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Abstract. We consider a semilinear Neumann problem with an indefinite

and unbounded potential, and a Carathéodory reaction term. Under asymp-

totic conditions on the reaction which make the energy functional coercive,

we prove multiplicity theorems producing three or four solutions with sign

information on them. Our approach combines variational methods based

on the critical point theory with suitable perturbation and truncation tech-

niques, and with Morse theory.

1. Introduction

Let Ω ⊂ RN , N ≥ 3 be a bounded domain with a C2− boundary ∂Ω. We study

the following semilinear Neumann problem

(1.1) −4u (z) + β (z)u (z) = f (z, u (z)) in Ω,
∂u

∂n
= 0 on ∂Ω.

In this problem β ∈ Ls (Ω) , s > N, and in general is indefinite (i.e., sign changing)

and unbounded from below. Also f is a Carathéodory function (i.e., for all x ∈ R
z → f (z, x) is measurable and for a.a. z ∈ Ω, x→ f (z, x) is continuous) and n (.)

is the outward unit normal on ∂Ω. Our aim is to prove multiplicity theorems for

problem (1.1) when the energy functional of the problem is coercive. Moreover,

in some multiplicity theorems we provide precise sign information for all the

solutions produced.

Such equations with Dirichlet boundary conditions, β = 0 and f (z, x) = f (x),

were investigated by Chang ([6], p.161), Ghoussoub ([11], p.126) and Hofer ([13],
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Theorem 8). Ghoussoub [11] produces three nontrivial solution, while Chang [6]

and Hofer [13] establish the existence of four nontrivial solutions. However, none

of the aforementioned works provides sign information for all the solutions pro-

duced. Dirichlet problems with indefinite and unbounded potential, were studied

recently by Aizicovici-Papageorgiou-Staicu [3], Gasinski-Papageorgiou [10] and

Zhang-Liu [22]. In [3] the authors deal with a parametric problem that has a

generalized superdifusive reaction. They look for positive solutions and prove a

bifurcation-type theorem. In [10] the authors deal with equations that are dou-

bly resonant at higher parts of the spectrum (hence the energy functional of the

problem is indefinite). Finally in [22], the authors consider a superlinear reaction

exhibiting symmetry properties and using the fountain theorem, they produce

infinitely many solutions.

Our approach here is variational based on the critical point theory, com-

bined with truncation and comparison techniques and with Morse theory (critical

groups). In the next section, for convenience of the reader, we recall the basic

mathematical tools which we will use in this paper and we develop the spectral

properties of the differential operator u→ −4u+ βu, u ∈ H1 (Ω) .

2. Mathematical background - Spectral properties

First we recall some basic definitions and facts from critical point theory. So,

let X be a Banach space and X∗ be its topological dual. By 〈., .〉 we denote the

duality brackets for the pair (X∗, X) . Also
w−→ will designate weak convergence

in X.

Given ϕ ∈ C1 (X), we say that ϕ satisfies the Palais-Smale condition at the

level c ∈ R (PS c-condition, for short), if the following is true:

”every sequence {xn}n≥1 ⊆ X such that

ϕ (xn)→ c and ϕ′ (xn)→ 0 in X∗as n→∞

admits a strongly convergent subsequence.”

We say that ϕ satisfies the Palais-Smale condition (PS-condition, for short), if

it satisfies the PS c-condition for every c ∈ R.

This compactness-type condition, which compensates for the fact that the am-

bient space needs not be locally compact leads to a deformation theorem from

which we can deduce the minimax theory of certain critical values of ϕ. In par-

ticular, we have the so-called ”mountain pass theorem”.

Theorem 1. If ϕ ∈ C1 (X) , x0, x1 ∈ X and ρ > 0 are such that ‖x1 − x0‖ > ρ,

max {ϕ (x0) , ϕ (x1)} < inf {ϕ (x) : ‖x− x0‖ = ρ} =: ηρ, c = inf
γ∈Γ

max
t∈[0,1]

ϕ (γ (t)) ,
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where Γ = {γ ∈ C ([0, 1] , X) : γ (0) = x0, γ (1) = x1} , and ϕ satisfies the PSc-

condition, then c ≥ ηρ and c is a critical value of ϕ (i.e., there exists x∗ ∈ X such

that ϕ′ (x∗) = 0 and ϕ (x∗) = c).

Given ϕ ∈ C1 (X) and c ∈ R we introduce the following sets:

ϕc = {x ∈ X : ϕ (x) ≤ c} ;

Kϕ = {x ∈ X : ϕ′ (x) = 0} ;

Kc
ϕ = {x ∈ Kϕ : ϕ (x) = c} .

Another result from critical point theory which we will need is the so called ”sec-

ond deformation theorem” (see for example, Gasinski-Papageorgiou ([9], p.628).

Theorem 2. If ϕ ∈ C1 (X) , a ∈ R, a < b ≤ ∞, ϕ satisfies the PSc -condition

for every c ∈ [a, b) , ϕ has no critical values in (a, b) and ϕ−1 (a) contains at

most a finite number of critical points of ϕ, then there exists a continuous map

h : [0, 1]×
(
ϕb\Kb

ϕ

)
→ ϕb such that

(a) h (0, x) = x for all x ∈ ϕb\Kb
ϕ;

(b) h
(
1, ϕb\Kb

ϕ

)
⊆ ϕa;

(c) h (t, x) = x for all t ∈ [0, 1] and all x ∈ ϕa;

(d) ϕ (h (t, x)) ≤ ϕ (h (s, x)) for all t, s ∈ [0, 1] , 0 ≤ s ≤ t ≤ 1, all x ∈ ϕb\Kb
ϕ.

Remark: In particular, this theorem implies that the set ϕa is a strong defor-

mation retract of ϕb\Kb
ϕ.

In what follows, by ‖·‖2 we denote the norm of L2 (Ω) or L2
(
Ω,RN

)
, and by

‖·‖ we denote the norm of the Hilbert space H1 (Ω), i.e.,

‖u‖ =
(
‖u‖22 + ‖Du‖22

) 1
2

for all u ∈ H1 (Ω) .

For every x ∈ R, x+ = max {x, 0} , x− = max {−x, 0} . Then, for every u ∈
H1 (Ω) we set u± (.) = u (.)

±
. We know that u± ∈ H1 (Ω) and |u| = u+ + u−,

u = u+ − u−.
Also, if h : Ω× R→ R is a measurable function (for example a Carathéodory

function), then we set

Nh (u) (.) = h (., u (.)) for all u ∈ H1 (Ω) .

Finally, by |.|N we denote the Lebesgue measure on RN .
In the study of problem (1.1) an important role is played by the Banach space

C1
(
Ω
)
. This is an ordered Banach space with positive cone

C+ =
{
u ∈ C1

(
Ω
)

: u (z) ≥ 0 for all z ∈ Ω
}
.
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This cone has a nonempty interior, given by

int C+ =
{
u ∈ C+ : u (z) > 0 for all z ∈ Ω

}
.

Let f0 : Ω×R→ R be a Carathéodory function with subcritical growth in x ∈ R,

i.e.,

|f0 (z, x)| ≤ a (z) + C |x|r−1
for a.a. z ∈ Ω, all x ∈ R,

with a ∈ L∞ (Ω)+ , C > 0 and 1 < r < 2∗, where

2∗ =
2N

N − 2

Also assume that β ∈ Ls (Ω) , s > N. Let F0 (z, x) =
∫ x

0
f0 (z, s) ds and introduce

the C1−functional ϕ0 : H1 (Ω)→ R defined by

ϕ0 (u) =
1

2
‖Du‖22 +

1

2

∫
Ω

β (z)u2 (z) dz −
∫

Ω

F0 (z, u (z)) dz for all u ∈ H1 (Ω) .

The next result is essentially a particular case of a theorem due to Motreanu-

Papageorgiou [15], and is based on the regularity results of Wang [21]. We should

mention that the first such result for Dirichlet problems is due to Brezis-Nirenberg

[5].

Proposition 1. If u0 ∈ H1 (Ω) is a local C1
(
Ω
)
−minimizer of ϕ0, i.e., there

exists ρ0 > 0 such that

ϕ0 (u0) ≤ ϕ0 (u0 + h) for all h ∈ C1
(
Ω
)

with ‖h‖C1(Ω) ≤ ρ0,

then u0 ∈ C1,γ
(
Ω
)

for some γ ∈ (0, 1) and u0 is also a local H1 (Ω)−minimizer

of ϕ0, i.e., there exists ρ1 > 0 such that

ϕ0 (u0) ≤ ϕ0 (u0 + h) for all h ∈ H1 (Ω) with ‖h‖ ≤ ρ1.

Next we recall some basic facts from Morse theory (critical groups). So, let X

be a Banach space, and Y1, Y2 be two topological spaces with Y2 ⊆ Y1 ⊆ X. For

every integer k ≥ 0, by Hk (Y1, Y2) we denote the kth- relative singular homology

group for the topological pair (Y1, Y2). For k < 0 we have Hk (Y1, Y2) = 0.

Given ϕ ∈ C1 (X) , the critical groups of ϕ at an isolated critical point x ∈ X
with ϕ (x) = c (i.e., x ∈ Kc

ϕ) are defined by

Ck (ϕ, x) = Hk (ϕc ∩ U, (ϕc ∩ U) \ {x}) , for all k ≥ 0,

where U is a neighborhood of x such that Kϕ ∩ ϕc ∩ U = {x} .
The excision property of the singular homology implies that the above defini-

tion of critical groups is independent of the particular choice of the neighborhood

U.



