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A concepção planar de células de combustível de óxido sólido (SOFC) é a
mais promissora devido a sua fabricação mais fácil, um melhor desempenho e
uma densidade de potência relativamente elevada. Nas SOFCs planares e
outros dispositivos de electrólitos sólidos são necessárias vedações estanques
ao gás ao longo das arestas de cada uma das células e entre os tubos de
distribuição de gás e de pilha. Materiais vítreos e vitrocerâmicos (GC), em
particular com composições baseadas em aluminosilicatos alcalino-terrosos,
estão entre os materiais mais promissores para aplicações de vedação à prova
de gás em SOFCs. Além do desenvolvimento de novos materiais à base de
vidros e vitrocerâmicos, são também necessários novos conceitos para
superar os desafios enfrentados pela tecnologia selante atualmente existente.
O presente trabalho visa dar um contributo nesse sentido, propondo soluções
de vedação para SOFCs e outras aplicações electroquímicas. Para o efeito,
foram sintetizados vários vidros e GCs à base de diópsido, os quais foram
caracterizados por recurso a uma grande variedade de técnicas. Todos os
vidros foram preparados por fusão, enquanto os GCs foram produzidos por
sinterização (tratamento térmico) de compactos de pó de vidro nas faixas de
temperatura de 800 − 900 ºC por 1 − 1000 h. Além disso, foram estudados os
efeitos de diversas substituições iónicas, especialmente de CaO por SrO, e de
MgO + SiO2 por Ln2O3 (Ln = La, Nd, Gd, e Yb), em composições de
aluminosilicatos à base de diópsido na estrutura, sinterização e cristalização
dos vidros e nas propriedades dos GCs resultantes com particular relevância
para as propriedades de vedação em SOFCs. Com base nos resultados
obtidos neste estudo, foi possível propor um novo conceito de selante
vritrocerâmico em bi-camadas que visa ultrapassar os desafios enfrentados
pelos vedantes actualmente usados em SOFCs. Os sistemas designados por
Gd−0,3 (em % molar: 20,62 MgO−18,05 CaO−7,74 SrO−46,40 SiO2−1,29
Al2O3−2,04 B2O3−3,87 Gd2O3) e Sr−0,3 (em % molar: 24,54 MgO−14,73
CaO−7,36 SrO−0,55 BaO−47,73 SiO2−1,23 Al2O3−1,23 La2O3−1,79 B2O3−0,84
NiO) foram seleccionados para realizar o conceito de bi-camada. Ambos os
GCs exibem propriedades térmicas semelhantes, e excelente estabilidade
térmica ao longo de um período de 1.000 horas, mas diferem nas suas
fracções vítreas/cristalinas. Eles revelaram também elevada aptidão para se
ligarem à interconexão metálica (Crofer22APU) e ao electrólito sólido (zircónia
estabilizada com 8 mol% de ítria (8YSZ) sem a formação de camadas
interfaciais indesejáveis entre os diferentes componentes das SOFCs. Duas
camadas separadas compostas pelos vidros (Gd−0,3 e Sr−0.3) foram
preparadas e depositadas sobre as interconexões metálicas através de uma
abordagem tape casting. As bi-camadas vitrocerâmicas mostram boa
capacidade de molhamento e ligação à placa Crofer22APU, coeficientes de
expansão térmica adequados (9,7−11,1 × 10−6 K−1), confiabilidade mecânica,
elevada resistividade eléctrica, e uma forte adesão aos componentes da
SOFC. Todas estas características confirmam a boa adequação do sistema
selante bi-camadas investigado para aplicações em SOFCs. 
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abstract 
 

 
 
 
The planar design of solid oxide fuel cell (SOFC) is the most promising one due
to its easier fabrication, improved performance and relatively high power
density. In planar SOFCs and other solid-electrolyte devices, gas-tight seals
must be formed along the edges of each cell and between the stack and gas
manifolds. Glass and glass-ceramic (GC), in particular alkaline-earth alumino
silicate based glasses and GCs, are becoming the most promising materials for
gas-tight sealing applications in SOFCs. Besides the development of new
glass-based materials, new additional concepts are required to overcome the
challenges being faced by the currently existing sealant technology. The
present work deals with the development of glasses- and GCs-based materials
to be used as a sealants for SOFCs and other electrochemical functional
applications. In this pursuit, various glasses and GCs in the field of diopside
crystalline materials have been synthesized and characterized by a wide array
of techniques. All the glasses were prepared by melt-quenching technique
while GCs were produced by sintering of glass powder compacts at the
temperature ranges from 800−900 ºC for 1−1000 h. Furthermore, the influence
of various ionic substitutions, especially SrO for CaO, and Ln2O3 (Ln=La, Nd,
Gd, and Yb), for MgO + SiO2 in Al-containing diopside on the structure,
sintering and crystallization behaviour of glasses and properties of resultant
GCs has been investigated, in relevance with final application as sealants in
SOFC. From the results obtained in the study of diopside-based glasses, a bi-
layered concept of GC sealant is proposed to overcome the challenges being
faced by (SOFCs). The systems designated as Gd−0.3 (in mol%:
20.62MgO−18.05CaO−7.74SrO−46.40SiO2−1.29Al2O3 − 2.04 B2O3−3.87Gd2O3)
and Sr−0.3 (in mol%: 24.54 MgO−14.73 CaO−7.36 SrO−0.55 BaO−47.73
SiO2−1.23 Al2O3−1.23 La2O3−1.79 B2O3−0.84 NiO) have been utilized to realize
the bi-layer concept. Both GCs exhibit similar thermal properties, while differing
in their amorphous fractions, revealed excellent thermal stability along a period
of 1,000 h. They also bonded well to the metallic interconnect (Crofer22APU)
and 8 mol% yttrium stabilized zirconium (8YSZ) ceramic electrolyte without
forming undesirable interfacial layers at the joints of SOFC components and
GC. Two separated layers composed of glasses (Gd−0.3 and Sr−0.3) were
prepared and deposited onto interconnect materials using a tape casting
approach. The bi-layered GC showed good wetting and bonding ability to
Crofer22APU plate, suitable thermal expansion coefficient (9.7–11.1 × 10–6

K−1), mechanical reliability, high electrical resistivity, and strong adhesion to the
SOFC componets. All these features confirm the good suitability of the
investigated bi-layered sealant system for SOFC applications. 
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1. Introduction 

The depletion of fossil fuel reserves and the emission of greenhouse gases 

constitute a menace to the present and the future generations in terms of energy 

availability, environmental pollution, global warming and health hazards. Therefore, 

finding alternative energy resources and efficient production methods for electricity is a 

fundamental requirement for the modern world [1-3]. Among the various technologies, 

fuel cell (FC) is the most widely adopted one owing to a promising and viable alternative 

for large scale generation of electricity, with minimal undesirable chemical, thermal and 

acoustic emissions [4-7]. Therefore, the development of FC technology is one such 

attempt to cater the rising energy demands in the coming era.  

A FC is an electrochemical device that converts the stored chemical energy 

directly into electrical energy. Simple FC essentially consists of an anode and a cathode 

separated by an electrolyte. There are several types of FCs, named after the type of 

material used for the electrolyte, currently under development, each with its own 

advantages, limitations, and potential applications [4-7]. Among various FCs, solid oxide 

fuel cells (SOFCs)  offer important advantages: (i) the most electrically efficient one with 

45–65% efficiency (total system efficiency ∼85%, including the thermal component – 

unheard of by any other technology) in the conversion of chemical energy to electricity; 

(ii) capable of operating with various fuels, for ex. natural gas, gasoline, hydrogen and 

bio–fuels; (iii) low cost and environmental friendly nature (e.g., low emissions NOx [<0.5 

ppm)]; (iv) because of high operation temperatures SOFCs do not need highly expensive 

catalyst such as platinum; and (v) high stability of electrolyte, flexibility of cell design, 

and long stack−life because all the components are solid [2, 8-10]. All of the above 

advantages make SOFCs a “highly efficient future technology” that is currently in 

demand among different categories of FC. Because of these reasons and motivations, 

tremendous research and development efforts in this area have been made along the last 

two decades, especially through specific programs supported by various Governmental 

and private agencies across the world, solely dedicated towards finding feasible solutions 

to various technical challenges which acted as major roadblocks for the 

commercialization of SOFC technology. For example: In 1997 a pilot project started with 
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a 100 kW SOFC cogeneration plant in The Netherlands, which achieved 46% electrical 

efficiency and 25% thermal efficiency [11, 12]. Based on geometry, tubular and planar 

deigns are the two most popular SOFCs. However, the current path lengths are typically 

longer in tubular cells, compared to planar cells. This significantly limits their 

performance beyond a certain radial extension over planar cells. Planar design is the most 

promising due to its cheap and simple fabrication along with improved performance and 

power density relative to other designs. Among the various developments in 

planar−SOFCs (p–SOFC), advances in interconnect components have increased the 

SOFCs' electrical efficiency up to 65%. The use of metallic interconnects instead of 

ceramic bipolar plates makes it possible to lower the SOFC temperature from 1000 ºC to 

700–800 ºC and to increase power density [1, 8, 13].  

A single SOFC comprises, at least, one dense solid−electrolyte (SE) membrane in 

contact with porous cathode and anode, onto which a gaseous oxidant (usually 

atmospheric oxygen) and a fuel are continuously supplied; the power is generated due to 

oxidant reduction at the cathode and fuel oxidation by the O2− anions diffused through the 

electrolyte, at the anode. The SOFC performance is primarily governed by electrical and 

electrochemical properties of the electrodes and solid electrolyte, compositions of the fuel 

and oxidant gas mixtures and current collection. The ideal absence of gas leakages is also 

essential to grant its ingegrity and functioning [14-20]. In general, the ceramics used in 

SOFCs do not become electrically and ionically active until they reach relatively high 

temperatures and, as a consequence, the cell has to run at temperatures ranging from 

600−1,000 ºC.  

Of critical importance for the SOFC efficiency and durability are also the 

properties of sealants used to prevent gas mixing between the anode and cathode 

compartments, to bond the cell stacks, and also to provide electrical insulation. Whilst the 

negative impact of minor leakages in the SOFC stacks can often be neglected, any leak 

may critically increase the contamination of high−purity gases produced using the 

solid−electrolyte membranes and induce measuring errors in the electrochemical sensors. 

Therefore, one major hurdle that still proves to be an arduous task for the researchers 

worldwide is the development of a hermetic high temperature sealing [2, 21-26] .  
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To date, a number of sealants have been proposed and studied extensively for 

their physical, thermal, mechanical and electrical properties and also tested in real SOFCs 

stacks. Among the various types of sealant materials, glass and glass–ceramics (GCs) 

materials are considered as the most efficient and attractive sealing materials for SOFCs 

due to their ability to form hermetic seals at high temperatures, low costs and durability 

[21-26]. A principal advantage of the glass seals is that their chemical composition and 

molecular structure can be tailored to optimize properties like coefficient of thermal 

expansion (CTE), mechanical strength, sintering behaviour, chemical and electrical 

resistance, etc. A vast amount of specialised literature available in this area (reviewed in 

Chapter 2) reveals that currently used SOFCs sealant materials based glass and GC are 

not completely satisfactory towards their commercialization in open market. Therefore, 

still there is a need to develop suitable sealant materials along with new concepts and or 

proposals. The aim of this study was to develop new glass based sealant materials and to 

evaluate their suitability for application in different technological areas with emphasis on 

sealing in SOFCs. The aim of this study also includes the development of Bilayer sealant 

material in order to overcome the challenges being faced by the present glass based seal 

materials. 

 In the light of the above mentioned perspective, this dissertation comprises five 

chapters. The first chapter, i.e. Introduction provides the basics of SOFCs and highlights 

the necessity of an efficient sealant material. The second chapter provides an overview 

about the current status of sealing technology in SOFC, and draws attention towards the 

lacuna in the existing glass/GC seals. In other words, chapter two lays the foundation of 

our work. The third chapter deals with the experimental procedure and methodology used 

in accomplishing this work. It provides details about all the experimental techniques and 

procedures employed in order to synthesize, characterize and test our samples. Chapter 

four is the most important part of this work as it presents all the experimental results 

obtained on newly designed glass and GCs based sealant material developed for the 

realization of bi-layer seal during past 3−4 years along with pertaining discussion while, 

in chapter five we have tried to conclude all the results obtained during this work and 

provide future directions in order to produce technologically useful materials. 
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2. State of the art 

2.1 Key requirements for seals in SOFCs and other devices 
Fig. 2.1 and 2.2 present several typical examples illustrating the use of high-

temperature sealants in various SOFCs [27-32]. The seal optimization requires always a 

multifactor analysis; in addition to the materials science−related aspects and sealing 

configuration, the variables include, at least, contact area with other components of the 

electrochemical device, compression, exposure to oxidizing and reducing atmospheres, 

seal formation conditions, and prospective startup/shutdown regimes. Nonetheless, the 

general requirements to the GC sealants, irrespective of the stack configuration and 

fabrication technologies, involve [15-17, 33-36]: 

 (i) Nearly zero gas permeability;  

(ii) Good adhesion to the solid electrolyte interconnects, electrodes, current 

collectors and/or other interfacing materials;  

(iii) Chemical inertness with respect to these materials under the stack fabrication 

and operation conditions;  

(iv) Coefficients of thermal expansion (CTE) compatible with those of the 

electrochemical cell constituents and other construction materials;  

(v) High electrical resistivity (>105 Ohm cm) under operating conditions;  

(vi) Minimum volatilization and diffusion of the sealant components;  

(vii) No tendencies to bulk reduction, oxidation, hydration, carbonate formation, 

and reactions with other gaseous species such as SOx and H2S;  

(viii) Thermal and morphological stability at the cell operation temperatures and  

during startup/shutdown;  

(ix) Compatibility of the characteristic temperatures, primarily glass transition, 

crystallization, softening and maximum shrinkage temperature, with the limitations 

arising from properties of the electrochemical device components and target operation 

regimes;  

 (x) Superior thermal shock resistance and high mechanical strength;  

(xi) Good sinter ability, easy processing, and an absence of seal defects such as  
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Fig. 2.1: Typical sealing configurations in planar SOFCs. 
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Fig. 2.2: Examples of seal configurations: (a), planar SOFCs; (b) tubular SOFCs; (c) cell 

for sealant testing. 
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pores, bubbles or micro cracks;  

(xii) Stability with respect to local heating, high applied voltage, flame, carbon 

deposition and other parasitic phenomena;  

(xiii) Self−healing ability originating from viscous flow of the seal glass;  

(xiv) Availability of the seal components and low costs.  

 

2.2 Families of glass and glass-ceramic sealants 
Through literature survey has evidenced that the majority of SOFC seals are 

primarily glasses and GCs. A glass is a super cooled liquid having no periodicity and 

symmetry in the network. All oxide or fluoride materials will not form a glass. To 

identify a glass forming oxide material Zacharaisen has proposed selection rules [37]. 

According to Zacharaisen an oxide glass may be formed (1) if the sample contains a high 

percentage of cations which are surrounded by oxygen tetrahedra or by oxygen 

triangles; (2) if these tetrahedra or triangles share only corners with each other and; (3) 

if some oxygen atoms are linked to only two such cations and do not form further bonds 

with any other cations. From these considerations one could conclude that the following 

oxides should be glass formers: B2O3, SiO2, GeO2, P2O5, As2O3, Sb2O3, In2O5, Tl2O3, 

SnO2, PbO2, and SeO2.  

Most of the glass and GC based sealants proposed so far are silicate; borate, 

phosphate or borosilicates (e.g., [23, 38]). However, every material has some advantages 

which are coupled along with some drawbacks. Alkali silicate glasses or GCs, in 

principle are not suitable as sealants because alkali cations tend to react with other 

components of the electrochemical devices [39], form volatile oxides and stable 

hydroxides and carbonates, and can lead to chromium poisoning. Further, most of the 

researchers have searched sealing materials on Ba−aluminosilicate GC system and its 

derivatives [23, 39-42]. The majority of these glass compositions contain high amount of 

BaO (30−35 mol%), leading to the crystallization of monoclinic celsian (BaAl2Si2O8) 

after long term heat treatments [23] and formation of detrimental crystalline phase 

BaCrO4 when interfacing with Cr−based metallic interconnect materials in air at 

operating temperatures [43]. Significant content of BaO may also promote interaction 

with water vapour, leading to sealant degradation under SOFC operating conditions. For 
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example, Pacific Northwest National Laboratory (PNNL) patented a glass–based sealant 

named as G18 (15CaO–35BaO–5Al2O3–10B2O3–35SiO2 (mol%)) [44]; the proneness of 

G18 glass for crystallizing the low thermal expansion monoclinic BaAl2Si2O8 phase 

during long term SOFC operation, its high content of BaO that might also react with 

water vapour and Cr−containing gaseous species (CrO3 or CrO2(OH)2) diffused to the 

glass surfaces to form BaCrO4, constitute the most serious drawbacks as SOFC sealant. 

The large CTE differences between this chromate ((18–20) × 10−6 K−1), the sealing glass 

(CTE of (10–13) × 10−6 K−1) and the metallic interconnects ((11−13) × 10−6 K−1) lead to 

significant losses in bonding strength between SOFC glasses and interconnect materials 

or to their physical separation. 

Also, B2O3 forms volatile compounds with water vapour leading to seal 

degradation [23]. Glasses with B2O3 as the only glass former have shown up to 20% 

weight loss in the humidified H2 environment and extensive interactions with cell 

component materials both in air and wet fuel gas [45]. Thus, high amount of B2O3 in the 

sealants is not seen with alacrity. Some P2O5−based glasses have also been investigated 

for sealing purposes. Again, these compositions face a severe problem of volatilization of 

phosphate component leading to easy crystallization of pyro− or meta−phosphates. These 

phases show poor stability at high temperature in wet fuel gas atmosphere [38, 46]. The 

difficulties in meeting all the requirements in a given material stimulated many research 

groups throughout the world searching for alternative glass sealants [21, 25, 26, 34-36, 

47-56]. Previous review articles on sealant materials for SOFCs have evidenced that 

aluminosilicate−based materials constitute the most promising family for the rigid GC 

sealants  [21, 23, 25, 26, 57]. Therefore, in the current chapter an attempt was undertaken 

to analyse the compositional range and properties of aluminosilicate−based sealants 

aiming at their further improvements. Selection of the references for this review is 

focused on the last 10−15 years, with the main emphasis on the newly reported materials. 

 

2.3 Aluminosilicate based glass and glass−ceramic sealants 
 The thermodynamic properties of aluminosilicate glasses are mainly determined 

by their composition and the network connectivity. When introducing Al2O3 in the fully 
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connected corner−sharing tetrahedral network of amorphous silicates, the Al atoms 

substitute for the Si atoms in the centre of the tetrahedra thus leading to charged (AlO4)5− 

units. In order to maintain local charge neutrality, (AlO4)5− units can be 

charge−compensated by alkali cations (K, Li) which must be present in the vicinity of 

each such tetrahedron. Therefore, the (AlO4)5− tetrahedra substitute directly into the 

network for silicon−oxygen tetrahedra, and simultaneously tend to suppress the 

immiscibility while raising the Tg and decreasing the CTE of glasses [58]. However, if 

the concentration of these cations becomes larger than needed for a full compensation of 

the (AlO4)5− units, then the cations play the role of modifiers. Namely, these create 

non−bridging oxygens (NBO) by breaking T–O–T linkages (T=Si/Al) and/or play the 

role of charge balancing, by neutralizing the AlO4 entities. 

Considering the above mentioned features, alkali or alkaline earth oxides such as 

Na+, K+, Ca2+, Mg2+, Sr2+, Ba2+ etc., can serve both as charge compensators and/or as 

network modifiers in aluminosilicate glasses. These cations perturb silicate frameworks 

linked by bridging oxygen (BO) and by forming NBO, which play essential roles in many 

dynamic properties of melts. In principle, the number of NBO atoms in a glass is directly 

related to the viscosity of the glass forming liquid [59]. The types of cations in oxide 

glasses certainly can cause different states of disorder depending on their characteristics, 

such as ionic radius, charge, field strength, and on their local environments.  

 

2.3.1 Alkali containing aluminosilicate glass/ glass−ceramic sealants 

Alkali oxides involved in the batch as a modifier contribute to get homogeneous 

melt at moderate temperatures, to decrease the glass transition temperature, to adjust 

glass viscosity and to improve the wettability of glasses. Chemical compositions of some 

alkali containing glasses employed as sealants in SOFC are summarized in Table 2.1[34, 

35, 60-67]. Alkali alkaline−earth aluminosilicate seal glasses generally contain 20−45 

mol% of network modifiers with the molar ratio (Na2O+K2O)/(CaO+MgO) varied in the 

range 0.03−1.8. Recently D. Coillot et al. [63] reported on alkali aluminosilicate glasses 

free from alkaline−earth oxides. Properties of some alkali containing aluminosilicate  
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Table 2.1: Some alkali alkaline earth aluminosilicate glass compositions (%) investigated 

for SOFCs.  

 Na2O/K2O CaO/MgO/BaO Al2O3 SiO2 Others Ref. 

Mol 10-25 15.0 10.0 45-60 5.0 TiO2 
[60] 

Wt 9.6- 23.8 12.9-13 15.7 41.5-55.6 6.1-6.2 TiO2 

Mol 7.3/10 3.34/-/8.23 2.80 66.9 1.43 
 [61, 62] 

Wt 6.2/13 2.6/-/17.4 3.9 55.4 1.43 

Wt -/5-10 -/-/10-15 0-15 20-25 
5-10 ZnO 

45-50 Bi2O3 
[34] 

Mol 13/4 - - 65-75 

0-10 B2O3 

1 La2O3 

7 ZrO 
[63] 

Wt 
11.6/5.4 

11.7/5.5 
- - 56-65.5 

0-10 B2O3 

4.7 La2O3 

12.4 ZrO 

Mol 9-12 24-26 16-18 53-58 - 
[35, 64, 65] 

Wt 9.4-11.3 20.4-22.1 24.8-27.8 48.4-52.8 - 

Mol 

1.3 

6.2 

1.3 

39.7/0.5 

40.9/- 

36.8/0.4 

13.4 

11.2 

12.4 

45 

36 

41.8 

- 

1La2O3/4.7ZnO 

7.3 ZnO 

[65] 

Wt 

1.3 

5.7 

1.2 

34.8/0.3 

34.2/- 

31.6/0.27 

21.4 

17.1 

19.4 

42.2 

32.3 

38.4 

- 

5La2O3/ 

5.7ZnO 

9.1 ZnO 

Mol 10-12.1 22.2-25.6 6.1-7.3 51.7-57 8-10 
[68] 

Wt 10-12 20-23 10-12 50-55 8-10 

Mol 18-23 18 9 40-45 10 B2O3 
[64] 

Wt 17.3-22.1 15.6-15.7 14.2 37.2 -42 10.8 B2O3 
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Table 2.2: Properties of some aluminosilicate glass and glass−ceramic compositions 

Tg, ºC Ts, ºC Tp, ºC 

Density 

(gcm−3): 

Glass/GC 

CTE (10−6 K−1): 

Glass/GC 
Ref. 

Alkali alkaline earth silicate 

562-654 589-709 
Tp1:705-831 

Tp2:864-965 
- 

8.19-8.88/8.27 (200-

550) 
[60] 

468-486 540-600 - - 11 [61, 62] 

470-480 530-575 - - 
9.41-11.2 

(50-460) 
[34] 

610-630 675-692 - - 7.5-8.3 [63] 

670 740 
Tp1:830 

Tp2:940 
- -/10.7 [35] [22,73,74] 

700-780 - 
Tp1:780-1020 

Tp2:900 
- 

7.8-9.7(200-400)/ 

10 (RT-800) 
[65] 

670 740 -  
9.4-9.8(300-500)/ 

10.7(RT-800) 
[68] 

545-580 680-740 -  
9.3-11.2 

(200-400) 
[64] 

Alkaline earth silicate 

730 750 - -/3-3.10 11.2 [69] 

619 682 - - 
10.5 (RT-500 ºC) 

11.8 (200-800 ºC) 
[47, 70-72] 

666-699 - 780-833 - 8-8.3 [73] 

627-730 657-765 844-903 - 7.9-8.3 (200-600) [74] 

645 693 - - 11.76/11.68  [75] 

685 741 - - 
11.87/11.63 

(RT-680) 
[76] 

630 685 - - 
11.80/12.40 

(RT-630) 
[76] 

685 741 - - 11.6/11.9 (RT-Ts) [77] 

712-800 748-838 - 3.6-4.19 8.4-10.7/8.5-10.1 [78] 

584-650 - 779-789 - 11.4-13/12-13 [79] 

640-722 664-745 
Tp1:820-890 

Tp2:860-930 
3.6-3.8 

10.5-11.5 

(200-650) 
[80] 
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635-653 673-683 730 - 
9.9-11.8/11.3-12.5 

(30-500) 
[81] 

611-672 660-712 720-785 3.89 9.9-12.4 (RT-610) [39] 

Boron containing alkaline earth silicate 

678-718 701-748 775-858 3.69-3.86 
-/9.1-10.8 

(100-650) 
[82] 

710-724 - 760 - 
7.94-8.06/ 

8.05-8.43 
[83] 

690-720 - 807-825 3.4-3.8 7.5-8.5 [84] 

650-690 - 766-1074 - 
6.84-7.71/ 

7.67-8.10 
[85] 

620 620-735 - - 4.7-7.76 [86] 

554-659 660-709 

Tp1:821-913 

Tp2:1092-

1021 

2.67-3.32 8.29-9.72 [87] 

775 815 965 - 10.8 [88] 

635-775 670-815   10.8 (50-775) [89, 90] 

668 745 
Tp1:820 

Tp2: 864 
- 9-12/11 [36, 91-93] 

- 645-781 655-745 - 
9.23-11.17 

(200-650) 
[94] 

595-620 - 760-808 3.4-3.8 
-/9.5-13.2 

(100-750) 
[95] 

- 912-937 - 3.24-4.54 4.1-8.1 [96] 

601-622 - 
Tp1:762-838 

Tp2:896-907 
 10.34-10.83 [97] 

- 656-854 - 2.61-3.92 4.92-10.98 [98] 

575-633 628-685 - - 

11.2-11.8 

(RT-630)/ 

10.8-12.5 

(RT-1000) 

[41] 

Others 

655 - 790 - - [55] 

576 - - - 9.4 [99] 

552 558 - - 
11.9 ((275-550)/ 

10.1-13.0 
[100] 
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glass sealants are shown in Table 2.2 [34, 35, 60-68]. Values of Tg (545−780 ºC) and Ts 

(680−740 ºC) were obtained when Na2O introduced in the amount of 1.3−18 mol% whilst 

7 mol% K2O containing glasses demonstrated Tg of 470 ºC and Ts of 530 ºC [34]. 

Substitution of 5 mol% of Na2O for SiO2 in calcium aluminosilicate glass reduced Tg and 

Ts by 35 and 60 ºC, respectively, and also increased CTE from 9.2 × 10−6 up to 11.2 × 

10−6 K−1 [64]. On the other hand, the substitution of 15 mol% Na2O for SiO2 in calcium 

aluminosilicate glasses was found to increase Tg and Ts  by 92 ºC and 120 ºC 

respectively, whilst CTE decreased from 8.9 × 10−6 down to 8.2 × 10−6 K−1 [60]. Values 

of Tg (468−630 ºC) and Ts (540−692 ºC) were obtained in Na2O (7.3−13 mol%) and K2O 

(4−10 mol%)−containing glasses [61-63]. Additionally, lowest values of Tg and Ts were 

revealed when low field strength K+ ion was incorporated in silicate glasses. Generally, it 

is well known that incorporation of alkali ions at the expense of glass formers resulted in 

disruption of silicate network owing to the increasing number of NBO. Fewer changes in 

silicate network will occur when alkali ions substitute for alkaline−earth ions. 

Nevertheless, network disorder increases with growing (Na2O+K2O)/(CaO+MgO) molar 

ratio causing Tg and Ts diminishing (Fig. 2.3a). Consequently, with increasing 

(Na2O+K2O)/(CaO+MgO) molar ratio Tg decreases from 780 to 562 ºC and Ts from 740 

to 600 ºC. 

 

 
Fig. 2.3: Variation of glass transition (Tg) and glass softening point (Ts) with respect to 

(a) (Na2O+K2O)/(CaO+MgO) (b) (BaO+SrO)/(CaO+MgO) molar ratio in some alkali 

alkaline earth aluminosilicate glass compositions (see Tables 2.1,2.2 and 2.3). 
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Fig. 2.4: Variation of the coefficients of thermal expansion (CTE) as function of the 

(Na2O+K2O)/(CaO+MgO) molar ratio in some alluminosilicate glass compositions and 

(BaO+SrO)/(CaO+MgO) ratio in alluminosilicate compositions investigated for SOFCs 

(based on the data from Tables 2.2, 2.3  and 2.4). 

Fig. 2.4 shows the variation in CTE of alkali containing alkaline−earth 

aluminosilicate glasses with respect to (Na2O+K2O)/(CaO+MgO) molar ratio. CTE of 

glasses increased from 7.8 to 10.7 × 10−6 K−1 when (Na2O+K2O)/(CaO+MgO)  ratio 

changes in the range 0 to 0.4, and then decreased down to about 8.2 × 10−6 K−1. CTE 

values are stabilized with the further increase in (Na2O+K2O)/(CaO+MgO) molar ratio, 

between 0.6 to 1.7. This anomalous behaviour can be explained on the basis of mixed 

modifier ions presence and their distribution in the glasses. When mixing the high− and 

low−field−strength cations (e.g., Mg2+ and K+, respectively) to the aluminosilicate, the 

high field−strength cation is consistently favoured to form the NBO’s while low field 

strength ions behave as charge compensators. On the other hand, when pair of cations 

with the similar ionic radii but different charges (e.g., Ca2+ and Na+, respectively) is 

mixed, the charge difference apparently plays an important role in the preference to the 

formation of dissimilar pairs primarily in order to maximize a homogeneous distribution 

of charges in the glasses. Non−random distributions of modified cations in Ca−Na 

silicate glasses due to the similar ionic radii affect the dynamics of Na+ and related 
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properties in the glass [101]. The desired CTEs, (9−11) × 10−6 K−1, have been obtained 

when the glasses featured (Na2O+K2O)/(CaO+MgO) ratio in the range 0.1−0.5 (Fig. 2.4).  

