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Resumo 
 

 

A aplicação da metabolómica com o intuito de revelar biomarcadores de eficácia 

ou toxicidade, assim como de fornecer uma compreensão bioquímica de 

mecanismos de ação, tem ganho maior interesse na comunidade científica. 

Neste trabalho os efeitos das nanopartículas de seda no metabolismo de 

macrófagos, que são um tipo celular importante no que diz respeito à 

incorporação de nanopartículas, foram investigados por metabolómica de 

espectroscopia de Ressonância Magnética Nuclear (RMN). Inicialmente, 

espectroscopia de RMN 1D e 2D foi aplicada para determinar a composição 

metabólica de macrófagos de rato (linha celular RAW 264.7), através da análise 

de extratos aquosos e lipídicos. Cerca de quarenta metabolitos foram 

identificados, estabelecendo uma base de dados dos metabolitos de 

macrófagos de rato. De seguida, esses macrófagos foram expostos a duas 

concentrações de nanopartículas de seda (10 e 500 µg/mL), selecionadas com 

base nos dados citotoxicológicos recolhidos previamente a este trabalho, e o 

seu impacto no metabolismo foi averiguado usando a mesma metodologia. 

Análise multivariada foi aplicada aos espectros de 1H RMN 1D de forma a 

investigar as alterações na composição dos macrófagos durante a exposição às 

nanopartículas de seda (SNPs). A concentração baixa de SNPs induziu poucas 

alterações no metaboloma celular comparativamente à concentração alta de 

SNPs, que resultou em alterações bioquímicas no metabolismo energético e 

ciclo do ácido cítrico, distúrbios no metabolismo de aminoácidos e modificações 

na membrana celular. Algumas variações foram comuns a todos os períodos de 

exposição, tais como o aumento dos aminoácidos de cadeia ramificada, lactato 

e tirosina, e a diminuição de glutamina, taurina, myo-inositol e ATP/ADP, 

enquanto que outras se revelaram ser mais específicas em relação ao tempo de 

exposição. As flutuações dependentes do tempo foram também visíveis nos 

lípidos, onde o colesterol, ésteres de colesterol e esfingomielina se encontraram 

mais elevados nas amostras expostas à concentração elevada de SNPs, 

enquanto que os ácidos gordos insaturados, plasmalogénio e fosfatidilcolina 

estavam mais elevados nos controlos. 

Estes resultados demonstraram que a aplicação de metabolómica de RMN para 

avaliar o desempenho de nanofármacos pode ser uma ferramenta importante 

para melhorar a nossa compreensão das interações célula-nanomaterial e os 

mecanismos subjacentes à toxicidade observada. 

 

 



 

  



 

  

  

Keywords 

 

Silk nanoparticles; Metabolomics; Nanomedicine; Nanopharmaceuticals; 

Nuclear Magnetic Resonance spectroscopy; Nanotoxicology. 

 

Abstract 

 

The use of metabolomics to reveal response markers of efficacy or toxicity, as 

well as to provide biochemical insight into mechanisms of action has gained 

increasing interest in the research community. In this work, the effects of silk 

nanoparticles on the metabolism of macrophages, which are an important cell 

type in regard to NP uptake, was addressed through Nuclear Magnetic 

Resonance (NMR) spectroscopy metabolomics. Firstly, 1D and 2D NMR 

spectroscopy was applied to determine the metabolic composition of murine 

macrophages (RAW 264.7 cell line), through the analysis of both aqueous and 

lipid extracts. Almost forty metabolites were identified, establishing a database 

of metabolites of murine macrophages. Afterwards, murine macrophages were 

exposed to two concentrations of silk nanoparticles (10 and 500 µg/mL), selected 

based on cytotoxicity data collected previously to this work, and the impact on 

their metabolic composition was assessed. Multivariate analysis was applied to 

the 1D 1H NMR spectra in order to search the compositional changes in 

macrophages during silk nanoparticles’ (SNPs) exposure. It was found that the 

low concentration SNPs induced few changes in the cells metabolome compared 

to the high concentration SNPs, which resulted in biochemical changes related 

to energy metabolism and TCA cycle, disturbance of amino acids metabolism 

and cell membrane modification. Some variations were common to all exposure 

periods, such as the increase in branched chain amino acids, lactate and tyrosine 

and the decrease in glutamine, taurine, myo-inositol and ATP/ADP, whereas 

other variations seemed to be more time-specific. The time-dependent 

fluctuations were also visible in lipids, where cholesterol, cholesterol esters and 

sphingomyelin were found to be relatively higher in SNP-exposed samples, while 

unsaturated fatty acids, plasmalogen and phosphatidylcholine were higher in 

controls. 

These results have shown that the use of NMR metabolomics to evaluate a 

nanomedicine performance may be a powerful tool to improve our understanding 

of cell-nanomaterial interactions and of the mechanisms underlying observed 

toxicities. 
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1.1.  Introducing nanomedicine 

1.1.1. General overview 

Nowadays, the application of nanomaterials to therapy and diagnostic ends is one of the 

fastest growing areas in nanotechnology (1,2). Nanomedicine is a field of science which 

aims at improving diagnosis and treatment of life-threatening and debilitating diseases for 

which there are currently no adequate therapies (1–3). The definition of nanomedicine was 

achieved via consensus conference by the European Science Foundation’s (ESF) Forward 

Look Nanomedicine in the following way: “Nanomedicine is the science and technology of 

diagnosing, treating and preventing disease and traumatic injury, of relieving pain, and of 

preserving and improving human health, using molecular tools and molecular knowledge of 

the human body.”(4) 

The main areas of research and development of nanomedicine being developed for 

healthcare applications encompass (1,2):   

a) Diagnostics, devices/biosensors, and surgical tools used outside the patient; 

b) Nanostructured biomaterials (often combined with cell therapy) for biomedical 

applications, such as oral, parental, pulmonary, surgical implantation, or tissue 

regeneration; 

c) Nanopharmaceuticals (nanomedicines) and nanoimaging agents for patient 

administration, with diagnostic or therapy purposes. 

Nanomedicines are nanometre size scale complex systems, consisting of at least two 

components, one of which is the active ingredient, and being developed either as drug 

delivery systems or biologically active drug products. They are carefully engineered with 

innovative methodologies for physicochemical and biological characterization to ensure 

optimization of properties relevant to the clinical setting (5,6).  

Nanomaterials used as drug delivery systems or imaging agents are generally below 100 

nm in size in at least one dimension and may be constructed from a wide range of organic 

and inorganic materials. They include liposomal and lipidic complexes, antibody-based drug 

conjugates, polymer therapeutics, and nanoparticles. Figure 1 schematically shows these and 

other classes of nanomedicines. Each nano-sized construct can have different dimensions 

and a different surface composition, each class of nanomedicines displaying typical size 

ranges in the nanoscale (1,3).  
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The first drug delivery systems are now called 1st generation nanomedicines, and have 

already entered routine clinical use.  

There are several reasons for the rational design and development of nanomedicines: they 

can potentially improve transport of drugs across both external biological barriers (e.g. 

gastrointestinal (GI) tract and lung) or internal barriers (e.g. blood brain barrier); improve 

drug solubilisation and protection from metabolism; improve disease-specific targeting 

and/or controlled release (1–3). The encapsulation of drugs can also protect them against 

degradation by the body’s defence system, thus providing stability in systemic circulation. 

Nanocarriers may release drugs with varying kinetics, based on their ability to respond to 

physically stimuli (e.g. temperature, electric or magnetic field, light and ultrasounds), 

chemical stimuli (pH, ionic, and redox status), or biological stimuli (e.g. enzymes and 

inflammation). This provides an additional tool for controlling release kinetics besides 

diffusion and matrix degradation. Thus, the need of combining enhanced site specificity and 

local controlled release of the bioactive agent has encouraged the development of 

nanoparticles as nanomedicines (7,8). 

Encapsulating active ingredients into nanocarriers has allowed maximising therapeutic 

efficacy and patient convenience, because the pharmacokinetic (PK) profile could be 

improved compared to small molecule drugs. While small drugs distribute evenly throughout 

the body, resulting in a large volume of distribution (Vd), nanocarriers can take advantage of 

the enhanced permeability and retention (EPR) effect of leaky vasculature often observed in 

Figure 1 - Schematic representation of different nanomedicines under development. The nanomedicines 

models are not drawn to scale. Based on (2). 
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tumour and inflamed tissue. Tumour vasculature is typically comprised of poorly aligned 

endothelial cells with wide fenestrations (larger than 100 nm in size), and tumour tissue lacks 

functional lymphatics, resulting in preferred accumulation of nanocarriers in these tissues 

over healthy ones. Thus, the EPR effect leads to altered biodistribution, where the nano-

sized drug shows selective tumour accumulation thereby reducing Vd and improving target 

specificity of the treatment. Hence, the combination of reduced toxicity and superior 

therapeutic effect greatly improves the therapeutic window (9,10). 

An additional advantage of using nanocarriers is the possibility to achieve active targeting 

by attaching specific ligands to their surface, which interact with complementary cell 

receptors known to be overexpressed at the target tissue. The envisaged result is increased 

efficacy and reduced systemic toxicity due to accelerated clearance by the mononuclear 

phagocyte system (MPS) (3). Furthermore, while small molecular weight drugs can normally 

access the cell by diffusion across the plasma membrane and be effectively effluxed, the 

endocytic uptake of NPs can overcome drug resistance mechanisms (10). 

The recognition and uptake of nanoparticles by the body can be made by non-phagocytic 

eukaryotic cells, macrophages and dendritic cells. When the body recognizes NPs as foreign 

substances, the reticulum-endothelial system – now called the mononuclear phagocyte 

system (MPS) –, eliminates them from the bloodstream and the uptake occurs in the liver or 

the spleen. Moreover, opsonisation of the NPs may also occur in the bloodstream, in order 

to make the foreign substance visible to macrophages. In this way, particles attach to the 

macrophage surface through specific receptor-ligand interactions. To overcome these 

limitations, surface modifications such as altering the NP charge permits targeting and 

selective cellular binding (11,12).  

Currently, modern nanomedicines fit into three groups of emerging nanotechnologies: the 

first group consists of 1st generation nanomedicines that already entered routine clinical use 

(Table I). The second group encompasses nanomedicines being proposed for or currently 

undergoing clinical development for treating several diseases, manly cancer, and their 

clinical safety and efficacy status are already beginning to emerge. Finally, the third group 

includes putative nanomedicines based on novel nanomaterials: fullerenes, and carbon 

nanotubes, inorganic nanoparticles (e.g. gold, silver, quantum dots, silica and core shell 

silica-based nanoparticles), and natural and synthetic polymer-based nanoparticles, 

nanocapsules, and other sell-assembling nanostructures, and complex nano-architectures 
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manufactured via new routes by innovative methods (1,2). Of these, only few are near to 

realising a clinical candidate and exhaustive pre-clinical testing is still needed. 
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Table I –  Main classes of nanomedicines already in the market or under clinical development, adapted from (1). 

 CLASS 
TYPICAL 

SIZE (NM) 

TYPICAL 

ADMINISTRATI

ON ROUTE 

USE 
PRODUCT 

EXAMPLES 

PRODUCTS 

APPROVED 

FOR THE 

MARKET 

Coated iron colloidals 10-100 i.v. (intravenous) 
Anaemia 

MRI imaging agents 

Feridex, 

Venofer 

Liposomes and lipidic drug carriers 
60-80 nm - > 1 

μM aggregates 
i.v. 

Cancer 

Opportunistic infections 

Doxil/Caelix 

Ambissome, Ablecet 

Drug nanocrystals 50–1000 oral 
Immunosuppressive 

Anti-emetic 
Rapamune, Emend 

Antibody targeted radiotherapy < 20 i.v. Cancer Zevalin, Bexxar 

Antibody-drug conjugate < 20 i.v. Cancer Adcetris, Kadcyla 

Nanoparticles  i.v. Cancer Abraxame 

Polymer therapeutics 

 Polymeric drugs and 

sequestrants 

 Polymer protein conjugates 

NA 

 

10-20 

i.m. (intramuscular), 

oral 

 

 

Multiple sclerosis 

Renal failure, diabetes 

 

Cancer, infectious diseases 

Copaxone´ 

Renagel, Welchol 

 

Neulasta, PEGasys 

PRODUCTS 

IN 

CLINICAL 

DEVELOP

MENT 

Polymer therapeutics 

 Polymeric-drugs conjugates 

 Block co-polymer micelles 

 Sell assembled polymer 

conjugate nanoparticles 

5-20 

 

20-100 

70 

i.v., oral 

 

i.v. 

i.v. 

Cancer  

Cancer siRNA delivery 

Opaxio, Prolindac 

NK150, SP1049 

 

CALAA01 

Liposomal combination therapy  i.v. Cancer CPX-351 

Hollow gold nanoparticles 150 i.v. Cancer Aurolase 

Silica nanoparticles  i.v Cancer  

Iron oxide nanoparticles  i.t. (intra-tumoral) Cancer (thermal ablation) Nanoderm 

Silver nanoparticles  topical 
Anticancer/  

Dermatitis 
Nucryst 

Hafnium oxide crystals  i.t. Cancer (radiotherapy) NBTXR3 
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1.1.2. Silk nanoparticles as emerging nanomedicines 

Silk is a biologically derived protein-based fibre-forming material spun by some 

Arachnida and Lepidoptera larvae such as silkworms, spiders, scorpion, mites and flies 

(13,14). Natural silk fibre consists of two types of proteins: silk fibroin (commonly referred 

as silk) and sericins. Sericins in association with silk fibroin have been shown to cause an 

inflammatory response, due to upregulated immunoglobulins (IgEs), thus they are usually 

removed for medical applications (15).  One of the most common forms of silk is obtained 

from the silkworm Bombyx mori, with typical molecular weights between 200 and 400 kDa. 

In fact, B. mori silk is the most commonly used in biomedical applications, including drug 

delivery, as compared to spider, since they are easier to domesticate and to harvest silk. In 

general, to prepare B. mori silk, the cocoons are boiled in an aqueous alkaline solution (most 

commonly sodium carbonate) to remove sericin from the silk fibroin (degumming) and the 

native protein is then fragmented, leading to a lower molecular weight silk (16,17). Silk 

fibroin contains large internal repeats, the amino acid composition of which consists of a 

sequence of six residues (Gly-Ala-Gly-Ala-Gly-Ser)n, which lead to the formation of rigid 

anti-parallel β-sheet structures due to the dominance of hydrophobic domains. These 

structures confer the strength, flexibility and resiliency associated to silk fibres (14,18).  

