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Abstract
We consider Riemann-Hilbert boundary value problems (for short RHBVPs) with
variable coefficients for axially symmetric monogenic functions defined in axial
symmetric domains. This is done by constructing a method to reduce the RHBVPs for
axially symmetric monogenic functions defined in four-dimensional axial symmetric
domains into the RHBVPs for analytic functions defined over the complex plane. Then
we derive solutions to the corresponding Schwarz problem. Finally, we generalize the
results obtained to null-solutions of (D – α)φ = 0, α ∈ R, where R denotes the field of
real numbers.
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1 Introduction
The classic theory of Riemann-Hilbert boundary value problems (for short RHBVPs) for
analytic functions is closely connected with the theory of singular integral equations and
has a wide range of applications in other fields, such as the theory of elasticity, quantum
mechanics, statistical physics, the theory of orthogonal polynomials, and asymptotic anal-
ysis (cf. [–]). Over the years this type of boundary value problems has been systemat-
ically investigated by many authors, e.g., [–, –]. Therefore, it is natural to attempt
to generalize this type of boundary value problem to higher dimensions. This will be not
only a purely theoretical question, since such problems are closely linked to the physical
applications like transport problems or problems in hydro-dynamic mechanics.

To our knowledge, there are two principal ways to generalize complex analysis to higher
dimensions, the theory of several complex variables and Clifford analysis. The latter, in
particular quaternionic analysis, is the theory of so-called monogenic functions and a
refinement of real harmonic analysis in the sense that the principal operator in Clifford
analysis, the Dirac or generalized Cauchy-Riemann operator, factorizes the higher Laplace
operator. As principal references for this theory we mention [–]. Furthermore, in the
context of Clifford analysis RHBVPs, particularly Riemann boundary value problems, with
constant coefficients were widely discussed; see, e.g., [–]. Here, a direct application of
the properties of the Cauchy integral operator and existing power series expansions allows
one to represent the solution in terms of integral operators and Taylor series expansions.
This kind of Riemann boundary value problems is also closely connected with other types

© 2016 He et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/32245229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13661-016-0530-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-016-0530-x&domain=pdf
mailto:kumin0844@163.com


He et al. Boundary Value Problems  (2016) 2016:22 Page 2 of 11

of boundary value problems for different partial differential equations in higher dimen-
sions; see, e.g., [–]. However, there are almost no results with respect to RHBVPs with
variable coefficients even after more than  years of research in this direction. The ob-
stacles lie in the following facts: while monogenic functions retain many of the properties
of analytic function, there are two drawbacks. First, the product of monogenic functions
is in general not monogenic and second the composition of monogenic is in general not
monogenic. While the latter property is not so important for our problem at hand the for-
mer is a major problem. Moreover, even in the simplest case of quaternionic analysis, we
have several major problems, such as the lack of a function which has the same properties
as the logarithmic function of one complex variable. These make it very difficult to solve
RHBVPs with variable coefficients for monogenic functions in higher dimensions by di-
rectly employing classic methods from complex analysis. But, as a particular interesting
case, it was first introduced by Fueter in the case of quaternionic analysis in [] that the
product of monogenic functions of axial type is still a monogenic function of axial type,
and later on this class was studied in detail by Sommen et al. (cf. [, ]). This makes
this class more similar to the classic case of analytic functions in the plane and, therefore,
if one wants to generalize any property or fact from complex analysis to quaternionic or
Clifford analysis, the standard approach is to see if it can be done for axially monogenic
functions. So, instead of trying to solve this problem directly, we are going to show that
RHBVPs with variable coefficients for monogenic functions with axial symmetry can be
solved in the context of quaternionic analysis. This represents an initial and very crucial
step to solve RHBVPs for monogenic functions in the future.

Our idea is to transform a RHBVP with variable coefficients for monogenic functions
with axial symmetry in R

 into a RHBVP for analytic functions over the complex plane,
use the classic results from complex analysis, and transfer it back. In this way we can obtain
the solution in an explicit form. As a special case we present the solution to the Schwarz
problem for monogenic functions with axial symmetry. Furthermore, we adapt the ap-
proach above and generalize to the case of null-solutions to (D – α)φ = , α ∈ R, where
R denotes the field of real numbers (see Section .). Here, the main contribution that
we emphasize lies in constructing a way to solve a RHBVP with variable coefficients in
four-dimensional spaces. Moreover, by using the possibility to decompose a monogenic
functions into a sum of monogenic functions with axial symmetry, we plan to extend this
idea to the case of RHBVPs with variable coefficients for monogenic functions.

