
A Maritime Inventory Routing Problem with Stochastic Sailing and

Port Times

Agra, Agostinho

aagra@ua.pt

Christiansen, Marielle

mc@iot.ntnu.no

Delgado, Alexandrino

alexandrino.delgado@docente.unicv.edu.cv

Hvattum, Lars Magnus

lars.m.hvattum@iot.ntnu.no

30 May 2013

Abstract

We consider a stochastic short sea shipping problem where a company is responsible for
both the distribution of oil products between islands and the inventory management of those
products at unloading ports. Ship routing and scheduling is associated to uncertainty in weather
conditions and unpredictable waiting times in ports, and in this work, both sailing times and
port times are considered to be stochastic parameters.

A two-stage stochastic programming model with recourse is presented where the first-stage
consists of routing, loading and unloading decisions, and the second stage consists of scheduling
decisions. The model is solved using a decomposition approach similar to an L-shaped algorithm
where optimality cuts are added dynamically, and this solution process is embedded within the
sample average approximation method. A computational study based on ten real-world instances
is presented.

Keywords: Stochastic programming; Maritime transportation; Uncertainty; L-shaped method;
Sample average approximation; Travel time; Service time.

1 Introduction

Maritime transportation is characterized by high levels of uncertainty. In practice, operational
plans are often adjusted due to factors such as changing weather conditions, ports congestions, or
mechanical problems at port. A plan that minimizes the transportation and port costs based on
expected sailing and port times may not necessarily be good, as it does not account for consequences
resulting from delays. Hence, in most practical situations it will be beneficial to consider the
possibility of delays when trying to minimize costs.

In this paper we consider a maritime inventory routing problem occurring at the archipelago
of Cape Verde. A deterministic variant of this problem was solved to optimality in [1] for short
time horizons. Heuristics for the same problem with time horizons up to 6 months were developed
in [2]. The deterministic methods assume known and fixed sailing times, but the planner needs
to face the uncertainty associated with the ships sailing between ports. This may somehow be
circumvented by the inclusion of safety stocks at inventories or by artificially increasing the sailing
times to compensate for delays. However, in this paper we consider explicitly uncertainty in both
sailing times between ports and waiting times at ports, over a short time horizon. Bad weather

1



can lead to both longer sailing and port times. The ports are used by several independent shipping
companies, and limited coordination between the various operators can result in heavy port con-
gestion. This may come from limited capacities in the inner port area, at berths, and of pipes and
other important equipment for performing the (un-)loading operations. In addition, delays may
occur due to mechanical problems at port. By taking this into account, good distribution plans
can be found that explicitly takes into account the real possibility of violating inventory limits at
production or consumption ports.

This paper describes a stochastic programming model with recourse where the routes and the
quantities to load and unload must be fixed a priori, that is, before actual values of the uncertain
parameters are revealed, while the schedule of the loading and unloading operations can be adjusted
according to the observed sailing and port times.

The solution method combines the use of the sample average approximation method with a
decomposition procedure resembling an L-shaped method [5, 11]. For a given set of scenarios, the
corresponding two-stage model is solved to obtain a candidate solution. This is repeated for several
different sets of scenarios to obtain several candidate solutions. To choose the best solution, these
candidate solutions are evaluated for a larger and independent set of scenarios. To solve the two-
stage model for a given set of scenarios, the problem is decomposed into a master problem and one
subproblem for each scenario, where the second-stage decisions are considered in the subproblems.
We show that feasibility is always guaranteed for the solution obtained in the first stage. Then
we show how to derive optimality cuts from the subproblems that are added dynamically to the
master problem.

The remainder of this paper is organized as follows. In Section 2 we describe the real problem
and review some relevant literature. Then, in Section 3 we present a scenario based mathematical
formulation for the problem. The solution approach based on decomposing the problem is discussed
in Section 4. In Section 5 we describe how the stochastic sailing and port times have been modeled,
and how scenarios have been generated. Section 6 contains computational results for ten real-world
instances, and in Section 7 we present the main conclusions of this work.

2 Problem description and literature review

In Cape Verde, fuel oil products are imported and delivered to specific islands and stored in large
supply storage tanks. From these islands, fuel oil products are distributed among all inhabited
islands using a small heterogeneous fleet of ships. Products are stored in separate consumption
storage tanks with limited capacity. Some ports have both supply tanks for some products and
consumption tanks for other products. As the capacities of the supply tanks are very large compared
to the total consumption over the planning horizon, the inventory aspects for these tanks can be
ignored. Not all islands consume all products. Consumption rates are assumed to be constant over
the time horizon. Each port can receive at most one ship at a time, and in some ports there exists
a minimum time interval between the departure of one ship and the arrival of the next ship.

Each ship has a specified capacity, fixed speed, and cost structure. The cargo hold of each ship
is separated into several cargo tanks. The products cannot be mixed, so we assume that the ships
have dedicated tanks for the particular products. The ships are either sailing, waiting outside a
port or operating. Here, operating is the common term for loading and unloading.

At port, we consider set-up times for the coupling and decoupling of pipes and operation times
which depend on the amount loaded or unloaded. Minimum and maximum unloading quantities

2



can be derived. The maximum unloading quantity is imposed by the inventory capacity at the
consumption port and by the ship cargo tank capacity.

The driving force in the problem is the need for fuel oil products in the consumption storage
tanks. If the demand is not satisfied, the backlogged demand will be penalized by a cost.

The traveling times depend upon the weather conditions and are considered stochastic. The
uncertain time parameter at port is manly related to the time from arrival to start of operation.
Hence, a specified waiting time before start of service is defined as stochastic, while the operation
times are deterministic.

The inter-island distribution plan consists of routes and schedules for the fleet of ships, and
describes the number of visits to each port and the quantity of each product to be loaded or
unloaded at each port visit. This plan must satisfy the capacities of the ships and consumption
inventories while minimizing the sailing and port costs as well as the expected penalty costs of
backlogged demand. There is great flexibility in the route pattern of a ship, such that a ship may
visit several loading ports as well as unloading ports in succession and the quantities loaded or
unloaded are variable as well as the number of visits at each port. The problem described here will
be referred to as a stochastic maritime inventory routing problem (SMIRP), and a scenario based
stochastic programming model for the problem is given in Section 3.

The amount of literature on maritime transportation optimization has increased steadily over
the last decades, as evidenced through the recent survey in [7]. Despite being a transportation mode
that is heavily influenced by uncertainty, most of the literature on maritime routing and scheduling
involves solving static and deterministic problem variants. However, some contributions exist, and
we describe some that are considering problems close to the stochastic maritime inventory routing
problem of this paper.