The ancient use of silk as a suture material, together with its known minimal adverse 

effects, has led to the recent approval of this fibre for medical applications by the Food and 

Drug Administration (FDA), for example as a surgical mesh (16). Also, silk fibres are 

considered promising materials for other biomedical applications, including drug delivery, 

due to their good biocompatibility, slow degradability and versatility to generate various 

materials formats such as films, gels, fibres, scaffolds and micro- or nanoparticles (13,19). 

Additionally, silk is less inflammatory than other common biodegradable polymers such as 

poly(lactide) (13,16). 

One of the advantages of silk, that makes it potentially suitable for drug-delivery 

applications, is that it is typically processed into an aqueous solution (referred to as 

regenerated silk) by disrupting the hydrogen bonding of the degummed silk fibres through 

the use of chaotropic agents and elevated temperatures (Figure 2) (10,14,20). These mild 

processing conditions, without the use of organic solvents or harsh environmental conditions 

and chemical modifications, favour the development of silk beyond its traditional use as a 

suture material. Several different material morphologies can be formed from natural silk 
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fibre for utilization in biomaterials. Regenerated silk fibroin solution can be processed into 

porous silk sponges, silk films, micro- or nanoscale coatings, hydrogels and micro- and 

nanoparticles (14,19). Additionally, the material properties of silk fibroin biomaterials can 

be tightly controlled during processing and fabrication, resulting in a broad range of silk-

based systems available for medical applications (16). 

As for other natural polymers, an additional advantageous aspect of silk is that it may be 

metabolized in vivo by digestive enzymes into peptides and amino acids (13). Indeed, even 

though silk degradation and excretion from the body remain to be established, enzymatic 

degradation, as part of the foreign body response, and further clearance by macrophages, 

appear to be the most viable route for in vivo biodegradation (10). The rate and behaviour of 

the degradation of silk by proteases is dependent on many factors, including silk processing 

and material properties (morphology, molecular mass and crystallinity/β-sheet content), and 

mechanical and biological conditions at the site of implantation (14,16). Several types of 

proteases are being studied, including α-chymotrypsin and collagenases, which catalyse 

Figure 2 - Silk fibroin preparation. Bombyx mori cocoons are purified from sericin by means of boiling in an 

alkaline solution. Degummed silk fibroin can be processed into fibre biomaterials including sutures, meshes, 

woven fabrics, yarns and ropes. To prepare aqueous silk solution, degummed silk fibroin is dissolved in salt 

and then the salt is removed with dialysis. The aqueous silk solution can then be processed into various 

material formats for drug delivery. Adapted from (16). 
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hydrolysis reactions and contribute to silk biodegradation in peptide fragments and amino 

acids that can be readily metabolized and excreted (14). While chymotrypsin is a mammalian 

enzyme, synthesized in the pancreas and excreted from there, and consequently accumulated 

in the duodenum of the gastrointestinal tract, protease type XIV is not. Thus, protease XIV 

does not reflect degradation properties in vivo, which need to be determined empirically. 

Both enzymes have been used to compare the degradation properties and to understand the 

enzymatic degradation kinetic of different silk formulations, but only the first one is able to 

reflect the in vivo behaviour and overall tolerance (20,21).  

A few studies have examined the ability of silk to entrap and release (model) drugs, 

showing that silk-based biomaterials are able to stabilize the payload and control drug release 

using endogenous parameters such as crystallinity and molecular weight of the silk fibroin. 

Drugs are typically incorporated by mixing the drug with the silk solution either before 

material production or after the formation of the drug delivery system (by surface decoration 

with the drug or by means of either chemical coupling or adsorption). Native silk has the 

ability to strongly absorb low molecular weight drugs, the overall loading efficiency being 

dependent on the drug net charge and its correlation with silk’s isoelectric point (10,16). The 

release characteristics have been found to be governed either by diffusion of the payload 

from the carrier or by solubilisation and/or degradation of the silk. For example, when 

casting a thin silk film, the dried fibroin (also referred as silk I) was found to be completely 

water soluble and, therefore, the drug payload was released in accordance with the 

solubilisation characteristics of the film in aqueous environment (10). Silk I could also be 

easily converted into a stabilized silk II form (richer in β–sheets) through a gentle process 

where water is removed from the hydrophobic domains, permitting tight packing of these β–

sheets (14,20). Importantly, the manipulation of silk crystallinity has been found to provide 

control over the release of doxorubicin (a clinically relevant chemotherapeutic agent), thus 

potentially allowing systemic and local adverse effects to be minimised while maximising 

therapeutic efficacy (21). Moreover, inducing crystallinity in silk makes it more compatible 

with a wide range of payloads, including proteins (22). 

Several silk formats have already been tested as drug delivery systems, taking into 

account the multitude of factors that govern the final design of the system (10). Silk films 

have been used for promoting long-term adenosine release from adenosine kinase deficient 

embryonic stem cells. This study has demonstrated that silk fibroin constitutes a suitable 
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material for the directed differentiation of embryonic stem cells and for cell-mediated 

therapeutic release of adenosine. Therefore, silk films decorated with bioactive molecules 

could be used for local drug delivery via direct implantation (15). Also, Seib’s team revealed 

that doxorubicin-loaded silk films could directly be applied to mice using a humanised 

orthotropic breast cancer model (adenocarcinoma). By manipulating silk mechanical 

properties, the release of doxorubicin could be controlled, which minimised systemic and 

local adverse effects, while maximising therapeutic impact (21). 

Regarding silk hydrogels, they have been combined with osteoblasts-like cells and 

injected in critical-size femur defects in rabbits. This resulted in greater trabecular bone 

volume and thickness, with significant higher mineral and rate of bone formation (14). In 

another study, self-assembling silk hydrogels were loaded with doxorubicin and further 

injected in tumours of mice. Reducing primary tumour growth and metastatic spread, silk 

hydrogels were found to be well suited for the local delivery of chemotherapy of breast 

cancer (22). 

In the case of silk microspheres, when they were loaded with horseradish peroxidase 

(HRP), a model drug, they showed controlled and sustained release of action for 10 to 15 

days (23). Moreover, a silk/polymeric scaffold system also showed high encapsulation 

efficiencies and good control over the feature sizes which allowed a slow release of Bone 

Morphogenetic Proteins (BMPs) during 14 days (15).  

Silk nanoparticles (SNPs) are also being designed as new drug nanocarriers. 

Nanoparticles provide advantages over the administration of free drugs and other silk-based 

biomaterials since they can overcome drug resistance mechanisms, decrease side-effects, 

enhance drug bioavailability and have a higher intracellular uptake compared to 

microparticles, for example. Moreover, they can be easily transported via the circulation to 

various body sites, thus improving medical treatments (10,18). Some studies involving silk 

nanoparticles as drug delivery systems were performed. Zhao’s team has investigated the 

controlled release properties of SNPs containing indomethacin (a non-steroidal anti-

inflammatory drug). It was demonstrated that SNPs may sustain the indomethacin release 

and these nanoparticles can be used effectively as a drug carrier (18). SNPs were also tested 

in the cytosol of murine squamous cell carcinoma cells. The growth factor release from the 

nanoparticles showed significantly sustained release over 3 weeks, implying potential 
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application as a growth factor delivery system, without significant changes regarding 

toxicity (24).  

Additionally, SNPs were also prepared for anticancer drug delivery. Using magnetic 

SNPs loaded with doxorubicin, Tian et al. studied the magnetic-guided drug delivery in a 

humanized orthotropic breast cancer model and chemotherapy performance of drug-resistant 

cancer. These SNPs have demonstrated the ability of magnetic targeting in vivo and effective 

chemotherapy, working well as a novel drug delivery system in cancer therapy (25). In 

another study, biological derived-silk based nanoparticles containing curcumin showed a 

higher efficiency against breast cancer cells and have potential to treat in-vivo breast tumours 

by local, sustained, and long-term therapeutic delivery (26). For focal therapy of breast 

cancer, Seib et al. demonstrated the potential of silk to serve as a stimulus-responsive 

nanomedicine, with overall negative surface charge and pH-dependent release. Hence, SNPs 

loaded with doxorubicin were able to serve as a lysosomotropic delivery platform and 

overcome drug-resistance mechanisms in vitro (19). In addition, the pH-sensitivity of the 

nanoparticles is effective for drug delivery systems application because of the difference 

between the extracellular pH of normal tissue (pH 7.2-7.4) and of many solid tumours (pH 

6.2-6.9) (7). 

In parallel with the development of nanoparticles from Bombix mori silk, recombinant 

spider silks have been engineered for use in non-viral gene and siRNA delivery. Silk 

sequence was modified to control self-assembling of β-sheets structures in silk, but also cell-

binding domains were included to enhance cell adhesion. The most widely studied spider 

silk in terms of variants is dragline silk from the spider Nephila clavipes. These recombinant 

silk-like polymers can be tailored to further control targeting, size, stability and related needs 

for gene delivery. In these studies, silk was prepared in the form of microcapsules, 

microspheres and polyioncomplexes (15). 
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1.2. Safety issues and toxicity assessment of emerging nanomedicines 

1.2.1. General remarks 

For emerging nanomedicines, inspired on 1st generation products or based on novel 

nanomaterials, to progress towards clinical application, they must undergo a rigorous safety 

assessment, in order to estimate the risk-benefit in relation to a specific proposed clinical 

use. For that purpose, it is  essential to establish the toxicity profile of each nanomedicine 

being developed, as well as to understand its mode of action and how its physicochemical 

properties influence both toxicity and efficacy (1,2). 

This task is often complicated, especially given that many variables may modulate the 

biological responses, including the size and surface chemistry of the nanoconstruct, the 

nature of the bioactive payload, the linking chemistry used between components, or the 

degradation of particular components into secondary products (1,27). Whereas size and 

shape play a role in how the materials are distributed and eliminated of the body, affecting 

the mode of endocytosis, cellular uptake and the efficiency of particle processing in 

metabolic pathways, chemical composition at the surface of nanomedicines will mostly 

define their chemical interactions, because the surface is in direct contact with the body 

membranes (27). Generally, the pharmacokinetics, body distribution, nanomedicine 

stability, and the metabolic fate of all components impact on the overall toxicological profile 

observed (1). 

Therefore, it is very important that the toxicological profile of a nanomedicine is 

evaluated in its entirety. However, at early development stages, the preliminary safety 

assessment of individual components (envisaged for incorporation into a nanomedicine) may 

also play a critical role in the design of the overall construct (1,2). Figure 3 summarizes some 

of the tests that are typically used to assess the safety of component nanomaterials or the 

whole nanomedicine. 
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A first important issue in nanotoxicology is that the nanomaterials to be tested in a 

biological system (either in vitro or in vivo) are thoroughly characterized, so that meaningful, 

reproducible results are ensured. Nanoparticle analysis should involve purity certification, 

controlled morphology, polydispersity and solubility, conductivity or redox behaviour, 

among others, to provide reliable results on physical-chemical states and on stability. 

Typically, multiple measurement techniques must be adopted and applied to complex 

nanomaterial systems to accomplish validity since no single analysis can provide sufficient 

information to correlate nanoparticle characteristics with biological response (27–29). 

Biological testing of a nanomedicine or its components should then involve in vitro and/or 

in vivo testing. In vitro cellular tests are the most common assessment method used to 

understand the mechanisms of cell damage, including triggering of apoptosis and oxidative 

stress (cytotoxicity). These tests are easier to control and reproduce and less expensive than 

animal studies. Also, they provide a rapid and effective means to assess nanomedicines for 

a number of toxicology endpoints (24,26,27). Controlling the experimental conditions such 

as temperature, pH, nutrient and waste concentration, as well as the nanomedicines 

concentration, assures that the measured cell death corresponds to the toxicity of the added 

nanomedicines and not to the unstable culture conditions (30). Furthermore, in vitro assays 

Figure 3 - Typical panel of tests used to define the preliminary safety of a nanomaterial (left) that is a candidate 

for incorporation into a nanomedicine, and the safety and efficacy of a nanomedicine (right). Adapted from 

(1). 
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allow to use various cell lines, mimicking different tissue environments, and reactive 

pathological or inflammatory conditions likely observed in vivo (12,28,31). 

Several techniques can be used to assess the in vitro toxicity of nanomaterials, such as: 

assays for cell viability or proliferation; mechanistic assays (ROS generation, apoptosis, 

necrosis and DNA damaging potential); microscopic evaluation of intracellular localisation 

(comprising techniques like SEM-EDS, TEM, AFM, Fluorescence spectroscopy, MRI and 

VEDIC microscopy); gene expression analysis; in vitro hemolysis; and genotoxicity (31).  

Following combined results from in vitro cellular assays, nanotoxicity studies may be 

complemented with in vivo experiments to achieve validation and progress towards clinical 

development. In vivo experiments can potentially provide information on both the 

pharmacokinetics (i.e. the fate of the administered substance, including its absorption, 

distribution, metabolism and excretion), and pharmacodynamics (i.e. the effects caused on 

the organism). Hence, in vivo pharmacokinetics and pharmacodynamics studies are an 

essential part of nanomedicine evaluation and design (23,28).  

Regarding the mechanisms by which nanomaterials exert toxic effects, one of the main 

reported pathways is the generation of reactive oxygen species (ROS) and mitochondrial 

stress. ROS formation is also interconnected with cytoskeleton disorganization or damage, 

decreasing actin dynamics and reducing mitochondrial membrane potential via open 

voltage-dependent anion channels. This increases mitochondrial ROS release and cell 

apoptosis sensitivity (12). The reduction of mitochondrial activity leads to a decrease in ATP 

production that is necessary for many cellular functions. Thus, screening for ROS in relation 

to the toxicity of nanomaterials is important since the production of ROS can result in 

inflammatory responses, apoptosis, necrosis, fibrosis, hypertrophy, metaplasia, and 

carcinogenesis (12,33,34).  

 

1.2.2. Toxicity of silk nanoparticles (SNPs) 

Regarding the safety of SNPs, little information is available. Silk derived from natural 

sources or obtained through recombinant engineering approaches has been increasingly used 

for biomedical applications. However, although different silk formats (e.g. films, scaffolds, 

sutures) have demonstrated good biocompatibility, these data cannot be extrapolated to 

assure the safety of SNPs proposed for systemic administration. In vitro and in vivo studies 

are needed to support the safe transfer of SNPs across all stages of development (10). 
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Some data of the SNPs internalization mechanisms suggest that endocytosis contributes 

to the uptake, trafficking rate and intracellular fate (2). In a study by Kundu et al., the 

nanoparticles internalization process was assessed by labelling the nanoparticles with FITC 

(fluorescence isothiocyanate) and observing the cellular uptake by confocal laser scanning 

microscopy (CLSM). The SNPs internalization occurred by endocytosis, and SNPs were 

mainly present in the perinuclear region, remaining viable and without causing any overt 

cytotoxicity (24). Following, Seib’s team examined SNPs intracellular fate by live confocal 

microscopy, confirming that SNPs enter the cells by endocytosis (19).  

