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Abstract. Let A and C be square complex matrices of size n, the C-determinantal range of A
is the subset of the complex plane {det (A− UCU∗) : UU∗ = In}. If A,C are both Hermitian
matrices, then by a result of M. Fiedler [11] this set is a real line segment.

In this paper we study this set for the case when C is a Hermitian matrix. Our purpose
is to revisit and improve two well-known results on this topic. The first result is due to C.-
K. Li concerning the C-numerical range of a Hermitian matrix, see Condition 5.1 (a) in [20].
The second one is due to C.-K. Li, Y.-T. Poon and N.-S. Sze about necessary and sufficient
conditions for the C-determinantal range of A to be a subset of the line, see [21, Theorem 3.3].

1. Introduction

Let Mn be the algebra of n×n complex matrices, Un be the group of n×n unitary matrices
and Sn be the symmetric group of degree n. Let A,C ∈Mn.

Definition 1.1. The C-determinantal range of A is the subset of the complex plane denoted
and defined by

4C(A) = {det (A− UCU∗) : U ∈ Un}
and the C-determinantal radius of A is

dC(A) = max{|z| : z ∈ 4C(A)}.

The set 4C(A) is compact and connected, but in general it is not convex (see for instance
[2, Example 2]) and it may not be simply connected [1]. It is clear that 4A(C) = (−1)n4C(A)
and this set is unitarily invariant, that is,

4C(A) = 4V CV ∗(UAU
∗)

for any U, V ∈ Un.

Definition 1.2. The σ-points of 4C(A) are defined by

zσ =
n∏
i=1

(αi − γσ(i)), σ ∈ Sn,

where α1, . . . , αn and γ1, . . . , γn are the eigenvalues of A and C, respectively.

It is easy to see that all the (not necessarily distinct) n! σ-points belong to 4C(A).
The characterization of the C-determinantal range of A for Hermitian matrices A and C was

obtained by M. Fiedler [11], who proved that 4C(A) is a real line segment, whose endpoints
are the minimal and maximal σ-points of 4C(A).

The C-determinantal range of A is intimately connected with a famous conjecture of M. Mar-
cus [22] and G. N. de Oliveira [24], which can be reformulated as follows: for normal matrices
A,C ∈Mn it holds that 4C(A) is a subset of the convex hull of the σ-points zσ, σ ∈ Sn. This

Key words and phrases. C-Determinantal range, C-numerical range, Marcus-Oliveira conjecture, σ-points,
real sets

2010 Mathematics Subject Classification. 15A15, 15A60, 15A86 .
1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/32245061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 GUTERMAN, LEMOS, AND SOARES

conjecture was proved for n ≤ 3 and for particular classes of matrices (see [2, 3, 5, 10] and
references therein).

The set 4C(A) can be considered as a variation of the well-known C-numerical range of A,

WC(A) = {Tr (AUCU∗) : U ∈ Un},

which reduces to the classical numerical range W (A) when C = diag (1, 0, . . . , 0).
The numerical range and its generalizations are related to and have applications in several

branches of both pure and applied science. For some incidences of this versatile algebraic tool
in quantum theory and related problems, see [6, 12, 15, 18, 25].

The main goal of this paper is to investigate the case when the C-determinantal and C-
numerical ranges are real. In particular, we revisit and improve two well-known results on this
topic. The first result is due to C.-K. Li and concerns the C-numerical range of a Hermitian
matrix. In [20, condition 5.1 (a)] it is stated, without a proof, that if C is a real diagonal matrix,
then WC(A) ⊂ R if and only if A is Hermitian. We show that the above equivalence is not
true in general and provide the corresponding counterexamples. Moreover, we find a correct
criteria by showing that WC(A) is real if and only if one of the following conditions holds: (i)
A is Hermitian or (ii) TrC = 0 and ImA is a nonzero scalar matrix.

The second result under consideration is due to C.-K. Li, Y.-T. Poon and N.-S. Sze about
necessary and sufficient conditions for the C-determinantal range of A to be a line segment or
a singleton, see [21, Theorems 3.2 and 3.3]. In this paper we characterize matrices A and C for
which C-determinantal range of A is a subset of the real line. Note that our situation is more
specific since in this case 4C(A) is automatically either a singleton or a segment, belonging to
the real line.

In addition [21, Theorem 3.3] (see also Theorem 4.2 in this paper) contains an equivalence
between the fact that the set 4C(A) is a line segment which is not a singleton and the set of
conditions (see items c1, c2, c3 of Theorem 4.2) concerning the spectrum of A and C. Here
we obtain a short direct proof of the following implication: the set 4C(A) is a line segment
which is not a singleton together with the additional assumption that there are no zero σ-points
implies just one of the conditions from the above set, namely condition c1 stating that A and
C are both normal matrices.