SEMILINEAR NEUMANN EQUATIONS 311

Suppose that ϕ ∈ C1 (X) satisfies the PS-condition and inf ϕ (Kϕ) > −∞. Let

c < inf ϕ (Kϕ) . Then, the critical groups of ϕ at infinity are defined by

Ck (ϕ,∞) = Hk (X,ϕc) for all k ≥ 0.

Theorem 2 (the second deformation theorem) implies that the above definition

of critical groups at infinity is independent of the choice of the level c < inf ϕ (Kϕ) .

Suppose Kϕ is finite. We define

M (t, x) =
∑
k≥0

rank Ck (ϕ, x) tk for all t ∈ R, all x ∈ Kϕ

and

P (t,∞) =
∑
k≥0

rank Ck (ϕ,∞) tk for all t ∈ R.

The Morse relation says that

(2.1)
∑
x∈Kϕ

M (t, x) = P (t,∞) + (1 + t)Q (t) for all t ∈ R,

where Q (t) =
∑
k≥0

ξkt
k is a formal series with nonnegative integer coefficients ξk,

k ≥ 0.

Suppose that X = H is a Hilbert space, x ∈ H, U is a neighborhood of x

and ϕ ∈ C2 (U) . If x ∈ Kϕ, then the Morse index of x, denoted by µ = µ (x) is

defined as the supremum of the dimensions of the vector subspaces of H on which

ϕ′′ (x) is negative definite. The nullity of ϕ at x ∈ Kϕ, denoted by ν = ν (x) is

defined to be the dimension of kerϕ′′ (x) . We say that x ∈ Kϕ is nondegenerate

if ν (x) = 0 (i.e., ϕ′′ (x) is invertible). If x ∈ Kϕ is nondegenerate with Morse

index µ, then

(2.2) Ck (ϕ, x) = δk,µZ for all k ≥ 0.

Here δk,µ is the Kronecker symbol defined by

δk,µ =

{
1 if k = µ

0 if k 6= µ.

Next we determine the spectrum of the differential operator u → −4u + βu for

all u ∈ H1 (Ω) . To do this, it suffices to assume β ∈ LN
2 (Ω) .

The eigenvalue problem under consideration is the following:

(2.3) −4u (z) + β (z)u (z) = λu (z) in Ω,
∂u

∂n
= 0 on ∂Ω.
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In what follows, for notational economy, we set

ξ (u) = ‖Du‖22 +

∫
Ω

β (z)u2 (z) dz for all u ∈ H1 (Ω) .

Lemma 1. If β ∈ LN
2 (Ω) then

λ̂1 = inf
{
ξ (u) : u ∈ H1 (Ω) , ‖u‖2 = 1

}
> −∞.

Proof. We argue indirectly. So, suppose that we can find {un}n≥1 ⊆ H1 (Ω)

such that

(2.4) ‖un‖2 = 1 and ξ (un)→ λ̂1 = −∞.

From (2.4) it follows that there exists n0 ≥ 1 such that

(2.5) ξ (un) ≤ −1 for all n ≥ n0.

We show that {un}n≥1 ⊆ H1 (Ω) is bounded. Suppose that ‖un‖ → ∞ as n→∞.
We set yn = un

‖un‖ . Then ‖yn‖ = 1 for all n ≥ 1 and so, by passing to a suitable

subsequence if necessary, we may assume that

(2.6) yn
w−→ y in H1 (Ω) , yn → y in L2 (Ω) as n→∞.

From the Sobolev embedding theorem, we infer that
{
y2
n

}
n≥1

⊆ L
N

N−2 (Ω) is

bounded. Hence, we may assume that

y2
n

w−→ y2 in L
N

N−2 (Ω) (see (2.6) ),

hence

(2.7)

∫
Ω

βy2
ndz →

∫
Ω

βy2dz

(note that 2
N + N−2

N = 1 and recall that β ∈ L
N
2 (Ω)). From (2.5) and the

2−homogeneity of ξ (.), we have

ξ (yn) ≤ − 1

‖un‖2
for all n ≥ n0,

hence

ξ (y) ≤ 0 (see (2.6) and (2.7) ).

If y = 0, then yn → 0 in H1 (Ω) , which contradicts the fact that ‖yn‖ = 1 for all

n ≥ 1. Therefore y 6= 0. But, note that

‖yn‖2 =
‖un‖2
‖un‖

=
1

‖un‖
(see (2.4) ),
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hence

‖yn‖2 → 0

and so y = 0 (see 2.6)), a contradiction. This proves the boundedness of

{un}n≥1 ⊆ H1 (Ω) . This then implies (at least for a subsequence) that

un
w−→ u in H1 (Ω) and

∫
Ω

βu2
ndz →

∫
Ω

βu2dz as n→∞,

(as before using the Sobolev embedding theorem). Then, in the limit as n→∞,
we have (cf. (2.4))

ξ (u) ≤ λ̂1 = −∞,

a contradiction. Therefore λ̂1 > −∞ and this proves Lemma 1. �

This lemma implies that we can find µ̂ > max
{
−λ̂1, 0

}
and Ĉ > 0 such that

(2.8) ξ (u) + µ̂ ‖u‖22 ≥ Ĉ ‖u‖
2

for all u ∈ H1 (Ω) .

Indeed, suppose that (2.8) is not true. Exploiting the 2−homogeneity of the

right hand side we can find {un}n≥1 ⊆ H1 (Ω) such that

(2.9) ξ (un) + n ‖un‖22 ≤
1

n
, ‖un‖ = 1, for n large enough.

We may assume that

un
w−→ u in H1 (Ω) and un → u in L2 (Ω) as n→∞.

From (2.9) it is clear that u = 0 (i.e., un → u in L2 (Ω) as n → ∞). It follows

that

‖Dun‖2 → 0 in L2 (Ω) ,

hence

un → 0 in H1 (Ω) as n→∞,

a contradiction to the fact that

‖un‖ = 1 for n large enough.

We can define the following equivalent inner product on H1 (Ω) :

(u, v)∗ =

∫
Ω

(Du (z) , Dv (z))RN dz+

∫
Ω

(β (z) + µ̂)u (z) v (z) dz for all u, v ∈ H1 (Ω) ,

where (., .)RN denotes the inner product in RN .
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By virtue of the Riesz representation theorem, we know that given h ∈ L2 (Ω) ,

we can find a unique u ∈ H1 (Ω) such that

(2.10) (u, v)∗ =

∫
Ω

h (z) v (z) dz for all v ∈ H1 (Ω) .

Hence, we can define a linear map S0 : L2 (Ω)→ H1 (Ω) by setting

S0 (h) = u.

Also, let i : H1 (Ω) → L2 (Ω) be the embedding map. The Sobolev embed-

ding theorem implies that i is compact (i.e., i ∈ Lc
(
H1 (Ω) , L2 (Ω)

)
). Then

S0 ◦ i ∈ Lc
(
H1 (Ω) , L2 (Ω)

)
, it is self-adjoint and positive definite. By the Spec-

tral Theorem (see, for example, Gasinski-Papageorgiou ([9], p.296), we can find

a sequence {ηn}n≥1 of eigenvalues of S0 ◦ i such that

η1 > η2 > ... > ηn > ... > 0 and ηn → 0+ as n→∞.

Then λ̂n = 1
ηn
− µ̂, n ≥ 1, are the eigenvalues of (2.3) . We have

−∞ < λ̂1 < λ̂2 < ... < λ̂n < ..., λ̂n → +∞ as n→∞.

Also, we can find a corresponding sequence {ûn}n≥1 ⊆ H1 (Ω) of eigenfunctions

of (2.3) , which form an orthonormal basis of L2 (Ω) . Moreover, if β ∈ Ls (Ω) with

s > N, then the regularity result of Wang [21] implies that {ûn}n≥1 ⊆ C1
(
Ω
)
.

In what follows, by E
(
λ̂k

)
we denote the eigenspace corresponding to the

eigenvalue λ̂k, k ≥ 1. The eigenvalues
{
λ̂k

}
k≥1

admit the following variational

characterizations in terms of Rayleigh quotient ξ(u)

‖u‖22
, for all u ∈ H1 (Ω) , u 6= 0.

We have:

(2.11) λ̂1 = inf

{
ξ (u)

‖u‖22
: u ∈ H1 (Ω) , u 6= 0

}
(see Lemma 1 ),

and, for k > 1,

λ̂k = inf

ξ (u)

‖u‖22
: u ∈

⊕
i≥k

E
(
λ̂i

)
, u 6= 0


= sup

{
ξ (u)

‖u‖22
: u ∈

k⊕
i=1

E
(
λ̂i

)
, u 6= 0

}
.(2.12)

In (2.11) and (2.12) the infimum and supremum are realized on the corresponding

eigenspace E
(
λ̂k

)
. We know that λ̂1 is simple (i.e., dimE

(
λ̂1

)
= 1) and is the
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only eigenvalue with eigenfunctions of constant sign. All the other eigenvalues

have nodal (sign-changing) eigenfunctions. In what follows, by û1 we denote the

positive L2− normalized (i.e., ‖û1‖2 = 1) eigenfunction corresponding to λ̂1.