The few studies which have investigated the cytotoxicity of SNPs through in vitro 

experiments suggested none or minimal toxicity. Human breast cell lines were shown to 

maintain their viability when exposed to SNPs of 35-120 nm diameter, at a concentration of 

100 µg/ml for up to 24 hours, as assessed by the MTT assay (24). Cell cycle analysis further 

revealed normal cell cycle distribution without any visible signs of cell cycle arrest (19,24). 

Despite these results, further information on how SNPs interact with different cell types is 

needed for characterizing and understanding the SNPs safety profile (19). 
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1.3. Metabolomics in nanomedicine/nanotoxicology 

1.3.1. The metabolomics approach 

The metabolome consists of the inventory of endogenous small molecules (with 

molecular mass lower than 1000 Da) present in a biological system as a result of 

intermediary cellular metabolism. Metabolomics (or metabonomics) is concerned with the 

comprehensive identification and quantification of metabolites in biological systems (cells, 

tissues, body fluids) and of their changes in response to pathophysiological stimuli or genetic 

modification (35,36). 

Since metabolites play a very important role in connecting the different pathways that 

operate within a living cell, metabolomic studies are an important part of integrated system’s 

biology approaches, used to study pathological processes or the effects induced by different 

external stimuli (e.g. drugs, nanomaterials) (37). Assessing the metabolic profiles or 

signatures potentially allows to estimate cellular function and the overall physiological status 

of an organism (38).  Indeed, many pathological conditions can be reflected by changes in 

metabolite levels, as shown by the increasing number of metabolomic studies in the field of 

disease diagnosis and monitoring. The most widely investigated classes of diseases include 

cancer, diabetes, cardiovascular and neurological diseases. Metabolomics technologies also 

have the potential to provide rapid screening for biomarkers of toxicity, showing great 

promise in drug toxicological assessment and development, as well as in the fields of 

nanotoxicology and nanomedicine (38). 

Several sample types with different complexity can be retrieved for metabolomics studies, 

from cell cultures to tissues and biofluids of animal models or human subjects (34,38). 

Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry (MS) (the latter 

being typically coupled to different chromatographic techniques, such as liquid or gas 

chromatography) are the most often employed methods for metabolome profiling. These 

techniques are the major tools to detect global changes in the metabolome because they allow 

a large number of metabolites to be detected simultaneously and non-selectively (34,39). 

Compared to MS, NMR is less sensitive, with detection limits in the sub-milimolar range, 

but it offers advantages in terms of high reproducibility and non-destructiveness (allowing 

sample recovery for further analysis). Moreover, it allows the direct analysis of cells, tissues 

and biofluids, with minimal sample interference, and it is quantitative in nature, providing a 

large amount of structural and quantitative information in a single record (34,38). As NMR 
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has been the technique used in this work, its basic principles will be briefly described in the 

following section. 

1.3.2. Basic principles of Nuclear Magnetic Resonance (NMR) Spectroscopy 

The nuclei of certain atoms possess an overall spin (I) different from zero, which makes 

them detectable by NMR. These nuclei include, for instance, the isotopes 1H, 13C, 31P, 15N 

(I = ½) and 2H, 14N (I = 1). The hydrogen isotope (1H) is the most commonly observed 

nucleus in NMR metabolomics due to its ubiquity in metabolites and high natural abundance 

(99.98 %) (40).  

The nuclear spin generates a magnetic dipole moment µ, which in the presence of an 

external magnetic field B0 aligns in a discrete number of orientations, corresponding to 

different energy levels. NMR spectroscopy is based on the transition between these energy 

levels (40,41). For nuclei with spin I = ½, like protons, there are two possible orientations, 

parallel and anti-parallel to B0, each characterized by a magnetic quantum number m and a 

different energy level (Figure 4). At the equilibrium state, there is an excess of nuclei at the 

lower energy level, but when an oscillating magnetic field B1 is applied, through a 

radiofrequency (RF) pulse, transition to the higher energy level occurs and the nuclei become 

excited. Once the RF pulse is turned off, the nuclei return back to equilibrium, through 

relaxation, and this process is recorded as a time domain signal called the free induction 

decay (FID). The FID is then transformed into a frequency domain spectrum through Fourier 

transform (FT) (41).  

Figure 4 - Schematic representation of the nuclear spin energy levels of a spin- ½ nucleus in a magnetic 

field. The energy difference between the two states is given by ΔE= γħB0, where ΔE is the energy difference 

between the two states, mI  the magnetic quantum number, ħ=h/2π (where h is Planck’s constant) and B0 

the magnetic field. Adapted from (41). 
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The different signals in the NMR spectrum of a molecule arise from the different 

electronic environments of the nuclei, because the bonding electrons create their own small 

magnetic field; thus, each proton (or group of equivalent protons) resonates at a specific 

frequency, giving rise to signals in different positions of the NMR scale. This scale is 

calibrated to the frequency of a reference compound (e.g. tetramethylsilane, TMS) and the 

frequency values are converted to parts per million (ppm). The resulting chemical shift scale 

(in ppm) is independent of B0, thus allowing chemical shifts obtained from different 

instruments to be compared (42). The 1H absorption regions of some characteristic functional 

groups are comprised within the narrow range of 0 – 14 ppm: saturated hydrocarbons 

generally absorb between 1.0 and 4.0 ppm, whereas the olefinic protons appear in the region 

of 5.0 – 6.5 ppm and the resonances of aromatic protons are in the region of 6.5 – 8.5 ppm 

(41). Figure 5 shows the typical 1H chemical shift ranges of some functional groups in 

organic compounds. 

Another characteristic feature of NMR signals is that they are often split into several lines 

due to nuclear spin-spin interactions mediated through the electrons of the chemical bonds, 

and known as scalar coupling. The multiplicity and magnitude of the splittings (coupling 

constants, J) provide knowledge about the number of neighbouring protons and their bond 

connectivities (40).  

Finally, it is also important to mention that signal area is proportional to the number of 

protons that originate the peak, hence, to compound concentration. Therefore NMR is 

inherently quantitative and it can be used for quantification purposes (40,43). 

 

Figure 5 - Typical 1H chemical shift ranges (in ppm) of some functional groups. Based on (41). 
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1.3.2.1. Main one- and two-dimensional NMR experiments in metabolomics 

The biological samples usually analysed in metabolomic studies (biofluids, tissues and 

cells) typically show complex profiles, comprising many overlapped signals, and a strong 

water signal which needs to be suppressed as it would otherwise dominate a large section of 

the spectrum and cause dynamic range problems (37). This is typically achieved by the 1D 

NOESY (nuclear Overhauser effect spectroscopy) pulse train with presaturation during 

relaxation delay and mixing time (standard water presaturation used in this work), the WET 

sequence (water suppression enhanced through T1 [spin lattice relaxation] effect) or the 

Watergate water suppression scheme (44). 

 To deal with spectral overlap and identify the metabolites present in complex biological 

samples, 2D NMR experiments are usually employed, as they allow increasing the signal 

dispersion and revealing molecular connectivities. The more commonly used 2D 

experiments include: correlation spectroscopy (COSY) and total correlation spectroscopy 

(TOCSY) experiments that provide spin-spin coupling connectivities (usually over 3-5 

bonds), giving information on which signals belong to the same spin system; J-resolved 

spectroscopy (JRES), that allows spectral simplification, minimizing overlap due to 

contributions of substances with short 1H spin-spin relaxation times (T2) and helping to 

determine coupling constants; and inverse-detected heteronuclear correlation methods such 

as heteronuclear single quantum correlation (HSQC), where signals correspond to 1H’s and 

13C’s directly bound. (41,45).  

 

1.3.3. Multivariate analysis: principles and tools 

After data acquisition and processing, metabolite signals are usually subjected to 

multivariate statistical analysis to detect consistent variation patterns (figure 6) (34). Indeed, 

since each spectrum comprises a wide range of variables (metabolites) and numerous spectra 

are often acquired within a study, multivariate analysis (MVA) is required to reduce data 

complexity and extract meaningful biochemical information. MVA usually involves the 

application of unsupervised methods such as Principal Component Analysis (PCA) and 

hierarchical cluster analysis (HCA), together with supervised methods such as Partial Least 

Squares – Discriminant Analysis (PLS-DA), where information about sample class is 

provided and class separation is maximized (34). 
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 Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) are very 

useful for revealing grouping trends and outliers in a sample set. The idea behind PCA is to 

explain the original data variance in a lower dimensional space defined by Principal 

Components (PC’s), which are linear, uncorrelated combinations of the original variables 

(46). Through PCA, the original data matrix X is decomposed into a scores matrix (T), a 

loadings matrix (P) and a residuals matrix E (part of X that is not explained by the model), 

according to the following equation: X = TPt + E = t1p1
t + t2p2

t + E (where t denotes the 

transpose). The first PCA component (t1p1
t) contains the largest matrix variance, the second 

component the second largest variance, and so on, so that all components are mutually 

orthogonal to each other (47,48). 

Figure 6 – General overview of the typical strategy followed in metabolomics studies. Adapted from (95). 
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By projecting the observations (spectra) into the new PC-coordinate system, we obtain a 

scores plot (Figure 7), which allows visualizing the trend for samples to group together or to 

separate along one axis, according to their similarities or differences. Moreover, by plotting 

the corresponding loadings, we obtain information about the original variables that are 

responsible for the sample distribution observed in the scores plot.  

Hierarchical Cluster Analysis is an exploratory multivariate analysis method that allows 

the cluster structure of a dataset to be detected and the hierarchical relationship of the clusters 

to be revealed. This unsupervised approach enables samples to be grouped according to their 

dissimilarity or similarity, usually called distance, in the variable space. To unveil the 

clusters and trends, the distance matrix is calculated and an agglomerative clustering 

algorithm is performed. Based on that algorithm, a final dendrogram is constructed 

representing in which the closest clusters are most similar. Thus, this technique improves 

the understanding of the structure of the dataset, presenting visual information of the cluster 

structure (46,49,50). 

Unlike PCA and HCA, supervised methods like PLS-DA allow maximizing the 

separation between pre-defined classes (e.g. control/exposed, low/high dose, etc.), 

facilitating the interpretation of the differences between them (46,47). 

While PCA and HCA are methods that only consider the structure of the data matrix, X, 

PLS models the relationships between the data matrix X and a second matrix, Y, which can 

either contain quantitative (e.g. concentration of endogenous metabolites) or qualitative 

Figure 7 – Schematic representation of a principal component analysis model. Adapted from (47). 
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values (e.g. class membership). In the latter case, it is typically used in conjunction with 

discriminant analysis (PLS-DA), which is very useful in metabolomics studies aiming at 

differentiating sample classes.  

In PLS, the new variables (called latent variables, LVs) are calculated not only to model 

the variance in X (as in PCA) but also its correlation with Y, according to the following 

equations: 

X = TPt + E 

Y = TCt + F 

Where T is the matrix of the extracted scores (of both X and Y), P and C are the loadings 

matrices, and E and F the residuals of X and Y, respectively (37,51). The T scores are linear 

combinations of the original X variables and the weights (W) which define the quantitative 

relationship between X and Y.  

Similarly to PCA, the results of PLS-DA can be visualized through scores and loadings 

plots. Additionally, the loadings may be coloured as a function of variable importance in the 

projection (VIP) to highlight the most discriminant metabolites (those with VIP > 1).  

 

1.3.4. Univariate statistics 

In order to assess the statistical significance and magnitude of variations in individual 

metabolites, univariate statistics may be applied, complementary to MVA. Commonly used 

methods include the t-test, the Wilcoxon test (if data are not normally distributed), effect-

size estimation, and analysis of variance (ANOVA) (46,52). 

In the context of this thesis, the Shapiro-Wilk test was primarily performed in order to 

test for normality. For normally distributed data, the t-test was performed, while for 

nonparametric metabolites, the Wilcoxon test was used. These methods allowed to 

statistically evaluate the significance of the difference in average metabolite levels (53,54). 

The t-test is a standard statistical approach to examine if a study’s result is statistically 

significant through the null hypothesis (no difference between the means compared). For 

that purpose, the probability for the null hypothesis rejection (p-value) is determined at a 

pre-established significance level; typically, a difference between group means is considered 

statistically significant if the p-value is inferior to 0.05. However, the p-value does not 

provide crucial information about the magnitude of the variation of interest or its precision, 

besides being influenced by sample size (55). To deal with these limitations, another 
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statistical parameter, the effect size (d), has been increasingly used (56). This parameter, 

calculated according to the equations below (1 and 2), gives an indication of the magnitude 

of the variation, while accounting for the standard deviations (𝑠1 and 𝑠2) associated with the 

means compared (𝑥̅1 and 𝑥̅2) and the number of samples (𝑛1 and 𝑛2). Moreover, it is less 

sensitive to sample size, allowing increased confidence when comparing small sample sets. 

For the standardized mean differences between two groups, Cohen et al. (57) classified effect 

sizes as small (d = 0.2), medium (d = 0.5), and large (d ≥ 0.8). The 95 % confidence interval 

(CI) around the standardize mean differences is calculated according to equation 3 (55,56).  

 

𝑑 =  
𝑥̅1 −  𝑥̅2 

𝑠
 

 

𝑠2 =  
(𝑛1 − 1) × 𝑠1

2 +  (𝑛2 − 1) × 𝑠2
2

(𝑛1 +  𝑛2) − 2
 

 

𝑑 ± 1.96 √
𝑛1 +  𝑛2

𝑛1𝑛2
+

𝑑2

2(𝑛1 +  𝑛2)
  

 

 

1.3.5. Metabolomics applications in nanomedicine/nanotoxicology: state-of-

the-art 

While metabolomics has been extensively applied in the fields of disease diagnosis or 

toxicology, the applications in nanomedicine/nanotoxicology are still scarce. In the next 

subsections, metabolomic studies of the impact of different NPs on either cellular or animal 

models will be reviewed. A list of those studies is summarised in Table II. To our knowledge, 

no studies on silk nanoparticles have been reported, this thesis constituting the first account 

on the subject.  