The paper is organized as follows. In Section 2, we derive some consequences from the
elliptical range theorem which characterizes the C-determinantal range in the 2 × 2 case. In
Section 3, the conditions for the C-numerical range to be real, when C is assumed to be
Hermitian, are investigated. We also study in this section the analogous case for 4C(A). In
Section 4, we provide necessary and sufficient conditions for 4C(A) to be a nondegenerated
real line segment.

2. Some Consequences of the Elliptical Range Theorem

The following result called the Elliptical Range Theorem for the C-determinantal range pro-
vides a complete geometric description of this set for arbitrary 2-square complex matrices [7].

Theorem 2.1. Let A,C ∈M2 have eigenvalues α1, α2 and γ1, γ2, respectively. Then 4C(A) is
an elliptical disc with foci (α1−γ1)(α2−γ2) and (α1−γ2)(α2−γ1), and minor semi-axis of length
ac − bd, where a ≥ b and c ≥ d are the singular values of A − 1

2
Tr (A) I2 and C − 1

2
Tr (C) I2,

respectively. In particular,

(a) 4C(A) is a singleton if and only if A or C is a scalar matrix;
(b) 4C(A) is a nondegenerated line segment if and only if A and C are nonscalar normal

matrices.
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Next, some easy consequences are derived from the Elliptical Range Theorem.

The Frobenius norm of A ∈Mn is defined by

‖A‖2 =
√

Tr (A∗A).

If A ∈M2 is a nilpotent matrix then the classical numerical range W (A) is the circular disc
centered at the origin with radius ‖A‖2. If C ∈ M2 has rank one and is not nilpotent, then
W (C) is a nondegenerated elliptical disc, its foci are 0 and γ, its major and minor axis have

lengths ‖C‖2 and
√
‖C‖2

2 − |γ|2, respectively, where γ is the nonzero eigenvalue of C.
If A,C ∈ M2 and A is nilpotent, then 0 is the only eigenvalue of A. It follows readily from

Theorem 2.1 that 4C(A) is a circular disc centered at the determinant of C.

Corollary 2.2. Let A,C ∈ M2 and A be a nonzero nilpotent matrix. If C has rank one, then
4C(A) is a nondegenerated circular disc centered at the origin. If additionally

i. C is not nilpotent and γ is its nonzero eigenvalue, then the radius of the circular disc is

dC(A) = ‖A‖2
‖C‖2 +

√
‖C‖2

2 − |γ|2
2

;

ii. C is nilpotent, then the radius of the circular disc is equal to

dC(A) = ‖A‖2 ‖C‖2.

Proof. If A is nilpotent and C has rank one, hence C has eigenvalue 0, then it readily follows
from Theorem 2.1 that 4C(A) is a circular disc centered at the origin and dC(A) is the radius
of this disc. By Schur Triangularization Theorem [16, Theorem 2.3.1], the matrices A and C
are unitarily similar to

A′ =

[
0 α
0 0

]
, α 6= 0, and C ′ =

[
0 β
0 γ

]
, (β, γ) 6= (0, 0),

respectively. Since the spectrum of XY is equal to the spectrum of Y X for any square matrices
X, Y , it is easy to see that the singular values of A and C − 1

2
Tr (C) I2 coincide with those of

A′ and C ′ − γ
2
I2, respectively. The nonzero singular value a of A′ is equal to |α| = ‖A‖2. The

greatest singular value c of C ′ − γ
2
I2 is given by the square root of

(1)
|β|2

2
+
|γ|2

4
+

1

2

√
|β|4 + |β|2|γ|2.

Clearly,

‖C‖2
2 = Tr(C ′∗C ′) = |β|2 + |γ|2 6= 0 and

√
‖C‖2

2 − |γ|2 = |β| 6= 0

Hence, (1) can be written as
|β|2 + ‖C‖2

2 + 2 |β| ‖C‖2

4

and the singular value c of C is the nonzero semi-sum of ‖C‖2 and
√
‖C‖2

2 − |γ|2.