As a matter of fact, most of the glass/glass–ceramic candidates investigated up to 

now contain no alkali metals and the impact of alkali appears unclear. Some alkali 

metal−containing glasses used for sealants in SOFC enhance the chromium vaporization 

from metallic interconnects by the formation of very volatile Na2CrO4 and K2CrO4 

species [23]. Chou et al. [61, 62] discussed the compatibility between Crofer22APU 

interconnects and potassium oxide containing glasses. The addition of K2O in the parent 

glass sealant led to de−bonding of the sealant from Crofer22APU due to alkaline−earth 

chromates formation. No discussion about corrosion mechanism, like alkali chromates 

formation and their volatility, on as−received Crofer22APU has been presented. Kaur et 

al. [60] studied the microstructure at the interfaces of Crofer22APU and glass with 

varying Na2O content from 10 to 25 mol%. The diffusion couple between Crofer and 

glass (10 mol % Na2O) was found to show a good and smooth interface; no traces of Na+ 

were observed. Several investigations [35, 60, 61, 63] stated that alkali metals role is still 

unclear, and thus their drawbacks may be smaller than expected and it may be 

advantageous to keep them in glass seal composition. For instance, Smeacetto et al. [67] 

have extensively studied alkali−containing alkaline earth aluminosilicate glasses and 

found that glasses containing a low amount of sodium oxide can be used as sealing 

material for SOFCs. Further, Smeacetto et al. [67] have also evaluated the performance of 

Na2O−containing GC sealant in two SOFC short stack configurations. The GC sealant 

was reported to have a good chemical and thermo mechanical compatibility with both 

Crofer22APU and yttria−stabilized zirconia (YSZ) components. At the same time, one 

should note that potential effects of Na+ presence are not limited to the GC|YSZ and 

GC|interconnect interfaces. In particular, high surface diffusivity of Na+ may cause 

poisoning of the electrodes; sodium incorporation in the solid electrolyte grain 

boundaries may lead to worse mechanical strength and, often, higher electrical resistivity 

of stabilized zirconia (e.g., [102] and references cited). These effects associated with a 

slow degradation in the SOFC performance with time cannot be ignored in the seal 

developments and require long−term testing of such sealants.  
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2.3.2 Alkaline earth aluminosilicate glass/glass−ceramic sealants 

A number of alkaline earth aluminosilicate glass sealants have been apprised for 

SOFCs and other solid−electrolyte devices. Knowing the fact that alkaline earth metals 

have different chemical properties such as field strength, ionic radius, and electro 

negativity those can have strong influence on Tg, Ts, CTE, crystallization behaviour, 

electrical conductivity as well as the reactivity of glasses. To date, the most well−known 

systems that have been widely used for sealing applications are the BaO/SrO–Al2O3–

SiO2–based, BaO/SrO–CaO–Al2O3–SiO2−based and BaO/SrO–CaO/MgO–Al2O3–

SiO2−B2O3−based glass systems. Some compositions of alkaline earth and boron 

containing aluminosilicate glasses employed as sealants in SOFCs are summarized in 

Tables 2.3 and 2.4 whilst their properties are provided in Table 2.2 [36, 39, 41, 47, 55, 

70, 71, 74-82, 84-100, 103-109]. Relatively wide ranges of Tg, Ts and CTE were obtained 

in the alkaline−earth metals containing boron/alumino silicate glasses. Those are as 

follows:  

(i) for MgO containing glasses Tg varied in the range of 620−700 ºC, Ts changed 

between 620 and 735 ºC, and CTE varied in the range of (4.7−8.1)× 10−6 K−1[86]; 

(ii) for CaO containing glasses Tg varied in the range of 710–724 ºC, Ts is close 

to740 ºC, and CTE changed in the interval 7.9× 10−6 to 8.1× 10−6 K−1[83]; 

(iii) for SrO containing  glasses Tg varied in the range of 660−800 ºC, Ts changed  

in the range of 660−838 ºC and CTE varied in the range of (6.8−11.5) × 10−6 K−1[78, 80, 

84, 88, 89, 110, 111]; 

(iv) finally for BaO containing  glasses Tg varied in the range of 601−789 ºC, Ts 

changed in the interval  656−937 ºC, and CTE was (4.1−11.8)× 10−6 K−1   [73, 74, 85, 97, 

98, 112]. 

Barium−containing aluminosilicate glasses demonstrated lowest Tg and Ts (Table 

2.2) and highest CTE values (Table 2.2) as compared to other alkaline earth containing 

glasses, for instance CaO and SrO containing glasses. This behaviour can be explained on 

the basis of field strength values. The field strength of alkaline earth modifier cations 

fallows this trend: Mg2+ (045−0.51) > Ca2+ (0.33−0.35) > Sr2+ (0.27) > Ba2+ (0.24). Since 

the force characteristic of Mg2+ cations is highest among alkali and alkaline−earth cations 
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and lowest among network−former ions, one can assume that the Mg2+ cations in the 

glass network can exist as both modifiers and network formers [113]. CTE increased with 

increasing BaO contents from 20 to 40 mol% and achieved a maximum of approximately 

11 × 10−6 K−1 at  40 mol% BaO in the BaO–Al2O3–La2O3–SiO2–B2O3 system [114]. CTE 

also increased with increasing SrO content, with a maximum of 9.7 × 10−6 K−1 at 25.7 

mol% SrO in the SrO–Al2O3–La2O3–SiO2–B2O3 system [87]. However, increasing SrO 

and decreasing B2O3/SiO2 ratio resulted in growing of the glass transition temperature 

(Tg) and softening temperature (Ts) as the structure becomes inverted and rigid [87]. 

Hence, the CTE increases directly with the decreasing the field strength of alkaline earth 

cations due to the weaker bonding at lower field strength. 

However, the effect of the network modifier on the Tg, Ts and CTE of a seal glass 

is complex and is related to the field strength, to the amount of a network modifier, and 

also to the presence of other concomitant components in the glass. Thus: 

(i) Tg of 575−668 ºC, Ts of 558−781 ºC and CTE range (9.9−12.0) × 10−6 K−1 were 

revealed for CaO−BaO containing glasses [36, 39, 47, 70, 71, 77, 81, 91-93, 106]; 

(ii) Tg of 630−735 ºC, Ts of 721−768 ºC and CTE of(11.2−12.1) × 10−6 K−1are 

found for CaO−SrO containing glasses [69, 77]; 

(iii) Tg of 584−650 ºC and CTE in the range of (11.4−13.0) × 10−6 K−1 are 

characteristic of SrO−BaO containing glasses [79]; 

(iv) Tg range of 624−715 ºC, Ts of 665−750 ºC and CTE of (8.6−10.1) × 10−6 

K−1were obtained for MgO−BaO containing boron−aluminosilicate glasses. BaO and SrO 

as modifiers increase the CTE as compared to CaO and MgO due to their low field 

strength values [86]. The lowest Tg of 584 ºC and highest CTE of 13 × 10−6 K−1were 

obtained for 18.5 mol% SrO and 33.3 mol% BaO containing aluminosilicate glasses [79]. 
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Table 2.3: Some alkaline earth aluminosilicate glass compositions (%) investigated for 

SOFCs 

 CaO SrO/BaO Al2O3/La2O3 SiO2 B2O3 Others Ref. 

Mol 26.48 26.48/- 1.96 41.16 1.92 2 TiO2 
[103] 

Wt 20.6 38.1/- 2.8 34.4 1.9 2.2 TiO2 

Mol 23.4 23.4 - 39.6 3.6 
10 ZnO/10 

MnO2/10La2O3 
[105] 

Wt 
13.6-

18.3 
25.2-33.8 - 

24.7-

33.1 

2.6-

3.5 

11.3 ZnO/12 

MnO2/33.9La2O3 

Mol 19.2 18.5 2.9 42.2 1.9 13.2 ZnO/2.1  TiO2 [104, 

115] Wt 15 26.6 4.1 35.2 1.8 14.9 ZnO/2.3 TiO2 

Mol 15 -/35 5 35 10 - [47, 70, 

72] Wt 8.8 -/56.4 5.4 22.1 7.3 - 

Mol - -/30 - 40 0-7.5 
20 ZnO 

2.5-10 Mn2O3 
[73] 

Wt - -/45.1-48.2 - 
23.5-

25.2 
0-5.5 

15.9 -17.0ZnO 

4.1-15.5 Mn2O3 

Mol - -/30 0-10 40 0-10 20 ZnO 

[74] 
Wt  -/47.7-49.3 0-10.6 

24.9-

25.8 
0-7.5 16.9-17.5 ZnO 

Mol 5 43.5 (SrCO3) - 34 10 
5 Y2O3 

2.5 ZnO 
[75] 

Wt 2.6 59.6 - 19 6.5 
10.5 Y2O3 

1.9 ZnO 

Mol 6 42.5 - 37.0 8.5 6 Y2O3 
[76] 

Wt 3.8 49.4 - 25 6.6 15.2 Y2O3 

Mol 15 -/35 5 35 10 - 
[76] 

Wt 8.8 -/56.4 5.4 22.1 7.3 - 

Mol - 20-40 4-12.5 34-48 - 
6-29 ZnO 

3-10 TiO2 
[78] 

Wt - 19.05-46.21 
2.82-12.98/ 

7.45-24.8 

14.52-

28.17 
- 

4.24-25.89 ZnO 

13.01-33.42 TiO2 

Mol - 
18.5-20/30-

33.3 
4.6-5/4.6-5 27.7-30 

9.2-

10 
0-1.8 P2O5 

[79] 

Wt - 16.5- 4-4.5/12.9- 14.4- 5.5- 0-2.2 P2O5 
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18.3/44.1-40.7 14.4 15.9 6.2 

Mol - 

38.8 

39.5 

38.8 

40.5 

- 

- 

- 

2.4 

52.5 

40.1 

40.9 

41.0 

- 

11.5 

9.4 

5.9 

8.7 ZnO 

8.9 ZnO 

9.1ZnO/1.8V2O5 

9.1ZnO/1.1Cr2O3 [80] 

Wt - 51 - 40-x 0-10 

9 ZnO 

X=4V2O5, 3Al2O3, 

2Cr2O3 

Mol 21.6 -/18.3 0.5 59.6 - - 
[107] 

Wt 15.8 -/36.7 0.7 46.8 - - 

Mol 15 -/35 5 32-37 8 0-5 P2O5 

[81] 
Wt 8.5-8.9 -/54.2-56.5 5.1-5.4 

19.4-

23.4 

5.6-

5.9 
0-7.2 P2O5 

 

 

Table 2.4: Boron−containing alkaline earth aluminosilicate glass compositions (%) 

investigated for SOFC 

 
CaO 

/MgO 

SrO/ 

BaO 

Al2O3/ 

La2O3 
SiO2 B2O3 Others Ref. 

mol - 
23.7 

16.6 

-/2.4 

-/2.6 

52.3 

56.4 

22.6 

24.4 
- 

[82] 

Wt - 
30 

30 

10 

10 

40 

40 

20 

20 
- 

mol 30 - - 40 20 
10 Y2O3/10 

La2O3 
[83] 

Wt 
21.7 

19.3 
- - 

31.1 

27.5 

18 

15.9 

29.2 Y2O3/ 

37.3 La2O3 

mol - -/30 - 40 20 

10 Al2O3/10 

Y2O3/ 

10 La2O3 
[84] 

Wt - 

-/48.9 

-/43.2 

-/39.5 

- 

25.5 

22.6 

20.6 

14.8 

13.1 

11.9 

10.8 Al2O3 

21.2 Y2O3 

28 La2O3 

mol - 30 - 40 20 
10 Al2O3/10 

Cr2O3/ 
[85] 
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10 Y2O3/10 

La2O3 

Wt - 

39.2 

36.9 

33.9 

30.6 

- 

30.3 

28.5 

26.2 

23.6 

17.6 

16.5 

15.2 

13.7 

12.9 Al2O3 

18.0 Cr2O3 

24.6 Y2O3 

32.1 La2O3 

mol -/30 - - 40 20 

10 Al2O3/10 

Y2O3/ 

10 La2O3 
[86] 

Wt 

-/20.1 

-/16.6 

-/14.6 

- - 

39.9 

33.1 

29.1 

23.1 

19.2 

16.9 

16.9 Al2O3 

31.1 Y2O3 

39.4 La2O3 

mol - 7.9-25.7 12.1-13.1/3.8-4.1 
40.9-

44.4 

12.8-

35.3 
- 

[87] 

Wt - 10-30 15/15 30 10-30 - 

mol - 13.3 13.3/13.4 25-60 0-35 - 

[90, 108] 
Wt  12.5-12.9 

12.3-12.7/39.5-

40.8 

13.6-

33.7 
0-22.1 - 

mol 0-15 -/0-40 0-10/0-15 0-40 0-15 0-5 (ZrO2) [36, 91-

93] Wt 0-6.9 -/0-50.7 0-8.4/0-40.4 0-19.9 0-8.6 0-5.1 

mol 

16-24 

- 

16 

-/16-24 

36-44/- 

16-28/- 

6/6 

5/5 

5/5 

30-42 

30-30 

31-43 

10-14 

13-16 

15 

- 

[94] 

Wt 

9.5-13.3 

- 

10.1-

10.8 

-/26.1-

36.5 

40.4-

47.4/- 

19.9-

32.8/- 

6.1-6.5/ 

19.4-20.8 

5.3-5.5/ 

16.9-17.6 

5.8-6.1/ 

18.4-19.6 

17.9-

26.8 

18.7-

26.7 

21.1-31 

 

6.9-10.4 

9.8-11.6 

11.8-

12.5 

 

- 

mol - -/47.62 4.76 26.67 20.95 - 
[113] 

Wt - -/67.3 4.5 14.8 13.4 - 

mol - -/40 0-10 33.3-40 16.7-20 - 

[97] 
Wt - 

-/59.5-

61.8 
0-9.9 

19.4-

24.2 
11.3-14 - 

mol - -/12.62-50 5-7.59 15-63.2 16.67-30 - 

[98] 
Wt  

-/25.2-

68.7 
4.6-10.1 8.1-49.5 

15.2-

18.7 
- 
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mol - 20/20 - 40 20 - 
[104] 

Wt - 23.2/34.3 - 26.9 15.6 - 

mol 10-15 -/32.5-35 2.5-5/0-5 30-39 10-15 - 

[41] 
Wt 6-8.8 

-/47.3-

56.4 
2.4-5.4/0-15.5 

19.4-

23.2 
6.9-11.3 - 

 

Fig. 2.3b displays the variation in Tg and Ts as function of the 

(BaO+SrO)/(CaO+MgO) molar ratio. These variations are rather discontinuous: (i) when 

the ratio (BaO+SrO)/(CaO+MgO) ranges from 0.50 to 2.67 Tg and Ts vary in the intervals 

of 575−650 ºC and 640−750 ºC, respectively; (ii) Tg and Ts both show an abrupt decrease 

at the molar ratios from 2.67 to 3.5; (iii) continuous increase in Ts and Tg were observed 

in the interval 3.5−6; and finally,(iv) significant increase of Tg and Ts were revealed when 

the molar ratio ranged from  6.50−7.08. A general trend to growing CTE has been 

observed with increasing molar ratio (BaO+SrO)/(CaO+MgO), Fig. 2.4.  

Highly suitable values of Tg, Ts and CTE have been achieved in the barium 

containing boron aluminosilicate glasses (Table 2.2). However, poor thermal stability and 

unwanted chemical interaction with the SOFC components limit the application of BaO− 

and B2O3−containing glasses. B2O3 works well for decreasing the viscosity of the glass 

but at the same time it decreases seal thermal stability owing to lowering network 

connectivity. On the other hand, the compositions that contain large amounts of boron 

can react in overtime with water vapour and produce gaseous B2(OH)2 or B(OH)3. This 

can decompose the seal glass and limit the life span. Notice that Zhang et al. [104]  

discussed the borate volatility issues in their report. 

Glass−ceramics (GCs), formed by the controlled crystallization of glasses, exhibit 

superior properties with respect to glasses. The performance of GCs can be controlled by 

proper controlling of the nature and amount of crystalline components. Crystallization 

typically increases the strength and CTE [92, 93]. The higher CTEs of GCs are however 

entirely consistent with the relative CTE variations of the crystalline phases developed in 

the glasses. The resultant CTE can be estimated using the standard additive rule 

α=Σmiα+ai where α is the CTE of the glass ceramics, mi and α are the mole fraction and 

CTE of each phase present in the matrix, respectively, and ai is a constant factor for phase 
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i [116]. Significant content of BaO in the aluminosilicate glasses can lead to formation of 

the following crystalline phases: (i) Barium silicate (BaSiO3; CTE (9−13) × 10−6 K−1), (ii) 

Barium orthosilicate (BaSi2O5; CTE≈14 × 10−6K−1), (iii) Hexacelsian (BaAl2Si2O8; 

CTE=(7−8) × 10−6 K−1), (iv) Monocelsian (BaAl2Si2O8; CTE= (2−3) × 10−6 K−1), and (v) 

Orthocelsian (BaAl2Si2O8; CTE= (7−8) × 10−6 K−1) [23]. The activation energy for 

crystal growth is  very low for the BaO−containing glass (206−300 kJmol−1) as compared 

to CaO−containing (413 kJmol−1) and MgO−containing (340−420 kJmol−1) 

aluminosilicate glasses, and thus causes rather poor thermal stability [117]. 

Consequently, due to low activation energy there is a strong tendency for celsian 

formation in BaO−containing glasses. The celsian (BaAl2Si2O8) crystalline phase having 

a low CTE value reduces thermal expansion of the resultant GCs. On the other hand, 

significant content of BaO in the glasses can also lead to formation of BaCrO4 on the 

sealant surfaces due to the transport of volatile Cr–containing species, such as CrO3 or 

CrO2(OH)2. The high CTE of BaCrO4 (∼18 × 10−6 K−1), contributes to the physical 

separation of the sealing glass from the stack components where the CTEs are (10–13) × 

10−6 K−1  [23]. Thus, the formation of low expansivity BaAl2Si2O8 phase due to high BaO 

content in these glasses makes them unsuitable for the SOFC sealants.  

 

2.4 The problem and the possible solution 
The above literature survey evidenced that many compositions of glass sealants 

for p−SOFCs have been developed and extensively studied for their thermal and chemical 

properties. However, no specific sealant developed so far is offering a great promise for 

the planar−SOFC applications. There are several ways in which a rigid glass/GC SOFC 

seal can fail during operation, including: i) failure by fracture under pressurization, ii) 

failure during rapid thermal cycling, and iii) failure upon thermal aging. Self−healing 

(SH)−glasses/GCs would be one viable option to overcome the drawbacks presented by 

the rigid glass/GC seals. SH−glasses/GCs ideally have the ability to effectively “repair” 

any cracks developed during thermal cycling when heated to a sufficiently high 

temperature. The advantage of this approach is that materials with significantly different 

CTE values could potentially be used as seals because at FC operating 
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temperatures−induced, the thermo−mechanical stresses could be relaxed. Until now, very 

few related studies have been reported in literature [48, 53, 118]. However, most of the 

proposed solutions still have some lacunas or challenges to be further addressed. For 

instance, the SH glass seal proposed by Singh et al. [53, 54] experienced a continuous 

creep deformation at FC operating temperature, therefore, resulting in a possible 

overflow of the sealant material. Further, SH shape memory alloy (SMA)/glass 

composite seal designed by Story et al. [119] is unsuitable due to its high electrical 

conductivity and low transformation temperature of the SMA. Concerning SH−glass 

seals, the following challenging issues still need to be fully demonstrated by 

researches/technicians: i) the ability to SH at the cell operating temperature 700−800oC, 

ii) the thermal stability of the seal against crystallization for long durations, and iii) the 

maintainance of the sealing capability [54]. In the light of the above mentioned 

state−of−art, it is evident that there is a need for the development of new sealing and/or 

bonding materials for FCs, in particular materials that can have high flexibility and also 

higher mechanical, chemical and thermo−physical stability. In this regard, SH glasses 

have the potential to remove the main difficulties being faced by SOFC community 

relatively to the use of rigid glass/GC seals. A careful design and synthesis of suitable 

SH−glass seals along with optimization of their properties with respect to final 

application in SOFC will be a valuable contribution in this field. In addition, additional 

new concepts/modifications are required to conquer the challenges being faced by the 

existing sealing technology. 
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3. Experimental 

3.1 Glass preparation 

 High purity powders of SiO2 (>99.5%), Al2O3 (Sigma Aldrich, >98%), MgCO3 

(BDH chemicals, UK, >99%), CaCO3 (>99.5%), SrCO3 (Sigma Aldrich, 99.9%), BaCO3 

(Sigma Aldrich, 99.9%), La2O3 (Sigma Aldrich, 99.9%), H3BO3 (>99.5%), and NiO 

(Sigma Aldrich, 99.9%) were used. Homogeneous batch mixtures of 100 g in accordance 

with the designed compositions, obtained by ball milling were preheated in temperature 

ranges 8001100 ºC for 2 h for decarbonisation. The decarbonized mixture was then 

melted in Pt crucibles in temperature ranges 15501585 ºC for 2 h, in air. Glasses in bulk 

form were produced by pouring the melts on preheated bronze moulds followed by 

annealing at around Tg for 1 h. The glasses in frit form were obtained by quenching of 

glass melts in cold water. The frits were dried at 100 ºC for 24 h and then milled in a 

highspeed agate mill resulting in fine glass powders with mean particle sizes of 1015 

μm (determined by light scattering technique; Coulter LS 230, UK; Fraunhofer optical 

model). The amorphous nature of glasses was confirmed by X–ray diffraction (XRD) 

analysis (Rigaku Geigerflex D/Max, Tokyo, Japan; C Series; Cu K radiation; 2 range 

10º–80º; step 0.02 ºs
–1

). 

 

3.1.2 Density and Molar volume 

Archimedes’ method (i.e. immersion in diethyl phthalate) was employed to 

measure the apparent density of the bulk annealed glasses. Molar Volume (Vm), was 

calculated using the density data for the bulk glasses using following relations: 

                                                                  
 

 
                        3.1 

where M is the molar mass of the glass and  is the apparent density of the bulk glasses. 

 

3.2. Thermal analysis of glasses  

3.2.1 Sintering behaviour  hot stage microscope (HSM) 

 The sintering behaviour of the glass powders was investigated using a side–view 

hot stage microscope (HSM) EM 201 equipped with image analysis system and 1750/15 
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Leica electrical furnace. The cylindrical shaped samples with height and diameter of 3 

mm were prepared by cold–pressing the glass powders. The cylindrical samples were 

placed on a 10 × 15 × 1 mm alumina (>99.5 wt. % Al2O3) support. The temperature was 

measured with a Pt/Rh (6/30) thermocouple contacted under the alumina support. The 

microscope projects the image of the sample through a quartz window and onto the 

recording device. The computerized image analysis system automatically records and 

analyses the geometry changes of the sample during heating. The image analyser takes 

into account the thermal expansion of the alumina substrate while measuring the height 

of the sample during firing, with the base as a reference. The HSM software calculates 

the percentage of decrease in height, width and area of the sample images. The 

measurements were conducted in air with a heating rate of 5 Kmin
–1

. The temperatures 

corresponding to the characteristic viscosity points (first shrinkage (FS), maximum 

shrinkage (MS), deformation (D), softening point (S), hemisphere (HS) and flow point 

(F)) were obtained from the photographs taken during the hot–stage microscopy 

experiment following Scholze’s definition [120, 121]. 

 

3.2.2 Differential thermal analysis (DTA) 

 The values of the glass transition temperature (Tg), crystallization onset 

temperature (Tc) and peak temperature of crystallization (Tp) were obtained by 

differential thermal analysis (DTA) using a Setaram LabSys TG–DTA16 instrument 

(Setaram Instrumentation, France) calibrated in the temperature range 25–1000 ºC. The 

measurements were performed using powdered glass samples (50 mg) in an alumina 

crucible and –alumina powder as reference at a heating rate () of 5 Kmin
–1

 and 20 

Kmin
–1

.  

 

3.2.3 In situhot stage scanning electron microscopy 

The environmental scanning electron microscopy (ESEM, FEIXL30, Eindhoven, 

Netherlands), with an in situ heating stage was employed to shed some more light on the 

sintering behaviour  of glasses. Due to the highly expensive and time consuming nature 

of this study, three glasses with similar lanthanide content (Nd0.2, Gd0.2 and Yb0.2) 

(Chapter 4.4) were only selected for this analysis. Small amounts of glass powder were 
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introduced in an MgO crucible plated with Pt (platinum plating is used to connect 

electrically the inside of the crucible to the SEM, so that a potential can be applied to the 

inside of the crucible). Since the glass grains were large enough to be manipulated with 

tweezers, a few grains were arranged in contacting pairs so as to facilitate the formation 

of necks during sintering. Observations were made in environmental mode with a water 

vapor pressure of 2 Torr. The samples were heated to 500 ºC at 30 Kmin
1

, and then until 

1000 ºC at 10 Kmin
1

 (with several pauses to take pictures at different temperatures). The 

formation of a neck between two glass particles was followed as a function of 

temperature. 

 

3.2.4 In situ High Temperature X–ray diffraction (HT–XRD) 

The phase transformations occurring in glass powders over increasing temperature 

from room temperature to 850 ºC were monitored by in situ high temperature X–ray 

diffraction (HT–XRD) analysis (Philips, X’pert, The Netherlands, equipped with a Pt hot 

stage). The schedule of the hot stage was as follows: Step 1: Room temperature to 500 ºC 

at  of 30 Kmin
–1

; Step 2: 500 ºC to 850 ºC at  of 5 Kmin
–1

; Step 3: dwell at 850 ºC for 

1 h. The XRD data was collected at the following temperatures: (i) room temperature; (ii) 

500 ºC; (iii) 700 ºC; (iv) 750 ºC; (v) 800 ºC; and (vi) 850 ºC without any significant 

dwell. Further XRD data was also collected at 850 ºC after dwell of 1 h.  

 

3.2.5 Dilatometry 

Dilatometry measurements were done with prismatic samples with cross section 

of 45 mm
2
 (Bahr Thermo Analyse DIL 801 L, Hüllhorst, Germany GmbH; =5 

Kmin
1

). The mean values and the standard deviations (SD) presented for coefficient of 

thermal expansion (CTE) (both glasses and GCs), and softening temperature (Ts) have 

been obtained from (at least) three different samples for each glass and GC. 

 

3.3 Structural characterization of glass 

3.3.1 Magic angle spinning  Nuclear magnetic resonance (MASNMR) 

 29
Si, 

27
Al, and 

11
B 1D magicangle spinning (MAS) nuclear magnetic resonance 

(NMR) spectra were recorded for all the glasses and GCs. The spectra were acquired on a 
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Bruker Avance III 400 spectrometer operating at a B0 field of 9.4 T with 
29

Si, 
27

Al and 

11
B Larmor frequencies of 79.5, 104.3 and 128.4 MHz, respectively. 

29
Si MAS NMR 

spectra were recorded using a 7 mm probe employing a rotation speed of 5 kHz, using a 

4.5 s radiofrequency (RF) excitation pulse length with a RF field strength of 56 kHz 

(90º flipangle) and 60 s recycle delay. Kaolinite was used as the chemical shift 

reference. 
27

Al and 
11

B MAS NMR spectra were recorded using a 4 mm probe using a 

spinning rate of 14 kHz, 1 s recycle delay, 0.5 s RF excitation pulse (equivalent to a 

/18 flip angle) for 
27

Al and 0.9 s (equivalent to a /12 flip angle) for 
11

B. The flip 

angle pulses used for 
27

Al and 
11

B were optimized using an aqueous solution of Al(NO3)3 

and H3BO3. 

 

3.4 Glassceramic preparation 

 The GCs were produced by sintering and heattreatment of glass powder compacts. 

Rectangular bars with dimensions of 4550 mm
3
 or circular disc shaped pellets with Ø 

20 mm and thickness ~3 mm were prepared from fine glass powders by uniaxial pressing 

(80 MPa). The glass powder compacts were sintered in the temperature ranges of 

850900 ºC for 1 h. Slow  of 5 Kmin
1

 was maintained for all the samples in order to 

prevent deformation of the samples. Further, glass powder compacts already sintered at 

900 ºC for 1 h, were heat treated under isothermal conditions at 850 ºC for different time 

durations varying between 1 h  1000 h. GCs were produced after prolonged 

heattreatment, up to 1000 h, in order to evaluate their thermal expansion behaviour and 

stability of crystalline phase assemblage during long term operation at SOFC operation 

temperature. 

 

3.5 Characterization of glassceramics 

3.5.1 Linear shrinkage, density and Mechanical strength 

The linear shrinkage during sintering and after the prolong heat treatment was 

calculated from the difference of the diameter/length between the green and the sintered 

pellets. Archimedes’ method (i.e. immersion in diethyl phthalate) was also employed to 

measure the apparent density of the GCs. The mechanical properties of GCs were 



29 

 

evaluated by measuring the threepoint bending strength of rectified parallelepiped bars 

(Shimadzu Autograph AG 25 TA, Columbia, MD with 0.5 mmmin
1

 displacement). The 

mean values and the standard deviation presented for the linear shrinkage, density and 

mechanical strength have been obtained from five different samples. 

 The mechanical reliability was tested by applying the well–known Weibull 

statistics to the experimental data [122]. According to Weibull statistics, the increasing 

probability of failure (F) for a brittle material can be expressed by F=1–exp (–/0)
m
, 

where F is the failure probability for an applied stress (), 0 is a normalizing parameter 

known as Weibull characteristic strength, and m is the Weibull modulus. Here, the 

Weibull modulus m is a measure of the degree of strength data dispersion.  

 

3.5.2 Qualitative and quantitative crystalline phase evaluation 

The crystalline phases in GCs were determined by XRD analysis (Rigaku 

Geigerflex D/Max, C Series; CuK radiation; 2 angle range 10º80º; step 0.02 deg s
1

). 

The quantitative analysis of crystalline phases in GCs (crushed to particle size < 25 μm) 

were determined by XRD analysis using a conventional BraggBrentano diffractometer 

(Philips PW 3710, Eindhoven, The Nederlands) with Nifiltered CuKa radiation. The 

quantitative phase analysis of the GCs was made by combined RietveldReference 

intensity ratio (RIR) method. A 10 wt.% of corundum (NIST SRM 674a, annealed at 

1500 ºC for 1 day to increase the crystallinity to 100%) was added to all the GC samples 

as an internal standard. The mixtures, ground in an agate mortar, were side loaded in 

aluminium flat holder in order to minimize the preferred orientation problems. Data were 

recorded in 2 range = 5140º (step size 0.02º and 6 seconds of counting time for each 

step). The phase fractions were extracted by RietveldRIR refinements, using GSAS 

software [123] and EXPGUI [124] as graphical interface, were rescaled on the basis of 

the absolute weight of corundum originally added to their mixtures as an internal 

standard, and therefore, internally renormalized. The background was successfully fitted 

with a Chebyshev function with a variable number of coefficients depending on its 

complexity. The peak profiles were modelled using a pseudoVoigt function with one 



30 

 

Gaussian and one Lorentzian coefficient. Lattice constants, phase fractions, and 

coefficients corresponding to sample displacement and asymmetry were also refined. 

 

3.6 Joining behaviour and chemical interactions between electrolyte/seal 

and interconnect/seal diffusion couples 

 In order to investigate the adhesion and chemical interaction of the glasses with 

SOFC components, wetting experiments between glass (powder)  8YSZ (Tosoh, Japan) 

and glass (powder)  metallic interconnect were carried out under different conditions. 