1.3.5.1. Silica (SiO2NPs) nanoparticles 

Silica nanoparticles (SiO2NPs) are increasingly used in the biomedical field, mainly due 

to their excellent solubility and high stability, and can enter biological systems through 

numerous routes. Despite their favourable biocompatibility, some investigations have 

revealed that silica NPs exposure exerts adverse effects such as cytotoxicity and oxidative 

Equation 1 

Equation 2 

Equation 3 
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stress (58–60). In addition, there have been reports of inflammatory responses, 

hepatotoxicity, and fibrosis following exposure (34). As shown in table II, a few studies have 

addressed the cellular and in vivo responses to SiO2NPs by metabolomics, using different 

analytical techniques (1H NMR spectroscopy, GC/MS and LC/MS). The cytotoxicity of the 

NPs was demonstrated by a significant metabolic shift between control and treated cells. In 

one of such studies, cell metabolic variations revealed to be dose-dependent, causing 

compositional changes related to membrane degradation, catabolism of carbohydrates and 

proteins, and oxidative stress response (60). In particular, the authors reported increases in 

some lipids, like triglyceride, LDL, VLDL, and in lactate/alanine ratio, together with 

decreases in several amino acids, ATP and other metabolites (60). In another study, after the 

treatment with SiO2NPs, cellular amino acids were down regulated and, on the contrary, urea 

was up regulated. Moroever, higher levels of lysophosphatidylcholine (LPC) and 

lysophosphatidylethanolamine (LPE), and decreased levels of reduced glutathione (GSH) 

were reported, based on LC/MS measurements.  LPC and LPE have been postulated to be 

biomarkers of biochemical injury arising from cellular toxicity (59). Another study with 

Kupffer cells (KC) indicated that SiO2NPs cause hyperplasia, hepatic inflammation, and 

oxidative stress, which lead to changes in the biochemical composition of the liver. After the 

exposure to SiO2NPs, KC released bioactive mediators, such as ROS, TNF-α, and NO, which 

subsequently contributes to hepatotoxicity (58). The significantly altered metabolites are 

involved in energy, amino acid, lipid and nucleotide metabolism, indicating impairment of 

the Krebs cycle and the occurrence of oxidative stress (34,58–60).  

The toxicological effects induced by SiO2NPs can drastically change based on particle 

formulation, size, shape and type. Metabolomic variations and compositional changes due 

to toxicological effects can provide much better understanding of SiO2NPs and their 

metabolic fate, offering a chance to better define the bio-safety of this biomaterial (60–62). 

1.3.5.2. Iron oxide nanoparticles 

Ultra-small superparamagnetic particles of iron oxide (USPIO) are excellent tools in the 

biomedical field since they can be functionalized for various applications and guided by an 

external magnetic source. These compounds have been developed as intravenous contrast 

agents for early detection of abnormal tumour associated lymph node and bone marrow, as 

well as contrast agent to improve magnetic resonance imaging (MRI) in vivo. In general, 

they are classified as biocompatible, showing no severe toxic effects in vitro or in vivo. 
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However, the potential biotoxicity and the disturbances of hepatic, renal and cardiac 

functions were derived from metabolomics data following USPIO administration (30,63,64). 

Feng and his colleagues have demonstrated varying effects of USPIO on the metabolic 

profile of different tissues including kidney, liver and spleen of rats, through High Resolution 

Magic Angle Spinning (HRMAS) 1H NMR.  An intravenous injection (tail vein) of coated-

USPIO was administrated to rats, and the harvested tissue samples reflected several effects 

in metabolic pathways including energy, lipid, glucose, and amino acids metabolism. The 

disturbance and impairment of biological function in these specific organs were dependent 

on the particles size and surface chemistry of USPIO (64). In another Feng’s study, 

metabolomic analysis revealed USPIO-induced metabolic changes in the blood of injected 

animals. Plasma samples showed a relative increase in intermediates of the Krebs cycle such 

as succinate and citrate, in glucose, and in the end-products of glycolysis such as lactate and 

acetate. USPIO administration also led to elevation of plasma inositol, choline and 

glycerophosphocholine. Similar changes in triglycerides and cholesterol were observed from 

clinical biochemistry and metabolomic analysis of NMR data derived from rat plasma. The 

metabolic changes in VLDL and HDL were suggested to be possibly related to USPIO-

induced renal failure and a risk factor for coronary heart disease (65). 

1.3.5.3. Gold and silver nanoparticles 

Gold and silver nanoparticles have received special attention since they have a great 

potential for applications in drug delivery systems, ultrasensitive chemical and biological 

sensors, as catalysts and in therapy (66).  

Generally, gold nanoparticles provide non-toxic routes to drug and gene delivery 

application, being able to deliver large biomolecules (peptides, proteins, or nucleic acids). 

Moreover, gold nanorods (Au NR) can be applied to amplify the biorecognition of anticancer 

drugs, emerging as one of the most promising putative anti-tumour treatments. Extensive 

research have been performed on the cytotoxicity, biocompatibility and biodistribution of 

several Au NR with different physicochemical properties like size, shape and surface group 

modifications (66,67). Zhang and his team have studied metabolic changes in tumour and 

normal cells after exposure to protein-coated Au NR, through 1H NMR. Their results showed 

time-dependent and cell-specific metabolic response of tumour cells and normal cells. 

Protein-coated Au NRs exposure modulated the micro-environment of cells by suppressing 

the levels of lactate, which might be vital for cancer growth, but also induced severe 
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oxidative stress and subsequent cell death in tumour cells whilst the normal ones survived. 

Normal cells had an overwhelming antioxidant capability as a result of activated glutathione 

synthesis and transformation into GSSG during the process of scavenging free radicals. This 

experiment provided important information in designing anti-cancer drugs to destroy only 

cancer cells and not normal and healthy cells. Moreover, metabolomics helped to elucidate 

molecular mechanisms of anti-cancer drugs action (67). 

Silver is used in consumer products as nanoparticles (Ag NPs) in refrigerators, 

toothpastes and health drinks. For that reason, it is important to understand the potential 

physiological, pharmacological and toxicological properties of silver. Ag NPs have 

displayed only minimal toxicity in animal studies and good biocompatibility, however, little 

information is available on the mechanism of action of silver nanoparticles in mammals 

(66,68). Hadrup’s team employed metabolomic investigation with HPLC separation and 

quadrupole time-of-flight (QTOF) accurate mass detection to investigate the whole 

metabolome in the urine of rats. After silver administration, uric acid and allantoin were 

found to be increased in female rat urine. One possible explanation for this increased purine 

metabolism could be the induction of oxidative stress and cytotoxicity with simultaneously 

DNA degradation. This was supported by in vitro studies, where ROS were found increased 

(68). 

In another study, Li’s team have found that Daphnia magna exhibited significant changes 

in their metabolic profile following the two size Ag NP and Ag+ exposure. Most of the 

metabolic biomarkers for Ag NP exposure were identical to those of the Ag+-exposed 

groups, suggesting that the dominant effects of both Ag NPs were due to release of Ag+. The 

observed metabolic response to the Ag+ released from both the Ag NPs is an indicative of 

disturbances of energy metabolism and oxidative stress in D. magna. Moreover, the levels 

of lactate were elevated in all Ag NP-treated groups but not in the Ag+-treated groups. This 

suggests a mechanism of enhancement of anaerobic metabolism being induced by Ag NPs 

(69). 

1.3.5.4. Titanium dioxide (TiO2) nanoparticles 

Due to their high stability, anticorrosion and photocatalytic properties, TiO2NPs are 

abundantly produced and capable of a great variety of applications in life science and 

industry, such as paints, coatings, plastics, skin care products, foods and some 

pharmaceuticals. However, some studies reported that TiO2NPs can cause pulmonary 
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inflammation, fibrosis and DNA damage, while chronic exposure can be carcinogenic. 

(70,71). Still, the biological effects of TiO2NPs exposure and the mechanism underlying the 

body response are still not well established. In order to elucidate the pathological, metabolic 

and toxicological response, metabolomic techniques were employed (70–73). 

In one of those studies, metabolomic response to TiO2NPs treatment supported in vitro 

findings that reported cellular toxicity and induction of oxidative stress upon treatment of 

HaCaT cells with TiO2NPs. Samples were analysed by either gas chromatography/mass 

spectrometry (GC/MS) or liquid chromatography/mass spectrometry (LC/MS) where 

several metabolites were found significantly altered, such as coenzyme A, carnitine and acyl-

carnitines. Also, a lower level of nucleosides and nucleotides was observed. These changes 

indicated that TiO2NPs have significant effects on anabolic pathways and energy metabolism 

(71). In another study, numerous changes in endogenous metabolites were observed in the 

1H NMR spectra of female Wistar rats’ urine and serum samples following TiO2NPs 

administration. TiO2NPs were suggested to cause disturbances in energy metabolism, amino 

acid metabolism and gut microflora, which may be attributable to their toxic effects on the 

liver and heart (70). Earthworms have also been exposed to TiO2NPs and the metabolomic 

response revealed increased levels of alanine and other amino acids and decreased maltose, 

reflecting significant alterations in the underlying network of earthworm metabolic pathways 

(72). 

With Garcia-Contreras’ team research, it was found that TiO2 NPs significantly reduced 

most of amino acids, while, ophthalmate, a-aminoadipate, kynurenine and β-alanine 

increased. Notably, many metabolites in urea cycle, including asparagine, arginine, 

argininosuccinate, citrulline, ornithine and the metabolites in its downstream polyamine 

pathways, such as putrescine and spermidine also decreased, indicating that the activation of 

urea cycle and polyamine pathway was stronger than those of the other pathways. TCA cycle 

metabolites also showed different patterns. First, citrate, cis-aconitate and isocitrate showed 

a gradual decrease, possibly using the acetyl-CoA produced by oxidative decarboxylation of 

pyruvate. Second, a-ketoglutarate, succinate, fumarate and malate remained almost constant. 

Metabolic changes were also seen in the levels of GSH and GSSG, where the concentration 

of GSH was nearly one order higher than that of GSSG, which favoured the cells toward 

oxidative state (73). 
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1.3.5.5. Micellar nanocarriers and liposomes 

Micellar nanocarriers are self-assembling nano-sized colloidal particles with a 

hydrophobic core and hydrophilic shell. Nowadays they are successfully used as 

pharmaceutical carriers for low water solubility drugs and have demonstrated a series of 

attractive properties as drug carriers since they can overcome some toxicities caused by the 

toxic organic excipients of the drugs (74,75). Katragadda’s team has performed 1H NMR of 

mice tumour extracts in different treatment groups noticing significantly altered metabolic 

activities. The results suggested that paclitaxel/17-AAG loaded micelles normalized glucose 

consumption in the tumour by reducing glucose uptake and blocking aerobic glycolysis. This 

led to significantly decreased levels of glucose in the tumour, as well as lactate and alanine, 

which are end products of glycolysis (75). 

Liposomes are small vesicles composed of one or more lipid membranes surrounding 

discrete aqueous compartments. These vesicles can encapsulate water-soluble drugs in their 

aqueous spaces and lipid-soluble drugs within the membrane itself. A liposomal drug 

delivery system can alter the in vivo behaviour, attenuate adverse side effects and improve 

the therapeutic index of the encapsulated drug. Cong’s team performed a urine metabolic 

study based on UPLC/TOF-MS for the assessment of cumulative cardiotoxicity in rats. Their 

study showed that the drug pirarubicin (THP) causes systemic or cardiac toxicity via a 

significant decrease in the intermediary metabolic pathways associated with the key energy 

production. Thus, a diminution of metabolites associated with the TCA cycle, glycolysis, 

pentose phosphate and amino acid synthesis pathways was observed. These considerations 

are important for the safety assessment of liposomal drug delivery system (76). 
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Table II – Overview of metabolomic studies of nanomaterials with biomedical applications. 

Nanomaterial Cell model Animal model Analytical technique Sample type 
Year of publication 

(Ref.) 

SiO2 NP 

HeLa - 1H NMR (HRMAS) Cell extracts 2013 (60) 

MRC-5  - GC/MS or LC/MS Cell extracts 2012 (59) 

- Sprague Dawley rats 1H NMR Liver tissue 2013 (58) 

USPIO 

RAW264.7 - 1H NMR (HRMAS) Cell extracts 2011 (63) 

- Sprague Dawley rats 1H NMR (HRMAS) Tissue 2011 (64) 

- Sprague Dawley rats 1H NMR Urine and plasma 2010 (65) 

Au NP A549; 16-HBE - 1H NMR Cell extracts 2013 (67) 

Ag NP 
- Wistar Hannover Galas rats HPLC-QTOF-MS Urine 2012 (68) 

- Daphnia magna 1H NMR Metabolite extracts 2015 (69) 

TiO2 NP 

HaCat - GC/MS or LC/MS Cell extracts 2013 (71) 

- Eisenia fetida earthworms 1H NMR E. fetida tissue 2011 (72) 

- Wistar rats 1H NMR Urine and serum 2010 (70) 

HGF - CE-TOF-MS Cell extracts 2015 (73) 

Micellar 

nanocarriers  
- 

Human ovarian cancer SKOV-

3 cells xenograft in mice 
1H NMR Tumour tissue 2013 (75) 

Liposomes  Sprague Dawley rats UPLC/TOF–MS Urine 2012 (76) 

Cu NP - Wistar rats 1H NMR Urine and serum 2008 (77) 

ZnO2 NP - Rats 1H NMR 
Urine and kidney 

aqueous extracts 
2012 (78) 

Note  1 –  Abbreviations: Silver (Ag); Gold (Au); Copper (Cu); Silica dioxide (SiO2); Titanium dioxide (TiO2); Ultrasmall Superparamagnetic Iron Oxide (USPIO); 

Zinc dioxide (ZnO2); Henrietta Lacks' cells (HeLa); Human Fetal Lung Fibroblast Cells (MRC-5); Mouse leukemic monocyte macrophage cell line), (RAW264.7); 

Adenocarcinomic human alveolar basal epithelial cells (A549); Human bronchial epithelial cells (16-HBE); spontaneously immortalized, Human keratinocyte line 

(HaCat); Human gingival fibroblast cells (HGF); High-performance liquid chromatography (HPLC); Quadrupole-time-of-flight (QTOF); Mass spectrometry (MS); 

Nuclear Magnetic Resonance (NMR) Spectroscopy; Ultra Performance Liquid Chromatography (UPLC); Gas Chromatography (GC); Liquid Chromatography (LC); 

High Resolution Magic Angle Spinning (HRMAS).



 

                                                                                   Chapter 1 - Introduction 

   30 

 

1.4.  Scope and aims of this thesis  

The main goals of this work were: 

i) To characterize the metabolic profile of the macrophage cell line RAW 264.7. 

Macrophages are specialized host defence cells found in the reticuloendothelial 

system, responsible for maintain cellular and organism homeostasis (12,79,80). 

Through an endocytic process, macrophages play an important role in the uptake of 

NPs from the circulation, their metabolism and degradation, thus being considered a 

relevant model for nanotoxicological studies. Thus, they were selected for this study 

and it is expected that their metabolic content may be reflective of their biochemical 

status. 

ii) To assess the impact of silk nanoparticles (SNPs) on macrophage metabolism, by 

identifying the most affected metabolites and pathways. 

Both aqueous and lipid cell extracts were considered for this purpose in order to 

obtain a more comprehensive view of the metabolome. 

iii) To examine the dependence of metabolic effects on exposure concentration and 

duration. 