If β ∈ Ls (Ω) with s > N, then û1 ∈ C+\ {0} (see Wang [21]). The Harnack

inequality (see Pucci-Serrin [19], p.163) implies that û1 (z) > 0 for all z ∈ Ω.

Finally if β+ ∈ L∞ (Ω) , then the boundary point theorem of Pucci-Serrin ([19],

p.120) implies that û1 ∈ int C+. When β ∈ Ls (Ω) with s > N
2 , the eigenspaces

E
(
λ̂k

)
have the so called ”Unique Continuation Property” (UCP for short).

Namely, if u ∈ E
(
λ̂k

)
and u vanishes on a set of positive measure, then u ≡ 0

(see de Figueiredo-Gossez [7]).

Similar properties can be stated for a weighted version of the eigenvalue prob-

lem (2.3) . Namely, let m ∈ L∞ (Ω) , m ≥ 0, m 6= 0 and consider the following

linear Neumann eigenvalue problem

(2.13) −4u (z) + β (z)u (z) = λm (z)u (z) in Ω,
∂u

∂n
= 0 on ∂Ω.

Again, we have a sequence
(
λ̃k (m)

)
k≥1

of distinct eigenvalues of (2.13) which

increase to +∞. As before, they admit variational characterizations in terms of

the Rayleigh quotient

ξ (u)∫
Ω

m (z)u2 (z) dz

for all u ∈ H1 (Ω) , u 6= 0

(see (2.11) and (2.12)). The first eigenvalue λ̃1 (m) is simple, and this is the

only eigenvalue with constant sign eigenfunctions. Moreover, if β ∈ Ls (Ω) with

s > N and û1 (m) denotes the L2− normalized (i.e., ‖û1 (m)‖2 = 1) positive

eigenfunction corresponding to λ̃1, then û1 (m) ∈ C+\ {0} , and if in addition,

β+ ∈ L∞ (Ω) , then û (m) ∈ int C+. An easy consequence of the variational

characterizations and the UCP of the eigenspaces is the following monotonicity

property of the eigenvalues
(
λ̃k (m)

)
k≥1

:

Proposition 2. If m1, m2 ∈ L∞ (Ω) \ {0} , 0 ≤ m1 (z) ≤ m2 (z) a.e. in Ω and

m1 6= m2, then λ̃k (m2) < λ̃k (m1) for all k ≥ 1.

The following result concerning the principal eigenvalue λ̃1 (m) will be useful

in the sequel.
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Lemma 2. If θ ∈ Ls (Ω) with s > N
2 , θ (z) ≤ λ̂1 a.e. in Ω and θ 6= λ̂1, then there

exists C∗ > 0 such that

ζ (u) := ξ (u)−
∫
Ω

θ (z)u2 (z) dz ≥ C∗ ‖u‖2 for all u ∈ H1 (Ω) .

Proof. Clearly ζ ≥ 0 (see (2.11)). Suppose that the Lemma is not true. Ex-

ploiting the 2−homogeneity of ζ (.) , we can find {un}n≥1 ⊆ H1 (Ω) such that

‖un‖ = 1 and ζ (un) ↓ 0 as n→∞.

We may assume that

(2.14) un
w−→ u in H1 (Ω) and un → u in Ls

′
(Ω) as n→∞,

( 1
s + 1

s′ = 1). The sequential weak lower semicontinuity of ζ (.) and (2.14) imply

that

(2.15) ξ (u) ≤
∫
Ω

θ (z)u2 (z) dz ≤ λ̂1 ‖u‖22 ,

hence ξ (u) = λ̂1 ‖u‖22 (see (2.11)), therefore u = ηû1 for some η ∈ R.

If η = 0, then un → 0 in H1 (Ω) , which contradicts the fact that ‖un‖ = 1.

If η 6= 0, then |u (z)| > 0 for a.a. z ∈ Ω, and so from (2.15) we have

ξ (u) < λ̂1 ‖u‖22

which contradicts (2.11) . This proves the lemma. �

Note that in addition to the variational characterization provided by (2.11)

and (2.12), we also have minimax expressions for the eigenvalues, of the Courant-

Ficher type. For our purpose, these minimax characterizations are not helpful.

Instead, here we will use a minimax characterization of λ̂2, which is a particular

case of a more general result due to Mugnai-Papageorgiou [16] (corresponding to

the p−Laplacian).

Proposition 3. Let ∂BL
2

1 =
{
u ∈ L2 (Ω) : ‖u‖2 = 1

}
, M = H1 (Ω) ∩ ∂BL2

1 and

Γ̂ = {γ̂ ∈ C ([−1, 1] ,M) : γ̂ (−1) = −û1, γ̂ (1) = û1} .

Then

λ̂2 = inf
γ̂∈Γ̂

max
t∈[−1,1]

ξ (γ̂ (t)) .
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3. A three solutions theorem

In this section, we prove a multiplicity theorem for problem (1.1) , producing

three nontrivial smooth solutions, but without providing sign information for all

the solutions.

We start by producing two nontrivial smooth solutions of constant sign (one

positive and the other negative). To this end, we introduce the following condi-

tions on the reaction term f (z, x) :

H (f)1 : f : Ω × R→R is a Carathéodory function such that f (z, 0) = 0 for a.a.

z ∈ Ω, and:

(i) |f (z, x)| ≤ c |x| for a.a. z ∈ Ω, all x ∈ R, with c > 0;

(ii) if F (z, x) =
x∫
0

f (z, s) ds, then there exists a function θ ∈ L∞ (Ω)

such that

θ (z) ≤ λ̂1 a.e. in Ω, θ 6= λ̂1

and

lim sup
x→±∞

2F (z, x)

x2
≤ θ (z) uniformly for a.a. z ∈ Ω;

(iii) there exists a function η ∈ L∞ (Ω) such that

λ̂1 ≤ η (z) a.e. in Ω, λ̂1 6= η

and

η (z) ≤ lim inf
x→0

2F (z, x)

x2
uniformly for a.a. z ∈ Ω.

The conditions on β (.) are the following:

H (β) : β ∈ Ls (Ω) with s > N and β+ ∈ L∞ (Ω) .

In what follows, by ϕ : H1 (Ω) → R we denote the energy functional for

problem (1.1) , defined by

ϕ (u) =
1

2
ξ (u)−

∫
Ω

F (z, u (z)) dz for all u ∈ H1 (Ω) .

We know that ϕ ∈ C1
(
H1 (Ω)

)
.

Proposition 4. If hypotheses H (f)1 and H (β) hold, then problem (1.1) has at

least two nontrivial constant sign solutions u0 ∈ int C+ and v0 ∈ −int C+, both

local minimizers of the functional ϕ.
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Proof. First, we produce the nontrivial positive solution. So, let µ̂ >

max
{

0,−λ̂1

}
be as in (2.8) and consider the following truncation-perturbation

of the reaction term f (z, .) :

f̂+ (z, x) = f
(
z, x+

)
+ µ̂x+ for all (z, x) ∈ Ω× R.

This is a Carathéodory function. We set F̂+ (z, x) =
x∫
0

f̂+ (z, s) ds and consider

the C1−functional ϕ̂+ : H1 (Ω)→ R defined by

ϕ̂+ (u) =
1

2
ξ (u) +

µ̂

2
‖u‖22 −

∫
Ω

F̂+ (z, u (z)) dz for all u ∈ H1 (Ω) .

By virtue of hypotheses H (f)1 (i) , (ii), given ε > 0, we can find C1 = C1 (ε) > 0

such that

(3.1) F (z, x) ≤ 1

2
(θ (z) + ε)x2 + C1 for a.a. z ∈ Ω, all x ∈ R.

Then, for all u ∈ H1 (Ω) , we have

(3.2)

ϕ̂+ (u) ≥ 1
2ξ (u) + µ̂

2 ‖u‖
2
2 −

1
2

∫
Ω

θ (u+)
2
dz − ε+µ̂

2 ‖u
+‖22

−C1 |Ω|N (see (3.1) )

≥ 1
2

ξ (u)−
∫
Ω

θu2dz

− ε
2 ‖u‖

2 − C1 |Ω|N

≥ 1
2 [C∗ − ε] ‖u‖2 − C1 |Ω|N (see Lemma 2).

Choosing ε ∈ (0, C∗) , from (3.2) we infer that ϕ̂+ is coercive. Also, using the

Sobolev embedding theorem, we check that ϕ̂+ is sequentially weakly lower semi-

continuous. Hence, by the Weierstrass theorem, we can find u0 ∈ H1 (Ω) such

that

(3.3) ϕ̂+ (u0) = inf
{
ϕ̂+ (u) : u ∈ H1 (Ω)

}
=: m̂+.

Hypotheses H (f)1 (iii) implies that given ε > 0, there exists δ > 0 such that

F (z, x) ≥ 1

2
(η (z)− ε)x2 for a.a. z ∈ Ω, all |x| ≤ δ.

Let t ∈ (0, 1) be small such that tû1 (z) ∈ [0, δ] for all z ∈ Ω . Then

ϕ̂+ (tû1) ≤ t2

2

∫
Ω

(
λ̂1 − η (z)

)
û1 (z)

2
dz +

ε

2



SEMILINEAR NEUMANN EQUATIONS 319

(recall that ‖û1‖2 = 1). Note that ε0 = t2
∫
Ω

(
η (z)− λ̂1

)
û1 (z)

2
dz > 0 and so,

choosing ε ∈ (0, ε0) , we have

ϕ̂+ (tû1) < 0,

hence

ϕ̂+ (u0) = m̂+ < 0 = ϕ̂+ (0)

(see (3.3)), hence

u0 6= 0.