Two different metallic interconnect materials, namely, Crofer22APU (Thyssen Krupp, 

VDM, Werdohl, Germany) and SanergyHT (Sandvik AB, Sandviken, Sweden) were 

employed for wetting and interaction experiments with the glasses [125, 126]. The glass 

powders, 40 % solid content mixed with 5 vol% solution of polyvinyl alcohol (PVA) 

prepared by dissolution of PVA in warm water, were deposited on SOFC components by 

slurry coating. The diffusion couples were heated to 900 ºC with a relatively slow β of 2 

Kmin
–1

 and kept at that temperature for 1 h. Heat treatment was performed without 

applying any dead load. The adhesion and chemical interactions of the glasses with 

SOFC components, were also tested in humidified 10%H2–90%N2 gas mixture 

atmosphere at 850 ºC temperature for 250 h at 2 Kmin
–1

 (chapter 4.2). 

 

3.7 Microstructural characterization SEM and EDS 

 Microstructural observations were made on polished surfaces of the sintered and 

heat treated glass powder compacts (chemically etched by immersion in 2 vol % HF 

solution for duration of 2 min) by scanning electron microscopy (SEM; SU–70, Hitachi). 

In addition, energy dispersive spectroscopy (EDS; Bruker Quantax, Germany) has been 

utilized to study the distribution of elements along the interface of glass–

interconnect/ceramic plate.  

 

3.8 Electrical characterization 

The total conductivity (σ) was determined by AC impedance spectroscopy, using 

P4284A precision LCR meter, 20 Hz  1 MHz, and Gamry PCI4/750 instruments using 
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dense disk or barshaped samples with porous Pt electrodes. In the course of impedance 

measurements, the magnitude of AC voltage was fixed at 1.00 V; the equilibration time 

after each temperature change was 24 h. the measurements were performed as function 

of temperature at 620850 ºC and time (1300 h) in flowing atmospheric air, dry Ar, 

argon humidified at room temperature, and 10% H290% N2 gas mixture. The water 

vapour partial pressures, determined by a Jumo humidity transducer in air, dry Ar, and 

humidified Ar flow, were 0.006 atm, 10
–4

 atm and 0.03 atm, respectively.  

Seal glass/8YSZ diffusion couples had prepared (section 3.6) after that used for 

the electrical measurements in order to test possible degradation processes in the course 

of annealing/heat treatment at SOFC operation temperature. In the latter case, porous Pt 

electrodes were deposited onto both GC and 8YSZ surfaces, and then fired at 870880 ºC 

during 15 min.  

 

3.9 Ion transference number (electro motive force method) 

The ion transference numbers, which show the contribution of all mobile ions to 

the total conductivity, were determined by the modified electromotiveforce (e.m.f.) 

technique, as described elsewhere [127, 128]. Gas mixtures of 10% H290% N2 were 

supplied at the anode of a Pt|GC|Pt cell, where the oxygen partial pressure (p1) was 

determined using a 8YSZ sensor. The cathode was exposed to atmospheric air (p2 = 21 

kPa). The e.m.f. of the cell was measured at 820860 ºC as a function of an external 

resistance, RM. The ion transference numbers were calculated using regression model of 

eq. (3.2) in combination with eq. (3.3): 

 

 

   

    
     

 

  
                          

 

 
                          3.2 

                                     
     

  
                                                    3.3 

where A and B are regression parameters, Eobs the measured e.m.f., Eth the theoretical 

Nernst voltage, Rbulk the bulk resistance determined from the impedance spectra, and Re 

the partial electronic resistance of the sample. In all cases, porous Pt electrodes deposited 

onto the surfaces of dense GC disks or bars were used; the partial pressures of oxygen 
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and water vapour in the gas mixtures were controlled employing 8YSZ solid–electrolyte 

sensors and Jumo humidity transducers, respectively. 

 

3.9 Oxygen leakage measurements 

 

Fig. 3.1: Schematic diagram of experimental setup for oxygen leakage measurements 

The oxygen leakage measurement was performed by the determination of oxygen 

permeation fluxes through GCs under air/H2–H2O gradients. The experimental setup, 

sketched in Fig. 3.1, comprises a dense membrane disk (0.65 mm thickness) hermetically 

sealed onto an YSZ tube, and two oxygen sensors at the inlet and outlet of the cell. Gas 

mixture of H2–H2O–N2 (10.3 cm
3
min

1
) with controllable flow rate (V) was supplied to 

the membrane permeate side, where hydrogen interacted with oxygen permeating through 

the GCs. The oxygen permeation flux density (j) through a membrane under steadystate 

conditions was calculated from eq. (3.4): 

                              
 

    

                

 
                            3.4 

where TV is the flow meter temperature, S the membrane surface area, and p(H2)in and 

p(H2)out are the hydrogen partial pressures at the inlet and outlet of the measuring cell, 

respectively. The hydrogen pressure was calculated by from eq. (3.5) 



33 

 

                                           
       

         
 

  
                                   3.5 

where C is the volume fraction of Hcontaining species (H2 +H2O) in the gas determined 

by its initial composition, Ptotal the total pressure, K the equilibrium constant of the H2 

oxidation reaction calculated using thermodynamic data [129], and p(O2) the oxygen 

partial pressure in the gas flow determined by the oxygen sensor [128].  

 

3.10 Thermal shock resistance 

In order to evaluate thermal shock stability of the sealant in contact with various 

solid oxide electrolyte (SOE) ceramics, a series of dense electrolyte membranes made of 

8 mol% yttria–stabilized zirconia, Ce0.8Gd0.2O2– (CGO, Rhodia) and 

(La0.9Sr0.1)0.98Ga0.8Mg0.2O3– (LSGM, Praxair) were sealed onto YSZ tubes (Tosoh) at 

90010 ºC during 30 min. Gas–tight SOE disks of YSZ, CGO and LSGM were sintered 

at 1600, 1500 and 1400 ºC, respectively; their density was higher than 95% of theoretical. 

After sealing of the electrolyte assemblies and one gas–tightness test at room 

temperature, each cell was heated up to Tmax = 800 ºC, kept at this temperature during 10–

15 min, quenched in air, and then checked for gas–tightness again. This procedure was 

repeated several times. The cells made of YSZ were successfully tested in 15 air–

quenching cycles; for LSGM and CGO disks sealed onto YSZ, cracking and resultant 

physical leakages were observed after 3 and 4 cycles. SEM analysis of the SOE and GC 

interfaces was carried out using various combinations of the SOE disks, sealed one to 

another and quenched in air under identical conditions.  

 

3.11 Bilayer Synthesis 

 Bilayered compacts were prepared from 0.75 g of Gd0.3 (composition referred 

in Chapter 4.4 and 4.5) and 0.75 g of Sr0.3 (composition referred in Chapter 4.2) glass 

powders by depositing them in two uniform successive layers in a rectangular mould 

having dimensions of 4 mm × 5 mm × 50 mm and then uniaxial pressure (80 MPa) was 

applied to obtain rectangular bars. Cylindrical discs with 10 mm diameter were also 

prepared following the same procedure but using 0.3 g of each glass powder to study the 

interface between two layers and to determine the electrical conductivity of the bilayers. 
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The as obtained green bodies were sintered at 850 ºC for 1 h and further heat treated for 

100 h at a heating rate, β = 5 Kmin
–1

.  

 To investigate the adhesion of the bilayered glasses to the SOFC components 

wetting experiments between the powdered glasses and ceramics/interconnects 

(Crofer22APU and Crofer22H) were carried out. The separated layers were deposited 

using a tape casting approach. They were then superimposed and thermocompressed onto 

the ceramics/interconnects. The diffusion couples were heated up to 850 ºC at a relatively 

slow  = 2 Kmin
1

 and kept at that temperature for 100 h. The heat treatment was 

performed without applying any deadload. 

 

3.12 Raman spectroscopy 

 Raman spectra for Bilayer GC were obtained using a Horiba LabRam HR 800 

Evolution confocal Raman microscope, with a 532 nm excitation laser and a 100x 

objective lens (NA = 0.9). The incident laser power on the samples was ~10 mW and the 

spot size was ~3.14 square micron. The collected Raman radiation was dispersed with a 

600 lines mm
−1

 grating and focussed on a Peltiercooled chargecoupled device (CCD) 

detector allowing a spectral resolution of ca 5 cm
−1

. All spectra were recorded in the 

100–4000 cm
−1

 range with an integration time of 1 s and 3 accumulations per spectrum.  
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4. Results and Discussion 

In recent years, our research group has investigated a few series of alkaline−earth 

aluminosilicate glasses and GCs aiming sealing SOFC’s components [117, 130-135]. 

Parent glass compositions have been selected in the primary crystallization field of 

Al−containing diopside (CaMgSi2O6; hereafter refereed as Di). The major attribute of Di 

based GCs is their good sinter ability and the ability to accommodate various cations 

(Ba2+, Sr2+, La3+, Cr3+, Al3+, B3+, etc.) in their structure or amorphous glassy phase, thus 

leading to the formation of mono−mineral GCs [33, 133, 135, 136] which renders them 

high mechanical strength and low porosity; two essential traits expected from a robust 

sealing material. Furthermore, strong adhesion, and high chemical stability with metallic 

interconnect and ceramic electrolyte (ZrO2 stabilized with 8 mol% Y2O3, 8YSZ) even 

after 300 h of heat treatment and low leak rate [117, 131, 134, 135, 137] are some other 

attributes which make them an interesting candidate for this job. However, still there is a 

need to improve the CTE and study the thermal stability of Di based GC sealants during 

long term heat treatments (at least up to 1000 h)  in order to qualify them for final 

application in SOFC stack. In addition, due to the known background about the diopside 

based glass and GC we intended to develop  SH glass and GCs sealant.  
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4.1 Diopside − Ba disilicate glass−ceramics for sealing applications in 

SOFC: sintering and chemical interactions studies 

 
4.1.1 Introduction 

The chemical composition of a glass for a suitable and compliant seal for SOFC 

or other high temperature electrochemical applications should be chosen considering: (i) 

the various thermal and chemical environments to which the seal will be exposed during 

its operation; (ii) the role of each chemical constituent in the glass towards rendering the 

thermal and chemical stability along with mechanical integrity to the seal in hostile high 

temperature working environment, including minimum surface diffusion and poisoning 

phenomena, and; (iii) basic requirements such as good electrical insulating properties. 

For instance the glass compositions investigated in our previous studies [131, 137, 138], 

were designed in the primary crystallization field of Di owing to their high chemical 

resistance, good sintering ability and relatively high coefficients of thermal expansion 

(CTE). A minor amount of B2O3 was added along with lanthanide oxides in order to 

tailor the viscosity and flow behaviour. The GC seals demonstrated high mechanical 

properties, phase stability at elevated temperatures, good wetting abilities and minimal 

chemical interaction with other SOFC components. However, thermal stability of these 

GC seals during long term operation is still a matter of concern. Therefore, further 

experimentation is required in terms of tailoring glass chemistry so as to achieve a stable 

seal with appropriate CTE matching and minimal reactivity with SOFC components 

during long run. 

In this regard designing of GC compositions with combination of Di with the 

crystalline phases exhibiting substantially high CTE, such as barium aluminosilicates 

might be feasible solution of the problem [21, 23]. As it was recently demonstrated [139], 

barium silicates exhibit CTEs in a range suitable for components of sealing materials 

which implies that if the respective crystalline phases are combined with other crystalline 

or amorphous phases, an appropriate CTE can be adjusted. Since the glass forming ability 

is higher for molar ratios [BaO]/[SiO2] ≤ 1, the BaO concentration should be chosen low 

enough to allow good densification of glass powders and avoid the formation of any 

undesirable crystalline phase with low CTE [139]. The same requirement is critically 
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important to improve sealant stability in steam−containing environments necessary for the 

SOFC anode operation.  

The present study is an attempt to design some new Di based glass compositions 

in order to tailor the CTE and flow properties of the Di based GC sealants. The glass 

composition Ca0.9MgAl0.1La0.1Si1.9O6, investigated in our previous study [117], was 

chosen as the starting point and three new glass compositions by introducing different 

concentrations of barium disilicate (BaSi2O5) were derived. Table 4.1.1 presents the 

detail composition of the glasses. Additionally 2 wt. % B2O3 was added to glasses in 

order to tailor their flow behaviour whilst NiO (1 wt %) was introduced to improve their 

adhesion to the metallic SOFC components; as confirmed in the present study, this small 

amount of nickel oxide has no detectable effects on the conductivity and chemical 

expansivity.  
 

Table 4.1.1: Nominal batch compositions of the glasses 

 CaO MgO BaO Al2O3 La2O3 SiO2 B2O3 NiO 

Di−Ba−1         

Wt% 21.09 16.84 1.36 2.13 6.81 48.77 2.00 1.00 

Mol% 22.14 24.60 0.52 1.23 1.23 47.79 1.69 0.79 

Di−Ba−2         

Wt% 20.55 16.41 2.72 2.08 6.63 48.61 2.00 1.00 

Mol% 21.77 24.19 1.05 1.21 1.21 48.06 1.71 0.80 

Di−Ba−3         

Wt% 19.47 15.55 5.44 1.97 6.28 48.29 2.00 1.00 

Mol% 21.01 23.34 2.15 1.17 1.17 48.62 1.74 0.81 

 

4.1.2 Results 

The competitive process between sintering and crystallization affect the 

microstructure of sintered GCs by means of porosity, crystallization fractions and their 

corresponding properties. This can be accessed through DTA and HSM measurements on 

glass powder compacts as seal glasses are usually applied on the ceramic or metallic plate 
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of SOFC components in the form of glass powders. In general, two different trends can 

be observed: (i) sintering precedes crystallization – in this case sintering and 

crystallization are independent processes and the overall effect is a dense GC material; 

(ii) crystallization precedes sintering – in this case a fully/partially crystallized porous 

GCs results [138]. 

The process of formation of GCs via sintering of glass powders involves sintering 

and crystallization. Both of these processes take place either simultaneously or 

independently. In general, the sintering phenomena occur in three steps: (i) inter–particle 

neck formation and growth; (ii) densification and shrinking of the pores; and (iii) 

disappearance of the isolated pores resulting in a fully dense or partially dense glass–

ceramic  [140, 141]. Hot−stage microscopy (HSM) is an interesting technique for 

studying the sintering process of dry−pressed compacts [138, 142] since it permits a 

continuous record of the contraction process of the material (Fig. 4.1.1). HSM also 

enables the competition between densification and crystallization upon sintering the 

glass−powder compacts to be assessed by comparing DTA and HSM curves recorded 

under the same heating conditions. 

Fig. 4.1.1 presents variation in the relative area and heat flow with respect to 

temperature as obtained from HSM and DTA, respectively at a β of 5 Kmin−1. Table 

4.1.2 summarizes the values of the temperature of first  shrinkage (TFS; logη = 9.1 ± 0.1; 

η is viscosity in dPa s), temperature for maximum shrinkage (TMS; log η = 7.8 ± 0.1) and 

ratio of the final area/initial area of the glass powder compact (A/A0), as obtained from the 

HSM data at TMS (Fig. 4.1.1), along with temperature for onset of crystallization (Tc), and 

peak temperature of crystallization (Tp) as received from DTA of the glasses.  

The following observations can be made from the DTA and HSM results:   

1. The temperature of first shrinkage, TFS, increased from 770 to 774 ºC with 

increasing BaSi2O5 amount.  

2. Two stage sintering was observed for all the investigated compositions, 

evidenced from Fig. 4.1.1. The second stage of densification occurred in 

competition with devitrification, but accomplished before Tp. Only in 

Di−Ba−3 glass the second TMS2 is attained slightly after the TP.  
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3. Values of A/A0 (obtained at TMS1) correspond to the ratio of final area to 

initial area of the glass−powder compact at TMS1 (as presented in Table 4.1.2), 

ranging from 0.65 to 0.67 implies towards good densification (95–98%) 

[143]. 

4. The DTA thermographs of all the three glasses exhibited single crystallization 

exothermic curves. This signifies that the GC is formed either as a result of 

single phase crystallization or of an almost simultaneous precipitation of 

more than one crystalline phase. 

 

 
Fig. 4.1.1: Comparison of DTA and HSM curves on the same temperature scale for 

compositions (a) Di−Ba−1 (b) Di−Ba−2 and (c) Di−Ba−3 

 

 

 

1000900800700600

H
ea

t f
lo

w
 

Temperature (ºC)

DTA

 HSM

TMS1

TMS2

TFS  (c)

1000900800700600

HSM

DTA

Temperature (ºC)

TP

Tc

H
ea

t f
lo

w
  (b)1.1

1.0
0.9
0.8
0.7
0.6

1000800600

 HSM

A
/A

0

Temperature (ºC)

DTA

H
ea

t f
lo

w
  (a)



41 
 

Table 4.1.2: Thermal parameters of the glasses obtained from DTA and HSM at β=5 

Kmin−1. 

 Di−Ba−1 Di−Ba−2 Di−Ba−3 

TFS ±5 (ºC) 770 771 774 

TMS1  ±5 (ºC) 837 832 830 

TMS2  ±5 (ºC) 882 886 900 

Tc  ±2 (ºC) 844 859 856 

TP  ±2 (ºC) 883 892 889 

A/A0 at TMS1 0.65 0.67 0.65 

 

 
Fig.4.1.2: XRD spectra of the investigated glass powders at different temperatures (a) 

800 ºC  for 1 h, (b) 850 ºC  for 1 h, (c) 900  ºC  for 1 h, (d) 900 ºC  for 300 h 
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Well−sintered dense glass−powder compacts were obtained after heat treatment at 

800 ºC. There were no evidences of deformation or formation of open porosity on further 

heat treatment in the interval 800–900 ºC, as confirmed by the steady increases in 

density, shrinkage and bending strength (Table 4.1.3). Fig. 4.1.2 presents X−ray 

diffractograms of the sintered glass powder compacts depicting the evolution of 

crystalline phases after with change in temperature. The samples were still amorphous 

after heat treatment at 800 ºC (Fig. 4.1.2a). Diopside (Di: CaMgSi2O6) solid solution 

crystallized as the only phase in all the GCs at both 850 ºC (Fig. 4.1.2b) and 900 ºC for 1 

h (Fig. 4.1.2c). The standard diffraction patterns of Augite (CaMg0.7Al0.6Si1.77O6, ICDD: 

78−1392) and diopside (CaMgSi2O6; ICDD: 078−1390) are presented for comparison in 

Fig. 4.1.2. Fig. 4.1.2d presents XRD diffractograms of the glass powder compacts at 900 

ºC for 300 h suggesting a relatively good stability of phases upon prolonged isothermal 

heat treatment.  

 

Table 4.1.3: Properties of sintered glass−ceramics produced from glass−powder 

compacts after heat treatment at different temperatures for 1 h. 

 800 ºC 850 ºC 900 ºC 

Shrinkage (%) 

Di−Ba−1 14.96±0.2 15.09±0.1 15.85±0.1 

Di−Ba−2 15.08±0.3 15.51±0.2 15.31±0.1 

Di−Ba−3 16.11±0.2 16.29±0.2 16.53±0.1 

Density (gcm−3) 

Di−Ba−1 2.98±0.005 2.99±0.003 3.08±0.006

Di−Ba−2 3.01±0.002 3.13±0.001 3.13±0.003

Di−Ba−3 3.04±0.001 3.19±0.002 3.19±0.002

Mechanical strength (MPa) 

Di−Ba−1 81±8 123±12 172±4 

Di−Ba−2 80±12 141±3 164±1 

Di−Ba−3 99±5 148±9 184±9 
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The CTE values of the GCs sintered at 900 ºC for 1 h and 300 h are presented in 

Table 4.1.4. In general, the CTE of GCs sintered at 900 ºC for 1 h varied in the range 

(9.7–10.9) × 10−6 K−1 while after long heat treatment at 900 ºC for 300 h it changed in the 

interval (9.7–10.6) × 10−6 K−1. The GCs Di−Ba−1 and Di−Ba−2 exhibited trend towards 

decreasing CTE while CTE of the Di−Ba−3 increased after isothermal heat treatment at 

900 ºC for 300 h.  

 

Table 4.1.4: CTE (±0.1) × 10−6 K−1 (200 − 700 ºC) of the glass−ceramics produced at 

different conditions.  

 900 ºC, 1h 900 ºC, 300h 

Di−Ba−1 10.4 9.8 

Di−Ba−2 10.9 9.7 

Di−Ba−3 9.7 10.6 

 
 

Fig. 4.1.3a and 4.1.3b shows the SEM images of the interfaces between 

Crofer22APU/glass for Di−Ba−1 and Di−Ba−2 glasses along with the corresponding 

EDS mappings of the relevant elements existing at the interface after heat treatment at 

900 ºC for 1 h in air. All the GC seals bonded well to Crofer22APU metallic 

interconnect, no gaps were observed, and the investigated interfaces showed 

homogeneous microstructures over their entire cross−sections of the joint. Fig. 4.1.3 

(down figures) presents the elemental distribution profiles for Cr, Fe, Si, Al, La, Ca and 

Mg elements along the interface of Di−Ba−1 GC/Crofer22APU and Di−Ba−2 

GC/Crofer22APU. The analysis of element mapping and elemental profiles confirmed 

formation of a smooth interface between investigated GC seals and SOFCs Crofer22APU 

metallic plate. Neither spinal nor chromium oxide layers were detected at the interfaces 

by SEM/EDS analyses, within the limits of experimental uncertainty.  
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Fig.4.1.3: (a) Microstructure (SEM) and EDS element mapping of Cr, Mn, and Si at 

interface between (a) Di−Ba−1glass & Crofer22APU and (b) Di−Ba−1glass and 

Crofer22APU. Down figures represents EDS line profile for diffusion of Cr, Fe, Ca, Mg, 

Si, La, Al and Ba at the interface between glass Di−Ba−1 & Crofer22 APU and glass 

Di−Ba−2 & Crofer22 APU developed after heat treatment at 900 ºC for 1 h. (White 

dotted line indicates the interface between the Croffer22APU and the glass−ceramics). 

 

The impedance spectra of the studied GC materials (Fig. 4.1.4) are more complex 

with respect to other candidate sealants tested in previous works (e.g. [128]). The form of 

the spectra, their characteristic frequencies and estimated capacitances suggest the 

presence of two contributions attributed to the crystalline and glassy phases; a small 

electrode tail is also visible in the low−frequency limit. The total electrical resistivity 

corresponds therefore to the sum of the bulk contributions. Although more detailed 
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studies focused on dielectrical properties of the GC constituents and relevant interfacial 

phenomena are necessary, the observed behaviour indicates, in general, substantial 

compositional differences between the crystallized and glassy phases in the GCs. On the 

other hand, whatever the microscopic mechanisms, the impedance spectra 

unambiguously showed that the electrical resistivity of the studied GCs is high enough 

for the SOFC applications. For example, at 1073 K the resistivity varies in the range 5 – 

10 MOhm × cm, enabling good isolation between the fuel cell components. Comparison 

of the impedance spectroscopy data collected in different atmospheres showed also that 

the conductivity is independent of the oxygen partial pressure and humidity, again in 

accordance with the general requirements to the SOFC sealants.  

As for other GCs, the temperature dependencies of electrical conductivity of the 

studied materials (Fig. 4.1.5) are described by a standard Arrhenius model:  

                      0 aA E
exp

T RT
⎛ ⎞σ = ⎜ ⎟
⎝ ⎠

                                        4.2.1 

where Ea is the activation energy and A0 is the pre−exponential factor. The calculated 

activation energies are listed in Table 4.1.5. Increasing content of BaSi2O5 leads to lower 

conductivity values and higher activation energy. Irrespectively of the role of 

alkaline−earth cations, comparison of the conductivity values observed for these three of 

GCs shows that the effect of NiO additive on the electrical properties is negligible, as 

expected due to very low concentration of nickel.  

 

Table 4.1.5: Activation energies for the total conductivity of glass−ceramics sealants in 

air, and their statistical errors 

 T, K Ea, kJmol−1 

Di−Ba−1 973−1123 140±2 

Di−Ba−2 873−1123 178±3 

Di−Ba−3 973−1123 173±3 
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Fig. 4.1.4: The impedance spectra of the studied glass−ceramics materials 

  
Fig. 4.1.5: The temperature dependencies of electrical conductivity of the studied 

materials 
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4.1.3 Discussion 

In the present study particular attention has been focused on the determination of 

CTE of GC seals at different heat treatment conditions and the interaction of seal glass 

with the metallic interconnect–Crofer22APU. No specific trends were observed in the 

variation of CTE with glass composition. Composition Di−Ba−1 demonstrated relatively 

good stability in the CTE values during long term exposition at 900 ºC for 300 h although 

a slightly decreasing trend was observed. More significant changes were revealed in other 

investigated compositions (Table 4.1.4). In general, CTE of investigated GCs is 

correlated quite well with those of ceramic electrolyte, 8YSZ (∼10 × 10−6 K−1) and 

metallic interconnect, Crofer22APU (∼11.4–12.5 × 10−6 K−1) [21, 23, 137]. Further, 

relatively higher CTE values of GCs were recorded in this work compared to CTE of 

similar GCs synthesized previously [33, 117, 131, 137]. 

Regarding the chemical interactions of seals with interconnect, it is known that 

GCs generally show higher chemical stability than the glasses. Indeed, no appreciable 

diffusion of elements from the investigated GCs towards the Crofer22APU and vice versa 

was detected (Figs. 4.1.3).  No interfacial layers, especially either Cr– or Ba–rich, that are 

detrimental due to their high CTE, were observed. Further, the investigated interfaces 

showed a homogeneous microstructure over the entire cross−section of the joint without 

gaps formation.  

Additionally, all experimental GCs featured high density and mechanical strength 

(Table 4.1.3) due to desired sequence of events when sintering precedes the 

crystallization that was confirmed by HSM and DTA results (Fig. 4.1.1). Generally, the 

sintering in all experimental glass powders proceeded in two stages, but the main stage 

with densification level 95−98% was accomplished at TMS1, i.e., before the onset of 

crystallization and therefore, resulted in well sintered and dense glass powder compacts. 

Overal, better properties were achieved for Di-Ba-1 glass compared to the G-10 glass. In 

addition Di-Ba-1 glass exhibited stable CTE values during prolonged heat treatment and 

bonded well without forming any interfacial reactions. Therefore, Di-Ba-1 glass was 

selcted for further experiments as a sealant for SOFCs. 
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4.2 Diopside – Ba disilicate glass–ceramic sealants for SOFCs: enhanced 

adhesion and thermal stability by Sr for Ca substitution 
 

 4.2.1 Introduction 

A choice of an appropriate GC sealant material is essential for developing reliable 

planar SOFCs. In this regard special attention was drawn to CTE of a parent glass that 

should be nearly equal to CTE of respective crystallized material. This would ensure 

appropriate adhesion of glass powder to anode, cathode and interconnect material during 

cell stack sealing procedure. Another critical issue is achieving stability GC’s phase 

composition at prolonged heat treatment to get mechanical integrity of a pSOFC stack at 

operating conditions.  

 The literature survey evidenced that changing the thermal properties might be 

achieved by introducing SrO oxide in the silicate glass network. Ojha et al.[87] reported 

that SrO modified the network of Al2O3–B2O3–SiO2–La2O3 glasses resulting in CTE 9 × 

10–6 K–1. Kumar et al.[86] studied the MgO/SrO–based borosilicate glasses and observed 

that SrO containing glasses exhibited higher CTE in comparison to MgO–based glasses. 

Mahapatra et al.[144] developed SrO–La2O3–Al2O3–SiO2 (SABS–0) based glass with all 

the desired thermo physical properties. Kaur et al. [82] studied SrO/BaO–B2O3–La2O3–

SiO2 system and reported that SrO contain glass seals have shown high hermeticity and 

structural integrity with Crofer 22APU even after prolonged heat–treatment duration of 

750 h at 850 ºC whereas BaO glass seal exhibited substantial number of pores after 

prolonged heat–treatment. In a more recent study, Sherma et al. [79] evaluated SrO–BaO 

based aluminosilicate glasses with P2O5 as a nucleating agent and claimed that Ba2SiO4, 

BaAl2Si2O8, and Sr2SiO4 crystalline phases developed at 800 ºC were not detrimental for 

high temperature sealing applications.  

The very promising glass composition Di−Ba−1 discussed in previous section was 

adopted as the starting point for synthesis new series of glasses and was developed by 

partial substitution Sr for Ca in the same composition aiming at (i) tailor CTE of parent 

glass and crystallized material; (ii) improving the wetting behaviour of the sealants via 

reducing viscosity of the glasses in the deformation temperature interval; and (iii) 

achieving stable thermo–mechanical properties of sintered glass–powder compacts. A 
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more in deep study was also performed at evaluating their suitability for applications as 

sealants for SOFCs by evaluating the thermal shock resistance of the sealant/oxide 

electrolyte (SOE) pair joints, using various SOE ceramic compositions.  

 

4.2.2 Results and discussion 

 4.2.2.1 XRD analysis and thermal properties 

 Table 4.2.1 presents the detail composition of the glasses. All the five glass 

compositions were prone for easy casting after 2 h of melting at 1580 ºC, resulting in 

homogeneous and transparent glasses. With respect to the colour, the glasses exhibited 

dark honey colour due to the presence of NiO. The XRD amorphous nature of the 

quenched glasses and frits was confirmed by XRD analysis. 

 

Table 4.2.1: Chemical composition of glasses 

 CaO MgO BaO SrO Al2O3 La2O3 SiO2 B2O3 NiO 

Sr–0.0          

Wt% 21.09 16.84 1.36 0.00 2.13 6.81 48.77 2.00 1.00 

Mol% 22.14 24.60 0.52 0.00 1.23 1.23 47.79 1.69 0.79 

Sr–0.1          

Wt% 18.36 16.5 1.36 4.24 2.09 6.67 47.79 2.00 1.00 

Mol% 19.67 24.58 0.53 2.46 1.23 1.23 47.77 1.73 0.80 

Sr–0.2          

Wt% 15.74 16.17 1.36 8.31 2.04 6.53 46.84 2.00 1.00 

Mol% 17.19 24.56 0.54 4.91 1.23 1.23 47.75 1.76 0.82 

Sr–0.3          

Wt% 13.23 15.85 1.36 12.22 2.00 6.40 45.94 2.00 1.00 

Mol% 14.73 24.54 0.55 7.36 1.23 1.23 47.73 1.79 0.84 

Sr–0.4          

Wt% 10.81 15.54 1.36 15.98 1.97 6.28 45.07 2.0 1.00 

Mol% 12.26 24.52 0.56 9.81 1.23 1.23 47.71 1.83 0.85 
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 The density and molar volume of glasses (Table 4.2.2) increased with additions of 

SrO. The values changed from 2.990 to 3.167 gcm–3, with minimum and maximum 

values being registered for the parent and Sr–0.4 glass compositions, respectively (Table 

4.2.2), i.e. variations are composition dependent and can be explained by atomic weight 

considerations. Due to the larger size of Sr ions (1.32 Å) as compared to Ca ions (1.14 

Å), the substitution of SrO for CaO results in a larger cell volume and consequently large 

molar volume of the glasses. Sr is heavier than Ca (with atomic weights of 87.62 and 

40.078 gmol–1, respectively) and, therefore, the weight of the cell also increases with the 

increasing substitution of SrO in the glasses. In the present case, the increase in cell 

weight seems to dominate over the increase in cell volume, leading to higher density 

values for the SrO−substituted glasses.  