An inventory routing problem with uncertain demands and sailing times was solved heuristi-
cally by Cheng and Duran [6]. Rakke et al. [17] and Sherali and Al-Yakoob [18, 19] introduce
penalty functions for deviating from the customer contracts and the inventory limits, respectively.
Christiansen and Nygreen [8] introduce soft inventory levels to handle uncertainties in sailing and
port times, and these levels are transformed into soft time windows.

Agra et al. [3] solved a full-load ship routing and scheduling problem with uncertain travel
times using robust optimization. Weather conditions affect both sailing speeds and the loading
and unloading operations for supply vessels servicing offshore installations, and various heuristic
strategies to achieve robust weekly voyages and schedules were analyzed by Halvorsen-Weare and
Fagerholt [9]. Heuristic strategies for obtaining robust solutions with uncertain sailing times was
also discussed by Halvorsen-Weare et al. [10] for the delivery of liquefied natural gas. None of
the aforementioned research has used stochastic programming to model uncertain sailing and port
times.

A stochastic model for a particular version of the vehicle routing problem (VRP) with stochastic
travel times was presented by Lambert et al. [14], and a heuristic solution method was proposed.
Considering a VRP with stochastic travel times and service times, Laporte et al. [15] presented
a chance constrained formulation as well as two recourse formulations. The recourse problem was
solved to optimality for up to 20 nodes and 5 scenarios using an integer L-shaped method. The VRP
with stochastic travel and service times was also studied by Kenyon and Morton [13], considering
stochastic programming models that minimized the expected completion time or maximized the
probability of completing the routes within a given deadline. An integer L-shaped algorithm was
used by Teng et al. [20] to solve a time-constrained traveling salesman problem with stochastic

3



travel and service times with up to 35 nodes. Although these papers present stochastic programming
models for routing problems with uncertain travel times and service times, they do not consider
heterogeneous fleets, a variable number of visits, nor inventory constraints.

3 Mathematical Model

In this section we introduce a two-stage stochastic programming model with recourse for the SMIRP
problem. The routes and the quantities to load and unload are determined in the first stage.
However, the schedule of the loading and unloading operations can be adjusted in the second stage.
Thus, also the inventory level variables are allowed to change according to the realization of the
stochastic parameters. In the following we first describe the variables and constraints related to
the first stage (Section 3.1), and then the variables and constraints related to the second stage
(Section 3.2).

3.1 First stage

First we model the routing and the loading and unloading constraints.

Routing constraints:

Let V denote the set of ships. Each ship v ∈ V must depart from its initial position in the beginning
of the planning horizon. For each port we consider an ordering of the visits accordingly to the time
of visit. The ship paths are defined on a network where the nodes are represented by a pair (i,m),
where i is the port and m is the mth visit to port i. A direct ship movement (arc) from port arrival
(i,m) to port arrival (j, n) is represented by (i,m, j, n).

We define SA as the set of possible port arrivals (i,m), SA
v as the set of port arrivals that may

be visited by ship v, SX as the set of all possible ship movements (i,m, j, n), and set SX
v as the set

of all possible movements of ship v. The set of ships that can visit port i is denoted Vi.
For the routing we define the following binary variables: ximjnv that is 1 if ship v sails from

port arrival (i,m) directly to port arrival (j, n), and 0 otherwise; xOimv that indicates whether ship
v sails directly from its initial position to port arrival (i,m) or not; wimv is 1 if ship v visits port
i at arrival (i,m), and 0 otherwise; zimv is equal to 1 if ship v ends its route at port arrival (i,m),
and 0 otherwise; zOv is equal to 1 if ship v is not used and 0 otherwise; yim indicates whether a ship

4



is visiting port arrival (i,m) or not.

∑

(i,m)∈SA
v

xOimv + zOv = 1, v ∈ V, (1)

wimv −
∑

(j,n)∈SA
v

xjnimv − xOimv = 0, v ∈ V, (i,m) ∈ SA
v , (2)

wimv −
∑

(j,n)∈SA
v

ximjnv − zimv = 0, v ∈ V, (i,m) ∈ SA
v , (3)

∑

v∈Vi

wimv = yim, (i,m) ∈ SA, (4)

yi(m−1) − yim ≥ 0, (i,m) ∈ SA : m > 1, (5)

xOimv, wimv , zimv ∈ {0, 1}, v ∈ V, (i,m) ∈ SA
v , (6)

ximjnv ∈ {0, 1}, v ∈ V, (i,m, j, n) ∈ SX
v , (7)

zOv ∈ {0, 1}, v ∈ V, (8)

yim ∈ {0, 1}, (i,m) ∈ SA. (9)

Equations (1) ensure that each ship either departs from its initial position and sails towards another
port or the ship is not used. Equations (2) and (3) are the arc flow conservation constraints, ensuring
that a ship arriving at a port also leaves that port or ends its route. Constraints (4) ensure that
one ship only visits port (i,m) if yim is equal to one. Constraints (5) state that if port i is visited
m times, then it must also have been visited m− 1 times. Constraints (6) - (9) define the variables
as binary.

Loading and unloading constraints

Let K represent the set of products and Kv represent the set of products that ship v can transport.
Not all ports consume all products. Parameter Jik is 1 if port i is a supplier of product k; −1 if
port i is a consumer of product k, and 0 if i is neither a consumer nor a supplier of product k. The
quantity of product k on board of ship v at the beginning of the planning horizon is given by QO

vk

and Cvk is the capacity of the compartment of ship v dedicated for product k. The minimum and
the maximum discharge quantities of product k at port i are given by Q

ik
and Qik, respectively.

Parameter T is the length of the time horizon.
To model the loading and unloading constraints, we define the following binary variables: oimvk

is equal to 1 if product k is loaded onto or unloaded from ship v at port visit (i,m), and 0 otherwise.
In addition, we define the following continuous variables: qimvk is the amount of product k loaded
onto or unloaded from ship v at port visit (i,m); fimjnvk denotes the amount of product k that
ship v transports from port visit (i,m) to port visit (j, n), and fO

imvk gives the amount of product
k that ship v transports from its initial position to port visit (i,m).