i. If C is not nilpotent, then γ is its nonzero eigenvalue and we get the expression for dC(A).
ii. If C is nilpotent, then γ = 0 and |β| = ‖C‖2. In this case, the radius of the circular disc

dC(A) reduces to ‖A‖2‖C‖2. �

A useful technique in the theory of numerical ranges is to reduce problems to the 2× 2 case.
For instance, the convexity of W (A) can be proved using such a reduction. The study of the
C-determinantal range is obviously much more complicated. Nevertheless, the lemma below
(see [13, Lemma 2.2] for a proof) provides an efficient reduction tool that together with the
Elliptical Range Theorem can lead to some interesting results.
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Let spec (X) denote the family of all the eigenvalues of X ∈ Mn, repeated according to
their multiplicities. For A,C ∈ Mn with spec (A) = {α1, . . . , αn}, spec (C) = {γ1, . . . , γn} and
σ ∈ Sn, by Schur Triangularization Theorem, A and C are unitarily similar to upper triangular
matrices

(2) A′ =

[
A1 A3

0 A2

]
and C ′ =

[
C1 C3

0 C2

]
with the main diagonals (α1, . . . , αn) and

(
γσ(1), . . . , γσ(n)

)
, respectively, where A1, C1 ∈ M2

and A2, C2 ∈Mn−2 are upper triangular.

Lemma 2.3. [13, Lemma 2.2] Let A,C ∈Mn and σ ∈ Sn. If A′, C ′ are as above, then

(3)
n∏
i=3

(αi − γσ(i))4C1 (A1) ⊆ 4C(A),

where the upper triangular submatrices A1, C1 ∈ M2 of A′, C ′ have eigenvalues α1, α2 and
γσ(1), γσ(2), respectively.

Lemma 2.4. [23, Lemma 1] If A ∈Mn is a non-normal matrix, then A is unitarily similar to
an upper triangular matrix with nonzero entry at the position (1, 2).

Theorem 2.5. Let A ∈ Mn be a nilpotent nonzero matrix and C ∈ Mn be a matrix of rank
n− 1. Then 0 is an interior point of 4C(A).

Proof. Since rank (C) = n− 1, we may conclude that 0 is a simple eigenvalue of C. Therefore,
using Schur Triangularization Theorem and the invariance of 4C(A) under unitary similarity
transformations of C, without loss of generality, we may assume that C is an upper triangular
matrix with main diagonal (0, γ2, . . . , γn) and γi 6= 0, i = 2, . . . , n.

Since A is non-normal and nilpotent, by Lemma 2.4 and the unitary invariance of 4C(A),
we may assume A in upper triangular form with nonzero (1, 2) entry and (0, 0, . . . , 0) in the
main diagonal. By Lemma 2.3, the inclusion (3) holds where A1, C1 ∈M2 are upper triangular
matrices which have eigenvalues 0, 0 and 0, γ2, respectively.

Since the (1, 2) entry of the nilpotent matrix A is nonzero, then the submatrix A1 is a nonzero
nilpotent matrix. Since γ2 6= 0, then C1 has rank 1. Hence, by Corollary 2.2 the set 4C1(A1) is
a circular disc centered at the origin and dC1(A1) 6= 0. We may conclude that 0 is an interior
point of 4C(A), because the product

∏n
i=3 γi does not vanish. �

Denote the boundary of 4C(A) by ∂4C (A). In the subsequent discussion, we need the
notion of a corner point. We present the formal definition taken from [4].

Definition 2.6. We call z ∈ ∂4C (A) a corner point of 4C(A) if there exists a ball, B(z, ε),
with center at z and radius ε, such that B(z, ε)∩4C(A), for ε > 0 sufficiently small, is contained
in a sector limited by two straight lines intersecting at z defining an angle strictly smaller than
π.

The following important fact concerning a corner point is needed below.

Theorem 2.7. [21, Theorem 3.10] Let A,C ∈ Mn. Then every corner of 4C(A) is a σ-point
of 4C(A).

Corollary 2.8. Under the hypothesis of Theorem 2.5, there are no corners on the boundary of
4C(A).
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Proof. If there exists a corner z of 4C(A), then z is a σ-point of 4C(A). However, all the
σ-points of4C(A) are equal to 0, because A is nilpotent and rank (C) = n−1. This contradicts
the fact proved in Theorem 2.5 that 0 is an interior point of 4C(A). �

In [21, Theorem 3.3] (see also Theorem 4.2 in this paper), Li, Poon, and Sze contains an
equivalence between the fact that the set 4C(A) is a line segment which is not a singleton and
the set of conditions (see items c1, c2, c3 of Theorem 4.2) concerning the spectrum of A
and C. Here we obtain a short direct proof of the following implication: the set 4C(A) is a
line segment which is not a singleton together with the additional assumption that there are
no zero σ-points implies just one of the conditions from the above set, namely condition c1
stating that A and C are both normal matrices. We use the reduction to the 2× 2 case.

Theorem 2.9. Let A,C ∈Mn be nonscalar matrices. Suppose zσ 6= 0 for all σ ∈ Sn. If 4C(A)
is a line segment, then A and C are both normal matrices.