The paper is organized as follows. In Section , we will recall the necessary facts about
quaternion analysis. In Section , we will focus on RHBVPs with variable coefficients for
monogenic functions with axial symmetry. We will derive the solution to the RHBVP with
boundary data belonging to a Hölder space in terms of an integral representation. More-
over, we give the solutions to the Schwarz problem for monogenic functions and null-
solutions to (D – α)φ = , α ∈ R with axial symmetry, where R denotes the field of real
numbers.

2 Preliminaries
Good introductions to Clifford algebras, Quaternions, and Clifford analysis can be found
in [–, , ].

Let {e, e, e, e} be the standard basis of H. These basic vectors satisfy

eiej + ejei = –δi,j, i, j = , , , ee = e, ee = e, ee = e,
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where δ denotes the Kronecker delta, and e =  denotes the identity element of the algebra
of quaternions H. Thus H is a real linear, associative, but non-commutative algebra.

An arbitrary x ∈H can be written as x = x + xe + xe + xe � x + x, where Sc(x) � x

and Vec(x) � x are the scalar and vector part of x ∈H, respectively. Elements x ∈ R
 can be

identified with quaternions x ∈H. The conjugation is defined by x̄ =
∑

j= xjēj with ē = e

and ēj = –ej, j = , , , and hence, xy = ȳx̄. The algebra of quaternions possesses an inner
product (y, x) = Sc(yx̄) = (yx̄) for all x, y ∈ H.

The corresponding norm is |x| = (
∑

j= |xj|) 
 =

√
(x, x). Any element x ∈ H\{} is in-

vertible with inverse element x– � x̄|x|–, i.e., xx– = x–x = . Furthermore, we can intro-
duce the set

[x] =
{

y : y = Sc(x) + I|x|,I ∈ S},

where S = {x ⊂R
 : |x| = }.

In this paper we will consider the generalized Cauchy-Riemann operator D =
∑

j= ej∂xj

inR
. The generalized Cauchy-Riemann operator factorizes the Laplacian in the following

sense: DD =
∑

j= ∂
xj

= �, where � denotes the Laplacian in R
.

We also need to define axially symmetric open sets.

Definition . (Axially symmetric open set) Let � be a non-empty open subset of R. We
say that � is axially symmetric if for any x ∈ �, the subset [x] is contained in � ⊂R

.

Remark  The unit ball of R and the upper half space R
+ = {x ∈R

|x > } are examples
of axially symmetric domains.

Let � be an axially symmetric domain of R with smooth boundary ∂�. An H-valued
function φ =

∑
j= φjej is continuous, Hölder continuous, p-integrable, continuously dif-

ferentiable and so on if all components φj have that property. The corresponding func-
tion spaces, considered as either right-Banach or right-Hilbert modules, are denoted by
C(�,H), Hμ(�,H) ( < μ ≤ ), Lp(�,H) ( < p < +∞), C(�,H), respectively.

Applying Fueter’s theorem (see [, ]) a function of axial type is given by

φ(x) = A(x, r) + ωB(x, r), ()

where x = x + x = x + rω ∈ R
, r = |x|, ω ∈ {x =

∑
j= xjej : |x| = , xj ∈ R (j = , , )},

A(x, r), and B(x, r) are scalar-valued functions. It should be mentioned that in [] a
function of axial type is also called a function with axial symmetry.

Throughout this paper any functions defined on � ∪ ∂� ⊂ R
 with values in H are

supposed to be of axial type unless otherwise stated.

Definition . A function φ ∈ C(�,H) is called (left-) monogenic if and only if Dφ = .
A monogenic function of axial type is called axially monogenic. The set of all axially mono-
genic functions defined in � forms a right-module, denoted by M(�,H).

Definition . For a function of axial type φ : � →H, we define the real part as Reφ = A.

Remark  In [, ] it is shown that the equation Dφ =  for functions of axial type is
equivalent to a special kind of Vekua system [].
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In dimension two, i.e., the case of R, = {x = x + xe : e
 = –, xj ∈R (j = , )} ∼= C, the

field of complex numbers, we have Reφ = Sc(φ), which exactly corresponds to the usual
understanding in complex analysis. In the following D ⊂C+ is the projection of the axially
symmetric sub-domain � ⊂ R

 into the (x, r)-plane, where C+ is the upper half of the
(x, r)-plane.