From (3.3) we have

(3.4) A (u0) + (β + µ̂)u0 = Nf̂+ (u0) ,

where A ∈ L
(
H1 (Ω) , H1 (Ω)

∗)
is defined by

〈A (u) , v〉 =

∫
Ω

(Du,Dy)RN dz for all u, v ∈ H1 (Ω) .

On (3.4) we act with −u−0 ∈ H1 (Ω) and obtain

ξ
(
u−0
)

+ µ̂
∥∥u−0 ∥∥2

2
= 0,

hence

Ĉ
∥∥u−0 ∥∥2 ≤ 0 (see (2.8) ),

and this implies

u0 ≥ 0, u0 6= 0.

Then (3.4) becomes

A (u0) + βu0 = Nf (u0) ,

therefore

−4u0 (z) + β (z)u0 (z) = f (z, u0 (z)) a.e. in Ω,
∂u0

∂n
= 0 on ∂Ω.

So, u0 ∈ H1 (Ω) is a nontrivial nonnegative solution of (1.1) .

We set

γ (z) =

{
f(z,u0(z))
u0(z) if u0 (z) 6= 0

0 if u0 (z) = 0.

Hypothesis H (f)1 (i) implies that γ ∈ L∞ (Ω) . We have

(3.5) −4u0 (z) = (γ − β) (z)u0 (z) a.e. in Ω,
∂u0

∂n
= 0 on ∂Ω.

Note that (γ − β) (.) ∈ Ls (Ω) with s > N. Then Lemma 5.1 of Wang [21] implies

that u0 ∈ L∞ (Ω) . Hence from (3.5) it follows that 4u0 ∈ Ls (Ω) . Invoking

Lemma 5.2 of Wang [21] we conclude that u0 ∈ W 2,s (Ω) . Since s > N, the
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Sobolev embedding theorem implies that W 2,s (Ω) ↪→ C1+α
(
Ω
)

with α = 1−N
s >

0, and so u0 ∈ C+\ {0} .
From (3.5) we have

4u0 (z) ≤
(
‖γ‖L∞(Ω) +

∥∥β+
∥∥
L∞(Ω)

)
u0 (z) a.e. in Ω,

hence

u0 ∈ int C+

(see Vazquez [20]). Note that ϕ |C+
= ϕ̂+ |C+

. It follows that u0 ∈ int C+ is a

local C1
(
Ω
)
− minimizer of ϕ. Then, invoking Proposition 1, we infer that u0 is

a local H1 (Ω)− minimizer of ϕ.

Similarly, we set

f̂− (z, x) = f
(
z,−x−

)
+ µ̂

(
−x−

)
for all (z, x) ∈ Ω× R.

We define F̂− (z, x) =
x∫
0

f̂− (z, s) ds and then introduce the C1−functional ϕ̂− :

H1 (Ω)→ R defined by

ϕ̂− (u) =
1

2
ξ (u) +

µ̂

2
‖u‖22 −

∫
Ω

F̂− (z, u (z)) dz for all u ∈ H1 (Ω) .

Working with ϕ̂− as above, we produce a second nontrivial constant sign solution

v0 ∈ −int C+, which is a local minimizer of ϕ. �

If we strengthen the conditions near zero (see hypotheses H (f)1 (iii)) then we

can produce a third nontrivial smooth solution for problem (1.1) . However, we

do not give any sign information for this new solution.

The new conditions on the reaction f (t, z) , are the following:

H (f)2 : f : Ω × R→R is a Carathéodory function such that f (z, 0) = 0 for a.a.

z ∈ Ω, and

(i) |f (z, x)| ≤ c |x| for a.a. z ∈ Ω, all x ∈ R, with c > 0;

(ii) if F (z, x) =
x∫
0

f (z, s) ds, then there exists a function θ ∈ L∞ (Ω)

such that

θ (z) ≤ λ̂1 a.e. in Ω, θ 6= λ̂1

and

lim sup
x→±∞

2F (z, x)

x2
≤ θ (z) uniformly for a.a. z ∈ Ω;
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(iii) there exist λ > λ̂2 and δ0 > 0 such that

λ

2
x2 ≤ F (z, x) for a.a. z ∈ Ω, all |x| ≤ δ0.

Theorem 3. If hypotheses H (f)2 and H (β) hold, then problem (1.1) has at least

three nontrivial solutions

u0 ∈ int C+, v0 ∈ −int C+ and y0 ∈ C1
(
Ω
)
.

Proof. From Proposition 4, we already have two nontrivial constant sign solu-

tions u0 ∈ int C+ and v0 ∈ −int C+. Both are local minimizers of the energy

functional ϕ. Without any loss of generality, we may assume that

ϕ (v0) ≤ ϕ (u0) .

(The analysis is similar if the opposite inequality holds). Also, we assume that u0

is an isolated critical point of ϕ; otherwise, we have a whole sequence of distinct

nontrivial solutions of (1.1). Then, as in Aizicovici-Papageorgiou-Staicu [1] (see

the proof of Proposition 29), we can find ρ ∈ (0, 1) small, such that

(3.6) ϕ (v0) ≤ ϕ (u0) < inf {ϕ (u) : ‖u− u0‖ = ρ} =: ηρ, ‖v0 − u0‖ > ρ.

Recall that ϕ is coercive and so, it satisfies the PS-condition. This fact and

(3.6) permit the use of Theorem 1 (the mountain pass theorem). So, we obtain

y0 ∈ H1 (Ω) such that

(3.7) ηρ ≤ ϕ (y0) and ϕ′ (y0) = 0.

From the inequality in (3.7) and (3.6) , it follows that y0 /∈ {v0, u0} . The

equality in (3.7) implies that y0 ∈ H1 (Ω) is a solution of (1.1) . Moreover, as

before, using the regularity results of Wang [21], we infer that y0 ∈ C1
(
Ω
)
. We

need to show that y0 6= 0.

From Theorem 1, we have

(3.8) ϕ (y0) = inf
γ∈Γ

max
t∈[0,1]

ϕ (γ (t)) ,

where Γ =
{
γ ∈ C

(
[0, 1] , H1 (Ω)

)
: γ (0) = u0, γ (1) = u1

}
. According to (3.8) ,

if we find a path γ∗ ∈ Γ such that ϕ (γ∗ (t)) < 0 for all t ∈ [0, 1] , then ϕ (y0) <

0 = ϕ (0) , and so y0 6= 0. Therefore, our effort is to produce such a path γ∗ ∈ Γ.

Let ϕ̂+, ϕ̂− : H1 (Ω) → R be the C1−functionals introduced in the proof of

Proposition 4. We can easily see that Kϕ̂+
⊆ C+ and Kϕ̂− ⊆ −C+ (cf. the proof

of Proposition 4). Since ϕ′ |C+
= ϕ̂′+ |C+

and ϕ′ |−C+
= ϕ̂′− |−C+

, we may assume

that Kϕ̂+
= {0, u0} and Kϕ̂− = {0, v0} , or otherwise we already have a third

solution for problem (1.1) .
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Recall (see Proposition 3) that ∂BL
2

1 =
{
u ∈ L2 (Ω) : ‖u‖2 = 1

}
, M =

H1 (Ω) ∩ ∂BL2

1 and

Γ̂ = {γ̂ ∈ C ([−1, 1] ,M) : γ̂ (−1) = −û1, γ̂ (1) = û1} .

Let M0 = M ∩C1
(
Ω
)
. We endow M with the relative H1 (Ω)−topology and M0

with the relative C1
(
Ω
)
− topology. Evidently M0 is dense in M. Let

Γ̂0 = {γ̂ ∈ C ([−1, 1] ,M0) : γ̂ (−1) = −û1, γ̂ (1) = û1} .

We show that Γ̂0 is dense in Γ̂. To this end, let γ̂ ∈ Γ̂ and ε ∈ (0, 1) . We consider

the multifunction Lε : [−1, 1]→ 2C
1(Ω) defined by

Lε (t) =
{
u ∈ C1

(
Ω
)

: ‖u− γ̂ (t)‖ < ε
}

for all t ∈ (−1, 1) ,

Lε (−1) = {−û1} , Lε (1) = {û1} .

Evidently Lε (.) has nonempty convex values. Also, for every t ∈ (−1, 1), Lε (t) is

open, while Lε (−1) and Lε (1) are both finite dimensional. Therefore Lε (.) has

values in the class D
(
C1
(
Ω
))

of Michael ([14], p.372). Moreover, the continuity

of γ̂ implies that Lε (.) is lower semicontinuous (see Papageorgiou-Kyritsi ([18],

Proposition 6.1.4(c), p.458). So, we can apply Theorem 3.1”’ of Michael [14] and

obtain a continuous map γε0 : [−1, 1] → C1
(
Ω
)

such that γε0 (t) ∈ Lε (t) for all

t ∈ [−1, 1] . Next, let εn = 1
n , n ≥ 1. By virtue of the above argument, we can

find {γn0 (.)}n≥1 ⊆ C
(
[−1, 1] , C1

(
Ω
))

such that for all n ≥ 1

(3.9) ‖γn0 (t)− γ̂ (t)‖ < 1

n
for all t ∈ (−1, 1) , γn0 (−1) = −û1, γ

n
0 (1) = û1.