Proof. If we assume that neither A nor C is normal, then by Lemma 2.4 both matrices A,C are
unitarily similar to upper triangular matrices A′, C ′ with nonzero entry at the position (1, 2).
By Lemma 2.3, having in mind that all the σ-points are assumed to be nonzero, the inclusion

(4)
n∏
i=3

(αi − γi) 4C1 (A1) ⊂ 4C(A)

holds, where αi, γi, i = 1, . . . , n, are the eigenvalues of A,C and A1, C1 ∈ M2 are the leading
2 × 2 principal submatrices of A′, C ′, respectively. Since A1, C1 are both non-normal, by the
Elliptical Range Theorem, 4C1(A1) is a nondegenerated elliptical disc. The hypothesis that
4C(A) is a line segment and the previous inclusion (4) implies that 4C1(A1) is contained in a
fixed line, which is a contradiction. Then at least one of the matrices A,C is normal.

Suppose C is normal and A is non-normal, otherwise interchange A and C. If A is non-normal,
then by Lemma 2.4 A is unitarily similar to an upper triangular matrix A′ with nonzero entry
at the position (1, 2) and main diagonal (α1, . . . , αn). If C is normal, then for any permutation
σ ∈ Sn the matrix C is unitarily similar to the diagonal matrix Cσ with the main diagonal(
γσ(1), . . . , γσ(n)

)
. By Lemma 2.3, the inclusion

Γσ =
n∏
i=3

(αi − γσ(i)) 4C1σ (A1) ⊂ 4C(A)

holds where A1, C1σ ∈ M2 are the leading 2 × 2 principal submatrices of A′, Cσ, respectively.
From the hypothesis, we find that Γσ is contained in a fixed line and since all the σ-points are
assumed to be nonzero, then 4C1σ(A1) is contained in a fixed line. Since A1 is non-normal, it
follows by the Elliptical Range Theorem that 4C1σ(A1) is a singleton and hence C1σ is a scalar
matrix. Thus γσ(1) = γσ(2) holds for any σ ∈ Sn. We may conclude that all the eigenvalues of C
are equal. Since by assumption C is normal, it follows that C is a scalar matrix, a contradiction.
Hence, both A and C are normal matrices. �

3. On the C-Numerical Range and C-Determinantal Range when C is
Hermitian

For A,C ∈Mn the C-numerical range of A is given by the set

WC(A) = {Tr (AUCU∗) : U ∈ Un}.

Obviously, WA(C) = WC(A) and the unitary invariance property WC(A) = WV CV ∗(UAU
∗) for

any U, V ∈ Un holds. Westwick [27] proved that for any A ∈Mn WC(A) is a convex set, when
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C ∈ Mn is a real diagonal matrix. The σ-points of WC(A) are the elements of this set defined
by

wσ =
n∑
i=1

αi γσ(i), σ ∈ Sn,

where α1, . . . , αn and γ1, . . . , γn are the eigenvalues of A and C, respectively. If A,C ∈ Mn

are both normal matrices, then the inclusion of WC(A) in the convex hull of its σ-points wσ,
σ ∈ Sn, trivially holds [24]. It follows from Westwick’s Theorem that this inclusion becomes
equality if one of the normal matrices A,C has collinear eigenvalues. We have that WC(A) is
a singleton if and only if A or C is a scalar matrix [19, Theorem 2.5], in which case

WC(A) =

{
1

n
Tr(A)Tr(C)

}
.

In general, the set WC(A) is star-shaped with respect to the point 1
n

Tr(A) Tr(C) for any
A,C ∈Mn [8].

If C is a rank one Hermitian orthogonal projection, then WC(A) reduces to the classical
numerical range of A,

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1} .
By the celebrated Toeplitz-Hausdorff Theorem [14, 26], W (A) is a convex set. It is also called
the field of values of A (see [17, Chapter 1] for elementary properties). For instance, W (A)
contains the spectrum of A and if A is a normal matrix, then W (A) is the convex hull of the
eigenvalues of A. In addition, W (A) ⊂ R if and only if A is Hermitian.

In [23] M. Marcus and M. Sandy obtained necessary and sufficient conditions for WC(A) to
be a subset of the real line.

In [20, condition 5.1 (a)] it is stated, without a proof, that if C is a real diagonal matrix
then WC(A) ⊂ R if and only if A is Hermitian. We would like to point out that the above
equivalence is not true in general. More precisely, the fact that WC(A) ⊂ R may not guarantee
that A is Hermitian as the following counterexamples show.

Example 3.1. If C = I2 and A = diag (i,−i), then WC(A) = {0} ⊂ R and A is not Hermitian.