Three time points and two SNPs concentrations, selected, respectively, based on 

the cells growth curve and viability assays, were tested. 

iv) To evaluate the sensitivity of NMR metabolomics to provide mechanistic insight 

into cell-NPs interactions. 
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2.1.  Materials and methods 

This work has been carried out in the framework of a collaboration with the Strathclyde 

Institute of Pharmacy and Biomedical Sciences of the University of Strathclyde, Glasgow 

(UK), where cell culture studies and samples for the metabolomics studies were prepared 

and collected by Dr P. Seib. The NMR acquisition, processing and analysis were then 

performed at the University of Aveiro, within the framework of this thesis.  

 

2.1.1. Silk nanoparticles (SNPs) 

Uncoated, spherical silk nanoparticles (ca. 100 nm in diameter) were generated at 

Strathclyde from B. mori silk, according to the procedure described in (19). For all cell 

exposure experiments, a 10 mg/ml stock in ddH2O was generated and gamma sterilised. 

 

2.1.2. Cell culture studies 

Murine RAW 264.7 macrophages were seeded at a density of 1.5 × 104 cells/cm2, the 

required cell density to provide a sufficiently strong signal for NMR analysis. For 

proliferation and cytotoxicity studies, cells were seeded in 100 μL of complete medium into 

96 well plates. For metabolomics studies, 60 mm diameter Petri dishes were used and scaled 

accordingly. For all studies, cells were plated and then allowed to recover over night before 

commencing measurements.  

In order to establish the cells growth curve, cell proliferation was monitored using MTT 

(5mg/mL in PBS). Briefly, cells were incubated with 20 μL of MTT for 5 h. Next, the 

medium was aspirated and replaced with 110 μL of DMSO and incubated for 10 minutes to 

dissolve formazan crystals. Finally, 100 μL of the product was transferred to a reading plate 

and absorbance was measured at 570 nm. Data were expressed as a percentage of the 

maximum absorbance determined in this study. 

 

2.1.3. Cytotoxicity assessment of SNPs 

The cytotoxicity of SNPs was assessed using the colorimetric MTT assay, which 

measures the formation of purple formazan. Cell viability was calculated as a percentage by 

using untreated cells as a benchmark for 100% viability, since the tetrazolium salt MTT can 

only be metabolized by living cells. Therefore, the dye intensity is proportional to the 

number of viable cells (81). Briefly, cells were incubated with a 2.5 to 1000 μg/mL SNPs; 



 

                                                                   Chapter 2 – Experimental Section 

   33 

 

5h before the end of a 24h, 48h and 72h exposure time 20 μL of MTT was added to cells and 

incubated. Next, the medium was aspirated and replaced with 100 μL of DMSO and 

absorbance was measured at 570 nm.  

 

2.1.4. Samples for metabolomics studies 

For metabolomics, macrophages were exposed to two concentrations of SNPs (low, 10 

μg/mL and high, 500 μg/mL) and three sample types collected from each dish: culture 

medium, cell aqueous extract and cell lipid extract. Samples from control dishes (no SNPs 

added) were also collected. Four independent assays were performed (with duplicates for 

controls), so that for each concentration of SNPs, there were four dishes, whereas eight 

dishes were available for controls.  

After collecting and centrifuging a medium aliquot, the remaining medium was aspirated 

and each dish was washed twice with PBS. Then, intracellular aqueous metabolites and lipids 

were extracted using a dual phase extraction procedure adapted from Teng et al. (82). 

Briefly, 650 μL of cold methanol 80% was added, to stop metabolic activity, and the cells 

were scraped off the dish and vortexed for 1 min in microcentrifuge tubes containing 0.5 

mm glass beads, to aid cell breakage. Chloroform (260 μL + 260 μL) and water (220 μL) 

were then added to each sample, each addition being followed by 1 min vortexing, and the 

samples were left to rest on ice for 10 min. After centrifuging at 2000g for 15 min, the upper 

aqueous phase and the lower organic phase were then carefully transferred into new vials, 

dried under vacuum and stored at -80ºC. The dried samples were sent by express mail and 

stored at -80ºC until NMR analysis. 

 

2.2. NMR Spectroscopy 

2.2.1. Sample preparation for NMR 

Dried aqueous samples were reconstituted in 600 μL of deuterated phosphate buffer (PBS, 

100mM, pH 7.4) containing 0.1 mM TSP, while organic phase extracts were reconstituted 

in deuterated chloroform containing 0.03% TMS. For NMR analysis, 550 μL of each sample 

were transferred into 5 mm NMR tubes. The medium samples remain stored for later analysis 

and will not be considered within this thesis. 
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2.2.2. Acquisition and processing of 1H NMR spectra 

All experiments were acquired on a Bruker Avance DRX spectrometer operating at 

500.13 MHz for 1H, using a 5 mm TXI probe, at 298 K. Standard 1D spectra (pulse programs 

‘noesypr1d’ and ‘zg’ in Bruker library, for aqueous and lipid extracts respectively) were 

acquired with a 6510 Hz spectral width, 32 K data points, a 2 s relaxation delay (d1), and 

256 scans. Data processing was performed using TopSpin 3.2 (Bruker Biospin, Rheinstetten, 

Germany). The free induction decay (FID) signals were processed by exponential 

multiplication (using a line broadening window function LB 0.3 Hz) and zero filling to 64 

K data points prior to Fourier transformation. All 1D spectra were manually phased and 

baseline corrected. The chemical shifts were referenced internally to the TSP/TMS signal at 

δ 0.00 ppm (aqueous/lipid extracts). 2D 1H-1H total correlation (TOCSY) spectra, 1H-13C 

heteronuclear single quantum correlation (HSQC) spectra and J-resolved spectra were also 

registered for selected samples to assist spectral assignment. The main acquisition and 

processing parameters for these experiments are provided in the following tables: 

 

Table III – Main parameters used for the acquisition and processing of 1D 1H NMR (500 MHz) 

spectra of aqueous and lipidic extracts. 

1D 1H NMR (500 MHz) 

Acquisition parameters 

Experiment  standard 1D 

Pulse programme ª (aqueous/lipid extracts) noesypr1d/zg 

Number of scans, NS  256/256 

FID data points, TD  32768/32768 

Spectral width (ppm)  14.00/14.00 

Acquisition time, ACQ (s)  2.34/2.34 

Relaxation delay, RD (s)  2/2 

Mixing time, tm (ms) (aqueous extracts) 100 

Processing parameters 

Window function  exponential 

Spectrum data points, SI  65536 

Line broadening, LB (Hz)  0.3 

ª Bruker library 
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Table IV - Main parameters used for the acquisition and processing of 2D NMR (500 MHz) 

spectra of aqueous and lipid extracts. 

2D NMR (500 MHz) 

 Acquisition parameters 

Experiment  1H-1H TOCSY 1H-13C HSQC J – Resolved 

Pulse programme ª dipsi2phpr hsqcetgp jresgpprqf 

FID data points 1st dimension [F1]  4096 4096 8192 

FID data points 2nd dimension [F2]  156 200 40 

Number of scans  96 128 80 

Spectral width [F1] (ppm)  16.02 16.02 16.02 

Spectral width [F2] (ppm)  16.02 165.6 0.09 

Relaxation delay, RD (s)  2 4 2 

Mixing time, tm (ms)   30  

 Processing parameters 

Spectrum data points [F1], SI  4096 4096 16384 

Spectrum data points [F2], SI  2048 2048 1024 

Line broadening [F1], LB (Hz) 0.3/0.3 0.3 0.3 

Line broadening [F2], LB (Hz)  1.0 0.3 

ª Bruker library; 
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2.3. Multivariate analysis 

2.3.1. Pre-treatment and multivariate analysis of NMR spectra 

The preparation of NMR data for multivariate analysis (MVA) requires the construction 

of data matrices (𝑛 × 𝑚 (rows × columns) of n observations (samples) and m variables (peak 

intensities)), either using the full spectra or spectral regions (buckets). In this work, 0.01 

ppm buckets were considered, after excluding selected regions for building the data matrix, 

namely the suppressed water signal (in aqueous extracts only) and additional signals found 

to result from contamination, either from the medium not completely washed off the dishes 

or from solvents present in the evaporation system (see table V). Each spectrum was exported 

from Amix-Viewer (version 3.9.14, BrukerBiospin, Rheinstetten) and normalized by total 

spectral area, in order to make the data from all samples comparable with each other.   

Using SIMCA – P 11.5 software (Umetrics, Umeå, Sweden), the resulting data were scaled 

to Unit Variance (UV), giving equal variance to all variables, and PCA and PLS-DA were 

applied. The results were obtained in the form of scores scatter plots, representing the 

distribution of samples in the model, and corresponding loading plots, to provide information 

on which metabolites were responsible for the pattern observed in the scores plot. The 

loading profiles were obtained by multiplying the loading weights w (representative of the 

correlation of the x variable of the NMR spectra with y class), by the standard deviation. 

Next, the loadings were coloured by the variable importance in the projection (VIP), for the 

discrimination between the classes, using the R software version 2.15.0 (R Development 

Core Team, Vienna, Austria, 2012). To evaluate the quality of the models, a default seven-

fold internal cross validation was used, from which R2 and Q2 values, respectively reflecting 

explained variance and predictive capability, were extracted. Generally, the values of Q2 

between 0 and 1 suggest some predictive character but the reliability increases as Q2 

approaches 1. However, higher R2 and Q2 values are desirable (83). 

Hierarchical cluster analysis (HCA) was also performed, based on the Pearson correlation 

coefficient with single linkage, using the GENE-E software 

(http://www.broadinstitute.org/cancer/software/GENE-E/index.html) applied to same the 

data matrix.  
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Table V – Information about the 1H NMR matrices used for MVA. 

Sample type  Aqueous extracts Lipid extracts 

Rows, n samples  95 47 

Columns, m variables (intensities)  39391 20973 

Spectral interval (ppm)  0.5 – 10 0.5 – 6 

Exclusion areas (ppm)   (1.533 – 1.562) 

(1.915 – 1.925) 

(2.232 – 2.245) 

(2.362 – 2.372) 

(2.729 – 2.737) 

(3.244 – 3.258) 

(3.348 – 3.366) 

(4.634 – 5.00) 

(7.28 – 7.72) 

(1.453, 1.75) 

(2.15, 2.74) 

(3.45, 3.51) 

(5.57, 5.6) 

Integration mode  Sum of absolute intensities 

 

 

2.3.2. Spectral integration and univariate statistics 

To evaluate metabolite quantitative variations, selected signals in the 1D spectrum were 

integrated using Amix-Viewer (version 3.9.14, BrukerBiospin, Rheinstetten) and 

normalized by the total spectral area. Spectral integration was performed by calculating the 

area under a certain signal for which integration limits were manually defined. 

Data normality was assessed through the Shapiro test. For normal distributed data, the t-

test was then applied, and for not normally distributed data, the Wilcoxon test was used. The 

p-value for each metabolite was considered significant when it was lower than 0.05 

(confidence level 95 %). Also, for each metabolite, the percentage of variation and respective 

error were calculated, along with the effect-size (d) and respective 95 % confidence interval. 

The p-value and effect-size obtained by the statistical tests allowed the significance and 

magnitude of the differences between the means of the two classes to be assessed. The 

resulting data was plotted into a heat map using Matlab 7.14.0.739 (The MathWorks Inc., 

Massachusetts, USA) to help visualizing the most significant variations. 
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3.1.  Metabolic profile of murine macrophages assessed by 1H NMR 

spectroscopy 

3.1.1. Metabolic composition of murine macrophages (RAW 264.7 cell line): 

spectral assignment based on 1D and 2D NMR experiments 

By reflecting substrate utilization and production within intermediary metabolism, the 

metabolic composition of cells under different conditions may help assessing the cells’ 

physiopathological status and their response to different stimuli. Here, the basal metabolic 

composition of murine macrophages (RAW 264.7 cell line) was investigated through the 

analysis of 1D and 2D 1H NMR spectra of aqueous and lipid cell extracts. Figure 8 shows 

the standard 1H NMR spectrum of an aqueous extract from RAW 264.7 cells, where a 

multitude of signals was detected, reflecting the complex sample composition. 

 

Figure 8 – Representative 500 MHz 1H NMR spectrum of an aqueous extract from RAW 264.7 cells. Some 

assignments are indicated: three-letter code used for amino acids, ADP adenosine diphosphate, ATP adenosine 

triphosphate, AXP (ADP/ATP), BCAA branched chain amino acids, Cr creatine, NAD Nicotinamide adenine 

dinucleotide, PCr phosphocreatine, PCho phosphocholine, Un unassigned, UXP uridine diphosphate/uridine 

triphosphate (UDP/UTP). 
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The corresponding 2D spectra are shown in Figure 9. The 1H-1H TOCSY spectrum 

(Figure 9A) reveals intramolecular spin-spin connectivities, helping to unambiguously 

identify several compounds with signals overlapped in the 1D spectrum. The 1H-13C HSQC 

spectrum (Figure 9B) was particularly helpful to identify singlets (without TOCSY cross 

peaks) or to aid the assignment of cross peaks still overlapped in TOCSY (taking advantage 

of the larger chemical shift dispersion of 13C resonances). Finally, the J– resolved spectrum 

(Figure 9C) was also useful to distinguish highly overlapped signals and provided 

information on signal multiplicity. Table VI shows the complete list of compounds 

identified, along with their 1H and 13C chemical shifts, measured in 1D and 2D NMR spectra. 

The low-frequency region (δ 0-3) shows resonances from several amino acids, like 

branched chain amino acids, alanine and aspartate, but also organic acids like lactate, acetate 

and pyruvate. In the mid-frequency region (δ 3-5.5), additional intracellular metabolites were 

detected, including creatine, phosphocreatine, glycine, choline-containing compounds, 

taurine, myo-inositol and threonine. Glucose was also present in the spectrum, however it 

was found to arise from residual medium not completely washed off the dishes before 

metabolite extraction. Hence, glucose variations were disregarded since they were not 

induced by macrophages metabolism. The high-frequency region (δ 5.5-10) is characterized 

by signals arising from aromatic amino acids (tyrosine and phenylalanine), organic acids 

(fumarate and formate) but also nucleotides (ADP, ATP, UDP, UTP and NAD+). 

In total, over thirty compounds were identified in the cells aqueous extracts, providing 

significant information on the metabolic composition of RAW 264.7 cells and setting the 

basis for interpreting the silk nanoparticles’ exposure variation discussed ahead. 
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Figure 9 – Expansions of the (A) 1H-1H TOCSY, (B) 1H-13C HSQC and (C) J-resolved spectra of aqueous 

supernatants prepared from murine macrophages (RAW 264.7 cell line). Signals are numbered in 

accordance with Table VI. 
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Table VI – Assignment of resonances in the NMR profile of RAW 264.7 aqueous extract 

of cells (s, singlet; d, doublet; t, triplet; m, multiplet; dd, doublet of doublets). 