Since γ̂ (t) ∈ ∂BL2

1 for all t ∈ [−1, 1] , we may assume that ‖γn0 (t)‖2 6= 0 for all

t ∈ (−1, 1) , all n ≥ 1. So, for all n ≥ 1, we can define

γ̂n0 (t) =
γn0 (t)

‖γn0 (t)‖2
for all t ∈ [−1, 1] .

Evidently γ̂n0 ∈ C ([−1, 1] ,M0) and γ̂n0 (0) = −û1, γ̂
n
0 (1) = û1. For every t ∈

[−1, 1] and every n ≥ 1, we have

‖γ̂n0 (t)− γ̂ (t)‖ ≤ ‖γ̂n0 (t)− γn0 (t)‖+ ‖γn0 (t)− γ̂ (t)‖

≤
|1− ‖γn0 (t)‖2|
‖γn0 (t)‖2

‖γn0 (t)‖+
1

n
(see (3.9) ).(3.10)
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Note that

max
−1≤t≤1

|1− ‖γn0 (t)‖2| = max
−1≤t≤1

|‖γ̂ (t)‖2 − ‖γ
n
0 (t)‖2|

≤ max
−1≤t≤1

‖γ̂ (t)− γ̂n0 (t)‖2

≤ C2 max
−1≤t≤1

‖γ̂ (t)− γ̂n0 (t)‖ for some C2 > 0

≤ C2
1

n
.(3.11)

Using (3.11) and (3.10) , we infer that

max
−1≤t≤1

‖γ̂n0 (t)− γ̂ (t)‖ → 0 as n→∞.

This proves the density of Γ̂0 in Γ̂. Then, by virtue of Proposition 3, we can find

γ̂0 ∈ Γ̂0 such that

(3.12) max
−1≤t≤1

ξ (γ̂0 (t)) ≤ λ̂2 + δ with δ > 0.

Since γ̂0 ∈ Γ̂0 and u0 ∈ int C+, v0 ∈ −int C+, we can find ε > 0 small such that

for all t ∈ [−1, 1] , we have

(3.13)

{
εγ̂0 (t) ∈ [v0, u0] =

{
u ∈ H1 (Ω) : v0 (z) ≤ u (z) ≤ u0 (z) a.e. in Ω

}
,

ε |γ̂0 (t) (z)| ≤ δ0 for all z ∈ Ω (with δ0 > 0 as in H (f)2 (iii) ).

So, for all t ∈ [−1, 1] , we have

(3.14) ϕ (εγ̂0 (t)) =
ε2

2
ξ (γ̂0 (t))−

∫
Ω

F (z, εγ̂0 (t) (z)) dz ≤ ε2

2

[
λ̂2 + δ − λ

]
(see (3.12) , (3.13) , H (f)2 (iii) and recall that ‖γ̂0 (t)‖2 = 1 for all t ∈ [−1, 1]).

Choosing δ ∈
(

0, λ− λ̂2

)
(recall that λ > λ̂2, see H (f)2 (iii)), from (3.14) it

follows that ϕ (εγ̂0 (t)) < 0 for all t ∈ [−1, 1] .

Therefore, if we set γ0 = εγ̂0, then γ0 is a continuous path in H1 (Ω) which

connects −εû1 and εû1, with

(3.15) ϕ |γ0< 0.

Next we produce a continuous path in H1 (Ω) which connects εû1 and u0 and

along which the energy functional ϕ is strictly negative. To this end, let

a = m+ = ϕ̂+ (u0) = inf
{
ϕ̂+ (u) : u ∈ H1 (Ω)

}
< b = 0 = ϕ̂+ (0)



324 S. AIZICOVICI, N. S. PAPAGEORGIOU, AND V. STAICU

(see the proof of Proposition 4). According to Theorem 2 (the second deformation

theorem), we can find a continuous map h : [0, 1]×
(
ϕ̂0

+\K0
ϕ̂+

)
→ ϕ̂0

+ such that:

(3.16) h (0, u) = u for all u ∈ ϕ̂0
+\K0

ϕ̂+

(3.17) h
(

1, ϕ̂0
+\K0

ϕ̂+

)
⊆ ϕ̂a+

(3.18) ϕ (h (t, u)) ≤ ϕ (h (s, u)) for all t, s ∈ [0, 1] , t ≤ s, all u ∈ ϕ̂0
+\K0

ϕ̂+
.

Since Kϕ̂+
= {0, u0} , we have Ka

ϕ̂+
= {u0} and ϕ̂a+ = {u0} . Therefore

ϕ̂+ (εû1) = ϕ (εû1) = ϕ (γ0 (1)) < 0 (see (3.15) ),

hence

εû1 ∈ ϕ̂0
+\K0

ϕ̂+
.

Thus we can define

γ+ (t) = h (t, εû1)
+

for all t ∈ [0, 1] .

Then

γ+ (0) = h (0, εû1)
+

= εû1 (see (3.16) and recall that û1 ∈ int C+)

γ+ (1) = h (1, εû1)
+

= u0 (see (3.17) and recall that ϕ̂a+ = {u0} , u0 ∈ int C+).

Therefore γ+ is a continuous path in H1 (Ω) , which connects εû1 and u0.

If H+ :=
{
u ∈ H1 (Ω) : u (z) ≥ 0 a.e. in Ω

}
, then ϕ |H+= ϕ̂+ |H+ and so, for

all t ∈ [0, 1] we have

ϕ (γ+ (t)) = ϕ̂+ (γ+ (t)) = ϕ̂+

(
h (t, εû1)

+
)
≤ ϕ̂+ (εû1) = ϕ (εû1) < 0

(see (3.18) and (3.15)), hence

(3.19) ϕ |γ+< 0.

In a similar fashion, we produce a third continuous path γ− in H1 (Ω) , which

connects −εû1 and v0 and such that

(3.20) ϕ |γ−< 0.

We concatenate γ−, γ0, γ+ and produce γ∗ ∈ Γ such that

ϕ |γ∗< 0 (see (3.15) , (3.19) , (3.20)),

therefore y0 6= 0. �
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4. Nodal solutions

In this section, we establish the existence of nodal solutions for problem (1.1) .

So, the multiplicity theorems in this section provide sign information for all the

solutions. In order to produce nodal solutions, first we show that problem (1.1)

has extremal nontrivial constant sign solutions, i.e., there is a smallest nontrivial

positive solution u+ ∈ int C+ and a biggest nontrivial negative solution v− ∈ −int
C+. Then we consider the order interval

[v−, u+] =
{
u ∈ H1 (Ω) : v− (z) ≤ u (z) ≤ u+ (z) a.e. in Ω

}
and using suitable truncations and comparison techniques, we show that problem

(1.1) has a nontrivial solution y0 ∈ [v−, u+] , which is distinct from v− and u+. The

extremality of v− and u+ implies that y0 is nodal. Subsequently, by strengthening

the regularity of f (z, .) and using Morse theory, we show the existence of a second

nodal solution.

In what follows, by n0 ≥ 1 we denote the first integer such that λ̂n0
> 0. Note

that if β ≡ 0, then n0 = 2 and if β ≥ 0, β 6= 0, then n0 = 1.

For the first result concerning the existence of nodal solutions, we will need

the following hypothesis on the reaction term f (z, x) :

H (f)3 : f : Ω × R→R is a Carathéodory function such that f (z, 0) = 0 for a.a.

z ∈ Ω, and:

(i) |f (z, x)| ≤ c |x| for a.a. z ∈ Ω, all x ∈ R with c > 0;

(ii) if F (z, x) =
x∫
0

f (z, s) ds, then there exists a function θ ∈ L∞ (Ω)

such that

θ (z) ≤ λ̂1 a.e. in Ω, θ 6= λ̂1

and

lim sup
x→±∞

2F (z, x)

x2
≤ θ (z) uniformly for a.a. z ∈ Ω;

(iii) there exist an integer m ≥ max {n0, 2} and functions η1, η2 ∈
L∞ (Ω)+ such that

λ̂m ≤ η1 (z) ≤ η2 (z) ≤ λ̂m+1 a.e. in Ω, λ̂m 6= η1, λ̂m+1 6= η2

and

η1 (z) ≤ lim inf
x→0

f (z, x)

x
≤ lim sup

x→0

f (z, x)

x

≤ η2 (z) uniformly for a.a. z ∈ Ω;
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(iv) for every ρ > 0, there exists ξρ > 0 such that for a.a. z ∈ Ω,

x→ f (z, x) + ξρx is nondecreasing on [−ρ, ρ] .

We start by establishing the existence of extremal nontrivial constant sign

solutions.

Proposition 5. If hypotheses H (f)3 and H (β) hold, then problem (1.1) has a

smallest nontrivial positive solution u+ ∈ int C+ and a biggest nontrivial negative

solution v− ∈ −int C+.

Proof. We first establish the existence of a smallest nontrivial positive solution.

So, let S+ be the set of nontrivial positive solutions of (1.1) . From Proposition 4

and its proof, we know that S+ 6= ∅ and S+ ⊂ int C+. Moreover, as in Aizicovici-

Papageorgiou-Staicu [2], we can show that S+ is downward directed (i.e., if u1,

u2 ∈ S+, then we can find u ∈ S+ such that u ≤ u1, u ≤ u2). Therefore,

without any loss of generality, we may assume that S+ is pointwise bounded by

an L∞ (Ω)− function.