Example 3.2. Let C = diag (1,−1) and A = diag (1 + 3i,−2 + 3i). Then WC(A) is a line
segment joining the σ−points

w1 = 1(1 + 3i)− 1(−2 + 3i) = 3 and w2 = −1(1 + 3i) + 1(−2 + 3i) = −3.

Hence WC(A) = [−3, 3] ⊂ R and A is not Hermitian.

We need the following lemma for further considerations.

Lemma 3.3. [19] Suppose C is a nonscalar normal matrix and A is not normal. Then WC(A)
contains a nondegenerated elliptical disc.

The next theorem characterizes the case when WC(A) is a nondegenerated real line segment
for an Hermitian matrix C. So, it corrects condition 5.1 (a) in [20] and generalizes it for
non-diagonal matrices.

Let ImA = A−A∗
2i

denote the imaginary part of A.

Theorem 3.4. Let A,C ∈ Mn be nonscalar matrices and C be Hermitian. Then WC(A) ⊂ R
if and only if one of the following conditions hold:

i. A is Hermitian
ii. TrC = 0 and ImA is a nonzero scalar matrix.
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Proof. (⇒) Since C is Hermitian and WC(A) does not contain any nondegenerated elliptical
disc, then by Lemma 3.3 the matrix A is normal. Due to the unitary invariance property of
the C-numerical range, we may suppose A = diag (α1, . . . , αn) and C = diag (γ1, . . . , γn) with
γ1, . . . , γn ∈ R and γ1 6= γ2, because C is not scalar. By definition, all the σ-points wσ belong
to WC(A) ⊂ R. For each pair (i, j) with i 6= j, consider σ1, σ2 ∈ Sn such that

σ1(i) = 1, σ1(j) = 2, σ2(i) = 2, σ2(j) = 1 and σ1(k) = σ2(k), k ∈ {1, . . . , n} \ {i, j}.

Then

wσ1 − wσ2 = (αiγ1 + αjγ2)− (αiγ2 + αjγ1) = (αi − αj)(γ1 − γ2) ∈ R

and γ1 − γ2 is a non-zero real number, which implies that αi − αj ∈ R. If αj ∈ R, then

αi = (αi − αj) + αj ∈ R, i 6= j.

Therefore, A can not have simultaneously real and non-real eigenvalues. Then either all the
eigenvalues of A are real and thus the normal matrix A is Hermitian or all the eigenvalues of A
are non-real. If αi 6∈ R, i = 1, . . . , n, recalling that αi − αj ∈ R for each pair (i, j), i 6= j, then
Im (αi − αj) = 0 and so Imαi = Imαj 6= 0. We conclude that ImA is a nonzero scalar matrix,
that is,

A = A∗ + 2 i λ In

with λ = Imαi. If z ∈ WC(A), then

z = Tr (CU∗AU) = Tr (CU∗(A∗ + 2 i λ In)U) = z + 2 i λTrC

for some unitary matrix U . Since λ 6= 0, it is clear that z = z if and only if TrC = 0.
(⇐) This condition is easily obtained. �

Remark. By excluding the case when WC(A) is a singleton, the previous theorem could also
be extracted from [23, Theorem 3] in the case C is Hermitian.

Despite the similarities between WC(A) and 4C(A), some crucial differences immediately
arise and the difficulty level of C-determinantal range problems is always substantially higher.

Similarly to WC(A), when C is Hermitian, the C-determinantal range of A can be a subset
of the real line even if A is not Hermitian, as the following examples easily show.

Example 3.5. Let C = I2 and A = diag (i,−i). Then 4C(A) = {det (A − I2)} = {2} ⊂ R
and A is not Hermitian.

Example 3.6. If C = diag (2, 3) and A = diag (1 − i, 4 − i), then by Theorem 2.1 the set
4C(A) is the real line segment with endpoints −5 and −2, but A is not Hermitian.

Remark 3.7. In both these examples the eigenvalues of A and C are concyclic, i.e., they belong
to the same circle. In Example 3.5 the eigenvalues lie on a circle centered at the origin. In
Example 3.6 the eigenvalues lie on a circle centered at 5

2
− 3

2
i.

Now, let us derive conditions under which, assuming that C is Hermitian and no null σ-points
exist in 4C(A), we have that 4C(A) is real.

Let us introduce the following Möbius transformation. We denote C∞ = C ∪ {∞}.
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Definition 3.8. For z1, z2, z3, z4 ∈ C∞ define the Möbius transformation S : C∞ → C∞ by

S(z) =
(z − z3)(z2 − z4)

(z − z4)(z2 − z3)
if z2, z3, z4 ∈ C;

S(z) =
z − z3

z − z4

if z2 =∞;

S(z) =
z2 − z4

z − z4

if z3 =∞;

S(z) =
z − z3

z2 − z3

if z4 =∞.