 

Table 4.2.2: Density (gcm–3), molar volume (MV) (cm3mol–1), and CTE (±0.1×10–6 K–1) 

(200–500 ºC) of glasses 

 Density MV CTE

Sr–0.0 2.990±0.003 19.69±0.02 7.1 

Sr–0.1 3.045±0.006 19.72±0.04 10.0

Sr–0.2 3.088±0.001 19.82±0.01 11.3

Sr–0.3 3.134±0.005 19.92±0.03 11.2

Sr–0.4 3.167±0.005 20.06±0.03 10.2

  

 The CTE values for SrO–containing glasses varied in the interval (10.0–11.3) × 

10−6 K–1 indicating that Sr for Ca substitution in pyroxene glasses enhances the CTE. 

This effect can be explained by the differences in bond lengths of Ca–O (2.38 Å) and Sr–

O (∼2.60 Å) groups [145]. The CTE significantly increased at first addition of SrO 

reaching the maximum when Sr replaced 20 and 30% of Ca with some decline at further 

SrO increment (Table 4.2.2). 
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Fig. 4.2.1: DTA thermographs of investigated glasses at 20 Kmin–1 within different 

temperature intervals: (a) 600–1100 ºC; (b) 700–800 ºC. 

 Tg of glasses presented in the Table 4.2.3 were obtained from the DTA 

thermographs (Fig. 4.2.1a and 4.2.1b) as the mid–point of the endothermic dip. Heating 

rate of 20 Kmin–1 was used since Tg could not be accurately recorded at 5 and 10 Kmin–1. 

Tg as a parameter related to the system viscosity [146], decreased in all the investigated 

SrO–containing compositions when compared to the parent glass (Table 4.2.3, Fig. 

4.2.1). In general, strontium is a slightly larger ion than calcium, thus its incorporation 

expands the glass network and lowers the energy barrier for the glass to super cooled 

liquid transition, which results in Tg drop.  Earlier Fujikura et al. [147] revealed non–

linear variation Tg with substitution of Sr for Ca while O’Donnell et al. [148] revealed a 

linear trend.  

 

4.2.2.2 Structure of glass: MAS–NMR 

 Fig. 4.2.2a shows 29Si MAS–NMR spectra of the glass samples. All spectra had a 

broad peak centred at 81 ppm indicative of Q2 silicate species, with Q0, Q1, Q3 and Q4 

being below detectable levels. The chemical shift of the peak is invariant with increasing 

Sr substitution for Ca in the present glasses. Fig. 4.2.2b shows 27Al MAS–NMR spectra 

of the glass samples, all of which had a broad, slightly asymmetric peak with a tail 

towards more negative ppm indicating existence of IVAl, VAl and VIAl coordination. 
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However, the signals originated from IVAl species at 55 ppm are dominating making 

ambiguous existence of VAl and VIAl groups. Fig. 4.2.2c shows 11B MAS–NMR spectra 

of the glass samples, all of which had a broad resonance bands observed within the 

chemical shift range between 10 and –35 ppm. The peaks were centred at ca. –19, –14 

and –9 ppm indicative of the majority of the boron atoms in three fold coordination, i.e. 

in the form of BO3 triangles [135]. With respect to the structural changes of glass K. 

Fujikura et al., investigated 29Si MAS–NMR spectra of SrO containing glasses [147] and 

demonstrated that only 50 % Sr for Ca substitution  influenced  the silicate network. 

Similarly in the present study 29Si MAS–NMR and 27Al MAS–NMR spectra revealed no 

variation in the chemical shifts for silicon and aluminium atoms in all SrO–containing 

glasses including composition Sr–0.4 with 40 % Sr for Ca substitution. Therefore, further 

substitutions of Sr for Ca in the pyroxene structure will be attempted to reveal any 

possible effects occurred in the glass structure.   

 

 
Fig. 4.2.2: MAS–NMR Spectra for (a) 29Si; (b) 27Al; and (c) 11B Nuclei 

 

4.2.2.3 Sintering and crystallization behaviour: DTA and HSM 

Fig. 4.2.3 shows variation in the relative area and heat flow with respect to 

temperature as gained from HSM and DTA measurements, respectively at a heating rate 

of 5 Kmin–1. Table 4.2.3 summarizes the values of the temperature of first  shrinkage 
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(TFS; logη = 9.1 ± 0.1; η is viscosity in dPa.s), temperature for maximum shrinkage (TMS; 

log η = 7.8 ± 0.1), temperature for deformation (TD; log η = 6.3 ± 0.1), temperature for 

half–ball (THB; log η = 4.1 ± 0.1), temperature for flow (TF; log η = 3.4 ± 0.1), and ratio 

of the final area/initial area of the glass powder compact (A/A0), as obtained from the 

HSM data at TMS (Fig. 4.2.3), along with temperature for onset of crystallization (Tc), 

peak temperature of crystallization (Tp) as received from DTA of the glasses. The data as 

obtained from HSM and DTA (β=5 Kmin–1) pertaining to sintering and devitrification 

behaviour of glasses that allow observation of the following trends:  

1. With the initial replacement of SrO for CaO TFS decreased from 770 to 761 

ºC whilst increased from 761 to 781 ºC with further replacement.  

2. All glasses exhibited two stage of sintering: the first sintering stage is 

accomplished at TMS1 while the second one at TMS2. In all the compositions 

TMS1<Tc, so that sintering precedes crystallization. This feature will ensure 

production of well sintered and mechanically strong glass powder compacts. 

The second stage of densification occurred in competition with crystallization 

but ended very close to Tp, i.e. peak temperature of crystallization.  

3. The values of sintering ability Sc for the SrO containing glasses varied in the 

interval 19−35 ºC and those are considerably higher compared to SrO−free 

parent glass (Sc = 7 ºC).   

4. The DTA thermographs of the experimental glasses exhibited single 

crystallization exothermic curve. This signifies that the GC is formed either 

as a result of single phase crystallization or of an almost simultaneous 

precipitation of more than one crystalline phase. Moreover, values of Tc and 

the peak temperature of crystallization (Tp) exhibited a tendency to increase 

with increasing strontium content in the glasses.  

5. Fig. 4.2.4 presents the photomicrographs of all the investigated glasses 

depicting the changes in geometric shape of the glasses with respect to 

temperature as obtained from HSM. The deformation temperature (TD) of the 

glasses show linear trend to decrease from 900 to 855 ºC with introduction 

SrO.   
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6. SrO content in the glasses significantly influenced on the half–ball (THB) and 

flow (TF) temperatures. With increasing SrO content THB and TF reduced 

from 1305 to 1207 ºC and from 1341 to 1228 ºC, respectively.   

7. Values of A/A0 ranged from 0.64 to 0.71 (Table 3) implying towards good 

densification level (95–98%) [128].  

 

 
Fig.4.2.3: DTA–HSM thermo graphs of the investigated glasses at 5 Kmin−1: (a) Sr–0.1; 

(b) Sr–0.2; (c) Sr–0.3; and (d) Sr–0.4. 

 
 Fig. 4.2.5 represents the viscosity curves for the present investigated glasses 

measured by least squares fitting of HSM characteristic points using the Vogel–Fulcher–

Tammann (VFT) relation logη=A+B/(T–T0) [120, 121, 149] where η is the viscosity and 

T is the temperature. The coefficients A, B and T0 deduced from the fitting are reported in 

Table 4.2.4  
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Table 4.2.3: Thermal parameters measured from DTA and HSM (ºC) 

 Sr–0.0 Sr–0.1 Sr–0.2 Sr–0.3 Sr–0.4 

Tg±2 753 744 744 744 748 

TFS±8 770 767 772 773 781 

TMS1±5 837 831 835 847 848 

TMS2±5 882 892 902 913 916 

TC±2 844 850 859 876 883 

TP±2 883 891 898 912 917 

Sc (=Tc–TMS) 7 19 24 29 35 

TD±5 900 880 877 869 875 

TS±5 – – – 1213 900 

THB±8 1305 1280 1258 1229 1207 

TF±10 1341 1327 1290 1260 1228 

A/A0 at TMS1±0.02 0.65 0.68 0.64 0.65 0.67 

 

 

 It was depicting that addition of SrO enhances glass sintering ability considerably. 

The higher values of Sc (Table 4.2.3) correspond to delay in nucleation and thus provide a 

wider processing window for a glass composition to attain maximum densification. 

Moreover, characteristic temperatures TD, TS THB and TF decreased with increment of 

SrO (Table 4.2.3) that correlates well with the trends observed from the corresponding 

viscosity curves (Fig. 4.2.5). Additionally, incorporation of SrO in the pyroxene glasses 

reduced the viscosity of glasses close to ∼106 dPa.s at 900 ºC (Fig. 4.2.5). This is a quite 

decisive factor since within the temperature range of 850–900 ºC that is usually 

considered for joining of SOFC metallic/ceramic components by a glass/GC sealant [66, 

150], glass  viscosity must be low enough, e.g. ∼106 dPa.s at  900 ºC.  
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Sr−0 Sr−0.1 Sr−0.2 Sr−0.3 Sr−0.4 

  
5 (°C) 5 (°C) 5 (°C) 5 (°C) 5 (°C) 

  
900 (°C, TD) 880 (°C, TD) 877 (°C, TD) 869 (°C, TD) 875 (°C, TD) 

  
1300 (°C) 1275 (°C) 1220 (°C) 1213 (°C, TS) 900 (°C, TS) 

  
1305 (°C, THB) 1280 (°C, THB) 1258 (°C, THB) 1229 (°C, THB) 1207 (°C, THB) 

  
1341 (°C, TF) 1327 (°C, TF) 1290 (°C, TF) 1260 (°C, TF) 1228 (°C, TF) 

 

Fig. 4.2.4: HSM images of cylindrical glass–powder compact on alumina substrate at 

various stages of heating cycles.  
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Table 4.2.4: A, B and T0 constants of the VFT equation, calculated from linear 

regression analysis, and viscosity at 900 ºC. 

 A B T0 logη (dPas) at 900 ºC

Sr−0.0 0.07 2182 773 6.5 

Sr−0.1 0.38 1797 809 6.3 

Sr−0.2 0.32 1735 824 6.3 

Sr−0.3 0.15 1794 821 6.2 

Sr−0.4 0.14 1667 846 6.2 

 

 
Fig. 4.2.5: Comparison of viscosity curves with diopside melt viscosity curve (logη = –

4.27 +3961 K/(T–751K) [149]). Inset figure represents the viscosity curve derived from 

HSM characteristic viscosity points for Sr–0 glass. 

4.2.2.4 Stability of crystalline phases 

 Fig. 4.2.6a presents X–ray diffractograms of the sintered glass powder compacts 

at 900 ºC for 1 h depicting the evolution of crystalline phases. Di solid solution (SS) 

crystallized as the only phase in the Sr–0 GC whilst Sr–containing glasses exhibited a 

tendency to form Sr–contain Di SS phases. The standard diffraction patterns of are also 
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presented for comparison in Fig. 4.2.6a. Detailed discussion regarding Sr occupancy at 

Ca sites in diopside crystal structure has been proposed for future work. 

 
Fig. 4.2.6: XRD pattern of glass–ceramics sintered at 900 ºC for: (a) 1 h; (b) 250 h; (c) 

500 h; and (d) 1,000 h. 

 

The evolution of crystalline phases in the glass–powder compacts sintered at 900 

ºC for 250 h, 500 h and 1,000 h is demonstrated in the X–ray diffractograms (Fig. 4.2.6 

b–d). Table 4.2.5 presents the qualitative as well as quantitative analysis of the crystalline 
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phases present in all the investigated GCs as obtained from XRD analysis adjoined with 

Rietveld–R.I.R technique. The calculated diagrams are based on crystallographic 

structure models, which also take into account specific instrument and sample effects. 

 

Table 4.2.5: Results of Rietveld R.I.R. technique 

 Di/Sr−contain Di SS Amorphous χ2 

1 h    

Sr–0 95.6 4.4 3.67

Sr–0.1 84.5 15.5 1.87

Sr–0.2 79.4 20.6 2.35

Sr–0.3 79.7 15.3 2.52

Sr–0.4 83.7 16.3 2.74

250 h    

Sr–0 97.3 2.7 3.86

Sr–0.1 98.0 2.0 3.63

Sr–0.2 92.3 7.7 5.52

Sr–0.3 94.6 5.4 4.87

Sr–0.4 92.3 7.7 5.90

500 h    

Sr–0 98.0 2.0 4.37

Sr–0.1 94.1 5.9 4.73

Sr–0.2 91.4 8.6 6.05

Sr–0.3 93.4 6.6 5.7 

Sr–0.4 93.2 6.8 5.8 

1,000 h    

Sr–0 99.7 0.3 3.89

Sr–0.1 78.8 21.2 5.38

Sr–0.2 99.2 0.8 6.59

Sr–0.3 90.1 9.9 7.14

Sr–0.4 86.3 13.7 6.64
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The parameters of this model have been refined simultaneously using least–squares 

methods in order to obtain the best fit to all measured data. By least–squares refinement, 

a so–called figure–of–merit function R has been defined, which describes the residual 

(agreement) between observed and calculated data [151]. It is noteworthy that many 

different statistical R factors have been proposed for judging the quality of a Rietveld 

refinement. The R factors show the mean deviation in accordance with the model used in 

per cent. The ‘‘profile R–factor”, Rp, and ‘‘weighted profile R–factor”, Rwp, for all the 

refinements are well within the limits of experimental accuracy.  

Prolonged heat treatment at 250, 500 and 1,000 h resulted Di SS as the major 

crystalline phase in Sr−0 GC. Introduction of SrO in the glasses resulted in Sr–contain Di 

SS. No other impurity crystalline phases were developed in both Sr−free and Sr−contain 

glasses during heat treatment at 850 ºC for 1000 h. Irrespective of sintering time, 

increasing SrO content in the glasses initiated growth of the glassy phase in all the GCs. 

The residual glassy phase is highest for GCs Sr–0.2 (20.6 wt. % for 1 h, 7.7 wt. % for 250 

h, and 8.6 wt. % for 500 h) and Sr–0.1 glass (21.2 wt. % for 1,000 h). Sintered Sr–0 GCs 

contain the lowest amount of glassy phase except samples sintered at 900 ºC for 250 h. 

The positive feature of these GCs is their stable phase assemblage with 85% crystallized 

fraction after 250 h of heat treatment and stability of crystalline phase up to 1000 h. 

Whereas the SrO−containing glasses reported by Chou et al. [77, 114] underwent a 

continuous crystallization process along the aging time up to 2000 h. The non−variable 

phase assemblage of the investigated glasses ensures their thermal stability and suitability 

as sealing materials. 

 

4.2.2.5 Glass–ceramic properties 

According to the values summarized in Table 4.2.6 glass powders in which 

crystallization precedes sintering result in porous and mechanically weak GCs exhibit a 

small shrinkage. In the present scenario, the values of shrinkage varied between 12.5% 

and ∼16% and confirm the good densification of glass powder compacts. Shrinkage 

decreases after first addition of SrO in the parent glass and then increases reaching the 

maximum for Sr–0.4 composition. In general, SrO–free parent composition exhibited the 
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highest value of shrinkage among investigated compositions independent on the dwell 

time.  

Table 4.2.6 presents the mechanical strength of the produced GCs with respect to 

the sintering time. In general, bending strengths of the GCs decreased with increasing 

SrO and as well as sintering time that may be due to the formation of higher amount of 

residual glassy phase (Table 4.2.5). Thus, Sr–0 GCs attained maximum bending strength 

values varied between 156–172 MPa whilst Sr–0.4 GCs demonstrates minimum values of 

125–115 MPa. However, compared to parent (SrO–free) GCs SrO–containing 

compositions exhibited remarkable stability in retaining mechanical strength after 

prolonged heat treatments. Thus, after 1,000 h heat treatment  at 900 ºC decrease in 

bending strength attained  9.3 % for  Sr–0,  6.3% for Sr–0.1, 4.0%, for Sr–0.2,  2.9 %, for 

Sr–0.3 and 4.8% for Sr–0.4.  The values of average flexural strengths for all the GCs are 

about 1.5−2.5 times higher than those reported for G–18 glass (51 MPa) [106], GC–9 

glass (41–78 MPa) [36], H–sintered bar (55 MPa) [152] and B–sintered bar (91 MPa) 

[152].   

The CTE values of the GCs sintered at 900 ºC for 1 h, 250 h, 500 h and 1,000 h 

are presented in Table 4.2.6. Sr–0.3 GC exhibited highest CTE (11.2×10–6 K–1) among 

GCs sintered at 900 ºC for 1 h.  No significant changes in thermal expansion were 

observed in SrO–containing GCs after long heat treatment at 900 ºC for 1,000 h 

compared to the parent GCs. Except for Sr–0 heat treated for 250–1,000 h and Sr–0.3 

sintered for 1 h, the CTE values vary in the narrow range of (9.8–10.8)×10–6 K–1, which 

are compatible with those of common SOFC components.  

To minimize thermal stresses during cell operation the differences in CTEs 

between interconnect and the seal glass should not exceed, in general, 1×10−6 K–1. All the 

studied SrO–containing GCs exhibited their CTE in the range (9.6–11.2)×0–6 K–1 that are 

nearly equal to CTE of parent glasses (10–11.3)×10−6 K–1. Considering CTE values for 

metallic interconnect (Crofer22APU; SanergyHT) varying in the range (11–12)×10−6 K–1, 

and ceramic electrolyte (i.e. 8YSZ) to be (10–12)×10−6 K–1 both the parent glasses and 

corresponding GC composition Sr–0.2, Sr–0.3 and Sr–0.4 (Table 4.2.6) should be 

suitable for rigid glass/GC seals. 
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Table 4.2.6: Shrinkage (%), density (gcm–3), bending strength (MPa) and CTE (±0.1) × 

10–6 K–1 (200–700 ºC)  data measured for the glass–powder compacts after sintering at 

900 ºC for 1 h, 250 h, 500 h and 1,000 h. 

 1 h 250 h 500 h 1,000 h 
Shrinkage     

Sr–0.0 15.8±0.1 15.7±0.5 15.9±0.3 15.3±0.3 
Sr–0.1 12.8±0.2 13.9±0.2 13.9±0.4 13.8±0.3 
Sr–0.2 12.5±0.3 14.0±0.1 13.7±0.3 13.9±0.2 
Sr–0.3 13.7±0.3 14.6±0.1 14.0±0.1 14.2±0.1 
Sr–0.4 13.7±0.1 13.8±0.2 14.2±0.2 14.2±0.1 

Density     
Sr–0 2.96±0.001 3.08±0.004 3.09±0.005 3.08±0.006 

Sr–0.1 3.10±0.006 3.08±0.003 3.09±0.003 3.09±0.002 
Sr–0.2 3.15±0.005 3.12±0.001 3.14±0.006 3.13±0.002 
Sr–0.3 3.23±0.007 3.22±0.004 3.22±0.005 3.21±0.002 
Sr–0.4 3.25±0.001 3.22±0.002 3.23±0.005 3.23±0.005 

Bending Strength     
Sr–0.0 172±4 162±7 161±9 156±8 
Sr–0.1 160±5 158±4 154±1 150±4 
Sr–0.2 150±7 141±3 150±7 144±5 
Sr–0.3 137±7 125±3 133±5 133±8 
Sr–0.4 125±3 123±4 122±3 115±3 
CTE     

Sr–0.0 10.4 9.2 10.4 9.60 
Sr–0.1 10.8 10.6 10.0 10.1 
Sr–0.2 10.2 10.8 9.8 10.8 
Sr–0.3 11.2 9.9 10.0 10.4 
Sr–0.4 10.3 10.5 10.4 10.7 

 

 

4.2.2.6 Interaction studies  

 All the GC seals bonded well to SanergyHT/Crofer22APU metallic interconnect 

as well 8YSZ ceramic plate, no gaps were observed, and the investigated interfaces 

showed homogeneous microstructures over their entire cross–sections of the joint. Fig. 

4.2.7a and 4.2.8a shows the SEM image of the interfaces between Sanergy HT/GC and 

8YSZ/GC for Sr–0.3 glasses, along with the corresponding EDS mapping of the relevent 
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Fig. 4.2.7: SEM image and EDS element mappings for Cr, Fe, Mn and Sr at the interface 

between Sr–0.3 and Sanergy HT after heat treatment at 900 ºC for 1 h. 

 

elements existing at the interface after heat treatment at 900 ºC for 1 h in air. Fig. 4.2.7b 

and 4.2.8b presents the elemental distribution profiles for Cr, Fe, Mn, Ni, Ba, La, Ca, Ti, 

Si, Al and Sr elements along the interface of Sr–0.3/SanergyHT and Y, Zr, Ba, La, Ca, Si, 

Al and Sr along the interface of Sr–0.3/8YSZ. Neither diffusion layers were detected at 

the interfaces by SEM/EDS analyses (Fig. 4.2.7c–f), within the limits of experimental 

uncertainty. Figure 4.2.9 shows the SEM images of the interfaces between 

Crofer22APU/GC and SanergyHT/GC for Sr–0.3 glass, along with the corresponding 

EDS elemental line profiles of the relevant elements existing at the interface after heat 

treatment at 850 ºC for 250 h in humidified atmosphere. The analysis of element mapping 

(not shown) and elemental profiles confirmed formation of a smooth interface between 

investigated GC seals and SOFCs Crofer22APU and Sanergy HT metallic plate. Neither 

spinel nor a chromium oxide layer and any other interfacial reactions were detected at the 
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interfaces by SEM/EDS analyses, within the limits of experimental uncertainty as was 

observed in case of SrO−containing glasses [25, 77, 114]. Further, no negative influence 

with respect to adhesion and cracking at the interface was observed for the Sr−containing 

GC sealants. Thus it can be concluded that the Sr−containing diopside glasses could be 

used within an SOFC stack for hermetic sealing. 

 

 

 

 

 
 

Fig. 4.2.8: SEM image and EDS element mappings for Y, Zr, Sr, and Si at the interface 

between Sr–0.3 and 8YSZ after heat treatment at 900 ºC for 1 h.  

4.2.2.7 Electrical properties of the sealants  

 For all studied GCs, the Arrhenius dependencies of the total conductivity (Fig. 

4.2.10) are linear, confirming that no phase changes take place after sintering at 900 ºC. 

Increasing strontium concentration leads to a higher conductivity, whilst the activation 

energy decreases from 246±7 down to 162±3 kJmol−1 (Fig. 4.2.11). 
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Fig. 4.2.9: (a) SEM image and elemental line profile at the interface of Sr−0.3 and 

Crofer22APU. And (b) SEM image and elemental line profile at the interface of Sr−0.3 

and SanergyHT. 

 
Fig. 4.2.10: Temperature dependencies of the total electrical conductivity in atmospheric 

air. 
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Fig. 4.2.11: Activation energy for the electrical conductivity of the studied glass–

ceramics Inset shows the relationship between the total conductivity activation energy 

and molar volume. 

 
Nonetheless, all the sealants possess excellent insulating properties; in the 

temperature range necessary for SOFC operation; their electrical resistivity is higher than 

2 MOhm×cm. The linear relationship between the molar volume and conductivity 

activation energy (inset in Fig. 4.2.11) may suggest a dominant role of ionic charge 

carriers. Indeed, the ion transference numbers estimated by the electromotive force 

(EMF) method under air/ 10% H2–90% N2 gradient were found close to unity within the 

limits of experimental uncertainty. In accord with the very high level of the electrical 

resistance, this finding shows that NiO additive provides no significant electronic 

contribution to the conductivity. Although the EMF technique makes it impossible to 

determine the type of ionic charge carriers, the conductivity does not change when 

hydrogen or water vapour are present in the gaseous phase (Fig. 4.2.12b), thus indicating 

that protonic contribution is negligible. Furthermore, the oxygen permeation tests 

revealed no leakage fluxes through sintered gas–ceramics, again in agreement with their 

high electrical resistivity. The results on electrical resistivity of the Sr–0.3/8YSZ 

diffusion couples showed that no time degradation occurs at the SOFC operation 
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scattering associated with high resistivity of the GC sealant (±2%), the electrical 

resistance exhibits no changes with time, within the limits of experimental error.   

 
Fig. 4.2.12: Time dependencies of the relative variations of electrical resistance of Sr–

0.3/8YSZ couple (a) in air and (b) total conductivity of Sr–0.3 glass−ceramics in various 

atmospheres, at 800 ºC. 

 
4.2.2.8 Thermal shock resistance and oxygen leakage measurements 

The thermal shock resistance tests performed using the Sr–0.3 glass demonstrated 

the good suitability of this composition for sealing of zirconia–based ceramics. However, 
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no visible cracks at the GC/YSZ interfaces; as an example, Figure 4.2.13a presents one 

SEM image of Sr−0.3/YSZ assembly, which was partly cut and then fractured after 3 

air−quenching cycles with Tmax = 800 ºC. For gadolinia–doped ceria, however, the CTE 
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electrolyte, although its average CTE is lower than that of doped ceria. Most likely, 

cracking in the latter case originates from structural transitions of the LSGM perovskite 

phase; the mechanical properties of LSGM ceramics are also, in general, worse compared 

to those of YSZ and ceria (e.g., see [127] and references cited). Thermal cycling of 

LSGM/Sr–0.3/CGO assemblies resulted in relatively large cracks (Figure 4.2.13c), 

followed by failure.  

 

 

 
Fig. 4.2.13: (a)–(b) Typical SEM images of the interfaces between Sr−0.3 glass−ceramics 

sealant and various solid oxide electrolyte ceramics after 3 air−quenching cycles. The 

arrows show largest cracks developed at the interfaces. 
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Table 4.2.7: Average CTEs of solid oxide electrolyte (SOE) ceramics and thermal shock 

stability of SOE / glass−ceramics / YSZ assemblies sealed by Sr–0.3 glass−ceramics at 

900 ºC. 

Electrolyte Average thermal expansion coefficients Number of  

 T  ºC α×106  K−1  air–quenching cycles 

YSZ 25–1000 10.0  >15* 

CGO 50–1000 12.5  4 

LSGM 100–1000 11.1  3 

* The cell remained gastight after 15 air–quenching cycles (Tmax = 800 ºC) 

 

 
Fig. 4.2.14: Time dependence of the relative changes in oxygen leakage flux during 

thermal cycling of an electrochemical cell with dense YSZ membrane and Sr–0.3 sealant 

(a), and corresponding temperature variations (b). 
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experiments were carried out in the regime of periodic temperature variations in the range 

700–850  ºC under large oxygen partial pressure gradient simulating the SOFC operation 

conditions, 0.21 atm / (10−21 –10−19) atm. The results showed that the overall level of 

oxygen permeation is very low, close to the detection limit. For example, at 800 ºC the 

oxygen fluxes were lower than 5 × 10−13 mols–1, which is comparable to the experimental 

error. One should also note that the measured fluxes correspond to the sum of physical 

leakages originating from micro cracks and pores, electrolytic leakage through YSZ due 

to minor electronic conductivity of stabilized zirconia [127], and oxygen transport in the 

sintered sealant layer separating zirconia ceramics [128, 134]. This combination makes it 

impossible to estimate area–specific contributions of the components. Consequently, 

Figure 4.2.14a shows the relative variations of the total oxygen flux with time; the 

corresponding temperature variations are displayed in Figure 4.2.14b. The leakage tends 

to increase with temperature, indicating important roles of possible morphological 

changes in the sealant at 850 ºC and electrolytic permeability increasing with 

temperature. The significance of the former factor is indicated by the fact that no 

Arrhenius dependence of the oxygen fluxes is observed; on the contrary, heating up to at 

850 ºC leads to a drastic, essentially irreversible increase of the permeability. 

Nonetheless, thermal cycling does not induce critical degradation. For example, the 

resultant increase of the oxygen leakage at 800 ºC during 230 h is <2%, i.e., within the 

limits of experimental uncertainty. This confirms a relatively high quality of the Sr–0.3 

GCs as the sealant for high–temperature electrochemical devices with stabilized zirconia 

electrolytes; the operation temperature should be limited, however, to 750–800 ºC.  
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4.3 Effect of strontium−to−calcium ratio on the structure, crystallization 

behaviour and functional properties of diopside−based glasses 
 

4.3.1 Introduction 

A series of glasses in which partial substitution of Ca by Sr up to 40 mol% in a 

diopside–BaSi2O5 boron−containing glass system were proposed and their suitability for 

sealing applications was investigated in the previous section (Chapter 4.2) [154, 155]. 

The resultant GC materials were revealed to be suitable candidates for rigid based GC 

sealants, as sufficient electrical resistivity coupled with an absence of oxygen leakage 

could be measured through dense GCs. Moreover, good thermal stability of Sr–diopside 

and a maximum CTE value (∼10.7 × 10−6 K−1) were obtained when 40 mol% Sr2+ ion 

substituted for Ca2+ ions. These further interesting features stimulated us to investigate 

the effects of higher levels of Sr−substitutions. The present work focuses on the extension 

of Sr for Ca substitution up to 90 % in diopside−based glass compositions, and evaluation 

of the effects of the Sr/Ca ratio on the structure, crystallization behaviour and functional 

properties. Table 4.3.1 presents the chemical composition of the experimental glasses. 

 

Table 4.3.1: Nominal batch compositions of the glasses (mol %) 

 CaO MgO BaO SrO Al2O3 La2O3 SiO2 NiO 

Sr/Ca=3/6 15.00 25.02 0.56 7.50 1.25 1.25 48.60 0.85 

Sr/Ca=5/4 9.98 24.96 0.59 12.49 1.25 1.25 48.60 0.88 

Sr/Ca=7/2 4.99 24.93 0.61 17.46 1.25 1.25 48.59 0.92 

Sr/Ca=9/0 – 24.92 0.63 22.43 1.24 1.25 48.58 0.95 

 

4.3.2 Results 

4.3.2.1 Sintering/crystallization behaviours of glass−powder compacts by DTA and 

HSM  
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Fig. 4.3.1: DTA and HSM thermographs of the investigated glasses 

Fig. 4.3.1 shows the HSM and DTA curves recorded at a heating rate of 5 Kmin–1, 

and Table 4.3.2 summarizes the temperature values corresponding to the main thermal 

events as obtained from the HSM and DTA data. From Fig. 4.3.1 and Table 4.3.2, the 

following general trends have been revealed:  

1. TFS decreased from 787 to 731 ºC with increasing substitution from 30 to 

50 mol% and then increased to ~782 ºC again with further incremental 

substitutions of Sr for Ca.  

2. Fig. 4.3.2a reveals a two–stage sintering process for the Sr/Ca=3/6 glass 

with the first and the second sintering stages being accomplished at TMS1 

and at TMS2, respectively. It should be noted that the first sintering stage 

dominates over the second one. Further increasing the substitution ratio to 

9/0 resulted in a single–stage sintering behaviour with TMS<Tc (Fig. 4.3.2b 

−d). This demonstrates that sintering precedes crystallization in all SrO–

containing glasses.  