Let C ⊆ S+ be a chain (i.e., a totally ordered subset of S+). From Dunford-

Schwartz ([8], p.336), we know that there exists {un}n≥1 ⊆ C such that inf C =

inf
n≥1

un. We have

(4.1) A (un) + βun = Nf (un) for all n ≥ 1,

hence {un}n≥1 ⊆ H1 (Ω) is bounded. So, we may assume that

(4.2) un
w−→ u in H1 (Ω) and un → u in L2 (Ω) .

Suppose that u = 0. Let yn = un

‖un‖ , n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1 and so

we may assume that

(4.3) yn
w−→ y in H1 (Ω) and yn → y in L2 (Ω) .

From (4.1) we have

(4.4) A (yn) + βyn =
Nf (un)

‖un‖
for all n ≥ 1.

Hypothesis H (f)3 (i) implies that

(4.5)

{
Nf (un)

‖un‖

}
n≥1

⊆ L2 (Ω) is bounded.

So, we may assume that

(4.6)
Nf (un)

‖un‖
w−→ g in L2 (Ω) .
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Since u = 0, using hypothesis H (f)3 (iii) and reasoning as in Aizicovici-

Papageorgiou-Staicu [1] (see the proof of Proposition 31), we infer that

(4.7) g = hy with h ∈ L∞ (Ω)+ , η1 (z) ≤ h (z) ≤ η2 (z) a.e. in Ω.

On (4.4) we act with yn− y ∈ H1 (Ω) , pass to the limit as n→∞ and use (4.5) .

Then

〈A (yn) , yn − y〉 = 0,

hence

‖Dyn‖2 → ‖Dy‖2 (see (4.3) )

and, by the Kadec-Klee property, it follows that

Dyn → Dy in L2
(
Ω,RN

)
),

therefore

(4.8) yn → y in H1 (Ω) , hence ‖y‖ = 1.

If we pass to the limit as n→∞ in (4.4) and use (4.6) , (4.7) , (4.8) , then

A (y) + βy = hy,

hence

(4.9) −4y (z) + β (z) y (z) = h (z) y (z) a.e. in Ω,
∂y

∂n
= 0 on ∂Ω.

From Proposition 2, we have λ̃m (h) < λ̃m

(
λ̂m

)
= 1 and λ̃m+1

(
λ̂m+1

)
=

1 < λ̃m+1 (h) , and so (4.9) implies that y = 0, which contradicts (4.8) . Therefore

u 6= 0. So, if in (4.1) we pass to the limit as n→∞ and use (4.2) , we obtain

A (u) + βu = Nf (u) ,

therefore u ∈ S+ ⊆ int C+ and u = inf C.

Since C ⊆ S+ is an arbitrary chain, invoking the Kuratowski-Zorn lemma

we infer that S+ has a minimal element u+ ∈ S+ ⊆ int C+. Recall that S+ is

downward directed. Hence u+ ∈ int C+ must be the smallest positive solution.

Similarly, if S− is the set of nontrivial negative solutions of (1.1) , then from

Proposition 4 and its proof we know that S− 6= ∅ and S− ⊂ −int C+. This

set is upward directed (i.e., if v1, v2 ∈ S−, then there exists v ∈ S− such that

v1 ≤ v, v2 ≤ v). Reasoning as above, via the Kuratowski-Zorn lemma, we produce

v− ∈ −int C+ the biggest nontrivial negative solution of (1.1) . �

Using these extremal constant sign solutions, we can produce a nodal solution

for problem (1.1) .
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Proposition 6. If hypotheses H (f)3 and H (β) hold, then problem (1.1) has a

nodal solution y0 ∈ intC1(Ω) [v−, u+] .

Proof. Let u+ ∈ int C+ and v− ∈ −int C+ be the two extremal nontrivial

constant sign solutions produced in Proposition 5. We introduce the following

perturbation-truncation of the reaction term in problem (1.1)

(4.10) ĝ (z, x) =


f (z, v− (z)) + µ̂v− (z) if x < v− (z)

f (z, x) + µ̂x if v− (z) ≤ x ≤ u+ (z)

f (z, u+ (z)) + µ̂u+ (z) if u+ (z) < x.

(Here µ̂ > max
{
−λ̂1, 0

}
is as in (2.8)). This is a Carathéodory function. We set

Ĝ (z, x) =
x∫
0

ĝ (z, s) ds and consider the C1−functional ψ̂ : H1 (Ω) → R, defined

by

ψ̂ (u) =
1

2
ξ (u) +

µ̂

2
‖u‖22 −

∫
Ω

Ĝ (z, u (z)) dz for all u ∈ H1 (Ω) .

Also, we set

ĝ± (z, x) = ĝ
(
z,±x±

)
, Ĝ± (z, x) =

x∫
0

ĝ± (z, s) ds

and consider the C1−functionals ψ̂± : H1 (Ω)→ R, defined by

ψ̂± (u) =
1

2
ξ (u) +

µ̂

2
‖u‖22 −

∫
Ω

Ĝ± (z, u (z)) dz for all u ∈ H1 (Ω) .

Claim 1: Kψ̂ ⊆ [v−, u+] :=
{
u ∈ H1 (Ω) : v− (z) ≤ u (z) ≤ u+ (z) a.e. in Ω

}
,

Kψ̂+
= {0, u+} , Kψ̂−

= {0, v−} .
Let u ∈ Kψ̂. Then

(4.11) A (u) + (β + µ̂)u = Nĝ (u) .
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On (4.11) we act with (u− u+)
+ ∈ H1 (Ω) . Then,〈

A (u) , (u− u+)
+
〉

+

∫
Ω

(β + µ̂)u (u− u+)
+
dz

=

∫
Ω

ĝ (z, u) (u− u+)
+
dz

=

∫
Ω

[f (z, u+) + µ̂u+] (u− u+)
+
dz (see (4.10) )

=
〈
A (u+) , (u− u+)

+
〉

+

∫
Ω

(β + µ̂)u+ (u− u+)
+
dz,

hence

Ĉ
∥∥∥(u− u+)

+
∥∥∥2

≤ 0 (see (2.8) ),

therefore

u ≤ u+.

In a similar fashion, acting on (4.11) with (v− − u)
+ ∈ H1 (Ω) , we obtain

v− ≤ u.

Therefore

u ∈ [v−, u+] :=
{
u ∈ H1 (Ω) : v− (z) ≤ u (z) ≤ u+ (z) a.e. in Ω

}
and we conclude that Kψ̂ ⊆ [v−, u+] . Similarly, we show that

Kψ̂+
⊂ [0, u+] :=

{
u ∈ H1 (Ω) : 0 ≤ u (z) ≤ u+ (z) a.e. in Ω

}
and

Kψ̂−
⊂ [v−, 0] :=

{
u ∈ H1 (Ω) : v− (z) ≤ u (z) ≤ 0 a.e. in Ω

}
.

The extremality of u+ ∈ int C+ and v− ∈ −int C+ (see Proposition 5) implies

that

Kψ̂+
= {0, u+} and Kψ̂−

= {0, v−} .

This proves Claim 1.

Claim 2: u+ ∈ int C+ and v− ∈ −int C+ are local minimizers of ψ̂.

From (4.10) and (2.8) , it is clear that ψ̂+ is coercive. Also, it is sequentially

weakly lower semicontinuous. So, we can find û0 ∈ H1 (Ω) such that

(4.12) ψ̂+ (û0) = inf
{
ψ̂+ (u) : u ∈ H1 (Ω)

}
.
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Hypothesis H (f)3 (iii) implies that

ψ̂+ (û0) < 0 = ψ̂+ (û0) , hence û0 6= 0

(see the proof of Proposition 4). Since û0 ∈ Kψ̂+
(see (4.12)), by virtue of Claim

1, we have û0 = u+ ∈ int C+. Note that

ψ̂ |C+
= ψ̂+ |C+

.

Hence u+ is a local C1
(
Ω
)
−minimizer of ψ̂. Invoking Proposition 1, we conclude

that u+ is a local H1 (Ω)−minimizer of ψ̂. Similarly for v− ∈ −int C+, using this

time the functional ψ̂−. This proves Claim 2.

Without any loss of generality, we may assume that ψ̂ (v−) ≤ ψ̂ (u+) . (The

analysis is similar if the opposite inequality holds). We may assume that u+ is an

isolated point. (Otherwise, we already have a sequence of distinct nodal solutions;

see Claim 1). By virtue of Claim 2, as in Aizicovici-Papageorgiou-Staicu [1] (see

the proof of Proposition 29), we can find ρ ∈ (0, 1) small such that

(4.13) ψ̂ (v−) ≤ ψ̂ (u+) < inf
{
ψ̂ (u) : ‖u− u+‖ = ρ

}
= η̂+, ‖v− − u+‖ > ρ.

Since ψ̂ is coercive, it satisfies the PS-condition. This fact and (4.13) enable us to

use Theorem 1 (the mountain pass theorem). So, we can find y0 ∈ H1 (Ω) such

that

(4.14) ψ̂′ (y0) = 0 and η̂+ ≤ ψ̂ (y0) .

From the inequality in (4.14) and (4.13) , we have

(4.15) y0 /∈ {v−, u+} .

The equality in (4.14) and Claim 2 imply that

(4.16) y0 ∈ [v−, u+] .