Remark 3.9. If z2, z3, z4 ∈ C, then we clearly have

(5) S(z2) = 1, S(z3) = 0 and S(z4) =∞,
and S is the unique Möbius transformation which satisfies (5).

Definition 3.10. The cross ratio of z1, z2, z3, z4 ∈ C∞ is the image of z1 under the unique
Möbius transformation S, satisfying (5).

Lemma 3.11. [9] Let z1, z2, z3, z4 be four distinct points in C∞. The cross ratio of z1, z2, z3, z4

is a real number if and only if z1, z2, z3, z4 belong to the same straight line or to the same circle.

Lemma 3.12. [3, Theorem 3] If A,C ∈ Mn are diagonal matrices and their eigenvalues have
the same modulus, then 4C(A) is a line segment.

Theorem 3.13. Let A,C ∈ Mn be nonscalar matrices. Suppose zσ 6= 0 for all σ ∈ Sn and C
is Hermitian. Then 4C(A) ⊂ R if and only if f the following conditions hold:

i. A is Hermitian
ii. A is normal with the eigenvalues of A and C concyclic, and zσ ∈ R for all σ ∈ Sn.

Proof. Let C ∈Mn be Hermitian.
(⇐) If A is Hermitian too, then by Fiedler’s result 4C(A) is a real line segment.
If A is a nonscalar and normal matrix with the eigenvalues α1, . . . , αn of A and γ1, . . . , γn

of C concyclic, that is, |αi − µ| = |γi − µ| 6= 0 for some scalar µ, then the eigenvalues of the
unitarily diagonalizable matrices Aµ = A − µIn and Cµ = C − µIn have the same modulus.
By the unitarily invariance property of the determinantal range and by Lemma 3.12 we have
that 4C(A) = 4Cµ(Aµ) is a line segment. By Lemma 2.7 the endpoints of this segment are
σ-points, which are assumed to be real, then 4C(A) ⊂ R.

(⇒) Under the hypothesis, all the σ-points of 4C(A) are nonzero and 4C(A) is contained
in the real line. By Theorem 2.9 the matrix A must be normal.

(i) If the normal matrix A only has real eigenvalues, then A is Hermitian.
(ii) Suppose the opposite, say α1 is a non-real eigenvalue of A. Let γ1 be one of the eigenvalues

of C. If all the eigenvalues of the normal matrix A were equal, then A was scalar, contradicting
the hypothesis. Let α2 be any eigenvalue of A distinct from α1. The Hermitian matrix C is
also assumed nonscalar, so let γ2 be any eigenvalue of C distinct from γ1. The cross ratio
of α1, α2, γ1, γ2 is S(α1), where S is the unique Möbius transformation such that S(α2) = 1,
S(γ1) = 0 and S(γ2) =∞. All the σ-points belong to 4C(A), so that they are all real. Then

(6) S(α1) =
(α1 − γ1)(α2 − γ2)

(α1 − γ2)(α2 − γ1)
=

z id

zτ
∈ R, where τ = (12).
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Since α1, α2, γ1, γ2 are four distinct points in C∞ which are not collinear, by Lemma 3.11 we
conclude that they must belong to the same circle. Hence, all the eigenvalues of A and C are
concyclic. �

4. When is the C-Determinantal Range of A Real?

In this section we characterize the matrices A and C for which the C-determinantal range of
A is a subset of the real line. To accomplish this task, we revisit [21, Theorem 3.3].

In [21] C.-K. Li, Y.-T. Poon and N.-S. Sze characterized matrices A,C ∈ Mn for which
4C(A) is a singleton.

Theorem 4.1. [21, Theorem 3.2] If A,C ∈Mn and n ≥ 3, then the C-determinantal range of
A is a singleton if and only if one of the following two possibilities hold:

(a) rank(A− µIn) + rank(C − µIn) < n for some µ ∈ C, in which case 4C(A) = {0};
(b) A or C is a scalar matrix, in which case 4C(A) = {det (A− C)}.

In the same paper they characterized matrices A,C ∈ Mn for which 4C(A) is a segment
which does not reduce to a singleton.

For simplicity, the following notation will be used below: Xµ = X − µIn for any X ∈ Mn

and µ ∈ C.