5



The loading and unloading constraints are given by:

fO
jnvk +

∑

(i,m)∈SA
v

fimjnvk + Jjkqjnvk =
∑

(i,m)∈SA
v

fjnimvk, v ∈ V, (j, n) ∈ SA
v , k ∈ Kv, (10)

fO
imvk = QO

vkx
O
imv, v ∈ V, (i,m) ∈ SA

v , k ∈ Kv , (11)

fimjnvk ≤ Cvkximjnv, v ∈ V, (i,m, j, n) ∈ SX
v , k ∈ Kv, (12)

0 ≤ qimvk ≤ Cvkoimvk, v ∈ V, (i,m) ∈ SA
v , k ∈ Kv : Jik = 1, (13)

Q
ik
oimvk ≤ qimvk ≤ Qikoimvk, v ∈ V, (i,m) ∈ SA

v , k ∈ Kv : Jik = −1, (14)
∑

k∈Kv

oimvk ≥ wimv, v ∈ V, (i,m) ∈ SA
v , (15)

∑

(i,m)∈SAv

∑

v∈V

∑

k∈Kv:Jik=−1

qimvk ≥
∑

i∈N

∑

k∈K:Jik=−1

RikT, (16)

oimvk ≤ wimv , v ∈ V, (i,m) ∈ SA
v , k ∈ Kv, (17)

fimjnvk ≥ 0, v ∈ V, (i,m, j, n) ∈ SA
v , k ∈ Kv, (18)

fO
imvk, qimvk ≥ 0, v ∈ V, (i,m) ∈ SA

v , k ∈ Kv, (19)

oimvk ∈ {0, 1}, v ∈ V, (i,m) ∈ SA
v , k ∈ Kv. (20)

Equations (10) are the load flow conservation constraints. Equations (11) determine the quantity
on board when ship v sails from its initial port position to port arrival (i,m). Constraints (12)
guarantee that the ships’ tank capacities are not exceeded. Constraints (13) impose an upper bound
on the quantity loaded at the supply ports. Constraints (14) impose lower and upper limits on the
unloaded quantities. Constraints (15) ensure that if ship v visits port arrival (i,m), then at least
one product must be (un)loaded. Constraints (16) ensure that the sum of delivered goods should
not be less than the sum of the consumption over the entire horizon T. Constraints (17) ensure
that if ship v (un)loads one product at visit (i,m), then wimv must be one. Constraints (18)-(20)
are the non-negativity and integrality requirements.

3.2 Second stage

Now we present the second stage model where the variables can be adjusted to the scenario. The
set of scenarios Ω will be indexed by c.

Time constraints

To keep track of the inventory level it is necessary to determine the start and the end times at each
port arrival. We define the following parameters: TQ

ik is the time required to load/unload one unit
of product k at port i; T S

ik is the set up time required to operate product k at port i. Tijvc is the
sailing time between port i and j by ship v for scenario c; TO

ivc indicates the sailing time required
by ship v to travel from its initial port position to port i for scenario c; TB

i is the minimum interval
between the departure of one ship and the next arrival at port i; TW

imc is the waiting time at port
arrival (i,m) for scenario c. The parameter µi denotes the maximum number of visits at port i.
For each scenario c we define the start time timc and the end time tEimc variables for port arrival
(i,m). Variables t+ic give the remaining time from the end of the last visit at port i until time T for
scenario c, when this visit occurs before time T.

6



Assuming that a ship travels from (i,m) to (j, n) under scenario c and loads product k using
vessel v, Figure 1 shows the parameters involved when calculating the time variables for node (j, n).

TW
jnc T S

jk TQ
jkqjnvk

tEimc
tjnc tEjnc

Tijvc

Figure 1: Illustration of the parameters involved when calculating start and end times for node
(j, n).

The set of time constraints is as follow:

tEimc ≥ timc +
∑

v∈V

∑

k∈Kv

T S
ikoimvk +

∑

v∈V

∑

k∈Kv

TQ
ikqimvk, (i,m) ∈ SA, c ∈ Ω, (21)

timc − tEi(m−1)c − TB
i yim ≥ 0, (i,m) ∈ SA : m > 1, c ∈ Ω, (22)

tEimc +
∑

v∈Vi∩Vj

Tijvcximjnv + TW
jnc − tjnc ≤ M(1−

∑

v∈Vi∩Vj

ximjnv), (i,m, j, n) ∈ SX , c ∈ Ω, (23)

∑

v∈V

TO
ivcx

O
imv + TW

imc ≤ timc, (i,m) ∈ SA, c ∈ Ω, (24)

t+ic ≥ T − tEiµic
, i ∈ N, c ∈ Ω, (25)

timc, t
E
imc ≥ 0, (i,m) ∈ SA, c ∈ Ω, (26)

t+ic ≥ 0, i ∈ N, c ∈ Ω. (27)

Constraints (21) define the end time of service at port visit (i,m). Constraints (22) impose a
minimum interval between two consecutive visits at port i. Constraints (23) relate the end time
of port visit (i,m) to the start time of port visit (j, n) when ship v sails directly from port (i,m)
to (j, n). The big-M constant, denoted by M was set to 2T, since the start time of a visit can
occur after time T. These constraints are a stronger version of the usual family of constraints
tEimc + Tijvc + TW

jnc − tjnc ≤ M(1 − ximjnv) defined for each v ∈ V. Constraints (24) ensure that if
ship v travels from its initial position directly to port visit (i,m), then the start time is at least
the sailing time between the two positions plus the waiting time at port visit (i,m). Constraints
(25) together with (27) determine the time gap between the last visit to port i and time T. The
continuous time variables are declared as non-negative in (26) and (27).

Inventory constraints

The inventory constraints are considered for each unloading port i (Jik = −1). They ensure that
the inventory levels are kept within the corresponding bounds, and link the inventory levels to the
unloaded quantities.

For each consumption port i, and for each product k, the demand rate, Rik, the minimum Sik,
the maximum Sik, and the initial SO

ik inventory levels are given.
We define the nonnegative continuous variables simkc and sEimkc indicating the inventory levels

at the start and at the end of port visit (i,m) for scenario c, respectively; rimkc and rEimkc indicate

7



the backlog of product k at the start and at the end of port visit (i,m) for scenario c, respectively.
The inventory constraints are as follow:

si1kc = SO
ik −Rikti1c + ri1kc, i ∈ N, k ∈ K : Jik = −1, c ∈ Ω, (28)

sEimkc + rimkc = simkc + rEimkc +
∑

v∈V

qimvk −Rik(t
E
imc − timc), (i,m) ∈ SA,

k ∈ K : Jik = −1, c ∈ Ω, (29)

simkc + rEi(m−1)kc = sEi(m−1)kc + rimkc −Rik(timc − tEi(m−1)c), (i,m) ∈ SA : m > 1,

k ∈ K : Jik = −1, c ∈ Ω, (30)

simkc, s
E
imkc ≤ Sik, (i,m) ∈ SA, k ∈ K : Jik = −1, c ∈ Ω, (31)

sEiµikc
−Rikt

+
ic ≥ Sik, i ∈ N, k ∈ K : Jik = −1, c ∈ Ω, (32)

simkc, s
E
imkc, rimkc, r

E
imkc ≥ 0, (i,m) ∈ SA, k ∈ K : Jik = −1, c ∈ Ω. (33)

Equations (28) calculate the inventory level of each product at the first visit. Equations (29)
calculate the inventory level of each product when the service ends at port visit (i,m). Equations
(30) relate the inventory level at the start of port visit (i,m) to the inventory level at the end of
port visit (i,m − 1). Constraints (31) ensure that the capacities of the depots are not exceeded.
Constraints (32) impose a lower bound on the inventory level at time T, or at the end of the last
visit, for each product. When the last visit occurs before T, the inventory level at the last visit
needs to be reduced by the consumption until time T . The quantity below this lower bound is
penalized as backlogged demand. Finally, non-negativity requirements (33) are imposed on the
inventory and backlog variables.