3. The parameter Sc (=TC–TMS) is a measure of the sintering ability vs 

crystallization: the greater this difference is, the more independent are the 
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kinetics of both processes. The values of Sc varied in the interval 34−51 

ºC. The highest Sc value was observed for Sr/Ca=9/0, while the lowest one 

was obtained for Sr/Ca=3/6. These results are in contradiction with 

findings reported elsewhere [156] that Sr/Ca >1 tended to degrade the  

sintering ability.  

4. A single exothermic peak (Fig. 4.3.2) was recorded for all the glasses. The 

crystallization peak temperature (Tp) increased from 915 to 945 ºC with 

increasing Sr/Ca ratio.  

 

 
 

Figure 4.3.2: HSM images of various glass powder compacts of different Sr/Ca ratio on 

alumina substrates at various stages of heating cycle. (FS= first shrinkage; 

MS=maximum shrinkage; D=deformation; HS=hemi sphere; S=sphere; F=flow). 
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Table 4.3.2: Thermal parameters measured from DTA and HSM. (TFS=First shrinkage, 

TMS=Maximum shrinkage; TC=onset of crystallization; TP= peak temperature of 

crystallization; SC=sintering ability) 

 Sr/Ca=3/6 Sr/Ca=5/4 Sr/Ca=7/2 Sr/Ca=9/0 

TFS ±5( ºC) 787 731 772 782 

TMS1 ±5 ( ºC) 842 843 843 850 

TMS2 ±5 ( ºC) 920 – – – 

TC  ±2 ( ºC) 876 893 892 901 

TP ±2 ( ºC) 915 928 942 945 

Sc (=Tc–TMS) 34 50 49 51 

 

4.3.2.2 Evolution of crystalline−phase composition on heat treatement  

The XRD patterns of glass powder compacts sintered at 850 ºC for 1 h, 500 h and 

1000 h are shown in Fig. 4.3.3, while Table 4.3.3 presents quantitative crystalline phase 

analysis data obtained via the Rietveld method for glasses sintered for 500 h [157]. 

Diopside−based phases (Ca1−xSrxMg1−ySi2−yAl2yO6) and strontium akermanite 

(Sr−Akermanite: Sr2MgSi2O7) precipitated upon heat treating for 1 h at 850 ºC. The 

diffraction lines corresponding to the standard files are also inserted at the bottom of Fig. 

4.3.3a for comparison of the close matches. A common feature to all compositions 

sintered for 1 h is the relatively high fraction of amorphous phase, which can be seen in 

Fig. 4.3.3a. Additionally, Di was formed as single crystalline phase for the lower Sr/Ca 

ratios (3/6 and 5/4), while small amounts of akermanite also crystallized for higher Sr/Ca 

ratios (7/2 and 9/0). On increasing the heat treatment time, a more complex crystalline 

phase composition [Di−based phases (Ca1−xSrxMg1−ySi1−yAl2yO6), Sr−Akermanite, and 

magnesium silicate (MgSiO3)] formed at the expense of the glassy phase (Table 4.3.3). 

After 500 h at 850 ºC, the dominant crystalline phase changed from Di−like (lower Sr/Ca 

ratios) to Sr−Akermanite (higher Sr/Ca ratios) accompanied with magnesium silicate. 

Further structural details of the system after 500 h of treatment at 850 ºC using a wide 

array of structural characterization techniques are currently under study. 

 



77 
 

 
Fig. 4.3.3: XRD patterns of GCs sintered at 850 ºC for: (a) 1 h; (b) 500 h; and (c) 1000 h. 
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Table 4.3.3: Results of quantitative Rietveld refinement of glasses treated at 850 ºC for 

500 h (wt %) 

Glass Di−based phase Anorthite SrSiO3 Sr2MgSi2O7 MgSiO3 Amorphous χ2 

Sr/Ca=3/6 68 4 1 – – 27 1.9

Sr/Ca=5/4 62 – – 4 – 34 1.7

Sr/Ca=7/2 29 – – 32 – 39 1.6

Sr/Ca=9/0 – – – 28 15 57 1.9

 

The interesting feature of these GCs inferred from the XRD data is the stability in 

terms of crystalline−phase assemblage with further increasing the heat treatment time to 

1000 h (Fig. 4.3.3). This thermal stability fares well in comparison with that of GCs seals 

reported in the literature [158]. The results reveal that with increasing the heat treatment 

time and the Sr/Ca ratio, Sr–akermanite along with a Di−based phase are preferentially 

formed. These changes in the crystallization behaviour behaviour are likely to have 

consequences on the intrinsic properties of materials, as will be discussed below.    

 

 4.3.2.3 MAS−NMR study of sintered glass−powder compacts  

  Fig. 4.3.4a shows 29Si MAS–NMR spectra of GCs heat treated at 850 ºC for 1000 

h. The position of the peak maximum reflects the predominance of certain silicate species 

[159]. The 29Si NMR spectrum of Sr/Ca=3/6 GC exhibits a sharp peak centred at −85 

ppm while that of Sr/Ca=5/4 shows an additional peak centred at −76 ppm. With further 

increasing the Sr/Ca ratio, the intensity of the peak at –76 ppm increased in comparison 

to that of the peak at −85 ppm. This latter peak corresponds to Q2–silicate species (i.e. 

inosilicates) such as a diopside−based phase whilst the peak at −76 ppm indicates the 

presence of Q1–silicate structural units such as those found in Sr−Akermanite [159]. The 

deconvolution of MAS–NMR spectra was attempted using the common assumption of a 

Gaussian distribution of isotropic chemical shifts for each type of Qn unit to yield the 

percentages of Qn species reported in Table 4.3.4. The best fitting parameter, i.e, a 

coefficient of determination R2 = ∼1, was achieved between the global simulation curve 

(superposition of Gaussian shapes) and the measured curve for all the GCs with the 
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considered number of Gaussian shapes for a specific glass composition. The fitting 

procedure was performed using Originpro version 8. Figures 4.3.4b and 4.3.4c present 

the deconvolution curves for GCs Sr/Ca=5/4 and Sr/Ca=9/0, respectively. Table 4.3.4 

reveals that Q2 species predominated in all the GCs. However, increasing the Sr/Ca ratio 

led to a redistribution of the chemical shifts of the peaks with Q4 and Q1 units growing at 

the expense of Q2. The Q4 species are seemingly derived from a residual amorphous 

phase since no corresponding crystalline phase was detected by XRD analysis. Moreover, 

the amount of Q4 species listed in Table 4.3.4 scales well with the amorphous phase 

content presented in Table 4.3.3.  

 

 

 
Fig. 4.3.4: (a) 29Si MAS–NMR spectra of glass–ceramics heat treated at 850 ºC for 1000 

h. Spectral deconvolutions of the 29Si MAS spectra of glass–ceramics heat treated at 850 

ºC for 1000 h: (b) Sr/Ca=5/4; (c) Sr/Ca=9/0. The red line represents experimental curve, 

(superposition of Gaussian shapes) and the green lines represent the Gaussian shapes. 
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Table 4.3.4: Quantification of the deconvoluted silicon components 

 
Chemical Shift 

(ppm) 
Area (a.u.) Percentage area (%) 

Sr/Ca=3/6 -85.1–Q2 2460 51.1 

 -84.9–Q2 2354 48.9 

Sr/Ca=5/4 -85.3–Q2 1848 48.2 

 -85.0–Q2 1419 37.0 

 -81.6–Q2 59 1.5 

 -74.9–Q1 509 13.3 

Sr/Ca=7/2 -101.5–Q4 1370 26.0 

 -84.7–Q2 890 16.9 

 -82.49–Q2 2181 41.5 

 -75.2–Q1 821 15.6 

Sr/Ca=9/0 -109.8–Q4 236 14.1 

 -99.6–Q4 26 1.6 

 -87.4–Q2 718 42.8 

 -82.5–Q2 180 10.7 

 -75.4–Q1 260 15.5 

 -74.5–Q1 257 15.3 

 

The 27Al MAS NMR spectra of the GCs heat–treated at 850 ºC for 1000 h are 

shown in Fig. 4.3.5. All the GCs exhibited chemical shifts within the 53–57 ppm range, 

characteristic of AlIV species. A tail at about −5 ppm, typical of an AlO6 environment, is 

well resolved in Sr/Ca=3/6, Sr/Ca=5/4 and Sr/Ca=7/2 samples, while the broad 27Al 

spectra of the Sr/Ca=9/0 sample implies a wider distribution of Qn (Al) structural units 

[160]. Moreover, there is a tendency for the 27Al MAS NMR spectra of the GCs to 

become more asymmetric and similar to that of an amorphous glass on increasing the 

Sr/Ca ratio. This is due to the gradual re−formation of AlV species in the GCs (Fig. 4.3.5). 

In fact, the 27Al MAS–NMR spectra of the Sr/Ca=9/0 GC is very similar to the spectra of 

the glassy sample (inset at Fig. 4.3.5). This is consistent with the trend of an increasing 
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amount of residual glassy phase with increasing Sr content in the sintered samples (Table 

4.3.3).  

 

 
Fig. 4.3.5: 27Al MAS–NMR spectra of glass–ceramics heat treated at 850 ºC for 1000 h. 

The inset compares the 27Al MAS–NMR spectra for Sr/Ca=9/0 glass and Sr/Ca=9/0 

glass–ceramic heat treated at 850 ºC for 1000 h. 

 

4.3.2.4 Thermal, mechanical and electrical properties of sintered glass−ceramic 

samples  

The CTE values of the GCs heat treated at 850 ºC for different time intervals are 

presented in Table 4.3.5. After 1 h, the CTE values are in the range of (9.0–9.4) × 10–6 K–

1. Systematic slight increases in the CTE of GCs were observed with increasing the heat 

treatment time up to 1000 h, irrespective of the Sr/Ca ratio. Such increases in the CTE are 

consistent with the higher fractions of crystalline phases (Table 4.3.3). These small 
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hermeticity of the joins with other components of the SOFC, as the glass seal is prone to 
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100 50 0 -50
 
27

Al chemical shift (ppm)

  Sr/Ca=3/6
  Sr/Ca=5/4
  Sr/Ca=7/2
  Sr/Ca=9/0

 Al
IV

 Al
V

 Al
VI

100 50 0 -50
 
27

Al chemical shift (ppm)

 glass
 glass-ceramic



82 
 

Table 4.3.5: Bending strength (MPa) and CTE (±0.1) × 10–6 K–1 (200–700 ºC) data 

measured for the glass–powder compacts after sintering / heat treated at 900 ºC for 1 h, 

500 h and 1000 h. 

 1 h 500 h 1000 h 

Bending strength    

Sr/Ca=3/6 133±11 139±15 135±11 

Sr/Ca=5/4 97±11 123±14 113±12 

Sr/Ca=7/2 102±12 146±7 130±11 

Sr/Ca=9/0 108±13 132±10 120±12 

CTE    

Sr/Ca=3/6 9.2 9.6 10.2 

Sr/Ca=5/4 9.2 9.7 9.8 

Sr/Ca=7/2 9.4 9.7 9.8 

Sr/Ca=9/0 9.0 9.0 9.1 

 

The data on mechanical strength as functions of the Sr/Ca ratio and 

heat−treatment time are reported in Table 4.3.5. A general trend of increasing strength 

between 1 h and 500 h of thermal treatment is apparent, suggesting that structural defects 

in the samples tend to level off during the heat treatment, probably facilitated by the 

increasing amount of glassy phase, which, in turn, becomes enriched in Q4–silicate 

structural units (Fig. 4.3.4). However, firm conclusions on the dependence of the 

mechanical strength on the Sr/Ca ratio and heat treatment time cannot be drawn because 

the mechanical performance also strongly depends on structural defects introduced on 

processing of the glass powders. 
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Fig. 4.3.6: Fracture surfaces of glass–powder compacts heat treated at 850 ºC (a) 

Sr/Ca=9/0, 1 h; (b) Sr/Ca=9/0, 1000 h. 

 
Fig. 4.3.7: Electrical conductivity at 800 ºC and the conductivity activation energy, 

calculated by the standard Arrhenius equation in the temperature range 600–830 ºC, as a 

function of strontium content in the studied glass–ceramics materials. The inset shows the 

relationship between the activation energy and molar volume. 
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The SEM micrographs shown in Figs. 4.3.6a and b reveal typical fracture surfaces 

after the bending strength test for the Sr/Ca=9/0 GC sintered at 850 ºC for 1 h and after 

further heat treating at this temperature for 1000 h. The relatively high amount of glassy 

phase of the sample sintered for 1 h is apparent in Fig. 4.3.6a, while Fig. 4.3.6b (1000 h 

of heat treatment) reflects a more crystalline structure.  

Impedance−spectroscopy analysis showed that all GCs studied in this work 

exhibit excellent insulating properties. At 800 ºC, their electrical resistivity is higher than 

2 MOhm×cm (Fig. 4.3.7). The apparent activation energies (Ea) calculated by the 

standard Arrhenius equation vary in the narrow range 169–183 kJmol–1. The electrical 

conductivity was moderately enhanced with increasing Sr/Ca ratio, whilst the activation 

energy variations displayed the opposite trend, in correlation with the molar volume 

(inset in Fig. 4.3.7). The latter result is indicative of a dominant role of ionic charge 

carriers in the studied materials, as for the B2O3−containing GCs (Chapter 4.2) [155]. The 

electrical properties are stable and independent of oxygen and water−vapour partial 

pressure (Fig. 4.3.8).  

 

 
Fig. 4.3.8: Time dependencies of the total electrical conductivity of Sr/Ca–3/6 glass–

ceramics in various atmospheres at 700 and 800 ºC. 
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4.3.2.5 Wetting and chemical interaction  

Examples of elemental−mapping analyses are shown in, Figs. 4.3.9a–c, 

confirming that all the GC seals bonded well to the Crofer22APU metallic plate. 

Furthermore, no interfacial problems of adhesion, cracking and layer formation could be 

observed for the Sr–containing, GC sealants. Figs. 4.3.9d and 4.3.9e show X−ray 

diffractograms after the reactions between Cr2O3/glass and MnO/glass powders at 850 ºC 

for 100 h under air atmosphere. The crystalline phases developed in all the glasses are 

similar to 500 h and 1000 h heat−treated samples except for the addition of Cr2O3 and 

Mn2O3. No further unwanted crystalline phase, such as SrCrO4, was developed [69]. This 

behaviour confirms the high thermal stability and chemical compatibility of the title GCs 

with the metallic interconnects.  

In the case of 8YSZ ceramics, the adhesion of the studied GC sealants was, 

however, substantially worse compared to their B2O3–doped analogues (Chapter 4.2) 

[154, 155]. In fact, whilst thermal treatments at 850–900 ºC were insufficient to achieve 

gas–tight sealing with zirconia ceramics, annealing at 950 ºC led to inhomogeneities in 

the GC layer in the vicinity of 8YSZ/GC interface, as illustrated in Fig. 4.3.10. These 

in−homogeneities lead, in turn, to a poor mechanical stability. For comparison, testing the 

thermal−shock resistance of model 8YSZ cells sealed by B2O3–containing, 

diopside−based GCs (Chapter 4.2)  [154, 155] showed no failure after 15 air–quenching 

cycles. Similar cells sealed with the Sr/Ca=3/6 GC were mechanically disaggregated on 

the first quenching. In addition to relatively poor adhesion, the lower CTE values of the 

materials studied in the present work (cf. Table 4.2.7 and Ref. [154, 155]) may have also 

contributed to this behaviour, resulting in high mechanical stresses upon temperature 

variations.  

A similar conclusion was drawn on testing the microhardness of the GC layers 

applied onto 8YSZ. The Vicker's hardness of the Sr/Ca=3/6 layers (thickness of ~100 

μm) deposited on 8YSZ was as low as 0.3±0.1 GPa; the value measured for the B2O3–

doped analogue was >0.5 GPa. This makes the introduction of extra additives for 

improving the adhesion of the GCs to the surface of stabilized−zirconia electrolytes 

necessary.  
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Fig. 4.3.9: a) SEM image and EDS element mappings for (b) Cr and (c) Mn, at the 

interface between Sr/Ca=7/2 and Crofer22APU after heat treatment at 850 ºC for 1 h. 

XRD pattern of (d) glass + 10 wt.% Cr2O3 and (e) glass + 10 wt.% MnO mixtures after 

100 h heat treatment at 850 ºC. 

 
Fig. 4.3.10: Typical morphologies of the Sr/Ca–3/6 glass–ceramics layer deposited onto 

8YSZ ceramics after heat treatment at 950 ºC: (a) glass–ceramics layer surface, (b) edge 

of glass–ceramics deposited on 8YSZ. 
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4.3.3 Discussion 

The obtained results clearly show how the Sr/Ca ratio affects the structure, 

crystallization behaviour and properties of Di−based glasses and GCs. Similar evidence 

has not yet been reported according to the best of our knowledge.  

Both CaO and SrO are well–known network modifiers. However, the larger Sr 

cation and the resulting weaker Sr–O bond strength lead to a decrease in the glass 

viscosity. This more accentuated disruption of the glass–network on increasing the Sr 

content is further depicted from the increased CTE values with increasing Sr/Ca ratio 

(Table 4.3.5). It is well known that sintering of glass powders may be strongly affected 

by phase transformations i.e., nucleation and growth of crystalline phases occurring upon 

heating. Hill et al. [161] reported that strontium substitution for calcium affects the 

nucleation and crystallization behaviour of the glass. However, the data of Rietveld 

analyses for the GCs sintered for 500 h (Table 4.3.3), reveal that higher Sr/Ca ratios tend 

to hinder crystallization. These results suggest that increasing the Sr/Ca ratio up to 5/4 

promotes sintering behaviour (Table 4.3.2) by decreasing the viscosity of the glass. The 

flow point also decreased from 1281 ºC to 1228 ºC with increasing Sr/Ca ratio from 3/6 

to 5/4, Fig. 4.3.1. This interpretation is consistent with the findings reported elsewhere 

[162, 163] that adding BaO as glass−network modifier decreases the glass viscosity. The 

further increase in Sr/Ca ratio has negligible influence on the sintering behaviour, 

probably due to the growth of Sr−akermanite crystalline phase. It has also been revealed 

from the quantitative Rietveld XRD and 29Si MAS−NMR results that increasing the 

Sr/Ca ratio increases the fraction of Q1 units over Q2 units, consistent with the disruption 

of the network. Therefore, the growth of Sr−akermanite might hinder any further 

densification with increasing Sr/Ca ratio (Fig. 4.3.1). In any case, the maximum 

densification has been achieved well before the initiation of crystallization in all the GCs. 

The XRD (Table 4.3.3) and the MAS–NMR data of GCs revealed that increasing 

the Sr/Ca ratio favours the formation of Q1 structures in Sr−akermanite at the expense of 

Q2 diopside structural units. According to Lee et al. [101], who studied the chemical 

order of mixed–cation silicate glasses, especially in BaMgSi2O6 glass, when a pair of 

mixed cations with identical charges but different ionic radii are mixed, the 

low−field−strength cation prefers bonding to both bridging and NBOs. This kind of 



88 
 

strong preference among network–modifying cations is solely due to the difference in 

ionic radii of the alkaline–earth metals. This indicates that increasing the Sr/Ca ratio 

perturbs the glass network more effectively and allows new crystalline phases to be 

formed when heated to sufficiently high temperature. Gillot et al. [164] reported that 

around Tg, Di glasses crystallize as akermanite in preference to diopside due to the 

decoupled mobility of network–modifying and network–forming cations. The formation 

of Sr–akermanite crystalline phase throughout the Di solid solution has also been 

observed previously [165]. Thus, the formation of Sr–akermanite along with the Di 

crystalline phase seems inevitable on increasing the ratio of Sr to Ca.  

From the sintering behaviour and DTA thermographs (Fig.4.3.2), one would expect 

that 100% Sr−substituted glass would hinder crystallization more readily than in any of 

the other Ca−containing glasses. Consequently, the quantitative XRD results revealed 

retarded crystallization upon isothermal heating of the glass powder compacts at 850 ºC 

for 500 h (Table 4.3.3). The broadening of the NMR patterns in both the 29Si MAS–NMR 

and 27Al MAS–NMR spectra (Fig. 4.3.4a and Fig. 4.3.5) with increasing Sr/Ca ratio are 

also consistent with higher contents of amorphous phase (Table 4.3.3). This behaviour 

may be due to higher entropy of mixing that stabilizes the disordered glassy state. 

Increasing the entropy of mixing enhances the energy barrier for crystallization and 

delays the atomic rearrangement to form critical−size nuclei. It has been reported recently  

[156] that the substitution of Sr for Ca in multi−component glass compositions reduces 

the glass transition temperature and lowers the activation energy for crystallization whilst 

increasing the onset temperature of crystallization. The similar behaviour observed in the 

present glass system can be explained on the basis of the ion−diffusion coefficient, 

according to the findings of Nakamura [166], who measured the diffusivities of Ba and Sr 

elements in Di melts. They found that diffusion coefficients (DC) of divalent ions 

decrease with increasing ionic radii at constant pressure and temperature (∼2.2 × 10−6 cm2 

sec−1 and ∼2.6 × 10−6 for Sr and Ca, respectively). According to Lee et al. [167], 

low−field−strength, charge−balancing cations in aluminosilicate glasses decrease the 

thermodynamic configurational entropy and increase the structural disorder. Further 

detailed experimental analysis is required to better understand the effects of Sr/Ca ratio 

over long−run heat treatments.  
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It is known that variations of crystalline volume fractions and phase assemblage in 

GCs upon isothermal treatments influence the mechanical strength and the CTE of the 

seal. For example, a greater flexural strength was reported for the GC–9 glass sample 

aged for 1000 h at 750 ºC in comparison to a non–aged sample due to the increase of 

crystalline fraction [168]. On the other hand, a decrease of the CTE from 11.7 × 10–6 K–1 

to 9.1 × 10–6 K–1 with increasing the heat treatment time from 5−100 h at 1000 ºC was 

attributed to the formation of a different crystalline−phase assemblage [169]. These cases 

contrast with the good stability of the present glass systems in terms of phase assemblage 

and properties as revealed from quantitative Rietveld analysis (Table 4.3.3) after 500 h at 

850 ºC. This enhanced general stability with increasing Sr/Ca ratio is counterbalanced by 

a slight decrease in CTE, which  is probably due to the formation of Sr–akermanite phase 

(αa = 3.663 × 10−6 K−1 and αc = 6.666 × 10−6 K−1) at the expense of Di−based  phase 

(diopside – ∼9.5 × 10−6 K−1) [138]. In any case, all the CTE values fit within the 

suitability range for applicability as SOFC seals. Moreover, the enhancement of 

mechanical strength during prolonged heat treatments resulted in higher values than those 

obtained for G–18 glass (∼35 MPa) and GC–9 glass (49 MPa) after heat treating at 800 

ºC for 1000 h [44, 168]. According to the Griffith crack theory, when a propagating crack 

in the compound encounters a crystal with high strength and elastic modulus, the crack 

direction is deviated by the crystal, thereby enhancing the fracture strength. As a result, a 

higher energy will be required for crack propagation. The fracture surface of the sample 

heat treated at 850 ºC for 1000 h, shown in Fig. 4.3.6d, is rougher in comparison to that 

of a sample sintered at the same temperature for 1 h (Fig. 4.3.6c).  

One of the most arduous tasks in the development of SOFC seals is achieving 

good bonding and wetting ability with the SOFC components without forming any 

undesirable phases at the interfaces. It has been observed by Chou et al. [77] and Zhang 

et al. [103] that a significant amount of SrO in sealant−glass compositions leads to the 

formation of SrCrO4 crystalline phase on interacting with the Cr−containing metallic 

plates. Pure SrCrO4 is orthorhombic and highly anisotropic in CTE with αa = 16.5×10−6 

K−1, αb= 33.8×10−6 K−1, and αc= 20.4×10−6 K−1 [170]. Such high CTE values will create 

unwanted stresses in the microstructure of the GCs, which consequentially affects the 
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mechanical strength of the seal. SrCrO4 will generally form when high SrO–containing 

glasses react with Cr2O3 powders upon heat treating in air up to at least 800 ºC. One 

possible path for the formation of SrCrO4 is: SrO (glass) + ½ Cr2O3 (solid) + ¾ O2 ↔ 

SrCrO4 (solid). However, in contrast to the sealants proposed by Chou et al. [77] and 

Zhang et al. [103], the materials studied in the present work did not form SrCrO4. Their 

stability has, most likely, a kinetic nature and correlates with the low DC values given 

above (in this section). The results of XRD analysis and of the interaction studies (Fig. 

4.3.9) reveal good chemical compatibility between the investigated glasses and GCs and 

SOFC components, making them suitable for sealant applications. 

The presence of 30–40 % glassy phase in GCs, even after prolonged heat treatment, 

is expected to confer them some ability to flow and limit or close cracks formed during 

SOFC operation. Such self–healing behaviour of sealants has great interest in the present 

era. In general, all the studied GCs (i) exhibited a CTE in the range (9.2–10.2) × 10–6 K–1, 

(ii) good mechanical strength compared to commercial glass G–18, (iii) good thermal 

stability up to 1000 h at 850 ºC and (iv) good wetting and chemical compatibility with the 

SOFC components which are desirable for their application as a sealing material in 

SOFCs. 
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4.4 Sintering behaviour of lanthanide−containing 

glass−ceramic sealants for solid oxide fuel cells 
 

4.4.1 Introduction 

Sintering behaviour plays a crucial role in the development of seals for SOFCs 

because the glass paste (glass powder mixed with a suitable binder) is usually applied on 

the surface (ceramic or metallic) components to be sealed, undergoing sintering before a 

continuous glassy phase layer forms, which might then be transformed into a GC layer. 

The literature survey revealed that apart from La2O3, no other lanthanide oxides have 

been investigated aiming at designing glass seals [23]. Therefore, the present study is 

dedicated towards investigating the influence of lanthanides (La3+, Nd3+, Gd3+, Yb3+) on 

sintering behaviour of GC−seals for SOFC. A total of 13 glasses with different lanthanide 

concentrations were designed and synthesized in the primary crystallization field of Di 

with the following theoretical compositions: Ca0.7Sr0.3Mg0.9Al0.1Ln0.1Si1.9O6; 

Ca0.7Sr0.3Mg0.85Al0.1Ln0.2Si1.85O6 and   Ca0.7Sr0.3Mg0.8Al0.1Ln0.3Si1.8O6, where Ln: La, Nd, 

Gd and Yb. Also a lanthanide free glass with composition Ca0.7Sr0.3Mg0.95Al0.1Si1.95O6 

was synthesized in order to understand the influence of lanthanide oxides on different 

properties of glasses. These BaO−free glass compositions were selected to minimize the 

possibility of any detrimental chemical interactions between the seal and the metallic 

interconnect, as well as to avoid the formation of monoclinic celsian in the GC [23]. 

Further, Al2O3 was added in relatively small amounts so as to control the devitrification 

behaviour of glasses [171], while 2 wt.% B2O3 was added to all the glass compositions to 

tailor their flow behaviour [26]. The partial substitution of SiO2 and MgO with 

lanthanides Ln2O3 (Si4+ + Mg2+ ↔ 2 Ln3+) has been made considering the fact that both 

silica and magnesia tend to decrease the CTE and increase the viscosity of glasses which 

might affect the flow as well as joining behaviour  of glass seals to SOFC components. 

Table 4.4.1 presents the detailed compositions of all the investigated glasses. 
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Table 4.4.1: Glass compositions (Ln refers to lanthanide cation present in the glass). 

  MgO CaO SrO SiO2 Al2O3 B2O3 Ln2O3 

Ln−0 wt% 16.25 16.66 13.20 49.73 2.16 2.0 − 

 mol% 23.64 17.42 7.47 48.54 1.24 1.68 − 

La−0.1 wt% 14.68 15.89 12.58 46.20 2.06 2.0 6.59 

 mol% 22.66 17.63 7.55 47.85 1.26 1.79 1.26 

La−0.2 wt% 13.25 15.18 12.02 42.98 1.97 2.0 12.60 

 mol% 21.66 17.84 7.64 47.14 1.27 1.89 2.55 

La−0.3 wt% 11.94 14.53 11.51 40.04 1.89 2.0 18.10 

 mol% 20.63 18.05 7.74 46.42 1.29 2.00 3.87 

Nd−0.1 wt% 14.65 15.85 12.55 46.09 2.06 2.0 6.79 

 mol% 22.67 17.63 7.55 47.84 1.26 1.79 1.26 

Nd−0.2 wt% 13.19 15.12 11.97 42.80 1.96 2.0 12.96 

 mol% 21.66 17.84 7.64 47.14 1.27 1.90 2.55 

Nd−0.3 wt% 11.87 14.45 11.44 39.80 1.88 2.0 18.58 

 mol% 20.63 18.05 7.73 46.41 1.29 2.01 3.87 

Gd−0.1 wt% 14.57 15.77 12.49 45.85 2.05 2.0 7.28 

 mol% 22.66 17.63 7.55 47.84 1.26 1.80 1.26 

Gd−0.2 wt% 13.06 14.96 11.85 42.37 1.94 2.0 13.82 

 mol% 21.66 17.83 7.64 47.13 1.27 1.92 2.55 

Gd−0.3 wt% 11.69 14.24 11.28 39.22 1.85 2.0 19.72 

 mol% 20.62 18.05 7.74 46.40 1.29 2.04 3.87 

Yb−0.1 wt% 14.48 15.67 12.41 45.55 2.03 2.0 7.86 

 mol% 22.66 17.63 7.55 47.83 1.26 1.81 1.26 

Yb−0.2 wt% 12.90 14.78 11.71 41.85 1.92 2.0 14.84 

 mol% 21.65 17.83 7.64 47.12 1.27 1.94 2.55 

Yb−0.3 wt% 11.49 13.99 11.08 38.55 1.82 2.0 21.07 

 mol% 20.61 18.04 7.73 46.39 1.29 2.08 3.87 
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4.4.2. Results  

4.4.2.1 Glass forming ability 

 
Fig. 4.4.1: X−ray diffractograms of as synthesized glasses depicting their amorphous nature. 

 

For all the investigated compositions, melting at 1550 ºC for 1 h was sufficient to 

obtain bubble−free, homogeneous transparent glasses. Table 4.4.2 presents the 

experimental compositions for some of the glasses as determined by ICP−OES analysis. 

Negligible changes were observed in the chemical composition of the glasses after 

melting the glass batch as 1550 ºC. The absence of crystalline inclusions was confirmed 

by XRD analysis (Fig. 4.4.1). Although it has been reported that the upper limit for the 

amount of lanthanide oxides that can be incorporated into the aluminosilicate glasses 

decreases in accordance with lanthanide contraction [172], no such concern was observed 

in the present study. This might be due to the relatively lower concentrations of 

lanthanide oxides added in the present work in comparison to those used by Makishima et 

al. [172]. With respect to the colour, all the glasses except those containing Nd were 

colorless. Nd−containing glasses exhibited blue−purple colouration characteristic of Nd3+ 

(4f3) ions f−f transitions: this is the most stable oxidation state of neodymium [173]. 
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Also, according to Loiseau et al. [173], the colorless state of Gd and Yb containing 

glasses refers to the occurrence of the most stable trivalent oxidation state for these ions 

under normal conditions in air: Gd3+ (4f7) ions absorb in the ultra−violet range whereas 

Yb3+ (4f13) ions absorb in the near infrared range. 