Theorem 4.2. [21, Theorem 3.3] Let A,C ∈Mn be such that 4C(A) is not a singleton. Then
the following conditions are equivalent:

(a) 4C(A) has empty interior;
(b) 4C(A) is a nondegenerated line segment;
(c) There are at least two distinct σ-points and one of the following conditions holds:

c1. A and C are normal with eigenvalues lying in the same straight line or circle;
c2. there exists µ ∈ C such that one of the matrices Aµ or Cµ is rank one normal, the

other is invertible normal and its inverse has collinear eigenvalues;
c3. there exists µ ∈ C such that Aµ and Cµ are unitarily similar to Ã⊕0n−k and 0k⊕C̃,

respectively, with Ã ∈Mk and C̃ ∈Mn−k invertible.

The main result of this section is the following more delicate criteria which provides the
characterization of the situation when 4C(A) ⊂ R. Note that this situation is more specific
since in this case 4C(A) is automatically either a singleton or a segment, belonging to the real
line.

Theorem 4.3. Let A,C ∈ Mn be such that 4C(A) has at least two distinct σ-points. Then
4C(A) ⊂ R if and only if one of the following conditions holds for some complex number µ:

i. A,C are normal matrices and there exists k ∈ {0, 1, . . . , n− 1} such that

spec (A⊕ C) ⊂ {µ+ rei
k π
n : r ∈ R};

ii. A,C are normal matrices with eigenvalues in the same circle centered at µ and∑
λ∈ spec (A⊕C)

arg (λ− µ) =

{
0, n even
π, n odd

(mod 2π);

iii. µ ∈ spec (A) ∩ spec (C) is an eigenvalue of A⊕ C of multiplicity n and∑
λ∈ spec (A⊕C)\{µ}

arg (λ− µ) = 0 (modπ).
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Proof. Since4C(A) has at least two distinct σ-points, then it is not a singleton. If4C(A) ⊂ R,
then 4C(A) has empty interior and by Theorem 4.2 it is a nondegenerated line segment, such
that one of the conditions c1, c2 or c3 of Theorem 4.2 holds.

Suppose that c1 holds. If A,C are normal matrices, then without loss of generality we may
consider A = diag (α1, . . . , αn) and C = diag (γ1, . . . , γn). Since the eigenvalues of A,C are
located in the same straight line or the same circle, we divide the proof into two cases.

First Case: Assume that all the eigenvalues lie in the same straight line, that is, there exists
µ ∈ C and θ ∈ [0, π[ such that either arg (λ−µ) = θ or arg (µ−λ) = θ for any λ ∈ spec (A⊕C).
Then

e−iθAµ = diag (εα1|α1 − µ|, . . . , εαn|αn − µ|) ,

e−iθ Cµ = diag (εγ1|γ1 − µ|, . . . , εγn|γn − µ|) ,
where ελ = 1 if arg (λ − µ) = θ and ελ = −1 if arg (µ − λ) = θ, are both Hermitian matrices.
By Fiedler’s result 4e−iθCµ(e

−iθAµ) is a real line segment, but from the equality

(7) einθ4e−iθCµ
(
e−iθAµ

)
= 4Cµ(Aµ) = 4C(A)

and the assumption 4C(A) ⊂ R, we find that θ = k π
n

for some k ∈ {0, 1, . . . , n − 1}, that is,
condition i. holds.

Second Case: Assume that all the eigenvalues lie in the same circle centered at µ, that is,
|αj−µ| = |γj−µ| = ρ, j = 1, . . . , n. Let θj = arg (αj−µ) and ηj = arg (γj−µ), j = 1, . . . , n.
Then

Aµ = ρ diag
(
eiθ1 , . . . , eiθn

)
, Cµ = ρ diag

(
eiη1 , . . . , eiηn

)
and it is easy to see that AµA

∗
µ = C∗µCµ = ρ2In. Therefore,

(8) Aµ(A∗µ − UC∗µU∗)(UCµU∗) = AµA
∗
µUCµU

∗ − AµUC∗µCµU∗ = −ρ2 (Aµ − UCµU∗)

for any U ∈ Un. Consider a nonzero arbitrary point z ∈ 4C(A). Since 4C(A) = 4Cµ(Aµ), we
have z = det (Aµ − UCµU∗) for some U ∈ Un. From (8) by the properties of the determinant,
we get

(9) det (Aµ) z det (Cµ) = (−1)nρ2n z.

By the hypothesis 4C(A) ⊂ R, we have z = z. The matrices A,C are nonscalar, hence ρ 6= 0.
By evaluating the determinant of AµCµ, we find from (9) that eiθ1 · · · eiθn eiη1 · · · eiηn = (−1)n.
Therefore,

n∑
j=1

θj + ηj

is either 0 (mod 2π), when n is even, or π (mod 2π), when n is odd, and ii. holds.