3.3 Objective function

The objective is to minimize the sailing, setup and operating costs plus the penalty for backlogged
demand. The sailing cost of ship v from port i to port j is denoted by CT

ijv, while CTO
oiv represents

the sailing cost of ship v from its initial port position to port i. The operating cost of product k at
port i is denoted by CO

ik. The penalty cost for backlogging of product k at port i is denoted CP
ik.

The objective function is as follow:

z = min
∑

v∈V

∑

(i,m,j,n)∈SX
v

CT
ijvximjnv +

∑

v∈V

∑

(i,m)∈SA
v

CTO
oiv x

O
imv+

∑

v∈V

∑

(i,m)∈SA
v

∑

k∈Kv

CO
ikoimvk +

∑

c∈Ω

1

|Ω|





∑

(i,m)∈SA

∑

k∈Kv

CP
ik(rimkc + rEimkc)



 . (34)

We penalize backlogged demand for each port visit. For the last visit, or time T if the last
visit is earlier, we penalize the difference between the lower bound of the inventory and the actual
inventory level in addition to any backlog.

4 Solution approach

Since the complete model is too large to be solved efficiently, it is decomposed into a master problem
and one subproblem for each scenario, following the idea of the L-shaped algorithm [5]. Let the
problem (1) - (34) be re-written as:

8



z = min C(X) +
∑

c∈Ω

1

|Ω|
H(X, c)

s.t. (1)− (20)

where
C(X) =

∑

v∈V

∑

(i,m,j,n)∈SX
v

CT
ijvximjnv +

∑

v∈V

∑

(i,m)∈SA
v

CTO
oiv x

O
imv

+
∑

v∈V

∑

(i,m)∈SA
v

∑

k∈Kv

CO
ikoimvk

and

H(X, c) = min
∑

(i,m)∈SA

∑

k∈K:Jik=−1

CP
ik(rimkc + rEimkc)

s.t. (21) − (33),with Ω = {c}.

The master problem consists of the first stage, but with iteratively added variables and con-
straints to reflect the recourse costs. The subproblems consider fixed first stage decisions, and are
solved for each scenario to supply optimality cuts to the master problem.

The problem (1) - (34) has relatively complete recourse, since feasibility in the second stage is
guaranteed if the inventory levels do not exceed the capacities of the inventories. Hence, for each
feasible solution to the first stage, the second stage has always a feasible solution (it suffices to
delay the unloading when necessary). The details for solving the problem are given in Section 4.2.
To solve problems with a large number of scenarios, the sample average approximation method is
used as described in Section 4.1.

4.1 Sample average approximation method

To solve the SMIRP with many scenarios, we apply the sample average approximation method
[21]. First we consider M separate sets of scenarios. Each set of scenarios, i ∈ {1, . . .M} contains
a small number of m scenarios, {ci1, . . . , cim}. The model (1) - (34) is solved for each set of
scenarios i using a decomposition approach. Let Xi denote the obtained first stage solution. The
M candidate solutions X1, . . . ,XM , are then compared using a different, and much larger, set of n
scenarios {ĉ1, . . . , ĉn}. The best solution is given by X∗ = argmin{zn(X

i) : i ∈ {1, . . . ,M}} where
zn(X) = C(X) + 1

n

∑n
j=1H(X, ĉj).

With the first stage solutions X1, . . . ,XM being obtained, the optimal values are denoted zim =
zm(Xi) = C(Xi)+ 1

m

∑m
j=1H(Xi, cij). The average value over all sets of scenarios, z̄m = 1

M

∑M
i=1 z

i
m

is a statistical estimate for a lower bound on the optimal value of the true problem.
For the larger set of n scenarios, which can be regarded as a benchmark scenario set representing

the true distribution (see [12]), the cost zn(X
i) of each solution Xi, i ∈ {1, . . . ,M} is computed

as well as X∗ = argmin{zn(X
i) : i ∈ {1, . . . ,M}}. The best value, zn(X

∗), is a statistical
estimate for an upper bound on the optimal value. The estimated optimality gap (GAP) is given
by GAP = zn(X

∗)− z̄m.
When employing a scenario generation method it is desirable that no matter which set of

scenarios is used, by solving the two-stage model, one obtains approximately the same value for

9



the optimal solution. This is named as stability requirement conditions in [12]. Here we evaluate
stability (following [21]) through the computations of the variances:

σ̂2
zn(X∗) =

1

(n− 1)n

n
∑

j=1

(

C(X∗) +H(X∗, ĉj)− zn(X
∗)
)2

, (35)

σ̂2
zm =

1

(M − 1)M

M
∑

i=1

(zim − z̄m)2, (36)

where σ̂2
zm

is the variance between samples and σ̂2
zn(X∗) is the variance within the larger sample.

The estimated variance of the estimated optimality gap is

σ̂2
G = σ̂2

zn(X∗) + σ̂2
zm

.

4.2 Optimization process

To solve the model (1) - (34) for a set of scenarios Ω, we first solve to optimality a master problem
including only one scenario. Since a feasible solution to the first stage can be completed with
a feasible solution to the second stage for each scenario, the resulting values for the first stage
decision variables are feasible for the complete problem with all scenarios. However, we need to
check whether the solution is optimal for the complete model. To do that we check, for each
scenario, whether there is backlogged demand when the deliveries are made as early as possible.
If such a scenario with backlogged demand is found, we add to the master problem additional
variables and constraints (which are implied by the time constraints and inventory constraints)
enforcing the backlogged demand to be counted in the objective function. Then the revised master
problem is solved again, and the process is repeated until all the optimality constraints are satisfied.
Hence, as in the L-shaped method, the master problem initially disregards the recourse cost, and
an improved estimation of the recourse cost is gradually added to the master problem by solving
optimality subproblems and adding corresponding cuts. The algorithm may also be terminated if
the additional recourse cost added in an iteration is less than a given small amount ǫ. A formal
description of this process is given below.

Algorithm 1 Optimization procedure for an input set of scenarios Ω.

1: Choose a scenario c ∈ Ω
2: Solve the master problem with one scenario, c
3: while There are new violated optimality cuts and a change in the objective function greater

than ǫ do
4: Add all the violated optimality cuts
5: Solve again the master problem with the new cuts
6: end while

Next we explain how separation of constraints imposing backlog for each scenario (optimality
cuts) is done in each iteration.