Since y0 is a critical point of mountain pass type, we have

(4.17) C1

(
ψ̂, y0

)
6= 0 (see Chang [6], p.89).

Claim 3: Ck

(
ψ̂, y0

)
= δk,dmZ for all k ≥ 0, with dm = dim

m⊕
i=1

E
(
λ̂i

)
≥ 2

(recall that m ≥ max {n0, 2}).
Let λ ∈

(
λ̂m, λ̂m+1

)
and let ψλ : H1 (Ω) → R be the C2− functional defined

by

ψλ (u) =
1

2
ξ (u)− λ

2
‖u‖22 for all u ∈ H1 (Ω) .
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We consider the homotopy

h (t, u) = (1− t) ψ̂ (u) + tψλ (u) for all (t, u) ∈ [0, 1]×H1 (Ω) .

Suppose that we can find {tn}n≥1 ⊂ [0, 1] and {un}n≥1 ⊂ H1 (Ω) such that

(4.18) tn → t, un → 0 in H1 (Ω) and h′u (tn, un) = 0 for all n ≥ 1.

From the equation in (4.18) we have

(4.19) A (un) + ((1− tn) µ̂+ β)un = (1− tn)Nĝ (un) + tnλun for all n ≥ 1.

Let yn = un

‖un‖ , n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1 and so we may assume that

(4.20) yn
w−→ y in H1 (Ω) and yn → y in L2 (Ω) .

From (4.19) we have

(4.21) A (yn) + ((1− tn) µ̂+ β) yn = (1− tn)
Nĝ (un)

‖un‖
+ tnλyn for all n ≥ 1.

Evidently

(4.22)

{
Nĝ (un)

‖un‖

}
n≥1

⊆ L2 (Ω) is bounded.

So, if in (4.21) we act with yn − y ∈ H1 (Ω) , pass to the limit as n→∞ and use

(4.20) and (4.22) , then

lim
n→∞

〈A (yn) , yn − y〉 = 0,

hence

‖Dyn‖2 → ‖Dy‖2
and, by the Kadec-Klee property, it follows that

Dyn → Dy in L2
(
Ω,RN

)
,

therefore

(4.23) yn → y in H1 (Ω) (see (4.20)), hence ‖y‖ = 1.

By (4.22) and hypothesis H (f)3 (iii) , reasoning as in Aizicovici-Papageorgiou-

Staicu [1] (see the proof of Proposition 31), and passing to a subsequence if

necessary, we have

(4.24)
Nĝ(un)
‖un‖

w−→ h̃ = (η0 + µ̂) y in L2 (Ω) with η0 ∈ L∞ (Ω)+ ,

η1 (z) ≤ η0 (z) ≤ η2 (z) a.e. in Ω.
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Therefore, if in (4.21) we pass to the limit as n→∞ and use (4.23) and (4.24) ,

then

A (y) + βy = [(1− t) η0 + tλ] y,

hence

(4.25) −4y (z) + β (z) y (z) = ηt (z) y (z) a.e. in Ω,
∂y

∂n
= 0 on ∂Ω,

where ηt (z) = (1− t) η0 (z) + tλ. Note that λ̂m ≤ ηt (z) ≤ λ̂m+1 a.e. in Ω and

ηt 6= λ̂m, ηt 6= λ̂m+1. Invoking Proposition 2, we have

λ̃m (ηt) < λ̃m

(
λ̂m

)
= 1 and λ̃m+1

(
λ̂m+1

)
= 1 < λ̃m+1 (ηt) ,

hence y = 0 (see (4.25)), which contradicts (4.23) . Therefore we can find ρ ∈ (0, 1)

small such that

Bρ (0) ∩Kh(t,.) = {0} for all t ∈ [0, 1] .

(Here Bρ (0) =
{
u ∈ H1 (Ω) : ‖u‖ ≤ ρ

}
). Invoking the homotopy invariance of

critical groups, we have

Ck (h (0, .) , 0) = Ck (h (1, .) , 0) for all k ≥ 0,

hence

(4.26) Ck

(
ψ̂, 0

)
= Ck (ψλ, 0) for all k ≥ 0.

Recall that ψλ ∈ C2
(
H1 (Ω)

)
and since λ ∈

(
λ̂m, λ̂m+1

)
, we see that u = 0 is

a nondegenerate critical point of ψλ with Morse index dm = dim
m⊕
i=1

E
(
λ̂i

)
≥ 2.

Hence

Ck (ψλ, 0) = δk,dmZ for all k ≥ 0.

This proves Claim 3.

Since dm ≥ 2, from (4.17) and Claim 3 it follows that y0 6= 0. From (4.15) ,

(4.16) and the extremality of u+ and v−, we infer that y0 is nodal. Moreover, the

regularity results of Wang [21] imply that y0 ∈ C1 (Ω) .

Let ρ = max {‖u+‖∞ , ‖v−‖∞} and let ξρ > 0 be as postulated by hypothesis

H (f)3 (iv) . Then

−4y0 (z) + (β (z) + ξρ) y0 (z)

= f (z, y0 (z)) + ξρy (z)

= f (z, u+ (z)) + ξρu+ (z) (see H (f)3 (iv) and recall that y0 ≤ u+)

= −4u+ (z) + (β (z) + ξρ)u+ (z) a.e. in Ω,
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hence

4 (u+ − y0) (z) ≤
(∥∥β+

∥∥
L∞(Ω)

+ ξρ

)
(u+ − y0) (z) a.e. in Ω,

therefore u+ − y0 ∈ int C+ (see Vazquez [20]).

In a similar fashion, we also show that

y0 − v− ∈ int C+.

Therefore, we conclude that y0 ∈ intC1(Ω) [v−, u+] . �

So, we have obtained our first multiplicity result with precise sign information

for all the solutions, namely:

Theorem 4. If hypotheses H (f)3 and H (β) hold, then problem (1.1) has at least

three nontrivial solutions

u0 ∈ int C+, v0 ∈ −int C+, and y0 ∈ intC1(Ω) [v0, u0] , nodal.

Moreover, problem (1.1) has extremal nontrivial constant sign solutions, i.e., a

smallest nontrivial positive solution u+ ∈ int C+ and a biggest nontrivial negative

solution v− ∈ −int C+.

Next, by strengthening the regularity of the reaction term f (z, .) , we produce

a second smooth nodal solution, for a total of four nontrivial smooth solutions

with sign information.

The new hypotheses on f (z, x) are the following:

H (f)4 : f : Ω×R→R is a measurable function such that for a.a. z ∈ Ω, f (z, 0) =

0, f (z, .) ∈ C1 (R) and:

(i) |f ′x (z, x)| ≤ a (z) for a.a. z ∈ Ω, with a ∈ L∞ (Ω)+ ;

(ii) there exists a function θ ∈ L∞ (Ω) such that

θ (z) ≤ λ̂1 a.e. in Ω, θ 6= λ̂1,

and

lim sup
x→±∞

2F (z, x)

x2
≤ θ (z) uniformly for a.a. z ∈ Ω,

where F (z, x) =
x∫
0

f (z, s) ds;

(iii) f ′x (z, 0) = lim
x→0

f(z,x)
x uniformly for a.a. z ∈ Ω, and there exists an

integer m ≥ max {n0, 2} such that

λ̂m ≤ f ′x (z, 0) ≤ λ̂m+1 a.e. in Ω, λ̂m 6= f ′x (z, 0) , λ̂m+1 6= f ′x (z, 0) .
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Remark: Let ξ, ρ > 0 and consider the function (z, x)→ f (z, x) + ξ (x) defined

on Ω × R. Then, by virtue of hypothesis H (f)4 (i) , for ξ = ξ (ρ) > 0 large, we

have

f ′x (z, x) + ξ ≥ 0 for a.a. z ∈ Ω, all x ∈ [−ρ, ρ] ,

hence x→ f (z, x) + ξx is nondecreasing on [−ρ, ρ] .

Therefore, in this case, due to the improved regularity of f (z, .) , hypothesis

H (f)3 (iv) is automatically satisfied.

Theorem 5. If hypotheses H (f)4 and H (β) hold, then problem (1.1) has at least

four nontrivial solutions

u0 ∈ int C+, v0 ∈ −int C+, and y0, ŷ ∈ intC1(Ω) [v0, u0] , nodal.

Proof. From Theorem 4, we already have three nontrivial smooth solutions

u0 ∈ int C+, v0 ∈ −int C+ and y0 ∈ intC1(Ω) [v0, u0] , nodal.

By virtue of Proposition 5, we may assume that u0 and v0 are the two extremal

constant sign solutions (i.e., u0 = u+ ∈ int C+ and v0 = v− ∈ −int C+). Let

ψ̂ : H1 (Ω)→ R be the C1− functional introduced in the proof of Proposition 6.

From Claim 2 in that proof, we know that u0 ∈ int C+ and v0 ∈ −int C+ are

local minimizers of ψ̂. Hence

(4.27) Ck

(
ψ̂, u0

)
= Ck

(
ψ̂, v0

)
= δk,0Z for all k ≥ 0.

Since ϕ |[v0,u0]= ψ̂ |[v0,u0] (see (4.10)) and y0 ∈ intC1(Ω) [v0, u0] , we have

(4.28) Ck

(
ϕ |C1(Ω), y0

)
= Ck

(
ψ̂ |C1(Ω), y0

)
for all k ≥ 0.