Assume now that c2 in Theorem 4.2 holds. Suppose that Aµ is a rank one normal matrix
and Cµ is an invertible normal matrix whose inverse has collinear eigenvalues for some µ ∈ C.
Otherwise, interchange Aµ and Cµ. The set 4C(A) = 4Cµ(Aµ) is not a singleton, then Aµ, Cµ
are not scalar. If Aµ has rank 1, Cµ is invertible and Aµ, Cµ are both normal matrices, by the
unitary invariance of the C-determinantal range, we may assume without loss of generality that

Aµ = diag (α1 − µ, 0, . . . , 0), Cµ = diag (γ1 − µ, . . . , γn − µ)

with α1 6= µ, γj 6= µ, j = 1, . . . , n, and γ1 − µ 6= γ2 − µ. Hence the leading 2-square principal
submatrices A′µ of Aµ and C ′µ of Cµ are nonscalar diagonal matrices. By the Elliptical Range
Theorem, 4C′µ(A′µ) is a nondegenerated line segment with endpoints

((γ1 − µ)− (α1 − µ)) (γ2 − µ) and ((γ2 − µ)− (α1 − µ)) (γ1 − µ).
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By Lemma 2.3, we have

Υ =
n∏
i=3

(γi − µ) 4C′µ (A′µ) ⊆ 4Cµ(Aµ).

By hypothesis, the eigenvalues (γi − µ)−1 of C−1
µ are collinear, then there exists θ ∈ [0, π[ such

that either arg (γj−µ) = θ or arg (µ−γj) = θ, j = 1, . . . , n, and e−iθCµ is Hermitian. Moreover,

(10) e−inθ Υ ⊆ 4e−iθCµ
(
e−iθAµ

)
= e−inθ4C (A) ⊂ e−inθR

and e−inθ Υ is the line segment with endpoints of the form

det (e−iθCµ)− |α1 − µ|
det (e−iθ Cµ)

εγj |γj − µ|
e i(κ−θ), j = 1, 2,

where εγj = 1 if arg (γj−µ) = θ, εγj = −1 if arg (µ− γj) = θ, κ = arg (α1−µ) and det (e−iθCµ)

is a nonzero real number. We find that κ = θ (mod π), otherwise e−inθ Υ would be a segment of
a line not passing through the origin, contradicting the inclusion (10). Hence the matrix e−iθAµ
is Hermitian too. As in the proof above of the First Case, it follows from Fiedler’s result, the
equality (7) and the hypothesis 4C(A) ⊂ R that i. holds.

At last, assume that c3 in Theorem 4.2 holds. If there exists µ ∈ C, such that Aµ is unitarily

similar to Ã ⊕ On−k and Cµ is unitarily similar to Ok ⊕ C̃ with Ã ∈Mk, C̃ ∈Mn−k invertible,

then det
(
ÃC̃
)
6= 0 and µ is an eigenvalue of A and C of multiplicity n−k and k, respectively. By

[21, Lemma 3.6] the set 4Cµ(Aµ) = 4C(A) is the line segment joining 0 and (−1)n−kdet (ÃC̃)

and by the hypothesis this nondegenerated line segment is real. Hence, det (ÃC̃) given by∏
λ∈ spec (A⊕C)\{µ}

(λ− µ)

must be a nonzero real number and iii. holds.

Conversely, if one of the conditions i., ii. or iii. holds, then by Theorem 4.2 we have that
4C(A) is a nondegenerated line segment and it is easy to see that this line segment is real. �

Corollary 4.4. Let A,C ∈Mn be such that 4C(A) ⊂ R. Then there exists a complex scalar µ
such that AµCµ has real determinant.

Proposition 4.5. Let A,C ∈Mn be nonsingular and Λ be the sum of the arguments of all the
eigenvalues of A and C. Then 4C−1(A−1) ⊂ R if and only if 4C(A) ⊂ eiΛ R.

Proof. For the sake of simplicity, we denote the product UCU∗ by CU when U ∈ Un. As a
consequence of the identity A

(
A−1− C−1

U

)
CU = − (A− CU) , we have

det (A) det (CU) det (A−1− C−1
U ) = (−1)n det (A− CU)

for any U ∈ Un. Since A,C are nonsingular, then det (A) det (CU) = det (AC) is a nonzero
number. From the equality

det (AC) 4C−1 (A−1) = (−1)n4C (A),

we easily find that 4C−1(A−1) ⊂ R is equivalent to 4C(A) ⊂ det (AC)R or to 4C(A) ⊂ eiΛ R,
because det (AC) has argument equal to Λ. �
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