No. Compound δ 1H in ppm (multiplicity, assignment) / δ 13C in ppm 

1 Acetate 1.92 (s, β-CH3)/26.3 

2 ADP 4.25 (m, C5’H, ribose); 4.62 (m, C2’H, ribose); 6.16 (d, 

C1’H, ribose) /89.4; 8.28 (s, C8, ring); 8.54 (s, C2, ring) 

3 Alanine 1.49 (d, β-CH3)/18.9; 3.78 (m, α-CH)/57.2 

4 β -Alanine 2.56 (t, β-CH2); 3.18 (t, α-CH2) 

5 Aspartate 2.69 (dd, β-CH); 2.82 (dd, β’-CH); 3.90 (dd, α-CH)/63.7 

6 ATP 4.24 (m, C5’H, ribose); 4.29 (m, C5’’H, ribose); 4.41 (m, 

C4’H, ribose); 4.62 (m, C2’H, ribose); 6.15 (d, C1’H, 

ribose)/89.4; 8.27 (s, C2, ring); 8.55 (s, NH, ring) 

7 Choline 3.22 (s, N(CH3)3); 3.54 (CH2)NH)); 4.07 (m, CH2(OH)) 

8 Creatine 3.04 (s, CH3); 3.93 (s, CH2) 

9 Formate 8.46 (s, CH) 

10 Fumarate 6.52 (s, CH) 

11 α-Glucose 3.41 (m, C4H)/72.5; 3.55 (dd, C2H)/74.1; 3.73 (m, 

C3H)/76.2; 3.83 (m, C6H); 3.85 (m, C5H); 5.24 (d, C1H) 

12 β-Glucose 3.26 (dd, C2H); 3.42 (m, C4H)/72.3; 3.47 (m, C5H); 3.49 

(t, C3H)/79.0; 3.78 (m, C6H)/63.8; 3.90 (dd C6’H)/63.7; 

4.66 (d, C1H) 

13 Glutamate 2.06 (m, β-CH)/29.9; 2.13 (m, β’-CH); 2.35 (m, γ-

CH2)/36.4 

14 Glutamine 2.14 (m, β-CH2)/29.6; 2.45 (m, γ-CH2)/33.8 

15 Glutathione, reduced 

(GSH) 

2.17 (m, β-CH2, Glu); 2.56 (m, γ-CH2, Glu); 2.98 (m, β-

CH2, Cys); ); 3.78 (α-CH)/46.1; 4.57 (m, α-CH2, Cys); 

8.37 (NH, Gly); 8.56 (NH, Cys) 

16 Glutathione, 

oxidized (GSSG) 

2.17 (m, β-CH2, Glu); 2.56 (m, γ-CH2, Glu); 2.98 (m, β-

CH2, Cys)/41.8; 3.31 (m, β-CH2, Cys); 3.78 (α-

CH)/53.8; 4.77 (α-CH2, Cys) 

17 Glycine 3.56 (s, α-CH2)/44.5 

18 Histidine 3.23 (m, β-CH2); 7.08 (s, C4H, ring); 7.87 (s, C2H, ring) 

19 Isoleucine 0.94 (t, δ-CH3); 1.01 (d, β'-CH3); 1.26 (m, γ-CH2); 1.48 

(m, γ’-CH2); 1.98 (m, β-CH); 3.69 (d, α-CH) 

20 Lactate 1.33 (d, β-CH3)/22.9; 4.12 (m, α-CH)/71.6 

21 Leucine 0.96 (d, δ-CH3); 0.97 (d, δ'-CH3); 1.70 (m, γ-CH);1.72 (m, 

β-CH2); 3.74 (t, α-CH) 
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No. Compound δ 1H in ppm (multiplicity, assignment) / δ 13C in ppm 

22 Lysine 1.48 (m, γ-CH2); 1.73 (m, δ-CH2); 1.92 (m, β-CH2); 3.02 

(t, ε-CH2); 3.76 (t, α-CH) 

23 Myo-inositol 3.28 (t, C5H)/77.4; 3.54 (C1H, C3H); 3.63 (dd, C4H, 

C6H)/75.5; 4.07 (t, C2H)/75.2 

24 NAD+ 4.23 (m, A5’); 4.36 (m, A4’); 4.39 (m, A4’/N5’); 4.44 

(dd, N3’); 4.50 (m, A3’); 4.54 (m, N2’); 6.00 (d, N1’); 

6.10 (d, A1’); 8.20 (s, A2); 8.19 (N5); 8.43 (s, A8); 8.83 

(d, N4); 9.14 (d, N6); 9.34 (s, N2) 

25 Phenylalanine 3.14 (m, β-CH); 3.27 (dd, β'-CH)/56.4; 3.98 (m, α-CH); 

7.33 (d, C2H, C6H, ring)/131.9; 7.39 (d, C4H, ring); 7.43 

(t, C3H, C5H, ring) 

26 Phosphocholine 3.23 (s, N(CH3)3)/57.0; 3.62 (m, N-CH2); 4.17 (m, PO3-

CH2) 

27 Phosphocreatine 3.05 (s, CH3); 3.95 (s, CH2) 

28 Proline 2.00 (m, γ-CH2); 2.06 (m, β-CH); 2.34 (m, β'-CH); 3.34 

(dt, δ-CH); 3.40 (dt, δ'-CH); 4.13 (dd, α-CH) 

29 Pyruvate 2.36 (s, β-CH3)/23.2 

30 Succinate 2.40 (s, CH2) 

31 Taurine 3.27 (t, S-CH2)/50.7; 3.43 (t, N-CH2)/38.3 

32 Threonine 1.34 (d, γ-CH3); 3.59 (d, α-CH)/63.5; 4.26 (m, β-CH) 

33 Tyrosine 3.08 (m, β'-CH); 3.21 (m, β-CH); 3.95 (m, α-CH); 6.91 

(d, C3H, C5H, ring); 7.20 (d, C2H, C6H, ring) 

34 UDP 4.23 (m, C5’H, ribose); 4.27 (m, C4’H, ribose); 4.40 (t, 

C2’H, ribose); 4.44 (t, C3’H, ribose); 5.97 (s, C1’H, 

ribose); 5.98 (d, C6, ring); 7.99 (d, C5, ring) 

35 Unassigned (Un.) 1 1.64 (s) 

36 Un. 2 3.16 (m) 

37 Un. 3 5.38 (m) 

38 Un. 4 5.86 (m) 

39 UTP 4.27 (m, C5’H, ribose); 4.30 (m, C4’H, ribose); 4.42 (t, 

C2’H, ribose); 4.45 (t, C3’H, ribose); 5.97 (s, C1’H, 

ribose); 5.99 (d, C6, ring); 7.99 (d, C5, ring) 

40 Valine 0.99 (d, γ-CH3); 1.05 (d, γ'-CH3); 2.28 (m, β-CH); 3.62 

(d, α-CH) 
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In regard to lipid extracts, a typical 1H spectrum is shown in Figure 10. This spectrum 

shows broader signals, compared to that of aqueous extracts, as the larger lipid molecules 

show faster transverse relaxation (shorter T2 relaxation time constants, hence larger signal 

width). Also, there is significant overlap between signals of different lipid species, for 

instance, it is difficult to distinguish the different fatty acids composing triglycerides or 

glycerophospholipids. Still, a number of lipid compounds could be distinguished based on 

specific resonances. Cholesterol and phosphatidylcholine (PTC), two major components of 

cell membranes, were found to be main contributors to the lipid extract spectrum. 

Phosphatidylethanolamine (PTE), sphingomyelin (SM) and smaller amounts of neutral 

lipids (triglycerides and cholesterol esters were also detected). Table VII shows the complete 

list of lipid compounds identified, along with their 1H and 13C chemical shifts, measured in 

1D and 2D NMR spectra (Fig. 11). This assignment is in agreement with the lipid 

composition previously described for RAW 264.7 cells (84,85). 

 

 

Figure 10 – Representative 500 MHz 1H NMR spectrum of a lipid extract from RAW 264.7 cells. Some 

assignments are indicated: FA Fatty Acids/Fatty acyl chains, PTC phosphatidylcholine, PTE 

phosphatidylethanolamine, SM sphingomyelin, TG triglyceride. 
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Table VII – Assignment of resonances in the NMR profile of RAW 264.7 lipid extract of 

cells (s, singlet; d, doublet; t, triplet; m, multiplet; dd, doublet of doublets). 

No. Compound δ 1H in ppm (multiplicity, assignment) / δ 13C in ppm 

1 Cholesterol 
0.68 (s, CH3-18)/11.9; 0.86 (d, CH3-26); 0.87 (d,CH3-

27)/22.4; 0.91 (d, CH3-21)/18.6; 1.01 (s, CH3-19)/19.3; 

1.05-1.19 (m, multiple protons); 1.26 (d) 1.42-1.55 (m, 

multiple protons); 1.78-1.87 (m, multiple protons); 

1.95-2.02 (m, multiple protons); 2.23/35.9; 2.26 (m, 

CH2-4); 3.48-3.55 (m, CH-3); 5.34 (m, CH-6)/122.02 

2 Cholesterol ester 1.02 (s, CH3-19); 1.57 (m, multiple protons); 1.84 

(m,CH2-2); 2.31 (m, CH2-4); 4.62 (m, CH-3)/48.7 

3 Fatty acyl chains (mainly 

in phospholipids) (FA) 

0.88 (t, CH3(CH2)n); 1.25 (m, (CH2)n)/29.6; 1.25 (m, 

(CH2)n)/31.8; 1.55-1.65 (m, -CH2-CH2CO)/27.0; 1.98-

2.09 (m, -CH2CH=)/27.0; 2.25-2.35 (m,-

CH2COOR)/21.1; 2.77-2.87 (m, =CHCH2CH=)/25.6; 

5.35 (m, -HC=CH-)/130.0 

Figure 11 – Expansion of the 1H-1H TOCSY spectrum of a lipid extract prepared from murine macrophages 

(RAW 264.7 cell line). Signals are numbered in accordance with Table VIII. 
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No. Compound δ 1H in ppm (multiplicity, assignment) / δ 13C in ppm 

4 Phosphatidylcholine 

(PTC) 

0.89/14.1; 1.26-1.37 (multiple protons)/29.5;1.30/22.6; 

1.59(s)/24.6; 2.06/27.2; 2.28-2.34 (m)/34.1 ; 2.81 (s); 

3.35/54.8 (s, N(CH3)3; 3.73 (CH2-N)/67.0; 3.95 

(Glyceryl CH2 sn3)/63.6; 4.12, 4.38 (Glyceryl CH2 

sn1); 4.40 (CH2-OP); 5.24 (Glyceryl CH sn2); 

5.35/129.8 

5 Phosphatidylethanolamine 

(PTE) 

3.18 (s, CH2-N); 3.55 (Glyceryl CH2 sn1)/48.8; 3.92 

(Glyceryl CH2 sn3); 4.12 (CH2-OP)/62.7; 5.15 

(Glyceryl CH sn2) 

6 PTE plasmalogen 1.27 ((CH2)n); 1.99 (-CH=CH-CH2); 4.34 (-CH=CH-); 

5.91 (-CH=CH-) 

8 Sphingomyelin (SM) 3.32 (s, N(CH3)3); 4.40 (-CH=CH-)/50.4; 5.70 (-

CH=CH-) 

9 Triglycerides (TG) 0.82 (t, CH3); 4.12, 4.28 (Glyceryl CH2 sn1/sn3); 5.27 

(Glyceryl CH sn2) 
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3.1.2. Time-related changes in control cells 

 As three time points were considered in this study (24, 48 and 72h), the variations in 

control cells over culture time were inspected, in order to assess the possible influence of 

sampling time on the metabolic profile. The visual comparison of average spectra from 

control aqueous extracts suggests that there are some differences along time in some small 

metabolites (Fig. 12). Multivariate analysis further confirms this observation, as samples 

from different time points are reasonably separated in the PCA scores scatter plot along PC1 

(Figure 13). By analysing the corresponding loadings (not shown), it becomes clear that 

while branched chain amino acids, lysine, pyruvate, choline compounds and aromatic amino 

acids decreased along culture time, alanine, glutamate, creatine, phosphocreatine, myo-

inositol, glycine, lactate and nucleotides increased. These variations reflect the cells 

metabolic adaptations during growth and highlight the dynamic nature of the metabolome. 

 

Figure 12 – Average 1H NMR spectra of aqueous extracts of RAW 264.7 cells at 24, 48 and 72 hours. 
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In regard to lipid extracts, the variations in control cells also revealed the influence of 

sampling time on the metabolic profile, as seen through both visual comparison of the 

average spectra (Fig. 14) and multivariate analysis (Fig. 15). By analysing the corresponding 

loadings (not shown), it becomes clear that while triglycerides, fatty acyl chains, mainly in 

phospholipids, and sphingomyelin did not show significant differences along culture time, 

cholesterol, phosphatidylcholine, phosphatidylethanolamine, and plasmalogen increased, 

possibly reflecting changes in membrane composition during cell growth.  

Figure 14 - Average 1H NMR spectra of lipid extracts of RAW 264.7 cells at 24, 48 and 72 hours 

Figure 13 - PC1 vs PC2 scores scatter plot obtained by PCA of 1H NMR spectra from aqueous 

extracts of control cells collected at different time points. 



 

                                                                 Chapter 3 – Results and Discussion 

   49 

 

 

 

 

 

 

 

 

 

  

Figure 15 - PC1 vs PC2 scores scatter plot obtained by PCA of 1H NMR spectra from lipid extracts of 

control cells collected at different time points. 
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3.2. Impact of silk nanoparticles on macrophage metabolism 

3.2.1. Cytotoxicity results 

 In order to assess the growth characteristics of the RAW cell line and determine the best 

time range for evaluating the effects of silk nanoparticles (SNPs), a growth curve has been 

established (Figure 16). The initial cell density plated on each dish was chosen in order to 

have sufficient cells for metabolomics already at the early time point (24h). The cells were 

found to reach confluence about day 4 and to be in the exponential growth phase (in which 

the cell population doubles at a characteristic rate) from 24 to 72h. Thus, this time range was 

selected for the SNPs exposure studies, as during this phase the cells are more vulnerable to 

external stimuli. Investigating the cellular response in the first 72 hours exposure also allows 

to maximize the difference between control and treatment groups and minimize assay 

artefacts due to confluence.  

 

To investigate the effects of silk nanoparticles on cell viability and determine the IC50 

value (that indicates the concentration needed to inhibit cell viability by half), RAW cells 

were exposed to increasing concentrations of SNPs. After 24, 48 and 72 hours of incubation, 

MTT solution was added to each of the samples and cell viability was assessed, as described 

in the experimental section. 