 

Table 4.4.2: Glass composition (wt%) of some glasses as determined by ICP−OES 

analysis 

 MgO CaO SrO SiO2 Al2O3 B2O3 Ln2O3 

Ln−0 15.25 16.49 13.94 50.42 2.36 1.55 − 

La−0.2 12.06 15.30 12.67 43.10 2.06 1.88 12.93 

Nd−0.2 11.27 15.67 14.03 42.79 2.12 1.85 12.28 

Gd−0.2 11.41 15.29 13.39 42.32 2.08 1.79 13.73 

Yb−0.2 11.21 15.06 12.62 41.71 1.94 1.78 15.68 

 

4.4.2.2 Coefficient of thermal expansion (CTE) 

Table 4.4.3 presents the CTE values for all the investigated glasses and GCs (after 

sintering at 850 ºC for 1 h). All the studied glasses exhibited their CTE values in the 

range (9 – 10.5) × 10−6 K−1 while the CTE of GCs varied between (9.4 – 11.1) × 10−6 K−1 

which are desirable for their application as a sealing materials in SOFCs. The 

introduction of 1.26 mol% of lanthanide oxides in glasses led to an increase in the CTE 

of glasses except for glass La−0.1 which has a CTE value similar to that for parent glass 

Ln−0. Further, all the glasses containing La, Nd, Gd, and Yb exhibited an almost similar 

trend as their CTE values decreased with increase in lanthanide concentration from 1.26 

mol% to 2.55 mol% and then increased with increasing lanthanide content to 3.87 mol%. 

At any particular concentration of lanthanides, CTE of glasses was lowest for La 

containing glass compositions and the highest for Yb−containing glasses (except for glass 

Yb−0.2). These results are in contradiction with those reported for lanthanide containing 

aluminosilicate glasses [174] and soda−lime−silica [175] glasses where CTE values have 

been shown to decrease linearly with the ionic field strength of the lanthanide ions 

(lanthanide contraction). This may be attributed to the compositional complexity of the 
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investigated glasses which consequentially affects their atomic and molecular structure 

and might lead to a variety of phenomena depending upon the nature and amount of 

lanthanides (i.e. lanthanide clustering, or network modifying effect/charge compensating 

effect) [175-179], thus, affecting their thermal expansion behaviour. For example: in 

alkali/alkaline−earth silicates, the addition of lanthanides beyond a certain amount leads 

to the phenomenon of concentration quenching and phase separation. However, 

incorporating Al2O3 in these glasses has been shown to increase the solubility limit of 

lanthanides, thus allowing the homogeneous dissolution of lanthanide oxides in amounts 

much higher than otherwise possible [180]. Therefore, a detailed structural evaluation of 

these glasses depicting the silicon, aluminum and boron coordination along with the local 

structural environment of various lanthanide cations is required in order to provide a 

reasonable justification for their thermal expansion behaviour. 

 

Table 4.4.3: CTE (× 10−6 K−1) of glasses (200 – 500 ºC) and glass−ceramics (200 – 700 

ºC). 

 Glass Glass−ceramic 

Ln−0 9.46 10.85 

La−0.1 9.46 10.84 

La−0.2 9.03 10.42 

La−0.3 9.71 11.09 

Nd−0.1 9.65 10.83 

Nd−0.2 9.41 11.12 

Nd−0.3 9.79 10.48 

Gd−0.1 9.65 10.32 

Gd−0.2 9.32 10.38 

Gd−0.3 10.06 9.38 

Yb−0.1 10.21 10.50 

Yb−0.2 9.09 10.06 

Yb−0.3 10.01 9.79 

 



96 
 

 With respect to the CTE variation for GCs, their thermal expansion behaviour  

depends on the nature and amount of crystalline phase present in the GC system. As will 

be discussed in section 4.4.2.4, diopside−based crystalline phases comprise the majority 

of the crystalline content in the investigated GCs. It has been shown previously that 

mono−mineral GCs containing augite (Al−containing diopside) as the only crystalline 

phase exhibit a CTE value of ~9.5 × 10−6 K−1 [181]. Since the glass compositions being 

investigated in the present study also comprise of Sr2+ and Ln3+ ions, therefore an 

increase in the CTE of resultant GCs in inevitable. It is noteworthy that in a crystallized 

glass seal, the CTE of GC decides the stability and hermeticity of join between 

metal−ceramic or ceramic−ceramic components of SOFC as the glass seal is prone to 

crystallize during joining. In the present case, considering the CTE value of ceramic 

electrolyte (i.e. 8YSZ) to be ~10 × 10−6 K−1 and for metallic interconnect (Crofer22 APU; 

Sanergy HT) varying between (11 – 12 × 10−6 K−1), the GC compositions with their CTE 

values ≥ 10.5 × 10−6 K−1 should be suitable for rigid GC seals. However, long term 

thermal stability of these GCs is yet to be investigated. 

 

4.4.2.3 Sintering behaviour of glass powders  

4.4.2.3.1 In situ hot−stage scanning electron microscopy 

 

 
 

Fig. 4.4.2: HT−ESEM images for glass Nd−0.2 obtained in situ during heat treatment of 

glass  powder in the temperature range of 600 – 680 ºC. 
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Fig. 4.4.2, 4.4.3, and 4.4.4 present the SEM images of the glasses Nd−0.2, Gd−0.2 

and Yb−0.2, respectively at temperatures varying between 600 – 750 ºC. As per the 

observations made in HT−ESEM, the glass particles started to move and rotate in the 

temperature range of 500 – 600 ºC without depicting any changes in their morphology. A 

gradual increase in temperature to 620 – 630 ºC led to the slight softening of the glass 

particles (typically characterized by a smoothening of their edges). This temperature 

range is almost equivalent to the softening point of glasses as observed from thermal 

expansion curves of the investigated glasses. A dwell for 5–7 min at this stage initiated 

the neck formation between the particles (i.e. beginning of sintering). Further increase in 

temperature to 640 – 650 ºC led to the growth in neck formation among the glass 

particles resulting in a string of particles. The neck formation was observed to shift 

towards higher temperature with decrease in ionic radii of lanthanide cation. In the 

temperature interval of 650 – 670 ºC, the as formed string of particles merges into a 

single droplet of glass. Beyond this point, the apparition of very light, rounded shadows 

(darker areas) on the surface of glass droplets might suggest an amorphous phase 

separation. This phenomenon was observed in case of glass Yb−0.2 at 680 ºC (Fig. 4.4.4) 

while glass Nd−0.2 exhibited phase separation at comparatively higher temperature i.e. 

720 ºC (not shown). A macroscopic shrinkage is observed around 750 ºC. 

 

 
 

Fig. 4.4.3: HT−ESEM images for glass Gd−0.2 obtained in situ during heat treatment of 

glass powder in the temperature range of 600 – 720 ºC. 
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Fig. 4.4.4: HT−ESEM images for glass Yb−0.2 obtained in situ during heat treatment of 

glass powder in the temperature range of 600 – 750 ºC. 

 

4.4.2.3.2 HSM−DTA 

Fig. 4.4.5 presents the data as obtained from DTA and HSM (β = 5 Kmin−1) 

pertaining to sintering and devitrification behaviour  of glasses that allow observation of 

the following trends:  

1. Fig. 4.4.5a−e presents the variation in the relative area obtained from the 

HSM measurement and differential temperature (from DTA) with respect 

to temperature for glass Ln−0 (Fig. 4.4.5a), La−0.3 (Fig. 4.4.5b), Nd−0.3 

(Fig. 4.4.5c), Gd−0.2 (Fig. 4.4.5d) and Yb−0.2 (Fig. 4.4.5e), respectively. 

The DTA thermographs of all the glasses exhibited a single crystallization 

exothermic curve. This signifies that the GC is formed either as a result of 

single phase crystallization or of an almost simultaneous precipitation of 

different crystalline phases. 

2. The temperature of first shrinkage (TFS; logη = 9.1 ± 0.1, η is viscosity; 

dPa s) as obtained from HSM (Fig. 4.4.6a) varied between 750 – 794 ºC 

depending on the nature and amount of lanthanide content in glasses (Fig. 

4.4.6).  

3. Increasing La2O3 and Yb2O3 concentration in glasses showed a monotonic 

increase in TFS (Fig. 4.4.6a and 4.4.6d) while glasses containing Nd2O3 
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and Gd2O3 exhibited a dip in their respective TFS values for glasses 

Nd−0.1 and Gd−0.1 in comparison to lanthanide free glass Ln−0. Further 

increment in lanthanide content in Nd− and Gd−containing glasses shifted 

their TFS temperature to higher side.  

4. As is evident from Fig. 4.4.5a, lanthanide free glass Ln−0 exhibited a 

single stage shrinkage behaviour. Although, a slight tendency towards 

exhibiting a two−stage sintering behaviour  can be seen in glass Ln−0 but 

it is not as evident as in the case of lanthanide containing glasses.  

5. The two stage shrinkage behaviour  was observed for all the glasses as is 

evident from Fig. 4.4.5. The conclusion of first sintering stage is 

characterized with temperature of first maximum shrinkage (TMS1; logη = 

7.8 ± 0.1) while the end of second sintering stage is characterized with 

temperature of second maximum shrinkage (TMS2). Fig. 4.4.6 presents the 

variation in the values of TMS1 and TMS2 with respect to the lanthanide 

content in glasses. In all the glass compositions the TMS1<Tc (onset of 

crystallization) which demonstrates that sintering precedes crystallization 

in all the glasses (including Ln−0) and therefore, well sintered and 

mechanically strong glass powder compacts should be expected. 

6.  The value for TMS2 was higher than Tc in all the investigated glasses (Fig. 

4.4.6) depicting that shrinkage continued in the glass powders even after 

onset of crystallization  possibly due to the presence of residual glassy 

phase in the GC.  

7. The values for Tp varied between 838 – 928 ºC for La−containing glasses; 

838 – 918 ºC for Nd−containing glasses; 838 – 931 ºC for Gd−containing 

glasses and 838 – 935 ºC for Yb−containing glasses. As is evident from 

Fig. 4.4.6, the lowest value of Tp was observed for glass Ln−0 and the 

introduction of lanthanides (1.26 mol%) in this glass resulted in a 

considerable increase in peak temperature of crystallization. Further 

increase in lanthanide content in glasses (>1.26 mol%) did lead to an 
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increase in their Tp; however, this shift was less significant in comparison 

to that observed between glasses Ln−0 and Ln−0.1, respectively.   

8. The value of sintering ability parameter Sc (= Tc – TMS1) for the lanthanide 

free glass, Ln−0 (Sc = 17), was considerably lower (~ 2 times) in 

comparison to its lanthanide containing counterparts (Fig. 4.4.5), thus 

depicting that addition of lanthanides (~1 mol% − 4 mol%) in 

aluminosilicate glasses enhances their sintering ability considerably [182]. 

In general, increasing the lanthanide content in glasses between 1 – 4 

mol% (approximately) improved their sintering ability. Among all the 

lanthanide containing glasses, the lowest value of Sc was observed for 

glass Gd−0.2 (Sc = 33) while the highest was obtained for glass Yb−0.3 (Sc 

= 56). 

9. Fig. 4.4.7 and Fig. 4.4.8 present the photomicrographs of all the 

investigated glasses depicting the changes in geometric shape of the 

glasses with respect to temperature as obtained from HSM. The 

deformation temperature (temperature at which the first signs of softening 

are observed; generally shown by the disappearance or rounding of the 

small protrusions at the edges of the sample; logη = 7.8 ± 0.1) of all the 

glasses varied between 870 – 890 ºC while sphere formation in almost all 

the glasses occurred at ~900 ºC. This temperature range (850 – 900 ºC) is 

usually considered for joining of SOFC metallic/ceramic components by a 

glass/GC sealant. In fact, attempts have been made to  accomplish the 

joining of SOFC metallic interconnect with ceramic electrolyte at higher 

temperatures (950 – 1050 ºC) [66, 150]. However, sealing at temperatures 

>900 ºC usually degrades the metallic interconnect and thus affects the 

performance of SOFC in a detrimental manner [183]. 

10. The half ball temperature (logη = 4.1 ± 0.1) and flow temperature (logη = 

3.4 ± 0.1) for all the glasses varied between 1190 – 1260 ºC and 1200 – 

1270 ºC, respectively (Fig. 4.4.7 and Fig. 4.4.8). The highest half ball and 

flow temperatures were observed for glass Ln−0 depicting its highly 

refractory nature. However, introduction of lanthanide in glass Ln−0 (0.05 
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Mg2+ + 0.05 Si4+ ↔ 0.1 Ln3+) led to a significant decrease in both the 

temperature values (i.e. half ball and flow) irrespective of the nature of 

lanthanide cation which exhibits the influence of lanthanide oxides on the 

viscosity of aluminosilicate glasses.  

 
Fig. 4.4.5: Comparison of DTA and HSM curves on the same temperature scale for glasses: 

(a) Ln−0, (b) La−0.3, (c) Nd−0.3, (d) Gd−0.2, and (e) Yb−0.2 at heating rate of 5 Kmin−1. 
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Fig. 4.4.6: The variation in different thermal parameters for glasses obtained from DTA and 

HSM with respect to (a) La2O3, (b) Nd2O3, (c) Gd2O3, and (d) Yb2O3 content in glasses. The 

error bars have been masked by the data points. 

 

 

 

 

 

 

 

 

 

 

TFS

Tc

TMS1

TMS2

Tp

Sc

750

800

850

900

950

0 1 2 3 4

La2O3 (mol.%)

Te
m

pe
ra

tu
re

 (o C
)

10

20

30

40

50

S c
 (o C

)

(a)

 

TFS

Tc

TMS1

Sc

750

800

850

900

950

0 1 2 3 4
Nd2O3 (mol.%)

Te
m

pe
ra

tu
re

 (o C
)

10

20

30

40

50

S c
 (o C

)

TMS2 Tp

(b)

 

TFS

Tc

TMS1

TMS2

Tp

Sc

750

800

850

900

950

0 1 2 3 4

Gd2O3 (mol.%)

Te
m

pe
ra

tu
re

 (o C
)

10

20

30

40

50

60

S c
 (o C

)

(c)

TFS

Tc

TMS1

TMS2

Tp

Sc

750

800

850

900

950

0 1 2 3 4
Yb2O3 (mol.%)

Te
m

pe
ra

tu
re

 (o C
)

10

20

30

40

50

60

S c
 (o C

)

(d)



103 
 

Ln−0 

  
25 ºC 867 ºC (TD) 900 ºC 1260 ºC (THB) 1271 ºC (TF) 

La−0.1 

  
25 ºC 850 ºC 876 ºC (TD) 900 ºC 1213 ºC (THB) 

La−0.2 

  

25 ºC 859 ºC (TD) 900 ºC 1191 ºC (THB) 1205 ºC (TF) 

La−0.3 

 
25 ºC 871 ºC (TD) 900 ºC 1200 ºC (THB) 1203 ºC (TF) 

Nd−0.1

   
25 ºC 871 ºC (TD) 900 ºC 1218 ºC (THB) 1242 ºC (TF) 

Nd−0.2

 

25 ºC 863 ºC (TD) 900 ºC 1205 ºC (THB) 1209 ºC (TF) 

Nd−0.3

  
25 ºC 887 ºC (TD) 900 ºC 1213 ºC (THB) 1217 ºC (TF) 

Fig. 4.4.7: HSM images of lanthanide free glass (Ln−0) along with La2O3 and Nd2O3 

containing glass powder compacts on alumina substrates at various stages of heating cycle. 
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Gd−0.1

    
25 ºC 872 ºC (TD) 900 ºC 1216 ºC (THB) 1236 ºC (TF) 

Gd−0.2

  
25 ºC 870 ºC (TD) 900 ºC (TS)  1205 ºC (THB) 1218 ºC (TF) 

Gd−0.3

 
25 ºC 875 ºC (TD)  905 ºC (TS)  1212 ºC (THB) 1219 ºC (TF) 

Yb−0.1 

 
25 ºC 864 ºC (TD) 900 ºC 1218 ºC (THB) 1224 ºC (TF) 

Yb−0.2

25 ºC 877 ºC (TD)  900 ºC 1189 ºC (THB) 1200 ºC (TF) 

Yb−0.3

 

25 ºC 893 ºC (TD) 1179 ºC  1184 ºC (THB) 1203 ºC (TF) 

 

Fig. 4.4.8: HSM images of Gd2O3 and Yb2O3 containing glass powder compacts on alumina 

substrates at various stages of heating cycle. 
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4.4.2.4 Crystalline phase evolution 

 
Fig. 4.4.9: X−ray diffractograms of glass powder compacts after sintering at 850 ºC for 1 h. 

 

Fig. 4.4.9 presents the X−ray diffractograms of the sintered GCs while Table 

4.4.4 presents the quantitative analysis of the crystalline phases present in all the 

investigated GCs as obtained from XRD analysis adjoined with Rietveld−R.I.R 

technique. Fig. 4.4.10 shows the fit of a measured XRD pattern of a sintered GC Ln−0 by 

using the TOPAS software. The fitting to the measured X−ray diagram has been 

performed by a least−square calculation. The calculated diagram (Fig. 4.4.9) is based on 

crystallographic structure models, which also take into account specific instrument and 

sample effects. The parameters of this model have been refined simultaneously using 

least−squares methods in order to obtain the best fit to all measured data. By 
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least−squares refinement, a so−called figure−of−merit function R has been defined, 

which describes the residual (agreement) between observed and calculated data [151]. 

The R factors show the mean deviation in accordance with the model used in per cent. 

The values of R factor (not shown) as obtained in the present investigation are well 

within the limits of experimental accuracy. The difference plot in Fig. 4.4.10 does not 

show any significant misfits. The differences between the main peaks of augite, 

Sr−diopside and corundum are caused by adjustment difficulties based on the 

crystallinity of the phases. 

 
Fig. 4.4.10: Observed (red), calculated (blue), and difference curve from the Rietveld 

refinement of GC Ln−0 after sintering at 850 ºC for 1 h. 

 

Sr−containing Di (Ca0.8Sr0.2MgSi2O6; ICSD: 68178) crystallized as the primary 

phase in all the GCs followed by an Al−containing Di [augite; 

(Ca(Mg0.70Al0.30)(Si1.70Al0.30)O6; ICSD: 62547] as the second most dominant crystalline 

phase except for compositions La−0.2 and Yb−0.2 (Table 4.4.4). While augite dominated 

the crystalline phase assemblage of GC La−0.2 followed by Sr−diopside as the secondary 
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RE-0-850

Augite

Sr-diopside

Corundum

10 35 60 85 110
2θ (degrees)

In
te

ni
st

y 
(a

.u
.)



107 
 

phase in composition Yb−0.2 followed by augite and Sr−diopside as the secondary 

phases. Some other alkaline earth silicate based crystalline phases including Ca2SiO4 

(ICSD: 39124), CaSrSiO4 (ICSD: 20544), akermanite (Ca2MgSi2O7; ICSD: 50066) and 

low−quartz (SiO2; ICSD: 75657) crystallized as minor phases in the GCs as presented in 

Table 4.4.5. Increasing lanthanide content in glasses (in particular glasses containing Gd 

and Yb) retarded their tendency towards devitrification as is evident from Table 4.4.5. 

The residual amorphous content in GCs is highest for GCs Gd−0.3 (96 wt.%) and Yb−0.3 

(96 wt.%). The high amount of residual glassy phase along with the flow behaviour  of 

these compositions as exhibited by XRD and HSM, respectively, makes the investigated 

glasses as potential candidates for self−healing GC seals.  

 

Table 4.4.4: Quantitative crystalline phase analysis of glass−ceramics produced at 850 ºC 

for 1 h from Rietveld−R.I.R. analysis (wt.%) 

 Amorphous Augite Sr-Di Di Ak CaSrSiO4 Ca2SiO4 Quartz Keivyite

RE-0 52.43 23.86 23.71 - - - - - - 
La-0.1 53.43 - 46.57 - - - - - - 
La-0.2 55.48 26.32 - 18.20 - - - - - 
La-0.3 56.78 8.50 16.74 - 0.00 16.44 1.55 - - 
Nd-0.1 48.89 10.68 40.43 - - - - - - 
Nd-0.2 54.09 1.47 44.44 - - - - - - 
Nd-0.3 68.14 - 27.74 - 2.00 2.12 - - - 
Gd-0.1 31.53 7.27 58.85 - - - - 2.35 - 
Gd-0.2 86.24 0.00 13.43 - - - - 0.33 - 
Gd-0.3 96.19 0.00 3.81 - - - - - - 
Yb-0.1 52.86 17.73 29.41 - - - - - - 
Yb-0.2 56.70 12.56 6.76 - - - - - 23.99

Yb-0.3 95.97 - 4.03 - - - - - - 
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3.5 Electrical conductivity of glass-ceramics 

 

 

Fig. 4.4.11: Total electrical conductivity (σ) of dense glass−ceramics in air in the 

temperature range of 625 – 800 ºC: (a) La−, (b) Nd−, (c) Gd, (d) Yb−containing 

glass−ceramics. 

 

 Fig. 4.4.11 presents the variation in the electrical conductivity (σ) of GCs with 

respect to temperature. The conductivity of all the GCs varied between (1.19 – 7.33) × 

10−7 Scm−1 (750 – 800 ºC). The electrical conductivity of the GCs increased with 

increasing temperature due to the higher diffusion of network modifying cations. In order 

for a material to qualify for sealing application in SOFC, it should behave as an electrical 

insulator with its total electrical conductivity lower than 10−5 Scm−1 so as to avoid 

parasitic currents which decrease the efficiency of the system. The electrical conductivity 
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of investigated glass compositions is considerably lower in comparison to its desired 

value which makes them suitable material for sealing. Further, the electrical conductivity 

was observed to increase with increasing lanthanide content in GCs. Also, decreasing 

ionic radii (increasing ionic field strength) of lanthanide cations decreased the total 

electrical conductivity of the GCs as La containing GCs exhibited the highest electrical 

conductivity while the lowest conductivity was observed for Yb− containing GCs.  

The electrical conductivity of a seal glass depends on the glass network formers, 

modifiers and intermediates. Although, a lot of literature has been published with 

reference to the role of various glass components on their electrical conductivity, the 

additive effect is still uncertain because of the different roles played by these ions in 

varying concentrations. In particular, there is a considerable dearth of data on the effect 

of lanthanide cations on the electrical conductivity of glasses/GCs. As a rule of thumb, it 

is generally accepted that the electrical conductivity should increase with decreasing 

ionic radii (i.e. La−containing glasses should exhibit lower electrical conductivity in 

comparison to Yb containing glasses) [21]. However, it should be noted that this rule 

might not stand valid in glasses with high compositional complexity, as has been seen in 

the present study. Therefore, a detailed structural evaluation of the investigated glass 

system is required with special emphasis on their tendency towards glass−in−glass phase 

separation and lanthanide clustering as both of these phenomenon control the electrical 

conductivity in glasses to a greater extent. Further, it should be noted that in a GC 

system, the electrical conductivity is decided by the nature and amount of crystalline 

phase formed along with the chemical composition of residual glassy matrix [21].  

 

4.4.3. Discussion 

The sintering and crystallization processes play an important role in determining 

the properties and applications of GC sealants for SOFC. For example, an installation 

process for the Siemens−SOFC stack required that the sealing glass be partially viscous 

at 950 ºC for 2 – 3 h to allow small displacements of the single stack elements after 

joining at 1000 ºC [115]. This can be achieved by using a slowly crystallizing glass. 

Therefore, sintering stage should be completed before significant crystallization occurs in 

order to get a fully dense material suitable for SOFC seal. Uncontrolled crystallization 
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during the initial sintering process can lead to the formation of a porous sealing layer that 

can adversely affect the SOFC operation. 

During the sintering of a glass−powder compact with a size distribution of glass 

particles, small particles get sintered first as shown by Prado et al. [184]. Thus, sintering 

kinetics at first shrinkage is dominated by the neck formation among smallest particles by 

viscous flow and is best described by the Frenkel model of sintering [32]. Maximum 

shrinkage is reached when larger pores (pores formed from cavities among larger 

particles) have disappeared due to viscous flow that reduces their radii with time. This 

region of sintering kinetics may be described by the Mackenzie–Shuttleworth model of 

sintering [185]. However, various physical processes (entrapped insoluble gases, 

crystallization) occurring at the very end of sintering process might affect the 

densification kinetics. 

 In accordance with the above discussed theory, the following sintering and 

devitrification stages were observed in the present study with increment in temperature: 

(i) the initiation of sintering took place with neck formation in the temperature range of 

620 – 650 ºC followed by the formation of string of particles which further converted into 

a single glass droplet with increasing temperature; (ii) the glass droplet exhibited 

glass−in−glass phase separation whose tendency increased with decreasing ionic radii of 

lanthanide cation; (iii) macroscopic shrinkage as observed under HT−ESEM which is the 

temperature range of first shrinkage (TFS) as detected by HSM; (iv) two−step sintering 

behaviour (as observed in HSM) most probably due to the presence of glass−in−glass 

phase separation; (v) onset of crystallization (Tc) after the termination of first sintering 

step (TMS1), thus, resulting in well sintered and dense glass powder compacts. 

Liquid−liquid phase separation is a well−known and common phenomenon in 

silicate liquids, and can be observed in high−silica regions of many alkaline−earth silicate 

glass systems, at temperatures either above or below the liquidus [186]. Adding few mole 

percent of Al2O3 inhibits the phase separation to a significant extent in these glasses but 

still the nano−sized domains which are either rich in silica or in alkaline−earth 

aluminosilicate do exist [186]. According to De Veckey et al. [187], in glasses located in 

CaO−MgO−Al2O3−SiO2 system, phase separation is caused by segregation of calcium 

and magnesium ions. It is probably due to this reason that a single stage−sintering 
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behaviour  has been observed for glass Ln−0. However, addition of lanthanides in the 

glasses shifted the sintering behaviour  from one−stage to two−stage owing to the phase 

separation induced by them as has also been explained by McGahay and Tomozawa 

[180] on the basis of theory of corresponding states. Also, the temperature values 

obtained from HSM are considerably higher than those obtained from in situ HT−ESEM 

(Fig. 4.4.2−4.4.4) for the initiation of sintering. This discrepancy can be explained on the 

basis of different magnifications of the two instruments being used to study the sintering 

behaviour of these glasses. While the sintering behaviour of glass powders in ESEM has 

been observed at a magnification of 3000x, the magnification for the lens being used in 

HSM is ~10x. Therefore, although, the sintering in glass powders starts at considerably 

lower temperatures as has been observed by HT−ESEM (Fig. 4.4.2 – 4.4.4), it can be 

observed in HSM only at higher temperatures in the terms of total area shrinkage (Fig. 

4.4.5).  

All the glass powders exhibited good sintering ability (as demonstrated by linear 

shrinkage data) resulting in well sintered GCs after heat treatment at 850 ºC for 1 h with 

varying degree of crystallinity. The influence of different lanthanides on sintering ability 

of investigated alkaline−earth aluminosilicate glasses has been elucidated by the sintering 

ability parameter (Sc = Tc−TMS1). The parameter Sc is the measure of ability of sintering 

versus crystallization: the greater this difference, the more independent are the kinetics of 

both processes [182]. The variation in the Sc values with increasing lanthanide content in 

glasses as presented in Fig. 4.4.5 depict that glass compositions Gd−0.3 and Yb−0.3 

exhibit better sintering behaviour  (Sc > 50) among all the investigated glass compositions 

(Fig. 4.4.6d).   

All the resultant GCs (except Gd−0.1) comprise of ≥ 50 wt.% residual glassy 

phase along with appropriate flow behaviour  (Fig. 4.4.7 and 4.4.8), thus showing their 

ability to demonstrate self−healing behaviour  at SOFC operation temperature (800 – 900 

ºC). In particular, the glass compositions La−0.1, La−0.2, Nd−0.1, Nd−0.2 are suitable 

for GC sealing in SOFC mainly owing to their appropriate CTE values along with the 

absence of any undesired crystalline phases. Although, Ln−0 possess similar traits but it 

does lack behind due to its high refractory nature. Also, the GC compositions Gd−0.3 and 



112 
 

Yb−0.3 might be considered as potential candidates for self−healing glass seals as they 

comprise of > 95 wt.% residual glassy phase and are mono−mineral in nature (i.e. possess 

only one crystalline phase) which is a highly desirable feature for self−healing seals. The 

concept of self−healing glass seals can help alleviate some of the expansion mismatch 

and still be able to form a functioning seal between materials with significant mismatch 

by healing the cracks formed during thermal transients. Although, good sintering ability, 

low devitrification tendency, appropriate thermal expansion, good flow behaviour  and 

low electrical conductivity, make these GCs (in particular Gd−0.3 and Yb−0.3) to be 

potential candidates for self−healing glass seals in SOFC; still the GCs have to prove 

their efficacy during long term thermal treatments (~1000 h). The positive feature of 

these GCs is that they contain Sr−diopside as the only crystalline phase which possesses 

high CTE (~9 × 10−6 K−1) and does not exhibit polymorphism during long term heat 

treatments as is usually seen in case of BaO−Al2O3−SiO2 based glass seals (hexacelsian 

→ celsian) [41]. Also, the absence of BaO from the glasses will ensure minimal 

interfacial reactions with metallic interconnect [43]. 
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4.5 Thermal and mechanical stability of lanthanide–containing 

glass–ceramic sealants for solid oxide fuel cells  

 

4.5.1 Introduction 

A major issue with the glass based seals is related with their long–term chemical 

and thermal stability. Since the current design of SOFCs requires them to operate at 

temperatures varying between 800 – 1000 ºC, most of the aluminosilicate based glass 

seals are prone to devitrification in this temperature range, especially during long–term 

operation. Although good sintering behaviour  along with controlled devitrification are 

the prerequisites for a suitable sealing glass composition, the formation of some 

undesirable crystalline phases in the glass seal can severely affect the performance of 

SOFC stack. For instance, the barium – rich aluminosilicate based glass seals [36, 44] are 

known to exhibit appropriate CTE and sintering behaviour  required for their operation in 

SOFC. However, these glasses tend to devitrify at 800–850 ºC resulting in the appearance 

of hexacelsian (BaAl2Si2O8) crystalline phase in the GC which during gradual SOFC 

operation transforms to its monoclinic polymorph with low CTE, lowering the CTE 

values for the GC seal along with deterioration of its mechanical properties [188]. 

Similarly, severe chemical interaction has been observed at the interface between BaO–

containing or alkali–containing glass seals when joined with metallic interconnects of 

SOFCs [189, 190]. A vast amount of literature available in this area depicting the failure 

of glass seals during long–term operation warrants a thorough investigation of long–term 

thermal and chemical stability of any proposed glass composition for high temperature 

sealing application. In this pursuit, the present chapter is focused upon investigating the 

long–term (up to 1000 h) thermal and chemical stability of lanthanide containing GC 

sealants proposed in the previous chapter for SOFC (Table 4.4.1). However, for this 

study we have choosen four specific glass compositions, namely La−0.2, Nd−0.2, Gd−0.3 

and Yb−0.3, considering the results obtained in our previous study depicting the sintering 

and flow behaviour of lanthanide containing aluminosilicate GC sealants (chapter 4.4). 