3 Riemann-Hilbert boundary value problems
In this section we discuss RHBVPs with variable coefficients for monogenic functions.
In this case we will restrict ourselves to functions which have axial symmetry and are
defined over axial domains of R. We first solve the RHBVP in R

 by transforming it into
a RHBVP for complex analytic functions. In the case of boundary values belonging to
a Hölder space we represent its solution in terms of an explicit integral representation
formula. As a corollary we obtain the solution to the corresponding Schwarz problem in
quaternion analysis.

3.1 A lemma
Let us start with the following lemma.

Lemma . Let A(D,C) denote the set of analytic functions defined in D ⊂C+. Then there
exists an injective mapping ψ between A(D,C)/ kerϕ and M(�,H), where ϕ is a surjective
mapping from A(D,C) onto M(�,H) given by

A(D,C) → M(�,H),

f = u(x, y) + iv(x, y) 
→ φ = A(x, r) + ωB(x, r),

where

A(x, r) + ωB(x, r) = �
(
u(x, r) + ωv(x, r)

)
,

x = x + rω ∈R
, and D is the projection of � onto the (x, r)-plane.

In fact the surjective map ϕ is coming from Fueter’s theorem [, , ].

Proof Let the map ψ be given by

A(D,C)/ kerϕ → M(�,H),

f + ĝ 
→ φ,

where kerϕ = {f : ϕ(f ) = , f ∈ A(D,C)}, f = u(x, r) + iv(x, r), φ = A(x, r) + ωB(x, r),
ĝ = u(x, r) + iv(x, r), and ĝ ∈ kerϕ. Then the map ψ is an injective mapping between
A(D,C)/ kerϕ and M(�,H), where u, v are defined similarly to u, v, respectively, and
M(�,H) is the same as that in Section . The result follows. �

3.2 RHBVPs for monogenic functions
The idea behind this lemma allows us to link RHBVPs for axially monogenic functions
with RHBVPs for analytic functions over the complex plane. Let us start the discussion
with the following problem.
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Problem I Find a function φ ∈ C(�,H) of axial type which satisfies the condition

(�)

{
Dφ(x) = , x ∈ �,
Re{λ(t)φ(t)} = g(t), t ∈ ∂�,

where g : ∂� →R and λ is a R-valued function defined on ∂�.

Let us first transform the above problem to a RHBVP for analytic functions. The result
is given in the following theorem.

Theorem . The Riemann-Hilbert boundary value problem (�) is equivalent to the fol-
lowing problem: Find a complex-valued analytic function h, such that

{
∂z̄h(z) = , z ∈ D ⊂C+,
Re{λ(z)h(z)} = r

 g(z), z ∈ ∂D ⊂C+,

where z = x + ir, ∂z̄ = 
 (∂x + i∂r), h = ∂rf , f , and r given as in Lemma ., D is a domain

of C+ with boundary ∂D given as the projection of � ⊂ R
 into the complex plane, and

λ, g : ∂D →R are both scalar-valued functions.

Proof From Lemma . we have complex-valued functions f = u + iv ∈ A(D,C) and ĝ =
u + iv ∈ A(D,C) with ĝ ∈ kerϕ, such that ψ(f + ĝ) = φ. Hence, ϕ ◦ ψ–(φ) = f , where ψ–

is the inverse of ψ on its range and ϕ ◦ψ– denotes the composition of ϕ and ψ–. Adapting
the boundary condition we see that the Riemann-Hilbert boundary value problem (�) is
equivalent to the case

(�)

{
∂z̄f (z) = , z ∈ D ⊂C+,
Re{λ(t)�u}(t) = g(t), t ∈ ∂D ⊂C+.

Using the Laplacian operator � = ∂
x


+ ∂

r + 
r ∂r + 

r ∂ω – 
r ∂

ω , we have �u = 
r ∂ru.

Now, let h = ∂rf then we have ∂z̄h(z) = , z ∈ D since f is analytic in D.
Hence, our boundary value problem (�) reduces to the case

{
∂z̄h(z) = , z ∈ D ⊂C+,
Re{ 

r λ(z)h(z)} = g(z), z ∈ ∂D ⊂C+. �

The above theorem allows us to study the solvability of our original RHBVP by studying
the equivalent RHBVP over the complex plane.