For 24 and 48h, cell viability did not decrease below 60% across the tested concentration 

range of silk nanoparticles, with IC50’s > 1000 μg/mL at both time points (Figure 17). 

Curiously, the decrease in cell viability upon exposure to 2.5-50 μg/mL SNPs seemed to be 

Figure 16 – Growth curve of RAW 264.7 cells. Cells were plated at a density of 1.5 × 104 cells/cm2 and 

cell growth was monitored daily. (n=3 independent experiments. Error bars represent standard deviation). 
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more abrupt at 24h. At 72h of exposure, cell viability decreased steadily with increasing SNP 

concentration, reaching about 40% of cell viability for the maximum concentration tested 

(1000 μg/mL). However, it is possible that cell overgrowth at 72h may also affect cell 

viability and that the observed decrease does not exclusively arise from SNPs toxicity.  

 

 

  

Figure 17 – Cytotoxicity of silk nanoparticles (SNPs) on RAW264.7 cells. Cells were exposed to 

nanoparticles for 24 h, 48 h or 72 h and cell viability was determined by the MTT assay. (n=4 independent 

experiments, ± standard error of the mean). 
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3.2.2. Effects on the metabolome of macrophages assessed by 1H NMR 

spectroscopy of cellular aqueous extracts 

This section presents the variations in the metabolome of RAW 264.7 cells in response 

to silk nanoparticles (SNPs) when compared to controls and taking into account different 

factors, such as the concentration and duration of exposure.  

Figure 18 shows the average 1H NMR spectra of aqueous extracts from RAW 264.7 cells 

after 48 hours of exposure to SNPs at low (10 µg/mL) and high (500 µg/mL) concentrations, 

and their corresponding controls (non-exposed). The visual comparison of the three spectra 

allowed several differences to be suggested, namely in the levels of branched chain amino 

acids (BCAA), creatine (Cr), phosphocreatine (PCr), glycine, lactate, formate and tyrosine 

(increased in exposed cells) and of alanine, aspartate, threonine, myo-inositol, and 

nucleotides (decreased in exposed cells). Additionally, these spectra clearly demonstrate that 

SNPs caused the metabolome of RAW 264.7 to change in a concentration-dependent 

manner, with the high concentration causing much stronger effects.  

 

Figure 18 – Average 1H NMR spectra of aqueous extracts of RAW 264.7 cells after 48h exposure to SNPs, 

with low and high concentration of SNPs. 

(a) 

(a) 

(b) 

(b) 
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To evaluate the influence of both SNP concentration and exposure time on the metabolic 

responses to silk nanoparticles, multivariate analysis was performed. As a first approach to 

unveil trends and clusters within the samples, unsupervised methods, namely Principal 

Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) were applied.  

The scores scatter plot resulting from applying PCA to the spectral profiles (Figure 19A) 

showed a trend for a time- and concentration-dependent response to SNPs. A metabolic 

similarity between low-concentration groups and controls is displayed at all time-points, 

while, within each time point, the high-concentration samples tend to be further away. 

Moreover, there is a trend for separation as a function of time, especially between the 24h 

and the remaining samples. The dendrogram obtained by HCA (Figure 19B) confirms these 

trends: a first node separates the samples exposed to high concentration SNPs for 48 and 72h 

from the remaining samples, whereas further clustering is primarily a function of time.  

Therefore, multivariate analysis was performed considering a sub-set of spectra for each 

exposure period. The respective PCA and PLS-DA quality parameters (R2X and R2Y: 

explained variance of the X and Y matrices; Q2: predictive power) are presented in table 

VIII. 

 

Figure 19 – A) PC1 vs PC2 scores scatter plot obtained by PCA of 1H NMR spectra of cellular aqueous 

extracts corresponding to control conditions and exposure to SNPs at low (10 µg/mL) and high (500 µg/mL) 

concentrations, for different time periods (24, 48, 72h) B) Dendrogram obtained by HCA of the same 

spectral matrix. 
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Table VIII – Statistical parameters obtained by PCA and PLS-DA of controls vs SNPs-

exposed samples, considering different classes (concentrations and time points). 

 PCA PLS-DA 

MODEL R2X R2X R2Y Q2 

24h: CT vs. SNPs L+H 0.286 0.244 0.987 0.510 

48h: CT vs. SNPs L+H 0.333 0.265 0.931 0.198 

72h: CT vs. SNPs L+H 0.370 0.300 0.856 0.156 

24h: CT vs. SNPs L 0.350 0.284 0.993 0.359 

24h: CT vs. SNPs H 0.369 0.329 0.994 0.689 

48h: CT vs. SNPs L 0.367 0.311 0.985 0.563 

48h: CT vs. SNPs H 0.354 0.343 0.998 0.852 

72h: CT vs. SNPs L 0.390 0.267 0.906 -0.025 

72h: CT vs. SNPs H 0.437 0.417 0.990 0.907 

CT – Control; L – Low concentration (10 µg/mL); H – High concentration (500 µg/mL). 

As we can see from this table, the models that best describe the separation between control 

and NP-exposed samples, i.e. which present higher explained variance and a Q2 value closer 

to 1, are the models comparing controls with samples exposed to high concentration SNPs, 

whereas the models with low concentration SNPs show much lower or even negative Q2 

values. Indeed, the overlap between low concentration SNPs and control samples is visible 

in the PCA scores plots obtained for each time point (Figure 20, left), while the high-

concentration samples were separated. Therefore, only the PLS-DA models built for controls 

versus high concentration SNPs were considered in further analysis. The corresponding 

scores show a clear separation between the two classes along LV1 (Figure 20, right), with 

Q2 ≥ 0.7. The respective LV1 loadings (Figure 21), coloured according to variable 

importance in the projection (VIP), allowed the main compounds responsible for this 

discrimination to be identified. These plots suggest that some variations are common to all 

exposure periods, such as the increase in branched chain amino acids, lactate and tyrosine 

(negative loadings) or the decrease in glutamine, taurine, myo-inositol and ATP/ADP 

(positive loadings), whereas other variations seem to be more time-specific.  
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Figure 20 – Scores scatter plots obtained by PCA (left) and PLS-DA (right) of 1H NMR spectra from 

aqueous extracts of control RAW 264.7 cells and cells exposed to SNPs for (A) 24 hours, (B) 48 hours and 

(C) 72 hours. Circles, squares and triangles represent controls, low concentration and high concentration of 

SNPs, respectively. 
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Figure 21 – LV1 loadings w, coloured as a function of variable importance in the projection (VIP), 

corresponding to PLS-DA of 1H NMR spectra from aqueous extracts of control RAW 264.7 cells and cells 

exposed to SNPs for (A) 24 hours, (B) 48 hours and (C) 72 hours. 

A 

B 

C 
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For a more thorough analysis of the magnitude and significance of the variations, 

metabolites with VIP > 1 were integrated in the 1D 1H NMR spectra and the % variation in 

relation to control cells, as well as the effect size (d) and statistical significance, were 

calculated for each metabolite. The results for high concentration of SNPs are summarized 

in Table IX.  

 

Table IX – Metabolite variations in aqueous extracts of RAW 264.7 cells exposed to high 

concentration (500 µg/mL) of SNPs for 24, 48 and 72 hours, compared to control cells. (s, 

singlet; d, doublet; t, triplet; m, multiplet; dd, doublet of doublets). 

 Silk High 24H Silk High 48H Silk High 72H 

Metabolite (δ/ppm a, 

multiplicity) 
% Var. b d c % Var. b d c % Var. b d c 

Alanine (d, 1.49) - - -38.02 ± 4.69 -3.96 ± 1.93 -57.60 ± 5.76 -5.21 ± 2.36 

Aspartate (dd, 2.82) -47.16 ± 5.67 -4.49 ± 2.19 -81.37 ± 7.22 -6.48 ± 2.82 -79.15 ± 28.51 -1.48 ± 1.26 

Creatine (s, 3.04) 377.57 ± 16.66 7.54 ± 3.35 533.77 ± 19.02 8.39 ± 3.53 163.51 ± 21.16 2.58 ± 1.51 

Glutamine (m, 2.35) -13.89 ± 10.44 - -28.08 ± 9.45 -1.83 ± 1.33 46.54 ± 31.37 - 

Glycine (s, 3.56) 21.16 ± 17.27 - 96.37 ± 18.03 3.31 ± 1.73 20.42 ± 10.85 - 

Isoleucine (t, 0.94) 24.12 ± 7.59 1.64 ± 1.32 30.76 ± 6.10 2.64 ± 1.53 78.80 ± 9.20 3.75 ± 1.86 

Leucine (d, 0.96) 17.80 ± 7.16 1.25 ± 1.24 38.61 ± 8.70 2.64 ± 1.53 111.35 ± 9.42 4.21 ± 2.01 

Lysine (t, 3.02) 34.29 ± 8.98 1.64 ± 1.32 55.09 ± 5.80 4.64 ± 2.16 70.59 ± 8.27 4.79 ± 2.21 

Phenylalanine (t, 7.43) 15.21 ± 10.45 - 41.71 ± 8.68 2.59 ± 1.52 57.32 ± 9.65 2.42 ± 1.47 

Phosphocreatine  

(s, 3.05) 
392.82 ± 22.18 5.70 ± 2.63 385.89 ± 21.64 6.28 ± 2.75 - - 

Taurine (t, 3.27) -39.60 ± 6.36 -4.15 ± 2.07 -54.31 ± 5.80 -4.96 ± 2.27 -63.80 ± 11.41 -2.88 ± 1.60 

Threonine (m, 4.26) - - -24.11 ± 4.36 -2.96 ± 1.62 -39.60 ± 5.37 -4.43 ± 2.09 

Tyrosine (d, 6.91) 23.61 ± 8.82 - 52.98 ± 6.41 4.21 ± 2.02 92.37 ± 9.89 4.79 ± 2.21 

Valine (d, 1.05) 26.37 ± 7.30 1.73 ± 1.33 44.91 ± 8.44 3.38 ± 1.75 81.81 ± 10.05 4.32 ± 2.05 

Myo-inositol (t, 4.07) -28.86 ± 12.22 -1.33 ± 1.25 -80.25 ± 9.18 -4.71 ± 2.19 -82.93 ± 16.47 -2.84 ± 1.59 

Choline (s, 3.22) -21.33 ± 13.44 - - - 27.55 ± 22.83 - 

Phosphocholine  

(s, 3.23) 
-41.93 ± 10.99 -2.75 ± 1.61 -69.73 ± 22.89 -1.75 ± 1.31 - - 

Formate (s, 8.46) -29.35 ± 16.51 - 48.07 ± 15.27 1.64 ± 1.29 80.63 ± 13.01 3.14 ± 1.67 

Fumarate (s, 6.52) - - 32.18 ± 21.94 - -65.55 ± 59.86 - 

Lactate (m, 4.12) 84.65 ± 10.22 4.10 ± 2.05 285.09 ± 12.87 9.05 ± 3.79 209.97 ± 19.04 4.79 ± 2.21 

Pyruvate (s, 2.36) -37.42 ± 10.00 -1.88 ± 1.37 -26.38 ± 8.21 -2.03 ± 1.37 - - 

Succinate (s, 2.40) -23.15 ± 9.89 - 27.36 ± 26.11 - 44.92 ± 14.82 1.52 ± 1.26 

ADP (s, 8.54) -23.65 ± 21.51 - -29.16 ± 24.59 - -55.54 ± 13.79 -2.07 ± 1.38 

ATP (s, 8.55) - - -43.27 ± 17.77 -1.94 ± 1.35 -52.09 ± 16.07 -2.18 ± 1.41 

NAD (s, 8.43) 53.59 ± 36.66 - -25.92 ± 12.14 - -50.11 ± 15.35 -1.92 ± 1.35 

UXP (s, 5.97) - - -22.63 ± 15.31 - -30.13 ± 10.44 -1.61 ± 1.28 

Un 1 (s, 1.64) 186.40 ± 9.90 5.61 ± 2.60 120.21 ± 12.67 4.45 ± 2.10 48.03 ± 22.85 1.24 ± 1.21 

Un 2 (m, 3.16) 39.85 ± 11.69 1.76 ± 1.34 114.96 ± 8.82 5.50 ± 2.46 - - 

Un 3 (m, 5.38) 176.04 ± 45.92 - 204.69 ± 23.11 3.79 ± 1.88 - - 

Un 4 (m, 5.86) 115.74 ± 25.96 2.04 ± 1.41 246.41 ± 22.03 4.70 ± 2.18 - - 
a Resonance chosen for signal integration. b % Variation. c d – Effect size in relation to control cells. -, no 

significant variation. 
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Fig. 22 shows the heatmap of effect size values representing the magnitude of variation 

in exposed cells relative to control cells.  

As previously noted, the low concentration SNPs induced few changes in the cells 

metabolome compared to the high concentration SNPs. The time-dependent fluctuations are 

also visible.  

At 24h of exposure, branched chain amino acids, lysine, aromatic amino acids, glycine, 

lactate, creatine, phosphocreatine, NAD+ and unassigned signals were higher than in 

controls, while aspartate, glutamine, cholines, formate, myo-inositol, pyruvate, succinate, 

taurine and ADP were reduced. The profile of the 48h is similar to that of the 24h samples, 

however a stronger metabolic response was visible for almost all metabolites at this time-

point. Also, alanine, threonine, succinate and NAD+ started to show some decrease in 

relation to controls (the last one unlike the first time-point), and formate increased. For the 

72h period, the metabolic response remains similar to the 48h, although glutamine and 

choline were found to increase and fumarate to decrease.  

 

Figure 22 – Heatmap of effect size values of the main aqueous metabolite variations in SNPs-exposed cells 

(low concentration 10 µg/mL; high concentration 500 µg/mL), at different exposure periods (24, 48 and 72 

hours). The colour scale reflects the direction and magnitude of these variations in exposed cells relative to 

control cells (collected for each respective time point). * p < 0.05; ** p < 0.01. 
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3.2.2.1. Proposed biochemical interpretation of nanoparticle-related metabolic 

changes – aqueous extracts 

Several amino acids were found to vary in response to SNPs, in particular, BCAA, lysine, 

glycine, phenylalanine and tyrosine increased, whereas alanine, aspartate, glutamine, taurine 

and threonine decreased following SNPs exposure. BCAA are involved in stress, energy and 

muscle metabolism, being carefully regulated by an enzymatic system. They can undergo 

different metabolic routes, where valine goes to carbohydrates, leucine to fats and isoleucine 

to both. Therefore, they can be used for protein synthesis or to form a series of coenzyme A 

compounds that can be further oxidized for use in the TCA cycle in the forms of acetyl and 

succinyl CoA. In this work, the energy consumption and protein catabolism could be 

connected with BCAA increase and mobilization from proteins, but also with the increase 

of aromatic amino acids (tyrosine and phenylalanine) in response to SNPs exposure (59,86). 