10



The backlog variables are bounded as follows:

rimkc ≥ Riktimc − SO
ik −

∑

n≤m−1

∑

v∈V

qinvk, (i,m) ∈ SA, k ∈ K : Jik = −1, c ∈ Ω, (37)

rEimkc ≥ Rikt
E
imc − SO

ik −
∑

n≤m

∑

v∈V

qinvk, (i,m) ∈ SA,m < µi, k ∈ K : Jik = −1, c ∈ Ω, (38)

rEiµikc
≥ Rikt

E
imc +Rikt

+
ic + Sik − SO

ik −
∑

n≤m

∑

v∈V

qinvk, i ∈ N, k ∈ K : Jik = −1, c ∈ Ω. (39)

Constraints (37) - (38) are implied by (28) - (30) (adding alternately (30) and (29) from (i,m) to
(i, 1) and then (28)), and from the non-negativity requirements on the inventory variables (33).
Constraints (39) are implied by (28) - (30) and by (32).

The minimum backlog occurs when the time variables timc and tEimc are set to the earliest feasible
times. Once these variables are defined, separation over (37) - (38) is trivial since the right hand
side is fixed. So we focus now on finding tight bounds for the time variables. First observe that the
starting and ending times of each operation are established either from the (maximum) inventory
levels (inventory constraints) or from the duration of the several operations the ships perform (time
constraints). In the first case we need to ensure that the inventory capacity is not exceeded. Hence
we have:

timc ≥
SO
ik +

∑

n≤m−1

∑

v∈V qinvk − Sik

Rik

, (i,m) ∈ SA, k ∈ K : Jik = −1, c ∈ Ω, (40)

tEimc ≥
SO
ik +

∑

n≤m

∑

v∈V qinvk − Sik

Rik
, (i,m) ∈ SA, k ∈ K : Jik = −1, c ∈ Ω. (41)

Constraints (40) and (41) follow from (28) - (32). For a given feasible solution for the first
stage, the right hand sides of (40) and (41) are constant.

For the second case, the time variables are determined from the time constraints (21) - (27).
For a feasible solution of the first stage, and for each scenario, most of the constraints (21) - (27)
are not tight and many variables do not need to be considered. We can see that the tEimc-variables
are bounded by (21) while the timc-variables are bounded by (22) (from the end time of the visit
to the same port) and by (23) (from the last ship operation). These cases can be represented in
a network N = (P,A,W ), where P is the set of nodes, A is the set of arcs and W is the set of
weights. The set of nodes P is given by the origin of each ship, represented by Ov, a node (i,m)
representing the starting time of each port visit and a node (i,m) representing the end time of the
visit. Each arc in A corresponds to a routing variable set to one. That is, there is an arc from
node Ov to node (i,m) if xOimv = 1, and there is an arc from node (i,m) to node (j, n) if ximjnv = 1
for some v. The arcs have weights TO

ivc + TW
imc and Tijvc + TW

jnc, respectively. There is an arc from

node (i,m) to node (i,m) with weight
∑

v∈V

∑

k∈Kv
T S
ikoimvk +

∑

v∈V

∑

k∈Kv
TQ
ikqimvk, and there

is an arc from node (i,m) to node (i,m+ 1) with weight TB
i . Finally, we consider an arc from Ov

to each node visited by ship v. The weight from Ov to (i,m) is given by the right hand side of (40)
and the weight from Ov to (i,m) is given by the right hand side of (41).

The weight of each path from one origin to a node gives a lower bound for the time variable
corresponding to that node. Hence the earliest time associated to a node corresponds to the weight
of the longest path from one origin to that node (one can always establish an artificial origin which

11



is linked to all ship origins Ov and with null weight). Since the graph is acyclic, finding the longest
path to each node can be done in polynomial time. However, for this particular graph, it is easy
to derive a linear labeling correcting algorithm.

The time variables can then be restricted using these paths or sub-paths. For each (sub)path

Π
(i,m)
(j,n) , from visit (j, n) to visit (i,m) of a ship v, we define the set of nodes (port visits) as N (Π

(i,m)
(j,n) )

and the set of arcs as A
(

Π
(i,m)
(j,n)

)

. Let (iv ,mv) denote the first visit of ship v after leaving the origin.

If the earliest time for a visit (i,m) ∈ SA is determined only by the schedule of operations for
a given ship v ∈ V , then timc and tEimc are restricted as follows:

timc ≥
∑

(ℓ,u)∈N (Π
(i,m)
(iv,mv)

)

TW
ℓuc +

∑

(ℓ,u)∈N (Π
(i,m)
(iv,mv)

)\{(i,m)}

∑

k∈K

(

T S
ℓkoℓuvk + TQ

ℓkqℓuvk

)

+TO
ivvc +

∑

(ℓ,u,t,w)∈A(Π
(i,m)
(iv ,mv)

)

Tℓtvc

−T






1+ | A(Π

(i,m)
(iv,mv)

) | −xOivmvv
−

∑

(ℓ,u,t,w)∈A(Π
(i,m)
(iv,mv)

)

xℓutwv






, (42)

tEimc ≥
∑

(ℓ,u)∈N (Π
(i,m)
(iv,mv)

)

TW
ℓuc +

∑

(ℓ,u)∈N (Π
(i,m)
(iv,mv)

)

∑

k∈K

(

T S
ℓkoℓuvk + TQ

ℓkqℓuvk

)

+TO
ivvc

+
∑

(ℓ,u,t,w)∈A(Π
(i,m)
(iv ,mv)

)

Tℓtvc

−T






1+ | A(Π

(i,m)
(iv,mv)

) | −xOivmvv
−

∑

(ℓ,u,t,w)∈A(Π
(i,m)
(iv,mv)

)

xℓutwv






. (43)

Validity of (42) and (43) is implied by (21) - (23). In Appendix we provide a list of the remaining
inequalities defined for each possible subpath.

The overall separation procedure for each iteration works as follow:

12



Algorithm 2 Separation procedure

1: Construct the network N = (P,A,W )
2: Determine the longest path from the origin to each node
3: Associate the corresponding time variables to each node
4: Set the backlog variables to the minimum value using (37)-(39)
5: for each node do

6: if the corresponding backlog variable has value strictly greater than its value in the current
solution then

7: add the inequality (37)-(39) determining its value
8: add the time constraints (40)-(43) corresponding to the weight of the longest path
9: (Use subpaths of each ship that are not contained in other subpaths of the same ship in

the critical path)
10: end if

11: end for

Example 4.1. Consider an instance with 2 ships, v1 and v2, and 3 ports and assume that there
is only one scenario. Hence we omit the corresponding scenario index from all variables and
parameters. Let the paths resulting from the first stage solution be xO11v1 = x1132v1 = 1 and
xO21v2 = x2131v2 = x3112v2 = 1. Assume the weights of the arcs are those given in Figure 2. For

instance, TB
1 = TB

3 = 0.5,
∑

k∈K

(

T S
1ko11v1k + TQ

1kq11v1k

)

= 1 and T13v1 = 6.