Theorem . Suppose g ∈ Hμ(∂�,R), and D = {z : |z – a| < } ⊂ C+ with z = x + ir, a =
a + ia ∈ C+ being the corresponding domain of C+ with boundary ∂D.

(i) If λ ∈ Hμ(∂�,R), and λ �=  for arbitrary z ∈ ∂D then the Riemann-Hilbert boundary
value problem (�) is solvable and its solution is given by

φ(x) = �
(
Re(f )

(
x, |x|) + ω Im(f )

(
x, |x|)), x ∈ �,
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where Re(f ) and Im(f ) denote the real and imaginary part of the complex-valued
function f , respectively. f itself is given by

f (z) =


π

∫ z

a

∫

∂D

g̃(ζ )
ζ – ξ

dζ dξ +
+∞∑

n=

tn(z – a)n, z ∈ D,

with g̃ = λ– r
 g , tn ∈ C.

(ii) Suppose λ = �λ̂ with �(x) = �m
i=(x – α̂i)νi , α̂i ∈ ∂� and νi ∈N. Furthermore, if

λ̂ ∈ Hμ(∂�,R) and λ̂ �=  for arbitrary x ∈ ∂� then the Riemann-Hilbert boundary
value problem (�) is solvable, and its solution is given again by

φ(x) = �
(
Re(f )

(
x, |x|) + ω Im(f )

(
x, |x|)), x ∈ �,

where f is given by

f (z) =


π

∫ z

a

∫

∂D


�(ξ )

ĝ(ζ )
ζ – ξ

dζ dξ +
+∞∑

n=

∫ z

a

ln(ξ – a)n

�(ξ )
dξ , z ∈ D,

with ĝ = λ̂– r
 g , ln ∈C.

Proof Since D = {z : |z – a| < } ⊂ C+ is the projection of � into (x, r)-plane from Theo-
rem . we see that the problem (�) is equivalent to the problem

(��)

{
∂z̄h(z) = , z ∈ D,
Re{λ(z)h(z)} = r

 g(z), z ∈ ∂D.

Consider now the function

H(z) =

{
h(z), z ∈ D ⊂C+,
h∗(z) = h̄(/z), z ∈ C+\D ∪ ∂D,

and let us study each case separately.
For the case (i) we can proceed in the following way. Since λ, g ∈ Hμ(∂�,R) with λ �= 

for arbitrary x ∈ ∂� we can recast our problem as the following Riemann boundary value
problem:

(ℵ)

{
∂z̄H(z) = , z ∈C+\∂D,
H+(z) = H–(z) + λ–(z) r

 g(z), z ∈ ∂D,

where H± are the boundary values of H on ∂D from D and C+\(D ∪ ∂D), respectively.
Because of λ, g ∈ Hμ(∂D,R) we have g̃ � λ– r

 g = 
iλ

–(z – z̄)g ∈ Hμ(∂D,R). Therefore,
the solution to the boundary value problem (ℵ) is given by

H(z) =


π i

∫

∂D

g̃(ζ )
ζ – z

dζ +
+∞∑

n=

ln(z – a)n, z ∈ D,

where ln ∈ C.
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Hence, the unique solution to the boundary value problem (��) is expressed by

f (z) =


π

∫ z

a

∫

∂D

g̃(ζ )
ζ – ξ

dζ dξ +
+∞∑

n=

tn(z – a)n, z ∈ D, ()

where tn ∈C.
We end up with the solution to the Riemann-Hilbert boundary value problem (�) in the

form

φ(x) = �
(
Re(f )

(
x, |x|) + ω Im(f )

(
x, |x|)), x ∈ �.

In the second case (ii) we map again � to D and λ = �λ̂ with �(x) = �m
i=(x – α̂i)νi where

α̂i ∈ ∂� becomes λ(z) = �(z)λ̂(z), z ∈ ∂D, where �(z) = �m
i=(z – αi)νi , αi ∈ ∂D and λ̂ �= ,

z ∈ ∂D. By transforming the boundary value problem in the same way as in the first case
we arrive at the problem

{
∂z̄H̃(z) = , z ∈ C+\∂D,
H̃+(z) = H̃–(z) + λ̂–(z) r

 g(z), z ∈ ∂D,

where H̃ = �H , z ∈ C+\∂D, and H̃±, z ∈ ∂D are the boundary values of H̃ on ∂D from D
and C+\(D ∪ ∂D), respectively.