The main criteria for choosing the investigated glass compositions were: (i) good 

sintering ability; (ii) high amorphous/crystalline ratio; and (iii) appropriate CTE. 
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4.5.2. Results and Discussion 

4.5.2.1 Structural transformations and shape deformation during sintering of glass 

powders  

Fig. 4.5.1 presents HT–XRD patterns of the investigated glasses observed from 

room temperature to 850 ºC. All the glasses were amorphous until 800 ºC as is evident 

from Fig. 4.5.1. Further, with gradual increase in temperature from 800 to 850 ºC, 

crystals started to precipitate in La–0.2 (Fig. 4.5.1a) and Nd–0.2 (Fig. 4.5.1b) while 

glasses Gd–0.3 (Fig. 4.5.1c) and Yb–0.3 (Fig. 4.5.1d) still exhibited an amorphous halo. 

The observed XRD phase reflections for samples La–0.2 and Nd–0.2 correspond to 

diopside (CaMgSi2O6 chemical formula; ICDD: 71–1497). Moreover, dwell at 850 ºC for 

1 h led to an increase in the intensity of phase reflections for diopside in both samples 

(La–0.2 and Nd–0.2) along with the appearance of phase reflections corresponding to 

low–quartz (SiO2; ICDD: 77–8626) while glasses Gd–0.3 and Yb–0.3 still exhibited a 

broad amorphous halo depicting their non–crystalline nature. The HT–XRD data on all 

the glass compositions are in good agreement with the room temperature XRD data 

obtained from glass powder compacts sintered at 850 ºC for 1 h (Fig. 4.4.9), except that 

some low−intensity reflections corresponding to diopside–based phases could be 

observed in the room temperature patterns of compositions Gd–0.3 and Yb–0.3.  
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Fig. 4.5.1: In−situ XRD patterns observed from room temperature to 850 ºC temperature 

for (a) La−0.2; (b) Nd−0.2; (c) Gd−0.3 and (d) Yb−0.3 glass. 

 

The sluggish crystallization behaviour of glasses Gd–0.3 and Yb–0.3 in 

comparison to their lanthanum and neodymium containing analogues may be attributed to 

the structural role of these ions in aluminosilicate glasses which is further determined by 

their ionic radii (which controls their coordination number) and by their ionic field 

strength (=Z/r2; Z is the charge on cation, r is its ionic radius; La3+: 2.82 Å–2; Nd3+: 3.10 

Å–2; Gd3+: 3.41 Å–2; Yb3+: 3.98 Å–2) [174]. The lanthanide ions, due to their size, are able 

to occupy octahedral sites in the glass structure (instead of tetrahedral sites), in which the 

bonds between Ln3+ and surrounding oxygen are the weakest links in the glass structure 
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compared to Al–O and Si–O bonds. The stronger the Ln–O bonds (i.e. higher the ionic 

field strength of Ln3+), higher the glass transition (Tg) and crystallization temperature, 

suggesting that Ln3+ cations act alike to Al3+ in these glasses [174]. The structural 

characterization of the investigated glasses and GCs will be discussed in section 4.5.2.2. 

  

 
Fig. 4.5.2: HSM images of glass−powder compacts upon holding at 850 ºC for 1 h. 

 

The HSM micrographs of glass powder compacts obtained at various time 

intervals during sintering at 850 ºC for 1 h are shown in Fig. 4.5.2. The glass powder La–

0.2 exhibited deformation in its shape (as is evident from the rounding of edges) by the 

time it reached 850 ºC. However, further changes in the morphology of the sample could 

not be observed over 1 h dwell time. The remaining three glass samples (Nd–0.2, Gd–0.3 

and Yb–0.3) although well sintered, did not exhibit such an evident deformation in their 

shape, thus, exhibiting their refractory nature.  

From SOFC viewpoint, during sealing of SOFC stack, typically some fraction of 

the original glass sealant sinters and then devitrifies or begins to undergo crystallization 

and forms a composite of nano– and micro–scale ceramic crystalline phases. This time 

dependent phenomenon raises the material’s viscosity and sets the seal. Although the 

resulting composite can be stronger than the starting glass, extensive devitrification 

before achieving maximum densification of glass powder often leads to the formation of 

pores and cracks, and poor adherence of the seal. Such an observation can be negated for 

the studied glass compositions since well sintered and dense glass powder compacts with 

appropriate thermal expansion coefficients and high mechanical strength were obtained 

after sintering at 850 ºC for 1 h, as will be discussed later.  
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4.5.2.2. Structural transformations in glasses during long term thermal treatments  

4.5.2.2.1 X–ray diffraction  

 
 

Fig. 4.5.3: XRD patterns of (a) La−0.2 (b) Nd−0.2 (c) Gd−0.3 and (d) Yb−0.3 GCs 

sintered at 850 ºC for various periods of time. 
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Fig. 4.5.4:  Observed, calculated, and difference curve from the Rietveld refinement of 

the Yb−0.3 GC heat treated at 850 ºC for 1000 h in air atmosphere. 

 
Fig. 4.5.3 presents the X–ray diffractograms of the glass powder compacts 

sintered at 850 ºC for a time period varying between 1–1000 h while Table 4.5.1 presents 

the quantitative phase analysis depicting the amorphous/crystalline content in the GCs as 

obtained from Rietveld–R.I.R. analysis of the XRD data. Additionally, Fig. 4.5.4 presents 

the difference between the measured and calculated XRD pattern fits for GC Yb – 0.3 

sintered at 850 ºC for 1000 h by using the GSAS–EXPGUI software. The calculated 

diagrams are based on crystallographic structure models, which also take into account 

specific instrument and sample effects. The parameters of this model have been refined 

simultaneously using least–squares methods in order to obtain the best fit to all measured 

data. By least–squares refinement, a so–called figure–of–merit function R has been 

defined, which describes the residual (agreement) between observed and calculated data 

[135]. The R factors show the mean deviation in accordance with the model used in 

percent. The ‘‘profile R–factor”, Rp, and ‘‘weighted profile R–factor”, Rwp, for all the 
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the main peaks of diopside and Gd4.67(SiO4)3O were due to adjustment difficulties based 

on the crystallinity of the phases. It should be noted that the Rietveld–refinement on the 

XRD data of GC Yb–0.3 has been made by using the structural models corresponding to 

Gd4.67(SiO4)3O as we could not identify a relevant crystalline phase containing ytterbium 

for this sample. Since the reflections from GC Yb–0.3 exhibit good match with those 

corresponding to Gd–containing oxyapatite, it has been presumed that the crystalline 

phase formed in GC Yb–0.3 (apart from diopside) is a Yb–containing oxyapatite with its 

structural features similar to that of Gd4.67(SiO4)3O. 

All glass powder compacts exhibited the highest content of residual glassy phase 

after sintering at 850 ºC for 1 h with Gd–0.3 and Yb–0.3 GCs comprising ∼95 wt.% 

amorphous content. Clinopyroxene based phases in the crystallization field of diopside 

(CaMgSi2O6) dominated the phase assemblage in all the GCs irrespective of heat 

treatment time duration. The most plausible diopside based crystalline phases that have 

been identified in the GCs based on the best fit between experimental and as generated 

XRD data during the Rietveld refinement are: diopside (CaMgSi2O6; ICDD: 78–1390); 

augite (CaMg0.7Al0.6Si1.77O6; ICDD: 78–1392) and Sr−diopside (Ca0.8Sr0.2MgSi2O6; 

ICDD: 80–0386). However, it is difficult to identify any of these individual phases in 

GCs in a precise manner as the phase reflections for all them overlap with each other 

(Intensity = 100%, 2θ ≈29.8º). These observations have been supported and resolved in a 

better manner by the results obtained from structural studies on GCs as discussed in the 

next section.  

Prolonged heat treatment at 850 ºC for 1000 h caused some insignificant changes 

in the crystalline phase assemblages as minor amounts (~10 wt.%) of lanthanide–

containing silicate oxyapatites crystallized, while diopside based phases predominance 

(Table 4.5.1). However, significant changes were observed in the total amorphous/ 

crystalline content in the GCs with the residual glassy phase decreasing from ~96% to 

~41% and ~96% to ~19% (after heat treatment for 250 h) for compositions Gd–0.3 and 

Yb–0.3, respectively. 
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Table 4.5.1: XRD − Rietveld refinement results (wt%) 

 

Time 

(h) 
Di Sr-Di Augite (CaLa4(SiO4)3O) (Nd9.33(SiO4)6O2) (Gd4.67(SiO4)3O) Glass χ2 

La-0.2 

1  33 - 11 - - - 56 3.00

250  64 - 9 8   19 4.08

500  69 - 11 7 - - 13 4.92

1000  66 - 15 5 - - 14 5.14

Nd-0.2 

1  - 26 24 - - - 50 4.12

250  56 - 6 - 5 - 33 2.19

500  59 - 9 - 7 - 25 2.88

1000 57 - 8 - 8 - 27 3.18

Gd-03 

1  - 3 - - - - 97 2.12

250  44 - 4 - - 11 41 2.02

500  46 - 7 - - 12 35 2.18

1000  45 - 6 - - 10 39 2.45

Yb-03 

1  - 4 - - - - 96 2.33

250  63 - 6 - - 12 19 3.12

500  77 - 5 - - 13 5 4.29

1000  76 - 8 - - 12 4 3.06

 

 

The crystallization of small fraction of lanthanide containing silicate apatite phase 

is highly expected in lanthanide– and SiO2–rich aluminosilicate glass compositions. 

Similar observations have also been reported by Quiantas et al., [191] in lanthanide 

containing aluminoborosilicate nuclear waste glasses and by Sohn et al., [192] in BaO–

containing GC sealants with 5 mol% La2O3 content. In the present study, minor amounts 
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of apatite phases have been observed after long term heat treatments for time period 

varying between 250−1000 h. Moreover, the fraction of these phases was nearly constant 

(∼7 wt.% of CaLa4(SiO4)3O in La–0.2, ∼7 wt.% of Nd9.33(SiO4)6O2 in Nd–0.2, ∼11 wt.% 

of Gd4.67(SiO4)3O in Gd–0.3, ∼12 wt.% of Yb4.67(SiO4)3O in Yb–0.3) and did not increase 

significantly with increasing thermal treatment time. The lanthanide containing silicate 

apatites as observed in the present study are basically quasi–binary phases and are the 

members of a solid solution series with general formula Ln9.33+2x(Si1–xAlxO4)6O2 (with x 

varying between 0–0.33) [193]. For example: the crystalline phase Gd9.33(SiO4)6O2 has 

been shown to dissolve up to 10 mol% Al2O3 in its crystal structure which 

consequentially is accompanied by an increase of the lattice parameters a and c [193]. 

The noticeable conclusion from the XRD data is that no significant changes could 

be observed in crystalline phase assemblage or in amorphous/crystalline content of GCs 

after 250 h of heat treatment at 850 ºC. This behaviour exhibits the high thermal stability 

of GC seals under investigation in comparison to other prominent glass/GC seals reported 

in the literature. For example: the barium calcium aluminosilicate glass seals are prone to 

crystallization at temperatures as low as 700 ºC and metastable hexacelsian phase 

(BaAl2Si2O8) crystallizes in this glass at 750 ºC which on prolonged heat treatment starts 

transforming to its monoclinic polymorph [158]. The formation of monoclinic celsian 

phase is, however, undesirable for SOFC sealing application due to its lower CTE of 

~2.29 × 10−6 K−1 (30–1000 ºC) in comparison to its hexagonal polymorph (~8 × 10−6 K−1) 

[194]. Therefore, this hexagonal → monoclinic transformation not only lowers the 

overall CTE of the GC seal but also creates unwanted stresses in the microstructure of the 

GC which consequentially affects the mechanical strength of the seal. Similarly, the 

absence of any boron containing crystalline phases in the investigated GCs during 

prolonged heat treatments is another feature that provides their superiority over high 

boron containing seals[108, 195] particularly in relation with thermal stability under 

humidified reducing environments.  

In order to obtain good flow behaviour  along with self–healing ability and 

appropriate viscosity (log η ≈ 5 at 850 ºC; η in dPas [50]) required for the glass/GC seal 

to join and bond to the SOFC components, it is mandatory to achieve an equilibrium 

between the crystalline content and residual glassy phase in the GC. From our previous 
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observations and experiences on similar glass compositions [137, 138], a GC 

composition with an ability to maintain crystalline/amorphous content ratio of ~60/40 

(wt.%) during long run along with a stable crystalline phase assemblage should be 

suitable as a self–healing sealant for SOFC. Accordingly, on the basis of the data 

obtained from quantitative crystalline phase analysis of GCs (Table 4.5.1) after heat 

treatment at 850 ºC for time durations up to 1000 h, glass composition Gd–0.3 seems to 

be the most promising candidate for this task. 

 

4.5.2.2.2 Solid–state NMR  

Through inspection of the NMR line widths present in the spectra, one can access 

the crystallinity of the GCs since sharper lines are characteristic of crystalline systems 

and broad lines are usually associated with amorphous samples. The samples not 

containing a paramagnetic species (La–0.2) produced better–resolved spectra, enabling 

the observation of otherwise masked resonance lines. Therefore, the chemical 

information obtained from 29Si, 27Al, and 11B spectra of La–0.2 samples may be 

transferrable to the other systems, as they are all isostructural in nature owing to their 

compositional similarities with the exception of the lanthanide ion that varies between 

La3+, Nd3+, Gd3+, Yb3+ (Table 4.4.1). In addition, the relative areas between the NMR 

resonances provide important information about the nature of crystalline phases that 

allows us to corroborate the spectroscopic results with those obtained from quantitative 

crystalline phase analysis using XRD data, as evidenced in the following discussion. 
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29Si MAS NMR 

 
Fig 4.5.5: MAS NMR spectra of (a) 29Si, (b) 27Al and (c) 11B nuclides for the La−0.2 

glass (left) and GCs sintered at 850 ºC for 1 h (right). 

 

Fig. 4.5.5 presents the 29Si, 27Al and 11B multinuclear solid–state NMR data of 

glass La−0.2 and its corresponding GC obtained after heating the glass powder compacts 

at 850 ºC for 1 h depicting the structural transformations occurring in the glasses during 

sintering. Most glass and GC (Fig. 4.5.5a and 4.5.7a) samples display single broad 

resonance Q (Si) site distributions characteristic for glassy systems centered at –81 to –85 

ppm. 29Si NMR chemical shift of diopside is typically centered at around –82 ppm for 

glasses and at –84 ppm for GCs and assigned to Q2 environments [159, 190, 196], which 

explains the single resonance observed in all glasses and GCs for Nd–0.2 and La–0.2 

(Fig. 4.5.7a), since their compositions exhibit diopside as the primary phase (according to 
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Fig. 4.5.1 and Table 4.5.1). In the case of the Yb–0.3 sample, the resonance at ca. –85 

ppm is absent or difficult to observe. This observation also fits with the very low amount 

of diopside quantified by the X−ray diffraction analysis (~ 4 %, Table 4.5.1).  

With an increase in the heat treatment time (500 h and 1000 h), no significant 

changes could be seen between the NMR spectra of GCs as is evident from Fig. 4.5.8. 

This observation is in agreement with Table 4.5.1, showing approximately the same 

qualitative and quantitative crystalline and glassy phase composition, derived from 

Rietveld R.I.R results. Regarding the La–0.2 sample, the formation of the crystalline 

phase (~ –85 ppm, diopside) is already observable in Fig. 4.5.7a, where two components 

are detected. As the sintering time increases to 500 and 1000 h (Fig. 4.5.8), the ca. –85 

ppm resonance, associated with the crystalline phase, is predominant and the other 

component at ca. –81 ppm (due to the amorphous phase) tends to disappear (cf. Fig. 4.5.6 

and Fig. 4.5.8). Similarly, in the case of Nd–containing GCs, loss of amorphous phase (in 

comparison to parent glass) is clearly observed when the samples are sintered for 500 and 

1000 h (considering the width of the resonance; Fig. 4.5.8 and Fig. 4.5.6a). 29Si NMR 

spectra show that the diopside phase dominates the NMR spectrum with a small amount 

of the initial glass present. This observation helped to obtain the glassy composition 

described in Table 4.5.1.  

 
27Al MAS NMR 

The 27Al MAS NMR spectra of glass samples (Fig. 4.5.5b and 4.5.6b) display 

broad and, in some cases, asymmetric line shapes with a typical tailing profile due to 27Al 

sites in disordered materials [197-199]. Conversely, the spectra of GCs La–0.2 and Nd–

0.2 obtained after heat treatment at 850 ºC for 1 h (Fig. 4.5.5b for La−0.2 glass) and its 

comparison with other glasses (Fig. 4.5.6b with Fig. 4.5.7b) show an emerging resonance 

at –5 to –8 ppm, typical of AlO6 environments ([6]Al). This is attributed to an increase in 

augite/glass ratio in samples sintered at 850 ºC for 1 h. Augite is the only source of AlO6 

species among the other phases present in Table 4.5.1 and thus, NMR clearly shows that 

augite is present in these GCs.   
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Fig. 4. 5.6: MAS NMR spectra of (a) 29Si, (b) 27Al and (c) 11B nuclides for the glass 

powders. 
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Fig. 4.5.7: MAS NMR spectra of (a) 29Si, (b) 27Al and (c) 11B nuclides for the 

glass−ceramics sintered at 850 ºC for 1 h.  
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Fig. 4.5.8: MAS NMR spectra of 29Si, 27Al and 11B nuclides of the glass−ceramics heat 

treated at 850 ºC for 500 h and 1000 h 
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In addition, 27Al MAS−NMR spectra of La−0.2 and Nd−0.2 GCs also show that 

augite/glass ratio must be higher in the latter GC sample as the AlO6 peak at ca. −5.3 ppm 

(augite) is significantly more intense than the broad 27Al resonance, at ca. 52 ppm, arising 

from the glass phase as compared to the La−0.2 GC sample (Fig. 4.5.7b). As has been 

mentioned in Section 4.5.2.2.1, it is difficult to unambiguously estimate quantitatively the 

proportions of augite, diopside and Sr−diopside as all these three crystalline phases result 

in a similar X−ray diffraction patterns. Indeed, it is possible to obtain many different 

relative amounts of distinct crystalline phases or distinct crystalline/amorphous ratios that 

fit well the X−ray diffraction pattern. In this context, 27Al NMR was a valuable and 

highly selective method to estimate the augite crystalline phase and is thus a powerful 

technique to help tuning the R.I.R quantifications toward the real composition of our GC. 

For example, R.I.R results for GCs heated at 850 ºC for 1 h, frequently report 

crystalline/glass ratios close to 1 with augite present as one of the main crystalline phases 

(particularly in the case of the La−0.2 and Nd−0.2 GCs). Therefore, 27Al NMR was 

essential to validate RIR results. The resonance at –5 to –8 ppm was also observed in the 
27Al MAS NMR spectra of GCs after heat treatment at 850 ºC for 500 h and 1000 h (Fig. 

4.5.8) depicting the favorable environment for [6]Al species, assigned to the augite phase 

as discussed previously. An additional shoulder centered at ~35 ppm, observed for the 

La–0.2 and Nd–0.2 GCs (500 and 1000 h, Fig. 4.5.8), is likely to be associated with 

5−coordinated Al species ([5]Al), more pronounced in the La–0.2 samples. 

 
11B MAS NMR  

The 1D 11B Hahn–echo MAS NMR experiments clearly show the presence of 

BO4 ([4]B) species yielding a Gaussian shape centered at 0 ppm (Fig. 4.5.5c and 4.5.6c). 

The amount of these [4]B species increases as the sintering time increases (Fig. 4.5.7c and 

Fig. 4.5.8) probably due to the crystallization of silica–rich phases rendering the borate 

and alumina rich residual glassy phase component. The other site present in these spectra 

is assigned to assymetric BO3 ([3]B) units giving rise to the typical second–order 

quadrupolar line shapes ranging from 20 to –5 ppm. Because it is not possible to resolve 

the number of [3]B and [4]B species present in each sample by means of 1D 11B Hahn–

echo experiments, and often several [3]B or [4]B species may also overlap, we have 
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performed 3QMAS experiments for the samples where singularities are observed (glass 

La–0.2 and La–0.2 GC, 1000 h), which could be associated to multiple resonances (Fig. 

4.5.9). The 11B 3QMAS spectra of glass La–0.2 and La–0.2 GCs 1000 h samples both 

confirm the presence of two boron environments (a single [3]B and a single [4]B site). 

 

 
Fig 4.5.9: 11B 3QMAS spectra of the GC heat treated at 850 ºC for 1000 h (left) and the  

glass powder (right) corresponding to the La−0.2 sample.  

 

As described above, the structure of lanthanide containing aluminosilicate glasses 

depends markedly on the Ln3+ cation field strength over both short and intermediate 

length scales. A detailed study involving the elucidation of the effect of lanthanide 

cations on the structure of these glasses will form the basis of our forthcoming article 

where a wide array of structural characterization techniques (for example: Extended X–

ray absorption fine spectroscopy, MAS NMR and UV–Visible spectroscopy), will be 

employed.  

 

4.5.2.3. Thermomechanical behaviour  of sintered glass−ceramics 

4.5.2.3.1 Linear shrinkage, mechanical properties and thermal expansion 

In accordance with the HSM results [138] and the shrinkage values summarized 

in Table 4.5.2, well sintered and dense GCs were obtained after sintering/heat treatment 
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of glass powders at 850 ºC for various periods of time. The values of linear shrinkage for 

all the GCs varied between 11.7−16.3 % over 1000 h of heat treatment time. 

Interestingly, all the GCs exhibited a gradual increase in the linear shrinkage during 1000 

h of heat treatment irrespective of their lanthanide content. With respect to the influence 

of lanthanide type on shrinkage behaviour, GCs derived from composition Nd–0.2 

showed highest shrinkage followed by La–0.2, Gd–0.3 and Yb–0.3. It is noteworthy that 

GC Yb–0.3 glass exhibited the smallest variation in shrinkage (0.8 %) over 1000 h of 

time period while the highest (2.01%) was observed for La–0.2.  

 

 
Fig. 4.5.10: Variation of mechanical strength with respect to the GCs heat treatment 

dwell time. 

 

Fig. 4.5.10 presents the mechanical strength of the produced GCs with respect to 

the heat treatment time. In general, the mechanical strength of ytterbium containing GCs 

was lower in comparison to its lanthanide containing counterparts. This is not surprising 

considering the high residual glassy phase in Yb–0.3 after 1 h of sintering at 850 ºC and 

low linear shrinkage values over heat treatment time. The flexural strength of lanthanum–

containing GC showed an increasing trend from 110 MPa to 139 MPa with heat treatment 

time. However, for GCs Nd–0.2, Gd–0.3 and Yb–0.3, the flexural strength values 

demonstrated an increasing trend only up to 500 h of heat treatment time and then 

initiated to decrease with further increase in heat treatment. This is attributable to a 

greater extent of crystallization through a longer thermal heat treatment.  
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Generally, crystalline phases in the glass and GC can enhance mechanical 

strength. In agreement with this statement a larger amount of crystalline fraction in 250, 

500 and 1000 h heat treated GCs reinforced the mechanical strength to a greater extent 

compared to the 1 h sintered compacts. Similar results were also observed in case of  0–

40 BaO, 0–15 B2O3, 0–10 Al2O3, 0–40 SiO2, 0–15 CaO, 0–15 La2O3, and 0–5 ZrO2 

(mol%) (GC–9) glass composition reported by Chang et al., [93]. However, apart from 

the crystalline fraction and type of crystalline phase, another important factor which can 

influence the mechanical strength is the microstructure of GCs. According to Griffith 

crack theory, when a propagating crack in the compound encounters a crystal with high 

strength and elastic modulus, the crack direction is deviated by the crystal leading to an 

increase of the cleavage of the surface. As a result, a higher fracture surface energy is 

required for crack propagation. As observed from Fig. 4.5.11, fracture surfaces of 

specimens heat treated for 500 h are apparently rougher than those of 1000 h heat treated 

samples. This means that more energy is lost during crack propagation, explaining the 

enhanced mechanical strength measured for GCs heat treated for 500 h. Except Yb−0.3, 

the falls in mechanical strength of GCs upon heat treating at 850 ºC for time durations 

within 250 – 1000 h are in ±10 – ±15 MPa range. These standard deviation values are in 

the limits of experimental errors and therefore, the mechanical strengths can be 

considered to be fairly constant. The measured values (110 – 140 MPa) for the 1000 h 

heat treated GCs are considerably higher than those reported for barium calcium 

aluminosilicate glass ((15CaO−35BaO−5Al2O3−10B2O3−35SiO2 (mol%)) (∼35 MPa)) 

(∼35 MPa) and GC–9 glass (49 MPa) after heat treatment at 800 ºC for 1000 h [44, 168].    

Weibull statistics [122] is commonly used to describe the fracture behaviour  of 

brittle materials. The two–parameter Weibull distribution of flexural strengths for the 

investigated GCs heated over 1000 h of time period at room temperature are shown in 

Fig. 4.5.12. Table 4.5.3 lists the Weibull characteristic strength σ0 (corresponding to F = 

63.2%) and Weibull modulus m for the studied GCs. A larger Weibull modulus, called 

the shape factor m, relates to the uniformity of the distribution of flaws in a brittle 

material: a high value of m implies a highly uniform distribution of defect sizes and 

therefore a low level of variability of seal strengths. Conversely, a low value of m implies 

highly variable flaw sizes and a large spread of measured strengths.  
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Fig 4.5.11: Fractured surfaces of glass−powder compacts heat treated at 850 ºC for 500 h 

and 1000 h after the 3 point bending strength measurement. 

 

 

In general, irrespective of heat treatment higher m values were calculated for 

lanthanum containing GCs (m = 16.2–21.5) followed by Nd–0.2 (10.9–16.6), Gd–0.3 
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(9.9–15.6) and Yb–0.3 (8.5–10.6) GCs. The relatively high Weibull modulus, m ~7–21.5 

(Table 4.5.3), means good mechanical reliability for the sealants. Higher values of 

Weibull modulus were observed for the long term heat treated GCs as compared to 1 h 

heat treated GCs indicating highly uniform distribution of defect sizes and therefore a 

low level of variability of seal strengths with prolonged heat treatment (Fig. 4.5.11). 

Good mechanical reliability and suitable Weibull strength (112–163 MPa) for the GCs 

produced after the prolonged heat treatment indicates that the lanthanide GC sealants 

present strong resistance against the thermal shocks. 

 In general, a CTE varying between (9 − 12) × 10–6 K–1 is considered desirable for 

a stable glass/GC sealant for SOFC application [25]. The CTE values of the GCs sintered 

at 850 ºC for various hours are presented in Table 4.5.2. GCs produced at 850 ºC for 1 h 

exhibited CTE values of (9.7–10.1) × 10–6 K–1. Irrespective of the type of lanthanide 

oxide incorporated in the glass, an increase in the CTE of GCs was observed with 

increase in heat treatment time up to 500 h at 850 ºC. On increasing the heat treatment 

time to 1000 h, a decrease in CTE of GCs within the range of ±0.5 × 10−6 K−1 was 

observed. This small variation in CTE is not likely to have any severe implication 

concerning the intended final applications. In general, prolonged thermal treatment 

significantly affects the CTE of GCs due to structural rearrangement and formation of 

new crystalline phases with different CTE values, as reported by Ojha et al., [169] for a 

glass composition in (mol%) 25.7 SrO–4.1 La2O3–13.1 Al2O3–12.8 B2O3–44.3 SiO2. The 

CTE value increased from 11.1 to 11.7 × 10−6 K−1 when the heat treatment time increased 

form 1−5 h, and then decreased down to 9.1 × 10−6 K−1 with continuous heat treatment 

time up to 100 h at 1000 ºC. However, in the present scenario, as revealed from ssNMR 

analysis, our glasses did not exhibit any structural rearrangement during prolonged heat 

treatment time up to 1000 h at 850 ºC. Moreover, from XRD along with RIR quantitative 

analysis (Table 4.5.1) all the GCs are confined to only two crystalline phases, diopside 

and lanthanum silicate phases, throughout their long term heat treatment. 
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Table 4.5.2: Shrinkage (%) and CTE (× 10−6) K−1 measured for the glass−powder 

compacts after sintering at 850 ºC for 1 h, 250 h, 500 h and 1000 h. 

 

 1 h 250 h 500 h 1000 h 

Shrinkage     

La−0.2 12.6±0.4 12.7±0.3 12.9±0.3 14.7±0.2 

Nd−0.2 14.7±0.4 15.5±0.1 15.8±0.3 16.3±0.5 

Gd−0.3 13.0±0.3 13.5±0.3 13.8±0.2 14.1±0.7 

Yb−0.3 11.7±0.4 11.7±0.2 11.8±0.3 12.5±0.1 

CTE     

La−0.2 9.7±0.2 10.0±0.1 10.4±0.1 9.8±0.1 

Nd−0.2 10.1±0.1 10.1±0.2 9.9±0.1 9.7±0.2 

Gd−0.3 9.9±0.1 10.8±0.1 11.1±0.1 10.6±0.2 

Yb−0.3 9.8±0.1 10.6±0.3 10.9±0.1 10.3±0.1 

 

Table 4.5.3: Weibull modulus (m) and Weibull strength (σ0, MPa) extracted from the 

flexural strength data for the glass−powder compacts sintered at 850 ºC for 1 h, 250 h, 

500 h and 1000 h. 

 1 h 250 h 500 h 1000 h

Weibull modulus 

La−0.2 11.5 17.1 21.5 16.2 

Nd−0.2 6.6 12.7 10.9 16.6 

Gd−0.3 6.8 13.0 9.9 15.6 

Yb−0.3 10.6 10.6 8.5 8.9 

Weibull strength 

La−0.2 114 126 134 140 

Nd−0.2 133 147 163 136 

Gd−0.3 103 145 149 139 

Yb−0.3 97 112 141 116 
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Fig. 4.5.12: Weibull distribution of flexural strength for glass−powder compacts annealed 

at 850 ºC for various dwell times. (○−1h; □−250 h; Δ −500 h; ◊ −1000 h) 

 

This indicates thermal stability of lanthanide contain glasses and their suitability for 

applications in SOFCs as stable sealants. However, the observed tiny variations in CTE 

may have occurred due to small variations in crystalline fractions of two developed 

crystalline phases (Table 4.5.1).  
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4.5.2.3.2 Electrical and thermal shock resistances 

The thermal shock resistance tests demonstrated that the Gd–0.3 and Yb–0.3 

sealants are suitable for hermetization of stabilized zirconia membranes. For the model 

cells sealed by these compositions, no visible cracks or detectable leakages at room 

temperature were observed after 7 and 10 air–quenching cycles, respectively. In the case 

of La–0.2 and Nd–0.2 GCs, the thermal shock resistance was worse, probably due to 

lower CTEs (Table 4.5.2). For comparison, the La–0.2 sealant joining YSZ ceramics was 

fractured after two quenching cycles in air. Taking into account the lower mechanical 

strength of Yb−0.3 (Table 4.5.3) and higher cost of Yb–containing precursors that may 

limit practical applications, the composition Gd–0.3 was selected for further 

experimentation.  