Threonine can also lead to the formation of acetyl CoA and glycine, and its decrease could 

be an indicator of that conversion towards glycine, which was found to be increased. 

Glycine, usually involved in energy release and osmoregulation, is a precursor of reduced 

glutathione (GSH), an important anti-oxidant that has a key role in maintaining intracellular 

redox balance for the proper function of cellular proteins. Consistently, another indicator of 

de novo synthesis of GSH is the reduction of glutamine levels at the first 48h of SNPs 

exposure followed by an increase at the 72 hours. Another indicator is the high consumption 

of ATP along time, since GSH synthesis depends on ATP-driven enzymatic activity (87). 

These variations may reflect an adaptive response of RAW 264.7 cells to stress, avoiding 

oxidative damage (64,67). However, no relevant variations were found directly for GSH or 

GSSG. 

Another indirect regulator of oxidative stress is taurine, which improves mitochondrial 

function by diminishing superoxide generation. As previously described, the reduction in 

intracellular taurine levels causes a rise in oxidative stress, usually associated with a decrease 

in the integrity of the electron transport chain (88). Hence, the decreased levels of taurine 

induced by SNPs at an early stage indicated that SNPs lead to biochemical and physiological 

disturbances in many fundamental biological roles, such as anti-oxidation, osmoregulation 

and membrane stabilization (64,70). Also linked with oxidative phosphorylation in 

mitochondria is the decrease in ATP production, showing stress-related cellular response 

induced by SNPs. The reduced ATP levels along time suggests the increase of glycolysis 
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(77).  This is consistent with a significant increase in the levels of lactate coupled with the 

alteration in succinate and fumarate levels (TCA cycle intermediates), suggesting 

enhancement of the intracellular anaerobic glycolysis process. Thus, the reduced energy 

availability leads to an anaerobic metabolism. The glycolytic enzyme, lactate dehydrogenase 

A (LDHA), which catalyses the conversion between pyruvate and lactate plays an important 

role in generating lactate, that is expressively elevated (58,67). Alanine can also be converted 

to pyruvate and it decreased significantly. This perturbation in energy metabolism, 

accompanied by a decrease in pyruvate indicates a trend in metabolism towards the 

formation of acetyl CoA and/or lactate (71).  

Significant decreases were observed for NAD+, an important redox coenzyme involved 

in glycolysis and the TCA of cellular respiration. Depending on the cell metabolic strategy, 

this coenzyme is found either as an oxidizing (NAD+) or reducing agent (NADH), used in 

ATP production and modulating the cellular redox status (89).  

Creatine and phosphocreatine, two critical metabolites in the cell’s energy shuttle, are 

highly increased after the SNPs exposure. By reversible interconversion of creatine into 

phosphocreatine, creatine kinase is the responsible for metabolic regulation of energy fluxes 

and oxidative phosphorylation. Hence, changes in creatine kinase/phosphocreatine system 

suggest imbalance in cellular energy homeostasis (90).  

Myo-inositol, taurine and choline are metabolites involved is osmo-regulation, therefore 

their alterations may reflect changes is cellular osmotic balance in the presence of SNPs. 

(63,91). Moreover, choline and phosphocholine are breakdown products of 

phosphatidylcholine (PTC), a major cell membrane constituent. Their reduction may be 

reflective of cell membrane modification and/or proliferation arrest, as these metabolites are 

important constituents of membrane lipids (whose variations are discussed further ahead) 

(58,69).  

In summary, RAW 264.7 cells’ exposure to SNPs resulted in biochemical changes related 

to energy metabolism and TCA cycle, disturbance of amino acids metabolism and cell 

membrane modification, comparable to what was previously observed for macrophages 

exposed to USPIO (63) As already mentioned, macrophages are essential cells to recognize, 

phagocytose, and synthetize inflammatory mediators, being responsible for clearance and 

trafficking of NPs in vivo. Thus, monitoring macrophages metabolic response to 

nanoparticles potentially allows to understand the overall physiological response (92,93). In 
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this work, the metabolome of these cells was indeed found to vary significantly with cell 

growth and SNP exposure, providing important mechanistic leads on the cell-NP 

interactions. 
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3.2.3. Effects on the macrophages’ lipidome assessed by 1H NMR spectroscopy 

of cellular lipid extracts 

In order to identify differences in the lipid composition of control cells and cells dosed 

with both low and high-concentration of SNPs, MVA was applied to the 1H NMR spectra of 

lipid extracts. As for the aqueous extracts, this analysis was conducted for each exposure 

period separately. The resulting PCA scores scatter plots are shown in Figure 23 (left). The 

clearest group separation is seen for the 48h-exposure, where high concentration SNP-

exposed samples are well separated from controls and low concentration SNP samples, these 

two being largely overlapped in the scores map. For the other time points, especially at 72h, 

group separation is not clear in PCA. Still, PLS-DA was performed for each time point, 

considering controls vs high concentration SNP-exposed samples. The corresponding PLS-

DA scores (Figure 23, right) show a clear separation between the two classes, with R2X ≥ 

0.5 and a high predictive power (Q2 ≥ 0.7).  

Figure 23 – Scores scatter plots obtained by PCA (left) and PLS-DA (right) of 1H NMR spectra from lipid 

extracts of control RAW 264.7 cells and cells exposed to SNPs for (A) 24 hours, (B) 48 hours and (C) 72 

hours. Circles, squares and triangles represent controls, low concentration and high concentration of SNPs, 

respectively. 
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Based on the inspection of LV1 loadings (Figure 24), the main lipid metabolites found to 

be responsible for the separation between controls and SNP-exposed cells were cholesterol, 

phosphatidylcholine, phosphatidylethanolamine, sphingomyelin and fatty acyl chains from 

phospholipids and triglycerides. The response profiles at  24 and 72 hours of exposure were 

quite similar, and characterised by increases in SM, cholesterol and cholesterol esters 

(negative loadings) and decreases in the fatty acyl chains of phospholipids (positive 

loadings) in relation to SNPs exposure. At 48 hours, the exposure to SNPs also led to the 

decrease of PTE, TG and plasmalogen, and PTC decreased contrarily to the first 24 hours of 

exposure. 
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Figure 24 – LV1 loadings w, coloured as a function of variable importance in the projection (VIP), 

corresponding to PLS-DA of 1H NMR spectra from lipid extracts of control RAW 264.7 cells and cells 

exposed to SNPs for (A) 24 hours, (B) 48 hours and (C) 72 hours. 
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The metabolic features discriminating controls and SNP-exposed cells were further 

inspected by spectral integration of the signals with higher VIP. Those showing statistically 

significant differences between controls and high concentration SNPs are listed in Table X 

along with the percentages of variation and effect sizes.  

 

Table X – Metabolite variations in lipid extracts of RAW 264.7 cells exposed to high 

concentration (500 µg/mL) of SNPs for 24, 48 and 72 hours, compared to control cells. (s, 

singlet; d, doublet; t, triplet; m, multiplet; dd, doublet of doublets). 

  Silk High 24H Silk High 48H Silk High 72H 

Metabolite (δ/ppm a, 

multiplicity) 
% Var. b d c % Var. b d c % Var. b d c 

Total Chol (s, 0.68) 132.45 ± 11.69 5.09 ± 2.40 38.50 ± 6.19 3.51 ± 1.79 25.29 ± 7.87 1.89 ± 1.34 

FA CH3(CH2)n  

(t, 0.88) 
-4.98 ± 0.76 -3.39 ± 1.81 -4.02 ± 1.36 -1.39 ± 1.24 -3.65 ± 1.56 -1.48 ± 1.26 

Free Chol (s, 1.01) 65.85 ± 9.28 3.61 ± 1.88 24.91 ± 5.93 2.56 ± 1.51 16.22 ± 7.31 1.46 ± 1.25 

Ester Chol (s, 1.02) 114.88 ± 14.43 4.00 ± 2.01 36.06 ± 6.83 2.39 ± 1.46 37.30 ± 8.33 2.14 ± 1.40 

FA (CH2)n (m, 1.25) 6.70 ± 3.68 - - - - - 

FA (-CH2CH=)  

(m, 2.00) 
-19.34 ± 10.21 - - - -10.26 ± 3.20 -1.79 ± 1.32 

FA (=CHCH2CH=) 

(m,2.83) 
8.77 ± 5.96 - -16.55 ± 4.62 -1.62 ± 1.28 -17.16 ± 5.52 -1.68 ± 1.30 

FA (-HC=CH-) 

(m, 5.35) 
-19.76 ± 9.12 - - - -12.24 ± 4.01 -1.65 ± 1.29 

Plasmalogen (5.91) - - -35.25 ± 7.51 -2.46 ± 1.48 -28.80 ± 5.49 -2.88 ± 1.60 

PTC (s, 3.35) 45.15 ± 13.53 1.58 ± 1.30 -32.75 ± 22.67 -1.27 ± 1.22 -16.15 ± 5.71 -1.50 ± 1.26 

SM (s, 3.35) 372.19 ± 125.38 - 163.23 ± 21.27 2.49 ± 1.49 65.66 ± 22.42 1.26 ± 1.22 

a Resonance chosen for signal integration. b % Variation. c d – Effect size in relation to control cells. -, no 

significant variation. 
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A heatmap representation of the effect size of lipid variations, in exposed cells relatively 

to controls, is shown in Figure 25. 

Cholesterol, cholesterol esters and SM were found to be relatively higher in SNP- exposed 

samples, whereas FA, plasmalogen and PTC were higher in controls. Interestingly, 

cholesterol, SM and PTC are components of cell membranes but behave differently along 

time. These variations are probably associated with cell membrane modification of 

macrophages, occurring at a later stage (48 hours). 

 

3.2.3.1. Proposed biochemical interpretation of nanoparticle-related metabolic 

changes – lipid extracts 

Lipids have a central role in mammalian cell function, comprising major structural and 

metabolic components of cells. Lipid metabolism contributes to fulfil energetic needs and 

membrane fluidity of the cells. This process is very important during macrophage activation 

and phagocytosis in response to external stimuli, such as nanoparticles’ exposure. Also, the 

ratio of saturated and unsaturated fatty acids can, indeed, modulate macrophage 

phagocytosis. Therefore, macrophages are capable of alter their lipid profile and produce 

lipid mediator accordingly to the cell’s needs (85,93).  

The main changes identified upon SNPs exposure were global increases in cholesterol, 

cholesterol esters and sphingomyelin, whereas unsaturated fatty acids, plasmalogen and 

phosphatidylcholine were higher in controls. These changes may reflect variations in 

Figure 25 – Heatmap of effect size values of the main lipid metabolite variations in SNPs-exposed cells 

(low concentration 10 µg/mL; high concentration 500 µg/mL), at different exposure periods (24, 48 and 72 

hours). The colour scale reflects the direction and magnitude of these variations in exposed cells relative to 

control cells (collected for each respective time point). * p < 0.05; ** p < 0.01. (Chol cholesterol; FA Fatty 

acyl chains; PTC phosphatidylcholine; SM sphingomyelin). 
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membrane composition and fluidity, similarly to what has been reported for macrophages 

exposed to silver nanoparticles (94). Moreover, the elevation in cholesterol and 

sphingomyelin might reflect regulatory cross-talk between cholesterol and sphingolipid 

metabolism (85). Interestingly, some of these differences were time-dependent, with higher 

impact at the 48 hours exposure. This may indicate that the first 48 hours were an important 

period for the phagocytic activity of SNPs by macrophages. As described by Haase’s team, 

the functionality of phagocytic activity is connected with cell membrane integrity (94). 

Following the 72h time point, metabolites variations seem to stabilize, suggesting some 

cellular metabolic recovery. 
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In this work, the metabolic composition of RAW 264.7 cells was characterized by 1D and 

2D NMR spectroscopy, which allowed us to establish a database of metabolites for murine 

macrophages. In the aqueous extract, almost forty metabolites were unambiguously 

identified, including amino acids, organic acids, choline-containing compounds and 

nucleotides. Regarding the lipid composition, the assignment of the main lipid classes 

included cholesterol and cholesterol esters, phosphatidylcholine, phosphatidylethanolamine, 

sphingomyelin, plasmalogen and fatty acids. Interestingly, the cells metabolome and 

lipidome were found to change with culture time, reflecting metabolic adaptations during 

normal cell growth. 

The assessment of the compositional changes in macrophages during silk nanoparticles’ 

exposure was also performed. Multivariate analysis was carried out on the NMR spectra, 

revealing that silk nanoparticles impacted cell metabolism in a time and concentration-

dependent manner. While some variations were common to all exposure periods, such as the 

increase in branched chain amino acids, lactate and tyrosine or the decrease in glutamine, 

taurine, myo-inositol and ATP/ADP, others seemed to be more time-specific. In regard to 

lipids, cholesterol, cholesterol esters and sphingomyelin were found to be relatively higher 

in SNP-exposed samples, whereas fatty acids, plasmalogen and phosphatidylcholine were 

higher in controls.  

In summary, RAW 264.7 cells’ exposure to silk nanoparticles entailed prominent 

biochemical changes in cell metabolism, suggesting downregulated TCA cycle activity, 

energy depletion, disturbance of amino acids metabolism and cell membrane modification.  

Particularly, whereas no metabolic changes were observed with the lowest concentration 

of silk nanoparticles, with cell viability above 70 %, at a higher concentration of SNPs, those 

changes were clear. Using a high concentration of SNPs, numerous changes were detected 

and, although cell viability reached a lower value than the IC50 for the 72h period, at the 

first 48h cell viability remained above 60%. This is a reflex of the ability of macrophages to 

adapt and reprogram their function in response to compositional changes relatively to growth 

needs and SNPs-exposure. 

A thorough understanding of nanomedicines biological effects will allow an optimization 

of their rationale design and safety profiles, from early development stages. Metabolic 

profiling offers a window into the impact of external stimuli (such as a nanomaterial) on 
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cellular metabolism. Therefore, it has the potential to reveal response markers of efficacy or 

toxicity, as well as provide biochemical insight into mechanisms of action. 

In the future, the confirmation of these results could be accomplished with more sensitive 

techniques such as mass spectrometry, for instance to analyse lipid composition in more 

detail, and through the measurement of the expression/activity of specific enzymes to follow 

the fate of selected substrates. Moreover, the assessment of the metabolic alterations of RAW 

264.7 cells found to be associated with SNPs, should be compared with other cell type’s 

responses. Also, studies involving surface-modified and/or drug-loaded SNPs should also 

be performed to evaluate the ability of silk of acting as a drug delivery system. 
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