Since λ̂ ∈ Hμ(∂D,R), we have ĝ � λ̂– r
 g = 

i λ̂
–(z – z̄)g ∈ Hμ(∂D,R). This allows us to

write the solution to the boundary value problem (��) in the form

f (z) =


π

∫ z

a

∫

∂D


�(ξ )

ĝ(ζ )
ζ – ξ

dζ dξ +
+∞∑

n=

∫ z

a

ln(ξ – a)n

�(ξ )
dξ , z ∈ D, ()

where ln ∈ C.
Therefore, the solution to the Riemann-Hilbert boundary value problem (�) is given by

φ(x) = �
(
Re(f )

(
x, |x|) + ω Im(f )

(
x, |x|)), x ∈ �.

This finishes the proof. �

As a special case of Problem I, we can consider the following Schwarz problem.

Schwarz problem Find a function φ ∈ C(�,H), which satisfies the system

(�)

{
Dφ(x) = , x ∈ �,
Re{φ(t)} = g(t), t ∈ ∂�,

where g : ∂� →R is a R-valued function defined on ∂�.

From Theorem . we can deduce the following theorem.

Theorem . If g ∈ Hμ(∂�,R) then the Schwarz problem (�) is solvable, and its solution
is given by

φ(x) = �
(
Re(f )

(
x, |x|) + ω Im(f )

(
x, |x|)), x ∈ �,
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where f is given by

f (z) =


π

∫ z

a

∫

∂D

g̃(ζ )
ζ – ξ

dζ dξ +
+∞∑

n=

tn(z – a)n, z ∈ D,

with g̃ = r
 g , tn ∈C.

Remark  Theorem . actually gives us a method to solve the RHBVPs with variable
coefficients for axially monogenic functions in R

 by transferring it to the study of the
corresponding RHBVP for analytic functions over the complex plane.

When the space dimension is , then trivially RHBVP (�) reduces to the RHBVP for
analytic functions on the complex plane [, , ]. Moreover, when the coefficient λ is a
constant equal to  for all x ∈ ∂� our RHBVP (�) is just the Schwarz problem for analytic
functions over the complex plane [, , ].

Remark  In fact, Theorem . gives us explicit solutions to the Schwarz problem for a
special type of Vekua system defined over the complex plane [, ]. As far as we know,
in general it is not easy to get explicit but non-formal analytic solutions of this system.

3.3 RHBVPs for null-solutions to (D – α)φ = 0, α ∈R

The above approach can be adapted and generalized to other cases. In the following we
will discuss RHBVPs with variable coefficients for functions of axial type defined over an
axial domain of R which are null-solutions to the equation (D–α)φ = , α ∈R. We begin
with the following extension of Problem I.

Problem II Find a function φ ∈ C(�,H) of axial type which satisfies the condition

(��)

{
(D – α)φ = , α ∈ R, x ∈ �,
Re{λ(t)φ(t)} = g(t), t ∈ ∂�,

where α is understood as αI , with I being the identity operator, g : ∂� → R, and λ is a
R-valued function defined on ∂�.

Theorem . Suppose g ∈ Hμ(∂�,R), and D = {z : |z – a| < } ⊂ C+ with z = x + ir, a =
a + ia ∈ C+ being the corresponding domain of C+ with boundary ∂D.

(i) If λ ∈ Hμ(∂�,R), and λ �=  for arbitrary z ∈ ∂D then the Riemann-Hilbert boundary
value problem (�) is solvable and its solution is given by

φ(x) = eαx�
(
Re(f )

(
x, |x|) + ω Im(f )

(
x, |x|)), x ∈ �,

where Re(f ) and Im(f ) denote the real and imaginary part of the complex-valued
function f , respectively. f itself is given by

f (z) =


π

∫ z

a

∫

∂D

ẽ–αx g(ζ )
ζ – ξ

dζ dξ +
+∞∑

n=

tn(z – a)n, z ∈ D,

with g̃ = λ– r
 g , tn ∈ C.
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(ii) Suppose λ = �λ̂ with �(x) = �m
i=(x – α̂i)νi , α̂i ∈ ∂�, and νi ∈N. Furthermore, if

λ̂ ∈ Hμ(∂�,R) and λ̂ �=  for arbitrary x ∈ ∂� then the Riemann-Hilbert boundary
value problem (�) is solvable, and its solution is given again by

φ(x) = eαx�
(
Re(f )

(
x, |x|) + ω Im(f )

(
x, |x|)), x ∈ �,

where f is given by

f (z) =


π

∫ z

a

∫

∂D


�(ξ )

ê–αx g(ζ )
ζ – ξ

dζ dξ +
+∞∑

n=

∫ z

a

ln(ξ – a)n

�(ξ )
dξ , z ∈ D,

with ĝ = λ̂– r
 g , ln ∈C.

