15 GB with external storage 8 GB, battery
2200 mAh, Android version 5.1 (Lollipop_MR1), and another
mobile Galaxy A5 (2017) SM-A520F, Android version 8.0 (Oreo),
battery 3000 mAh, processor arm64-v8a 8 core, and total RAM
2815 MB. Our results have passed in many steps as follows.

Processing Time Calculation of Index File
Creation

We used 2600 images to create index file (IF) in HUAWEI
CUN-U29 mobile device. After that, we divided images into n
groups (we obtained 13 groups based on the total number of

Table 5: Add and remove received images

Day HUAWEI CUN-U29 Galaxy A5 (2017) SM-A520F

Received Add Remove Received Add Remove

1 37 7 30 63 13 50

2 27 7 20 18 8 10

3 18 8 10 12 8 4

4 19 15 4 20 12 8

5 12 8 4 50 30 20

Figure 5: Explaining the main steps of the proposed scheme

Table 4: Processing time of index file creation

Group HUAWEI CUN-U29 Galaxy A5 (2017) SM-A520F

Size of group (KB) Time of processing (nanosecond) Size of group (KB) Time of processing (nanosecond)

1-200 585080 32421400159 281353 10395266647

201-400 191979 11017601159 134797 5059068621

401-600 19271 1432455537 318393 11132803762

601-800 22118 1641043162 178462 6512452069

801-1000 18069 1359571455 132321 4641873378

1001-1200 16480 1335055147 12960 758972849

1201-1400 88118 5374266081 6760 401045846

1401-1600 202894 11694264538 - -

1601-1800 34670 2326661993 - -

1801-2000 5332 578131154 - -

2001-2200 4897 540429308 - -

2201-2400 69854 3991726847 - -

2401-2600 81739 4908648533 - -

Asaad and Alamri: A new scheme for removing duplicate files from smart mobile devices

11 http://journals.cihanuniversity.edu.iq/index.php/cuesj CUESJ 2019, 3 (2): 5-13

Figure 8: The mobile apps of our proposed scheme

images and each group consists of 200 images). In the other
side, we implemented our work to another mobile device
named Galaxy A5 (2017) SM-A520F contained 1310 images
to construct index file (IF). Table 4 and Figure show the
performance of the calculation of index file creation in both
devices.

DAILY PHASE APPLY

We implemented our proposed scheme in real-word data
saved on a mobile device that has properties as refereed
in the previous section. Figure 6 shows the main operation
in this phase. The proposed scheme has been implemented
as mobile apps Figure 8 in several days to apply the main
operations such as detecting and removing redundancy

Figure 7: Processing time of index file creation (a) Galaxy A5 (2017)
SM-A520F device for 1310 images (b) HUAWEI CUN-U29 device for
2600 images

AQ1

a

b

Figure 6: (a) It shows the process of receiving the image, generating the code, checking IF and making the decision, add of image in IF, (b) it
shows the process of receiving the image from social media apps, generating the code, checking IF, and making the decision to delete image

a

b

Asaad and Alamri: A new scheme for removing duplicate files from smart mobile devices

12 http://journals.cihanuniversity.edu.iq/index.php/cuesj CUESJ 2019, 3 (2): 5-13

Figure 11: It shows the time spent searching for one image in the middle and one at the end. Before and after deleting duplicate files. In the
two devices

AQ1

images, adding new images. Table 5 and Figure 8 describe
the central operations for 5 days. Furthermore, we test the
mobile storage based on our proposed work and notice good
results as Figure 9 displayed the storage of mobile devices

(Galaxy A5 [2017] SM-A520F, HUAWEI CUN-U29) before
and after implementing our proposed scheme. Moreover,
we calculate the time of retrieved image on devices as in
Figure 10.

Figure 10: (a) Before and after apply for our work at Galaxy A5 (2017) SM-A520F and (b) before and after apply for our work at HUAWEI
CUN-U29

a

b

Figure 9: Add and remove images received (a) HUAWEI CUN-U29 device for 5 days received images (b) Galaxy A5 (2017) SM-A520F device
for 5 days received images

a b

Asaad and Alamri: A new scheme for removing duplicate files from smart mobile devices

13 http://journals.cihanuniversity.edu.iq/index.php/cuesj CUESJ 2019, 3 (2): 5-13

CONCLUSIONS

One of the most important challenges for smartphone users is to
keep the device working as high as possible. Low storage space is
the most important issue. We solved this issue by the used hash
function (MD5), Huffman code to generating unique code for
each image and save this code in image in the index file and use
it to rid of a duplicate from device’s storage. Removing images
have the same code and maintain one copy. The proposed
scheme get a good result in remove this duplicate images in
fast. We applied it at two devices (Galaxy A5 [2017] SM-A520F,
HUAWEI CUN-U29). As a final result, the performance of
device’s CPU is better that makes the device work in the best
way. As future work, in relation to the image matching schemes,
the user may add something to the image, and as a result, new
image obtained, but it still the same image with simple change.
In future work, we will try to solve this issue.

REFERENCES
1. C. R. Shyu, C. Brodley, A. Kak, A. Kosaka, A. Aisen and L.

Broderick. “Local Versus Global Features for Content-based
Image Retrieval”. In Proceedings. IEEE Workshop on Content-
Based Access of Image and Video Libraries (Cat. No. 98EX173),
1998, pp. 30-34.