For simplicity we omit arcs with weights resulting from (40) and (41).

O1

O2

1,1 1, 1 1,2 1, 2

2,1 2, 1

3,1 3, 1 3,2 3, 2

1 0.5 1

1

1

1

5

1 0.5 1

66

Figure 2: Example of a graph G for a set of three ports and two ships.

We can see that t11 = 1, tE11 = 2, t21 = 1, tE21 = 2, t31 = 7, tE31 = 8, t12 = 14, tE12 = 15, t32 =
8.5, tE32 = 9.5.

Suppose there is backlog at nodes (1, 2) and (3, 2). In addition to the inequalities (37) for (1, 2)
and (3, 2) defining the lower bound on the backlog, the following inequalities, corresponding to the

13



critical paths to nodes (1, 2) and (3, 2) are added to limit the time variables:

tE31 ≥
∑

k∈K

(

T S
2ko21v2k + TQ

2kq21v2k

)

+
∑

k∈K

(

T S
3ko31v2k + TQ

3kq31v2k

)

+TO
2v2 + T23v2 − T (2− x021v2 − x2131v2),

t12 ≥
∑

k∈K

(

T S
2ko21v2k + TQ

2kq21v2k

)

+
∑

k∈K

(

T S
3ko31v2k + TQ

3kq31v2k

)

+TO
2v2 + T23v2 + T31v2 − T (3− x021v2 − x2131v2 − x3112v2),

t32 ≥ tE31 + TB
3 .

5 Stochastic times and sample scenarios generation

In the SMIRP problem, the sailing and waiting times at ports are assumed to be random, following
known probability distributions. We now describe the distributions used and how scenarios are
generated for the stochastic programming model.

For the sailing times we assume that there are three potential events that affect all the sail-
ing times simultaneously. These correspond to “good weather”, “moderate weather” and “bad
weather”. For good weather, the sailing times are obtained directly from the sailing distance and
the ship speed. For moderate weather, the sailing times are 1.5 times the corresponding sailing
times in good weather, and for bad weather the sailing times are 2.0 times those in good weather.
From the historical data for the season we are considering, a probability is associated to each event.

Contrary to the sailing times, where the weather usually affects all the islands simultaneously,
waiting times due to port occupancy depend only on the port. For each visit to each port, we
assume that the random variable indicating whether the port is occupied or not follows a Bernoulli
distribution with parameter p ∈ [0, 1] (p is the probability of the port being occupied). If the
port is occupied then the random variable W indicating the waiting time is given by a truncated
exponential distribution

F (w) =







0, w < 0,
(1− e−λw)/A, 0 ≤ w ≤ M,
1, w > M,

where A = 1−e−Mλ, and λ is such that the expected value of waiting time is 1/λ− Me−Mλ

A
, and M

represents the maximum waiting time. Parameters p, λ, and M are obtained from historical data.
The weather events are trivially generated using the given probabilities. For each visit to each

port the waiting times are randomly generated as follows: let p ∈ [0, 1] be the probability of the
port being occupied. Generate an uniform random variable U1 ∈ [0, 1]. If U1 > p we assume that
the port is not occupied. Otherwise we randomly generate a waiting time from the truncated
exponential distribution using the inverse transformation method. The waiting time is given by

W =

{

ln(1−AU2)
−λ

, if U1 ≤ p;

0, if U1 > p.

where U2 is an uniform random variable, U2 ∈ [0, 1].

14



To generate the set of scenarios, Ω, we first fix the number of scenarios n =| Ω | a priori. Then
each scenario is generated separately, first by generating the sailing times at random and then by
generating a random waiting time for each port visit.

6 Computational results

In this section we report the results from the computational experimentation conducted to test
the stochastic model. All computations were performed using the optimization software Xpress
Optimizer Version 20.00.05 with Xpress Mosel Version 3.0.0, on a computer with processor Intel
Core 2 Duo 2.2GHz and with 4GB of RAM. In Algorithm 1 we use ǫ = 0.01. Ten real-world
instances are used in the testing, considering two different ships, seven ports, four products, and a
time horizon of eight days. The instances differ on the initial inventory levels.

First we test the effectiveness of the decomposition method, through a comparison by solving the
full stochastic programming model directly using commercial software. Then, we test the sample
average approximation method using the decomposition method. Finally we compute estimations
of the Value of the Stochastic Solution and the Expected Value of Perfect Information.

6.1 Effectiveness of decomposed model

To test the effectiveness of the decomposed model we compared its performance with the use of
Xpress Optimizer to directly solve the stochastic programming model with 10 scenarios. The results
are reported in Table 1. The column “Opt” gives the optimal values, the columns “Nodes” indicate
the number of branch and bound nodes, the columns “Seconds” report the running time in seconds
to solve the instance. For the decomposed model we report additionally the number of cuts added
in the column “Ncuts” and the number of iterations in the column “Iterations”, that is, the number
of times we solve the separation problem to add backlog and time constraints.

Table 1: Effectiveness of the L-shaped method
full model decomposed model

Instance Opt Nodes Seconds Nodes Seconds Ncuts Iterations
1 16210 5888 1498 3503 390 20 3
2 17610 20292 5397 16436 1061 24 4
3 18500 8495 2111 3863 434 65 3
4 17248.6 9253 1644 5377 526 78 4
5 15410 8177 2284 5356 384 18 3
6 18576.8 42774 7799 7247 854 32 4
7 15362.3 20720 4546 6658 603 45 4
8 17008 27740 5564 7558 740 28 4
9 13330 1911 362 1462 146 16 3
10 14550 46407 9200 3821 351 25 4

Average 16380.57 19165.7 4040.5 6128.1 548.9 35.1 3.6

As expected, the running times of the decomposition method are much lower than the running
times obtained by solving the complete model. Additionally, we can see that the number of times
the separation problem is called is at most 4 and few cuts are added.

15



6.2 Testing different sizes of sets of scenarios

Next we follow the solution approach described in Section 4, see [21]. Each instance is solved for
M independent sets of scenarios, each set i containing m scenarios.

We conducted tests for m = 10 and m = 50. In all cases we consider M = 10 and the solutions
are evaluated using a bigger set of n = 1000 scenarios. For each value of m we give two tables
(Tables 2 and 3 for m = 10 and Tables 4 and 5 for m = 50). In the first table we present, for each
instance, zn(X

∗), z̄m, GAP, σ̂zn(X∗), σ̂zm , σ̂G. In the second table we give, for each instance, the
running time to solve the M problems (one problem for each set of scenarios of size m) using the
decomposition method, “Seconds M”, and the time to compute zn(X

k), k ∈ {1, . . . ,M} “Seconds
n”, the average number of iterations, “Iterations”, to solve the M problems, that is, the average
number of times we solve the separation problem, and the average number of cuts (37)-(39) added,
“Cuts”.