From Palais [17], Theorem 16 (see also Bartsch [4], Proposition 2.6), we know

that

(4.29)

Ck

(
ϕ |C1(Ω), y0

)
= Ck (ϕ, y0) and Ck

(
ψ |C1(Ω), y0

)
= Ck (ψ, y0) ∀k ≥ 0.

From (4.28) and (4.29) it follows that

(4.30) Ck (ϕ, y0) = Ck

(
ψ̂, y0

)
for all k ≥ 0,

hence

(4.31) C1 (ϕ, y0) 6= 0 (see (4.17) ).
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Note that ϕ ∈ C2
(
H1 (Ω)

)
(see hypotheses H (f)4). We have

〈ϕ′′ (y0)u, v〉 =

∫
Ω

(Du,Dv)RN dz +

∫
Ω

βuvdz−

∫
Ω

f ′x (z, y0)uvdz for all u, v ∈ H1 (Ω)

hence

ϕ′′ (y0) = −4+ βI − f ′x (., y0 (.)) I.

Hence ϕ′′ (y0) is a Fredholm operator. Let σ (ϕ′′ (y0)) denote the spectrum of

ϕ′′ (y0) . Suppose that σ (ϕ′′ (y0)) ⊂ [0,∞) and let u ∈ kerϕ′′ (y0) . Then

−4u (z) + β (z)u (z) = f ′x (z, y0 (z))u (z) a.e. in Ω,
∂u

∂n
= 0 on ∂Ω,

hence

(4.32) −4u (z) = ζ (z)u (z) a.e. in Ω,
∂u

∂n
= 0 on ∂Ω,

where

ζ (.) = f ′x (., y0 (.))− β (.) ∈ Ls (Ω) .

If ζ+ 6= 0, then from (4.32) we infer that u = 0.

If ζ+ 6= 0 and σ (ϕ′′ (y0)) ⊂ [0,∞) , then from Proposition 2.2 of Godoy-Gossez-

Paczka [12], we have that dim kerϕ′′ (y0) ≤ 1. So we can apply Proposition 2.5 of

Bartsch [4] and deduce that

Ck (ϕ, y0) = δk,1Z for all k ≥ 0 (see (4.31) ),

hence

(4.33) Ck

(
ψ̂, y0

)
= δk,1Z for all k ≥ 0 (see (4.30) ).

By Claim 3 in the proof of Proposition 6,

(4.34) Ck

(
ψ̂, 0

)
= δk,dmZ for all k ≥ 0.

Finally, since ψ̂ is coercive, we have

(4.35) Ck

(
ψ̂,∞

)
= δk,0Z for all k ≥ 0.

Suppose that Kψ̂ = {0, u0, v0, y0} . From (4.27) , (4.33) , (4.34) , (4.35) and the

Morse relation (see (2.1)) with t = −1, we have

2 (−1)
0

+ (−1)
1

+ (−1)
dm = (−1)

0
,
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hence

(−1)
dm = 0,

a contradiction. So, we can find ŷ ∈ Kψ̂, ŷ /∈ {0, u0, v0, y0} . Then ŷ ∈ [v0, u0] (see

Claim 1 in the proof of Proposition 6), and so ŷ is the fourth nontrivial solution

of (1.1) (see (4.10)) and it is nodal. The regularity theory (see Wang [21]) implies

that ŷ ∈ C1
(
Ω
)
. �

Hypotheses H (f)3 (iii) and H (f)4 (iii) imply that at he origin we have nonuni-

form nonresonance with respect to higher parts of the spectrum. It is natural to

ask what is the situation when resonance occurs. We show that Theorem 5 with

the four solutions (all with sign information) remains valid if we strengthen the

condition on f (z, .) near zero. More precisely, the new hypotheses on the reaction

term f (z, x) are the following:

H (f)5 : f : Ω×R→R is a measurable function such that for a.a. z ∈ Ω, f (z, 0) =

0, f (z, .) ∈ C1 (R) and:

(i) |f ′x (z, x)| ≤ a (z) for a.a. z ∈ Ω, with a ∈ L∞ (Ω)+ ;

(ii) there exists a function θ ∈ L∞ (Ω) such that

θ (z) ≤ λ̂1 a.e. in Ω, θ 6= λ̂1,

and

lim sup
x→±∞

2F (z, x)

x2
≤ θ (z) uniformly for a.a. z ∈ Ω,

where F (z, x) =
x∫
0

f (z, s) ds;

(iii) there exist an integer m ≥ max {n0, 2} and δ̂0 > 0 such that

f ′x (z, 0) = lim
x→0

f (z, x)

x
= λ̂m uniformly for a.a. z ∈ Ω

and

f ′x (z, 0) ≤ f (z, x)

x
for a.a. z ∈ Ω, all 0 < |x| ≤ δ̂0

or

f ′x (z, 0) ≥ f (z, x)

x
for a.a. z ∈ Ω, all 0 < |x| ≤ δ̂0.

Theorem 6. If hypotheses H (f)5 and H (β) hold, then problem (1.1) has at least

four nontrivial solutions

u0 ∈ int C+, v0 ∈ −int C+ and y0, ŷ ∈ intC1(Ω) [v0, u0] , nodal.
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Proof. A careful reading of the proof of Proposition 5 reveals that it remains

valid since the nonzero elements of E
(
λ̂m

)
⊂ C1

(
Ω
)

are nodal functions (recall

that m > max {n0, 2}). So, we have extremal nontrivial constant sign solutions

u0 ∈ int C+ and v0 ∈ −int C+. By virtue of hypothesis H (f)5 (iii) , since m > 2,

we can find λ > λ̂2 and δ̃ > 0 such that

(4.36)
λ

2
x2 ≤ F (z, x) for a.a. z ∈ Ω, all |x| ≤ δ̃.

Then, given K ⊆ C1
(
Ω
)

compact, we can find ε > 0 such that for all u ∈ K we

have

εu ∈ [v0, u0] and ε |u (z)| ≤ δ̃ for all z ∈ Ω.

From (4.10) and (4.36) it follows that

λ+ µ̂

2
(εu) (z)

2 ≤ Ĝ (z, (εu) (z)) for a.a. z ∈ Ω, all u ∈ K.

Therefore, the proof of Theorem 3 applies to the C1− functional ψ̂ : H1 (Ω)→ R
introduced in he proof of Proposition 6, and we obtain y0 ∈ Kψ̂, y0 6= 0. Then,

since Kψ̂ ⊂ [v0, u0] (see Claim 1 in the proof of Proposition 6), we infer that y0

is nodal. Moreover, as in the proof of Proposition 6 we conclude that

y0 ∈ intC1(Ω) [v0, u0] .

First we assume that f ′x (z, 0) ≥ f(z,x)
x for a.a. z ∈ Ω, all 0 < |x| ≤ δ̂0 (see

H (f)5 (iii)). Then

(4.37) F (z, x) ≤ 1

2
f ′x (z, 0)x2 for a.a. z ∈ Ω, all |x| ≤ δ̂0.

Recall that E
(
λ̂m

)
is finite dimensional and E

(
λ̂m

)
⊆ C1

(
Ω
)
. Then we can

find η̃ > 0 such that

‖u‖C1(Ω) ≤ η̃ ‖u‖ for all u ∈ C1
(
Ω
)
.

So, if u ∈ E
(
λ̂m

)
and ‖u‖ ≤ δ̂0

η̃ , then ‖u‖C1(Ω) ≤ δ̂0, and from (4.37) we have

(4.38) F (z, u (z)) ≤ 1

2
f ′x (z, 0)u (z)

2
=
λ̂m
2
u (z)

2
for a.a. z ∈ Ω.
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Then for such u ∈ E
(
λ̂m

)
, we have

ϕ (u) =
1

2
ξ (u)−

∫
Ω

F (z, u) dz

≥ 1

2
ξ (u)− λ̂m

2
‖u‖22 (see (4.38) )

= 0,

therefore u = 0 is a local minimizer of ϕ |E(λ̂m) . Invoking the Shifting Theorem

(see for example, Chang [6], p.51), we have

(4.39) Ck (ϕ, 0) = δk,dm−1
Z for all k ≥ 0,

where dm−1 = dim
m−1⊕
i=1

E
(
λ̂i

)
. As in the proof of Theorem 5, using the result of

Palais [17] (see also Bartsch [4]), we obtain

Ck (ϕ, 0) = Ck

(
ψ̂, 0

)
for all k ≥ 0,

hence

(4.40) Ck

(
ψ̂, 0

)
== δk,dmZ for all k ≥ 0 (see (4.39) ).

Next we assume that f ′x (z, 0) ≤ f(z,x)
x for a.a. z ∈ Ω, all 0 < |x| ≤ δ̂0. Then

F (z, x) ≥ 1

2
f ′x (z, 0)x2 =

λ̂m
2
x2 for a.a. z ∈ Ω, all |x| ≤ δ̂0.

So, in this case, u = 0 is a local maximizer of ϕ |E(λ̂m) and then again, via the

Shifting Theorem, we have

(4.41) Ck

(
ψ̂, 0

)
= δk,dmZ for all k ≥ 0.

Using (4.40) , (4.41) and reasoning as in the proof of Theorem 5, we obtain a

second nodal solution ŷ ∈ intC1(Ω) [v0, u0] , for a total of four nontrivial smooth

solutions (all with sign information). �
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