2. D. A. Lisin, M. A. Mattar, M. B. Blaschko, E. G. Learned-Miller
and M. C. Benfield. “Combining Local and Global Image Features
for Object Class Recognition”. In 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR’05)-Workshops, 2005, pp. 47-47.

3. M. Agarwal, A. Singhal and B. Lall. “3D local ternary
co-occurrence patterns for natural, texture, face and bio medical
image retrieval”. Neurocomputing, vol. 313, pp. 333-345, 2018.

4. S. S. Hwang and S. H. Hong. “Pre-extraction of features and
environment variable-based database filtering for fast image
matching on mobile”. Mobile and Wireless Technologies, vol. 2016,
pp. 223-230, 2016.

5. J. Machajdik and A. Hanbury. “Affective Image Classification Using
Features Inspired by Psychology and Art Theory”. In Proceedings
of the 18th ACM International Conference on Multimedia, 2010,
pp. 83-92.

6. N. Lee, C. Kim, W. Choi, M. Pyeon and Y. Kim. “Development
of indoor localization system using a mobile data acquisition
platform and BoW image matching”. KSCE Journal of Civil
Engineering, vol. 21, pp. 418-430, 2017.

7. L. Wang and H. Wang. “Improving feature matching strategies
for efficient image retrieval”. Signal Processing: Image
Communication, vol. 53, pp. 86-94, 2017.

8. K. Miller, F. Franz, M. Rittinghaus, M. Hillenbrand and F. Bellosa.
“{XLH}: More Effective Memory Deduplication Scanners
Through Cross-layer Hints”. In Presented as Part of the 2013
{USENIX} Annual Technical Conference ({USENIX}{ATC} 13),
2013, pp. 279-290.

9. T. Liu, F. Chen, Y. Ma and Y. Xie. “An energy-efficient task
scheduling for mobile devices based on cloud assistant”. Future
Generation Computer Systems, vol. 61, pp. 1-12, 2016.

10. R. N. Widodo, H. Lim and M. Atiquzzaman. “SDM: Smart
deduplication for mobile cloud storage”. Future Generation
Computer Systems, vol. 70, pp. 64-73, 2017.

11. E. Ahmed, A. Gani, M. Sookhak, S. H. Ab Hamid and F. Xia.
“Application optimization in mobile cloud computing: Motivation,
taxonomies, and open challenges”. Journal of Network and
Computer Applications, vol. 52, pp. 52-68, 2015.

12. M. W. Storer, K. Greenan, D. D. Long and E. L. Miller. “Secure
Data Deduplication”. In Proceedings of the 4th ACM International
Workshop on Storage Security and Survivability, 2008, pp. 1-10.

13. N. Haustein, C. A. Klein, U. Troppens and D. J. Winarski. “Method
of and System for Adaptive Selection of a Deduplication Chunking
Technique”. Google Patents, 2009.

14. B. Zhu, K. Li and R. H. Patterson. “Avoiding the Disk Bottleneck
in the Data Domain Deduplication File System”. In Fast USENIX
Conference, 2008, pp. 1-14.

15. D. Meister and A. Brinkmann. “Multi-level Comparison of Data
Deduplication in a Backup Scenario”. In Proceedings of SYSTOR
2009: The Israeli Experimental Systems Conference, 2009, p. 8.

16. Y. Won, R. Kim, J. Ban, J. Hur, S. Oh and J. Lee. “Prun: Eliminating
Information Redundancy for Large Scale Data Backup System”.
In 2008 International Conference on Computational Sciences
and Its Applications, 2008, pp. 139-144.

17. M. Sharma. “Compression using huffman coding”. IJCSNS
International Journal of Computer Science and Network Security,
vol. 10, pp. 133-141, 2010.

18. R. Li, Y. Zhao, Q. Xu and X. Qi. “Research of Subnetting Based
on Huffman Coding”. In International Conference on Cloud
Computing and Security, 2018, pp. 606-616.

19. O. Yue-Long, L.N. Zhang and N. Yu. “Researching on MD5’s
characteristics based on software reversing”. The Journal of China
Universities of Posts and Telecommunications, vol. 17, pp. 127-
130, 2010.

20. I. C. Lin and L. C. Yang. “A Noise Generation Scheme Based
on Huffman Coding for Preserving Privacy”. In International
Conference on Security with Intelligent Computing and Big-data
Services, 2017, pp. 149-160.

21. R. Patel, V. Kumar, V. Tyagi and V. Asthana. “A Fast and Improved
Image Compression Technique Using Huffman Coding”. In 2016
International Conference on Wireless Communications, Signal
Processing and Networking (WiSPNET), 2016, pp. 2283-2286.

22. S. H. Kim, J. Jeong and J. Lee. “Selective memory deduplication
for cost efficiency in mobile smart devices”. IEEE Transactions on
Consumer Electronics, vol. 60, pp. 276-284, 2014.

23. Y. Tian, K. Zhang, P. Wang, Y. Zhang and J. Yang. Add “Salt” MD5
algorithm’s FPGA implementation. Procedia Computer Science,
vol. 131, pp. 255-260, 2018.

24. D. Pamula and A. Ziebinski. “Hardware Implementation of the
MD5 Algorithm”. 9th IFAC Workshop on Programmable Devices
and Embedded Systems, Roznov pod Radhostem, Czech Republic,
Feb. 2009.

Author Queries???
AQ1:Kindly cite figure 7 and 11 in the text part