Table 2: Bounds and variances for m = 10.
Instance zn(X

∗) z̄m GAP σ̂zn(X∗) σ̂zm
σ̂G

1 16956.8 16358 598.8 24.1 76.7 80.4
2 19080.3 18516.9 563.4 47.2 173.8 180.1
3 21150.9 19660.2 1490.7 95.6 265.1 281.8
4 19613.9 18750.8 863.1 198.4 293.1 353.9
5 18813.2 16658.5 2154.7 72.3 194.2 207.3
6 21182.1 19743.3 1438.8 104.7 210.7 235.3
7 16694.8 16509.5 185.3 76.6 196.8 211.1
8 19325.2 18664.2 661 71.0 227.8 238.6
9 14335.6 14139 196.6 115.2 238.1 264.5
10 17636.8 16721.6 915.2 127.0 324.5 348.5

Average 18479.0 17572.2 906.8 93.2 220.1 240.1

Table 3: Times, average number of iterations and average number of cuts for m = 10.
Instance Seconds M Seconds n Iterations Cuts

1 77 35 3 16.4
2 180.5 38.5 4 16.4
3 95.57 45.7 3 16.4
4 104.9 42.5 3.4 18.4
5 118.3 41.2 3 15.2
6 181.7 50.9 3 14.4
7 133.5 29.3 3 13.9
8 117.7 54.3 3.2 19.6
9 37.1 42.9 3 20.2
10 123.1 40.7 3 16.3

Average 116.9 42.1 3.2 16.7

We can see that increasing m, the cost of the selected solution decreases in average by 2.8%.
Also, the standard deviation σ̂zm and the GAP have a little reduction. The price to pay for the
improvement of the solution and reduction of variability is an increase in the average running times.
The running time is, on average, approximately 2 minutes for m = 10, and increases to 10 minutes
for m = 50.

16



Table 4: Bounds and variances for m = 50.
Instance zn(X

∗) z̄m GAP σ̂zn(X∗) σ̂zm
σ̂G

1 16498.1 16352.4 145.7 11.5 44.2 45.7
2 19080.3 18375.8 704.5 47.2 219.3 224.3
3 20839.2 19542.5 1296.7 97.6 142.0 172.3
4 19401.7 18027.2 1374.5 198.4 241.2 312.3
5 18490.2 16160 2330.2 66.2 119.3 136.4
6 20177.1 19651.1 526 104.5 96.4 142.2
7 16358.8 16204.4 154.4 76.6 98.5 124.8
8 18148.3 18015.3 133 71.0 198.2 210.6
9 13877.7 13876.4 1.3 115.2 116.5 163.8
10 16875 16336.1 538.9 127.0 286.4 313.3

Average 17974.6 17254.1 720.5 91.5 156.2 184.5

Table 5: Times, average number of iterations and average number of cuts for m = 50.
Instance Seconds M Seconds n Iterations Cuts

1 426.5 51 3.3 18.8
2 838.2 64.8 3 16.5
3 658.3 59.4 3.1 18.9
4 682.8 57.8 3 20.1
5 627.2 63.9 3 16.8
6 751.9 50.2 4.2 16.8
7 573.3 76.1 3 16.3
8 791 49.5 3 19.8
9 174.5 51.5 4 18.8
10 524.3 56 3 17.8

Average 604.8 58.0 3.3 18.1

6.3 Importance of a stochastic approach

To evaluate the importance of the stochastic approach we compute estimations of the Value of the
Stochastic Solution (VSS) and the Expected Value of Perfect Information (EVPI). The results are
given in Table 6. To compute the VSS we solve the model with one scenario, where the stochastic
parameters are set to their expected values. We used the sample average values (considering the
larger sample), which are very similar to the theoretical expected values. Solving this deterministic
model we obtain the well known expected value solution. The cost of this solution is given in column
“EVS”. In column zn(X

∗) we give the corresponding value for m = 50, and in column “VSS” we
give an estimation of the Value of the Stochastic Solution which is the difference between EVS
and zn(X

∗). In column “PI” we give the average value of the n = 1000 deterministic models, one
for each scenario, and in column “EVPI” we give an estimation of the Expected Value of Perfect
Information which is the difference zn(X

∗)− PI.
We can see, from Table 6, the gains for using stochastic programming instead of the deterministic

model based on expected values are in general very high. In average, the expected value of the best
solution is only 9% above the Expected Value of Perfect Information.

17



Table 6: Estimating the VSS and EVPI
Instance EVS zn(X

∗) VSS PI EVPI
1 42049.2 16498.1 25551.1 16210.1 288.0
2 33020.1 19080.3 13939.8 17620.2 1460.1
3 39871.2 20839.2 19032 18572.6 2266.6
4 49582.5 19401.7 30180.8 17285.9 2115.8
5 58053.6 18490.2 39563.4 15461.7 3028.5
6 41503.3 20177.1 21326.2 18942.0 1235.1
7 32256.6 16204.4 16052.2 15497.8 706.6
8 64144 18148.3 45995.7 17023.8 1124.5
9 41125.7 13877.7 27248 13354.0 523.7
10 25623.9 16875 8748.9 15066.9 1808.1

Average 42723.01 17959.2 24763.8 16503.5 1455.7

7 Conclusions

We presented a two-stage stochastic programming model with recourse for a maritime inventory
routing problem where sailing times and port times are random. The model has the property that,
for each scenario, a feasible solution to the first stage can always be completed with a feasible
solution to the second stage. We proposed a decomposition method where, for a given first stage
solution, optimality is checked for the complete model through an efficient separation method.

Ten instances based on real data are solved using the sample approximation method. Compu-
tational tests have shown the effectiveness of the decomposition method, and the importance in
the use of stochastic programming instead of a deterministic approach.

Acnowledgements

The work of the first and third authors was supported in part by FEDER funds through COMPETE–
Operational Programme Factors of Competitiveness (“Programa Operacional Factores de Compet-
itividade”) and by Portuguese funds through the Center for Research and Development in Math-
ematics and Applications (CIDMA) and the Portuguese Foundation for Science and Technology
(“FCT–Fundação para a Ciência e a Tecnologia”), within project PEst-C/MAT/UI4106/2011 with
COMPETE number FCOMP-01-0124-FEDER- 022690. The second and forth authors were sup-
ported financially from the Research Council of Norway through the DOMinant II-project.

References

[1] Agra A., Christiansen M., Delgado A., Mixed integer formulations for a short sea fuel oil
distribution problem. Transportation Science, 47:108-124, 2013.