Proof Since (D – α)φ = D(e–αxφ), α ∈R, then

(D – α)φ =  is equivalent to D
(
e–αxφ

)
= , α ∈R. ()

Therefore, problem (��) is equivalent to the case
{
D(e–αxφ) = , α ∈R, x ∈ �,
Re{λ(t)e–αxφ(t)} = e–αx g(t), t ∈ ∂�,

where g : ∂� →R and λ is a R-valued function defined on ∂�.
Noting that D = {z : |z – a| < } ⊂ C+ with z = x + ir, a = a + ia ∈ C+ is the projection

of � onto the (x, r)-plane, associating with g ∈ Hμ(∂�,R), we have e–αx g ∈ Hμ(∂�,R).
We apply Theorem ..
(i) If λ ∈ Hμ(∂�,R), and λ �=  for arbitrary z ∈ ∂D then the Riemann-Hilbert boundary

value problem (�) is solvable and its solution is given by

φ(x) = eαx�
(
Re(f )

(
x, |x|) + ω Im(f )

(
x, |x|)), x ∈ �,

where Re(f ) and Im(f ) denote the real and imaginary part of the complex-valued function
f , respectively. f itself is given by

f (z) =


π

∫ z

a

∫

∂D

ẽ–αx g(ζ )
ζ – ξ

dζ dξ +
+∞∑

n=

tn(z – a)n, z ∈ D,

with g̃ = λ– r
 g , tn ∈ C.

(ii) Suppose λ = �λ̂ with �(x) = �m
i=(x – α̂i)νi , α̂i ∈ ∂�, and νi ∈ N. Furthermore, if

λ̂ ∈ Hμ(∂�,R) and λ̂ �=  for arbitrary x ∈ ∂� then the Riemann-Hilbert boundary value
problem (�) is solvable, and its solution is given again by

φ(x) = eαx�
(
Re(f )

(
x, |x|) + ω Im(f )

(
x, |x|)), x ∈ �,

where f is given by

f (z) =


π

∫ z

a

∫

∂D


�(ξ )

ê–αx g(ζ )
ζ – ξ

dζ dξ +
+∞∑

n=

∫ z

a

ln(ξ – a)n

�(ξ )
dξ , z ∈ D,

with ĝ = λ̂– r
 g , ln ∈C. The result follows. �
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Remark  When the space dimension is , Problem II reduces to the Riemann-Hilbert
boundary value problem for meta-analytic functions defined over the complex plane
[, ].

Similar to the Schwarz problem in the previous subsection, let λ =  in Problem II, we
can take it in account in the following problem.

Problem III Find a function φ ∈ C(�,H) which satisfies the system

{
(D – α)φ = , α ∈R, x ∈ �,
Re{φ(t)} = g(t), t ∈ ∂�,

where α is understood as αI , with I being the identity operator, and g : ∂� → R is a
R-valued function defined on ∂�.

Thanks to Theorem . we can derive the following theorem.

Theorem . If g ∈ Hμ(∂�,R) then Problem III is solvable, and its solution is given by

φ(x) = eαx�
(
Re(f )

(
x, |x|) + ω Im(f )

(
x, |x|)), x ∈ �,

where f is given by

f (z) =


π

∫ z

a

∫

∂D

ẽαx g(ζ )
ζ – ξ

dζ dξ +
+∞∑

n=

tn(z – a)n, z ∈ D,

with g̃ = r
 g , tn ∈C.

Remark  If the boundary data are of Hölder class, we consider the Riemann-Hilbert
boundary value problems I, II, III with variable coefficients for monogenic functions of
axial type in R

 and null-solutions to (D– α)φ = , α ∈R. Note that Problem II reduces to
Problem I when α equals  while Problem III reduces to Problem II when λ equals . Fol-
lowing the same argument, all results can be extended to the Riemann-Hilbert boundary
value problems of monogenic functions of axial type in R

, with boundary data belonging
to Lp ( < p < +∞).
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