[2] Agra A., Christiansen M., Delgado A., Simonetti L., Hybrid heuristics for a maritime short
sea inventory routing problem (submitted to journal), 2013.

[3] Agra A., Christiansen M., Figueiredo R., Hvattum L.M., Poss M., Requejo C., The robust
vehicle routing problem with time windows. Computers and Operations Research, 40:856–866,
2013.

18



[4] Azaron A., Kianfar F., Dynamic shortest path in stochastic dynamic networks: Ship routing
problem. European Journal of Operational Research, 144:138–156, 2003.

[5] Birge J.R., Louveaux F., Introduction to Stochastic Programming, Springer Series in Opera-
tions Research and Financial Engineering, 2nd edition, New York, 2011.

[6] Cheng L., Duran M.A., Logistics for world-wide crude oil transportation using discrete event
simulation and optimal control. Computers and Chemical Engineering, 28:897–911, 2004.

[7] Christiansen M., Fagerholt K., Nygreen B., Ronen D., Ship routing and scheduling in the new
millennium. European Journal of Operational Research, 228:467–483, 2013.

[8] Christiansen M., Nygreen B., Robust inventory ship routing by column generation. In:
Desrosiers G. and Solomon M.M. (Eds.), Column Generation. Springer-Verlag, New York,
197–224, 2005.

[9] Halvorsen-Weare E.E., Fagerholt K., Robust supply vessel planning. In J. Pahl, T. Reiners,
and S. Voß, editors, Network Optimization, volume 6701 of Lecture Notes in Computer Science,
559–573. Springer, Berlin, 2011.

[10] Halvorsen-Weare E.E., Fagerholt K., Rönnqvist M., Vessel routing and scheduling under uncer-
tainty in the liquefied natural gas business. Computers and Industrial Engineering, 64:290–301,
2013.

[11] Higle J., Stochastic Programming: Optimization when uncertainty matters. In: Greenberg
H.J.and Cole Smith J. (Eds.), Tutorials in operations research. INFORMS, New Orleans, 30–
53, 2005.

[12] Kaut M., Wallace S., Evaluation of scenario-generation methods for stochastic programming,
Pacific Journal of Optimization, 3:257–271, 2007.

[13] Kenyon A.S., Morton D.P., Stochastic vehicle routing with random travel times. Transporta-
tion Science, 37:69–82, 2003.

[14] Lambert V., Laporte G., Louveaux F., Designing collection routes through bank branches.
Computers and Operations Research, 20:783–791, 1993.

[15] Laporte, G., Louveaux F., Mercure F., The vehicle routing problem with stochastic travel
times. Transportation Science, 26:161–170, 1992.

[16] Lo H.K., McCord M.R., Adaptive ship routing through stochastic ocean currents: General
formulations and empirical results. Transportation Research, Part A, 32:547–561, 1998.

[17] Rakke J.G., St̊alhane M., Moe C.R., Andersson H., Christiansen M., Fagerholt K., Norstad
I., A rolling horizon heuristic for creating a liquefied natural gas annual delivery program.
Transportation Research, Part C, 19:896–911, 2011.

[18] Sherali H.D., Al-Yakoob S.M., Determining an optimal fleet mix and schedules: Part I - Single
source and destination. In: Karlof, J.K. (Ed.), Integer Programming Theory and Practice.
CRC Press, Boca-Raton, 137–166, 2006.

19



[19] Sherali H.D., Al-Yakoob S.M., Determining an optimal fleet mix and schedules: Part II -
Multiple sources and destinations, and the option of leasing transshipment depots. In: Karlof,
J.K. (Ed.), Integer Programming Theory and Practice. CRC Press, Boca-Raton, 167–194, 2006.

[20] Teng S.Y., Ong H.L., Huang H.C., An integer L-shaped algorithm for time-constrained trav-
eling salesman problem with stochastic travel and service times. Asia-Pacific Journal of Op-
erational Research, 21:241–257, 2004.

[21] Verweij B., Ahmed B., Kleywegt A.J, Nemhauser G., Shapiro A., The sample average approxi-
mation method applied to stochastic routing problems: a computational study, Computational
Optimization and Applications, 289–333, 2003.

Appendix

The following inequalities, for each (i,m) ∈ SA and v ∈ V, are implied by (21) - (23):

timc ≥ tjnc +
∑

(ℓ,u)∈N (Π
(i,m)
(j,n)

)\{(j,n)}

TW
ℓuc +

∑

(ℓ,u)∈N (Π
(i,m)
(j,n)

)\{(i,m)}

∑

k∈K

(

T S
ℓkoℓuvk + TQ

ℓkqℓuvk

)

+
∑

(ℓ,u,t,w)∈A(Π
(i,m)
(j,n)

)

Tℓtvc − T






| A(Π

(i,m)
(j,n) ) | −

∑

(ℓ,u,t,w)∈A(Π
(i,m)
(j,n)

)

xℓutwv






, (44)

timc ≥ tEjnc +
∑

(ℓ,u)∈N (Π
(i,m)
(j,n)

)\{(j,n)}

TW
ℓuc +

∑

(ℓ,u)∈N (Π
(i,m)
(j,n)

)\{(j,n),(i,m)}

∑

k∈K

(

T S
ℓkoℓuvk + TQ

ℓkqℓuvk

)

+
∑

(ℓ,u,t,w)∈A(Π
(i,m)
(j,n)

)

Tℓtvc − T






| A(Π

(i,m)
(j,n) ) | −

∑

(ℓ,u,t,w)∈A(Π
(i,m)
(j,n)

)

xℓutwv






, (45)

tEimc ≥ tjnc +
∑

(ℓ,u)∈N (Π
(i,m)
(j,n)

)\{(j,n)}

TW
ℓuc +

∑

(ℓ,u)∈N (Π
(i,m)
(j,n)

)

∑

k∈K

(

T S
ℓkoℓuvk + TQ

ℓkqℓuvk

)

+
∑

(ℓ,u,t,w)∈A(Π
(i,m)
(j,n)

)

Tℓtvc − T






| A(Π

(i,m)
(j,n) ) | −

∑

(ℓ,u,t,w)∈A(Π
(i,m)
(j,n)

)

xℓutwv






, (46)

tEimc ≥ tEjnc +
∑

(ℓ,u)∈N (Π
(i,m)
(j,n)

)\{(j,n)}

TW
ℓuc +

∑

(ℓ,u)∈N (Π
(i,m)
(j,n)

)\{(j,n)}

∑

k∈K

(

T S
ℓkoℓuvk + TQ

ℓkqℓuvk

)

+
∑

(ℓ,u,t,w)∈A(Π
(i,m)
(j,n)

)

Tℓtvc − T






| A(Π

(i,m)
(j,n) ) | −

∑

(ℓ,u,t,w)∈A(Π
(i,m)
(j,n)

)

xℓutw






. (47)

20