 
Fig. 4.6.13: Typical SEM images of the interface between Gd−0.3 GC sealant and YSZ 

solid electrolyte ceramics after 7 air−quenching cycles and final quenching in water. 

Arrows show the largest cracks developed at the interface. 

 

As expected, quenching in water led to the formation of large cracks and 

mechanical disintegration in all cases. SEM inspections showed that the crack 

development occurred primarily in the interfacial layers of the sealant (Fig. 4.5.13), 

suggesting that the minor CTE mismatch between the sealant and stabilized zirconia may 

still play an important role. Such a mismatch can be suppressed by incorporating nano– 

or submicron–sized zirconia additives into the GC composition. In any case, the 

thermomechanical compatibility of Gd–0.3 GCs and zirconia solid electrolytes is very 

good (e.g., see Table 4.5.3 and Ref [44][127]), enabling both long–term operation and 

startup/shutdown regimes as confirmed by the successful air–quenching tests.  
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Fig. 4.5.14: (a) Time dependence of the relative changes in oxygen leakage flux during 

thermal cycling of an electrochemical cell with dense YSZ membrane and Gd−0.3 sealant 

(i), and corresponding temperature variations (ii). (b) Time dependencies of total 

electrical conductivity (σe) of Gd–0.3 GCs (i) and relative variations of electrical 

resistance of Gd–0.3/8YSZ couple (ii), at 850 ºC in air. The arrow shows the conductivity 

value obtained after heat treatment of Gd−0.3 compact during 1000 h at 850 ºC and 

subsequent deposition of Pt electrodes, followed by the measurement. 

 

Similar conclusion was also drawn from the oxygen leakage measurements at 

elevated temperatures (Fig. 4.5.14a). These tests were performed for the model cells 

comprising a dense 8YSZ membrane sealed by Gd–0.3 GCs onto tubular zirconia support 

of the same composition. The data on oxygen permeation fluxes were collected during 

approximately 350 h at 900 ºC under large oxygen partial pressure gradient simulating the 

SOFC operation conditions, 0.21 atm / (10–21 –10–19) atm. It should be mentioned that the 

measured oxygen fluxes correspond to the sum of physical leakages originating from 

microcracks and closed porosity, electrolytic leakage through YSZ due to minor 

electronic conductivity of stabilized zirconia [127], and oxygen transport in the sintered 
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sealant layer separating zirconia ceramics [128, 134]. This combination makes it 

impossible to estimate area–specific contributions of the components. Consequently, Fig. 

4.5.14a(i) shows the relative variations of the total oxygen flux with time induced by 

ageing and thermal cycling; the corresponding temperature variations are displayed in 

Fig. 4.5.14a(ii). The measurement regime included one temperature cycle between 900 

and 25 ºC with cooling/heating rates of 5–6 ºCmin–1, and an additional treatment at 1100 

ºC introduced in order to assess possible self–healing behaviour  of the sealant. The 

results showed a very low initial level of the oxygen leakage fluxes, <5×10–12 mols–1, 

comparable to the limit of experimental uncertainty. The leakage remains essentially 

unchanged in the isothermal regime, but increases by approximately 17–18% after fast 

cooling down to room temperature and subsequent heating up to 900 ºC, probably due to 

microcracks formation at the sealant/electrolyte interface. Further annealing at 1100 ºC 

made it possible to decrease oxygen permeation down to the values close to its initial 

level. Whatever the microscopic mechanism, this type of behaviour suggests the 

possibility of re–hermetization of SOFCs and other electrochemical cells after prolonged 

operation, although the relevant temperature regimes need careful optimization. Another 

necessary comment is that, despite the moderate increase of the oxygen leakage after 

temperature cycling, the leakage fluxes remain low, acceptable for the application in 

SOFCs. 

Finally, the impedance spectroscopy studies of sintered GCs showed their good 

insulating properties. As an example, Fig. 4.5.14b(i) presents the time dependence of the 

total electrical conductivity of as−prepared Gd−0.3 sintered during 1 h. For the sake of 

comparison, the conductivity of Gd−0.3 GC after thermal treatment at 850 ºC during 

1000 h and subsequent deposition of Pt electrodes is also shown. The crystallization 

processes, in particular the formation of apatite phases having substantially high 

oxygen−ionic conductivity [127], lead to a moderate increase of the total conductivity 

with time. In the case of Gd−0.3 (Fig. 4.5.14b(i)), such an increase corresponds to 

approximately 40% during 1000 h and occurs mainly during initial 300−500 h. A similar 

behaviour  was observed for other studied GCs, where the conductivity increments after 

1000 h heat treatment at 850 ºC varied from approximately 20% (La−0.2) up to 75% 



139 
 

(Yb−0.3). Nonetheless, the high concentration of amorphous phase (Table 4.5.1) 

preserves high electrical resistance (>1 MOhm×cm), sufficient for SOFC applications.  

 

4.5.2.4 Chemical compatibility 

Interconnect/seal glass interface plays a crucial role in the sealing reliability. This 

can be discussed from several aspects: gas leakage, structural integrity, and electrical 

performance. Cracks and pores at the interface are potential gas leakage sources. These 

defects form due to the CTE difference among the seal glass and the metallic interconnect 

and newly formed interfacial species from the reactions. The cracking of the seal layer is 

one of the important causes for seal failure. Thus, to minimize thermal stresses during 

cell operation the differences in CTEs between interconnect, solid electrolyte and the seal 

glass should not exceed, in general, 1× 10−6 K–1 [25]. Considering CTE values for 

metallic interconnect (Crofer22 APU; Sanergy HT) varying in the range (11–12) × 10−6 

K–1, and ceramic electrolytes (i.e. 8YSZ) to be 10.5 × 10−6 K–1, lanthanide containing 

diopside GCs should be suitable for rigid glass/GC seals for their applications in SOFCs. 

This hypothesis is supported by the absence of gaps in all GC seals bonded to Sanergy 

HT metallic interconnect, by the homogeneous microstructures of all investigated 

interfaces over their entire cross–sections of the joints and by stable electrical resistivity 

of the 8YSZ/GC assemblies. As an illustration, Fig. 4.5.14b(ii) shows time dependence of 

the relative variations of electrical resistance of Gd−0.3/8YSZ couple in air. Whilst the 

formation of cracks at the interface should increase resistance, an opposite behaviour is 

observed due to crystallization (cf. Fig. 4.5.14b(ii), Fig.4.5.15a and Table 4.5.1). Figs. 

4.5.15 and 4.5.16 show the SEM images of the interfaces between Sanergy 

HT/GC/Sanergy HT for La–0.2 and Nd–0.2 glass, respectively, along with their 

corresponding EDS elemental scans depicting the diffusion of Cr, Fe, and Mn elements 

from Sanergy HT to GC after heat treatment at 850 ºC for 500 h in air. The interface 

SEM images reveal a low fraction of closed pores in the GCs region. As explained 

before, remnant closed porosity in the GCs region is very common. According to 

Karamanovt al., [200] enlosed porosity did not compromised the functionality of 

diopside−albite GC sealant. This was confirmed in the present study by the results of 

thermal shock resistance and oxygen leakage measurements.  
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Fig. 4.5.15: Microstructure (SEM) and EDS element mapping of Cr, Fe, Mn, Si and Sr at 

the interface between SanergyHT/La−0.2−GC/SanergyHT after the heat treatment at 850 

ºC for 500 h. 

 

The crack observed in the Nd−0.2 GC region (Fig. 4.5.16a) might have been originated 

by the mechanical stresses applied at the interface during grinding and polishing, and/or 

any small thermal mismatch between the glass and the as developed crystalline phases 

during the prolonged heat treatment. As evidenced from element mapping, a rather 

smooth interface was obtained between the investigated GC seals and metallic 

interconnect Sanergy HT without the presence of iron–rich oxide products. However, a 
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thin reaction zone (<0.5 μm thick) of Mn and Cr–rich oxide layer was formed at the steel 

side of the interface, indicating the formation of manganese–chromium spinel. The 

formation of spinel phase at the glass and interconnect interface under air atmosphere is a 

general process [201] and in the present scenario, formation of an inter diffusion distance 

between seal glass and interconnect, ca. 5 μm, was in a limit of its applicability [25]. 

Further, formation of Mn and Cr–rich oxide layer on the steel surface is expected to offer 

the following benefits: (i) Mn and Cr–rich oxide layer limits chromium volatilization rate 

under the prospective operating conditions knowing the fact that Mn and Cr–rich oxide 

layer was less reactive and more stable than chromia [66]; and (ii) the CTE of Mn and 

Cr–rich oxide layer (10.7 × 10−6 K–1) is closer to those of electrodes, electrolyte, and seal 

(Table 4.5.1) and thus the thermal stress can be reduced and the durability of cell can be 

improved. It should be noted that an interfacial reaction zone of thickness varying 

between 10–75 μm has been reported during chemical interaction between barium 

calcium borosilicate glass and Crofer22APU after thermal treatment in air at 750 ºC for 

200 h [202]. Further, it has been observed by Chou et al., [77] and T. Zhang et al., [103] 

that a significant amount of SrO in sealant glass composition will lead to the formation of 

SrCO4 crystalline phase when interacting with the Cr–containing metallic plates. Pure 

SrCrO4 is orthorhombic and highly anisotropic in CTE with αa = 16.5×10−6 K−1, αb= 

3.8×10−6 K−1, and αc= 20.4×10−6 K−1 [170]. Such high coefficient values will create 

unwanted stresses in the microstructure of the GC which consequentially affect the 

mechanical strength of the seal. SrCrO4 will generally form when high SrO–containing 

glasses react with Cr2O3 powders upon heat treating in air up to at least 800 ºC. One 

possible path for the formation of SrCrO4 is SrO (glass) + ½ Cr2O3 (solid) + ¾ O2 ↔ 

SrCrO4 (solid). According to the findings of Nakamura, [166] who measured the 

diffusivities of M2+ elements in diopside melts, diffusion coefficients (DC) of divalent 

ions decrease with increasing ionic radii at constant pressure and temperature (∼2.2 × 

10−6 cm2 sec−1 and ∼2.6 × 10−6 for Sr and Ca, respectively). Therefore, the crystallization 

of the poisoning SrCrO4 phase from the present lanthanide containing glass compositions 

could be neglected. Contrary to the sealants proposed by Chou et al.,[77] and T. Zhang et 

al., [103] the materials studied in the present work did not form SrCrO4.  
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Fig. 4.5.16: Microstructure (SEM) and EDS element mapping of Cr, Fe, Mn, Si and Sr at 

the interface between Sanergy HT/Nd−0.2−GC/Sanergy HT after the heat treatment at 

850 ºC for 500 h. 
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4.6 Bi−layer glass−ceramic sealant for solid oxide fuel cells 

 

4.6.1 Introduction 
To date, a number of rigid glasses and GCs sealants have been tested; in most 

cases, however, the stability of seals was insufficient due to: (i) coefficient of thermal 

expansion (CTE) mismatch; (ii) chemical interactions with SOFC components; and (iii) 

continuous devitrification behaviour  [44, 69, 95, 103, 114]. Therefore, along with the 

design of new and more suitable glasses, new additional concepts/modifications are 

required to conquer the challenges being faced by the existing sealing technology.  

In an attempt to adress these issues, two different series of diopside−based glass 

systems were selected for applications as sealants for SOFCs (chapter 4.2, 4.4 and 4.5) 

[138, 154, 155]. Among those, the systems designated as Gd−0.3 (in mol%: 20.62 

MgO−18.05 CaO−7.74 SrO−46.40 SiO2−1.29Al2O3−2.04 B2O3−3.87Gd2O3) and Sr−0.3 

(in mol%: 24.54 MgO−14.73 CaO−7.36 SrO−0.55 BaO−47.73 SiO2−1.23 Al2O3−1.23 

La2O3−1.79 B2O3−0.84 NiO) presented superior properties (Table 4.6.1). Namely, both 

glasses revealed excellent thermal stability along a period of 1,000 h and bonded well to 

the Sanergy HT metallic interconnect and 8 mol% yttrium stabilized zirconium (8YSZ) 

ceramic electrolyte without forming undesirable interfacial layers at the joints of SOFC 

components and GC. From Table 4.6.1 we can observe that both GCs exhibit similar 

properties, while differing in their amorphous fractions. Thus, using these glasses in the 

form of layer on layer i.e., a bi−layer approach instead of a single layer between the 

metallic and ceramic plate of SOFCs might provide the following additional benefits: (i) 

a small gradient in the CTE that will lead to a lower thermal expansion mismatch 

between the sealing layers and the other SOFC components, thus providing enhanced 

mechanical reliability for the stack; (ii) cracks produced due to minor thermal stresses 

might be healed by the Gd−0.3 GC due to its sufficient amorphous content. In order to 

obtain good flow behaviour along with self−healing ability and appropriate viscosity 

(η), log η ≈5 at 850 ºC (η in dPa s) is required [50]. GC compositions with 

crystalline/amorphous ratios of ~60/40 and with an ability to maintain stable crystalline 

phase assemblage during long runs have been considered suitable as a self−healing 
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sealant for SOFC [138, 154, 155, 203]. This communication presents the results and 

discusses the suitability of the Gd−0.3 and Sr−0.3 bi−layer approach for the application in 

SOFC stacks. The microstructural variations at the interface of the bi−layered GCs were 

assessed by micro−Raman spectroscopy. 

 

Table 4.6.1: Properties of Gd−0.3 and Sr−0.3 glasses and glass−ceramics (Chapter 4.2, 

4.4, and 4.5). 

 Gd−0.3 Sr−0.3 

   

Tg (ºC) 770 744 

CTE×10−6 K−1(200−500 ºC) 10.06±0.1 11.2±0.1 

Tp (ºC) 931 912 

Sintering ability Sc (=Tc−TMS) 52 29 

TD (ºC) 875 869 

glass−ceramics produced after 1 h 

CTE ×10−6 K−1(200−700 ºC) 9.9±0.1 11.2±0.1 

Shrinkage (%) 13.1 13.7 

Mechanical strength (MPa) 96±8 137±7 

Crystalline fraction (vol. %) 4 85 

glass−ceramics produced after 1000 h 

CTE ×10−6 K−1(200−700 ºC) 10.6±0.1 10.4±0.2 

Shrinkage (%) 14.1 14.2 

Mechanical strength (MPa) 134±4 133±5 

Crystalline fraction (vol. %) 60 90 

 

 

4.6.2 Results and Discussion 

  Figures 4.6.1 and 4.6.2 (a & b) show SEM cross−sections with different 

magnifications of the bi−layered GCs after sintering for 1 h and after further heat treating 

for 100 h at 850 ºC, respectively. From the hot−stage microscopy tests performed for 
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Sr−0.3 and Gd−0.3 compositions it was observed that heat treating the glass powder 

compacts at 850 ºC was enough for obtaining fully dense GCs [138, 154, 155, 203]. SEM 

micrographs revealed the smooth and voids free nature of the interfaces between the two 

glassy layers, indicating their good joining behaviour. This is further confirmed by the 

elemental mapping analysis for Gd, Sr and La elements, which enables differentiating the 

two glassy layers (Fig. 4.6.1d & Fig. 4.6.2d). Fig. 4.6.1c and Fig. 4.6.2c show the Raman 

spectra at the interfaces of the bi−layered GC structures sintered for 1 h (Fig. 4.6.1c) and 

further heat treated for 100 h (Fig. 4.6.2c). Micro−Raman allows getting complementary 

information by analyzing different points at the interface within the micrometric range, 

not assessible by XRD. Both layers exhibit similar structural features (Fig. 4.6.3). 

However, the peaks are quite sharp in the case of Sr−0.3, whereas in Gd−0.3 they are 

much broader.  

 

 
 

Fig. 4.6.1: Interface between Gd−0.3 and Sr−0.3 glass−ceramics after heat treating at 850 

ºC for 1 h: (a) and (b) SEM images; (c) Raman spectra; (d) elemental mapping.  
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Fig.4.6.2: Interface between Gd−0.3 and Sr−0.3 glass−ceramics after heat treating at 850 

ºC for 100 h: (a) and (b) SEM images; (c) Raman spectra; (d) elemental mapping. 

 

 The above mentioned difference in peaks’ definition can be understood based on 

the quantity of crystalline and glassy fractions present in the respective glasses. In 

general, broad Raman peaks are indicative of the glassy nature of materials. Thus, it is 

worth mentioning at this point that the high fraction of amorphous material presented in 

Gd−0.3 GC may be playing a crucial role in achieving the strong interaction and in the 

formation of the smooth interface between the two bi−layers. On the other hand, it is 

worthy mentioning that vibrational Raman bands observed for both Sr−0.3 and Gd−0.3 

GCs were similar to those of synthetic diopside (Fig. Fig. 4.6.4) reported by Rcihet et 

al.[204]. Micro−Raman analysis at the interface of bi−layered GC revealed that no further 

structural variations occurred during the further 100 h of heat treatment, except in 

intensity and full width half−maximum of the peaks. These changes were due to the 
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partial conversion of glassy phase into crystalline phase (namely to the diopside [138, 

154, 155, 203]) along the heat treatment period. Micro−Raman mapping (Fig. 4.6.3) 

provides additional clearer information about this phase transition. These initial studies 

prove the suitability of the proposed glasses for the bi−layer approach, encouraging the 

application of this concept as sealant systems for SOFCs. 

 

 
Fig. 4.6.3: SEM image and micro−Raman spectra collected in the square area (identified 

in the SEM image) at the interface between Gd−0.3 glass−ceramic/Sr−0.3 glass−ceramic 

after heat treatment at 850 ºC for 100 h. The figures (1) and (2) below show Raman 

spectra at 3 different places with 5 μm interval along the interface.  

 

The mechanical strength values measured for the bi−layered GCs after sintering at 

850 ºC for 1 h, and after further heat treating for 100 h, were 105±5 MPa and 118±7 

MPa, respectively. In order to characterize the quality of the bi−layer GCs, the two–

-20 μm 20 μm

20 μm

12001000800600400
Raman shift (cm

-1
)

 In
te

ns
ity

 (a
.u

.)

12001000800600400
Raman shift (cm

-1
)

In
te

ns
ity

 (a
.u

.)

 ii

 i

Interface

1200800400
Raman shift (cm-1)

In
te

ns
ity

 (a
.u

.)

ii

i

Interface

 Sr-0.3 Gd-0.3

 1
 2

 (1)  (2)

 i  ii

 i  ii

 Interface



148 
 

parameter Weibull statistics was implemented based on the measured mechanical 

strength values. The obtained plots are presented in Fig. 4.6.5a. According to Weibull 

statistics [122], the increasing probability of failure (F) for a brittle material can be 

expressed by F=1–exp (–σ/σ0)m, where F is the failure probability for an applied stress 

(σ), σ0 is a normalizing parameter known as Weibull characteristic strength, and m is the 

Weibull modulus. Here, the Weibull modulus m is a measure of the degree of strength 

data dispersion. It can be observed that the failure probability function provides a 

reasonable fit to the experimental data. The obtained mechanical strength values for all 

the GCs being within the limits (22–150 MPa) required for SOFCs sealants make them 

suitable for this specific application [205]. The increase in mechanical strength of 

bi−layered GCs from 105±5 MPa to118±7 MPa with increasing heat treatment time from 

1 to 100 h is attributable to a greater extent of crystallization as can be deduced  from the 

sharper Raman peaks after the longer thermal heat treatment. It is known that phase 

assemblage variations (types and volume fractions of crystalline/amorphous phases) in 

GCs upon isothermal treatments influence the mechanical strength of the seal. For 

example, a greater flexural strength was reported for the aged GC–9 glass sample in 

comparison to a non–aged one due to the increase of crystalline fraction [93].  

 
Fig. 4.6.4: Comparison of Raman spectra for Sr−0.3 and Gd−0.3 glass−ceramics with the 

pure diopside crystalline phase (Ref. [204]).  
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Fig. 4.6.5: (a) Weibull distributions of flexural strength values for the Gd−0.3/Sr−0.3 

bi−layered glass−ceramics heat treated at 850 ºC for 1 h, and (b) Impedance spectra 

obtained at 800 ºC in air of bi−layered glass−ceramics. The inset in (b) shows the 

temperature dependence of the electrical conductivity. 

 

A potential problem in multi−/bi−layered materials is the crack growth between 

the continuous layers. Cracks can derive from residual stresses generated at the interface 

due to large differences in the CTE and phase transitions. Thus, a close match of the 

CTEs of all components is essential for the mechanical integrity of the join between 

metal–ceramic or ceramic–ceramic components of SOFC. Apart from this, different 

shrinkage behaviours of the layers will also lead to delamination of the multi−/bi−layers. 

However, linear decreasing/increasing thermal expansion gradients with increasing 

number of layers will result in smaller residual stresses and, intuitively, one would expect 

that this would increase the crack growth energy in the layered materials [206]. 

The CTE values of the glasses and GCs sintered at 850 ºC for 1 h are presented in 

Table 4.6.1. Sr−0.3 exhibits the highest CTE (11.2 × 10–6 K–1) and shrinkage (13.7 %) 

values. After the heat treatment period of 1,000 h, both GCs exhibited the nearly equal 

CTE (10.4× 10–6 K–1) and shrinkage (14.2%). Considering these observations and the 

CTE values of metallic interconnects (Crofer22APU, Crofer22H) [(11–12) × 10−6 K–1] 

and of ceramic electrolytes (i.e. 8YSZ) [(10–12) × 10−6 K–1], the following bi−layer 

approach: ceramic electrolyte − Gd−0.3 glass − Sr−0.3 glass − interconnect, was adopted 
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aiming at reducing the thermal stresses at the interfaces. Nevertheless, the stability of the 

bi−layered GC/interconnect couple might be deteriorated upon further prolonging the 

heat treatment due to the propensity of Gd−0.3 glass to continuous devitrification (Table 

4.6.1). 

 

  

  

  
Fig. 4.6.6: SEM image and elemental mappings at the interfaces between Gd−0.3 

glass−ceramic/Sr−0.3 glass−ceramic/Crofer22H after heat treatment at 850 ºC for 1 h. 

 

Bi−layered GC seals bonded well to Crofer22H and Crofer22APU metallic 

interconnects since the investigated interfaces show homogeneous microstructures 

without any gaps being observed over their entire cross–sections of the joint. Fig. 
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4.6.6a−b and Fig. 4.6.7a−b show SEM images of the interfaces between bi−layered GCs 

and Crofer22H after 1 h and 100 h heat treatment at 850 ºC, respectively. The 

corresponding EDS mapping for the relevant elements (Cr, Mn, Fe, and Si) existing at the 

Sr−0.3 GC/ interconnect interface are also shown in Fig. 4.6.6 and Fig. 4.6.7. No 

diffusion layers were detected at the interfaces by SEM/EDS analyses within the limits of 

experimental uncertainty.  

 

 
Fig 4.6.7: SEM image and elemental mappings at the Interface between Gd−0.3 

GC/Sr−0.3 GC/Crofer22H after heat treating at 850 ºC for 100 h. 

 

Representative impedance spectra obtained in air at 800 ºC for the bi−layered 

samples annealed at 850 ºC either for 1 h or for 100 h, are shown in Fig. 4.6.5b. The 

spectrum of a sample sintered at 850 ºC for 1 h shows a large and depressed arc covering 

almost the entire frequency range which suggests the contribution from different phases 

with distinct relaxation frequencies, maybe also some interfacial impedance between the 

seal layers, given their distinct composition and crystallinity. This is coherent with the 

analysis of the phase content of each layer, where both crystalline and glassy phases are 

present, and one of the layers is mostly amorphous (Table 4.6.1). At low frequency the 

spectrum is poorly defined, but a very small electrode tail can be assumed at such low 
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frequencies. Considering the composition of these glasses, alkaline−earth ions are the 

most likely charge carriers. 

In the case of samples sintered at 850 ºC for 100 h the Nyquist plot obtained under 

the same conditions shows an almost regular semicircle which indicates the dominant 

contribution from a single phase. Considering the prolonged thermal treatment, the most 

likely explanation consists on the extensive crystallization of the glassy phases, providing 

a continuous ionic pathway throughout the entire bi−layer. If the glassy phases are still 

present, as suggested in Table 4.6.1, they are likely to provide only a parallel but least 

conductive pathway, since the conductivity of parallel arrangements is dominated by the 

most conductive element. This also means that this global conductivity is certainly a 

function of the thickness ratio of both layers, representing an average performance of the 

specific characteristics of this bi−layer assembly. The low frequency electrode tail is 

better defined in the case of samples annealed for 100 h, which indeed confirms the 

presence of dominant ionic conductivity in these samples. The possibility of a continuous 

ionic pathway throughout the entire bi−layer is a consequence of the layers composition, 

including common alkaline−earth cations. 

The global bi−layer resistivity shows a considerable variation for samples 

annealed for 1 h or 100 h. For instance, at 800 ºC the former sample has a resistivity 1.2 

MΩ cm while the later has a resistivity of 0.2 MΩ cm. Irrespective of the already 

suggested dominant ionic transport through these bi−layer seals, the overall resistivity 

values are still high enough for the functional requirements of SOFC seals, enabling a 

good isolation between fuel cell components. As reference, in a SOFC, amongst 

electrolyte, cathode and anode, the least conductive cell component is the electrolyte with 

a target resistivity lower than 10 Ω cm at operating temperatures. In the worst case 

scenario (seal after 100 h), this means that the conductivity of the electrolyte is still four 

orders of magnitude higher than found for the seal. If we also consider the surface 

area/thickness ratios for currents crossing the electrolyte (high ratio) and sealant 

(extremely low ratio), we find an even more impressive relation between the cell output 

current and any internal parasitic current through the seal.  
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The temperature dependent electrical conductivity is shown in Fig. 4.6.5b inset. 

The activation energy calculated from the slope of the ln (σeT) versus 1/T plots is around 

130 kJmol−1 and 98 kJmol−1 for samples annealed for 1 h and 100 h, respectively. The 

lower activation energies for the samples annealed for longer periods of time again 

suggest an easier ionic pathway through the bi−layer. This can be the result of enhanced 

crystallization in these samples (not only volume fraction but also average crystal/grain 

size), hypothesis coherent with the XRD results and involved process kinetics. Indeed, at 

constant temperature, interfaces and amorphous phases are expected to involve higher 

activation energies for ionic migration than crystalline phases.   
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5. Conclusions 

5.1 Diopside – Ba disilicate glass–ceramics for sealing applications in 

SOFC: sintering and chemical interactions studies 

The results gathered, presented and discussed along this work enable the following 

conclusion to be drawn:  

1. The combination of diopside phase with crystalline phases exhibiting high 

CTE, such as barium aluminosilicates, revealed to be a promising strategy to 

increase and stabilize the CTE of the diopside based GCs, and to increase 

their electrical resistivity. 

2. The CTE values of investigated GCs are relatively stable under different heat 

treatment schedules and correlated quite well with those of ceramic 

electrolyte, 8YSZ (∼10×0−6 K−1) and metallic interconnect, Crofer22APU 

(∼11.4–12.5×10−6 K−1). 

3. In all experimental glass powders the sintering proceded in two stages, but 

most of the densification (95–98 %) occurred along the first stage and was 

thus accomplished at TMS1, i.e., before the onset of crystallization, therefore, 

resulting in well sintered and dense glass powder compacts.  

4. Stability of the main Augite phase after prolonged isothermal heat treatment 

was achieved and no formation of other detrimental phases were detected. 

5. The investigated GCs showed good insulating properties. At 1073 K the 

resistivity varied in the range 5−10 MOhm × cm, enabling good isolation to 

be achieved between the fuel cell components. 

6. The investigated interfaces showed: (i) homogeneous microstructures over 

the entire cross−sections of the joints without gaps formation; (ii) no 

appreciable diffusion of elements from GCs towards Crofer22APU and 

vice−versa; (iii) absence of any detrimental Cr– or Ba–rich layers, at least 

after sealing.  
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5.2 Diopside–Ba disilicate glass–ceramic sealants for SOFCs: enhanced 

adhesion and thermal stability by Sr for Ca substitution 
 

From this work the following conclusions might be drawn: 

1. Strontium for calcium substitution in diopside–Ba disilicate GC revealed to be a 

promising strategy for stabilizing the thermal parameters and enhancing the 

adhesion of GCs seals to interconnect material of SOFCs. 

2. Systematic substitution Sr for Ca in pyroxene structure decreases the viscosity of 

glasses at temperatures close to Tg and within the range of 850–900 ºC that is 

usually considered for joining of SOFC metallic/ceramic components by a 

glass/glass–ceramic sealant. 

3. All the studied SrO–containing glasses exhibited higher CTE compared to the 

SrO–free parent glass. Their CTE values varied in the range (10.0–11.3)×10−6 K–1 

and are nearly equal to CTE of corresponding GCs (9.6–11.2)×10–6 K–1. CTE of 

investigated glass–ceramics are relatively stable under different heat treatment 

schedules and correlated quite well with those of ceramic electrolyte, 8YSZ and 

metallic interconnect, Sanergy HT. 

4. The sintering precedes crystallization resulting in well sintered and dense glass 

powder compacts. Although densification occurred in two stages, the first stage 

contributed in 95–98 % to the total shrinkage and was accomplished at TMS1, i.e., 

before the onset of crystallization.  

5. Precipitation and mutual transformation of pyroxene based phases, i.e. solid 

solutions of diopside, after prolonged isothermal heat treatment was revealed and 

no formation of other detrimental phases were detected. This feature ensured 

stability of CTE under various heat treatment conditions.  

6. Glass–ceramics demonstrated excellent insulating properties. Their specific 

electrical resistivity is higher than 5 MOhm×cm at 800 ºC, and is independent of 

the oxygen and water vapor partial pressures. This enables isolation between the 

fuel cell components. No oxygen leakage fluxes through dense glass–ceramics 

were detected.   
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7. Homogeneous microstructures over the entire cross–sections of the GC–

interconnect joints (a) without gaps formation, (b) no appreciable diffusion of 

elements from GC toward Sanergy HT and vice–versa, and (c) absence of any 

detrimental Cr or Ba–rich layers were observed.  

8. The thermal shock resistance tests demonstrated that sealants are suitable for 

sealing of zirconia–based ceramics. Further optimization will be required for 

SOFC stacks involving other electrolytes (CGO or LSGM). 
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5.3 Effect of strontium−to−calcium ratio on the structure, crystallization 

behaviour and functional properties of diopside−based glasses 
The data presented and discussed within this part of the work enable the following 

conclusions to be drawn: 

1. The Sr/Ca ratio influences on the sintering behaviour of glass−powder compacts 

and on the structure and properties of glass−ceramics in diopside−based glasses. 

High Sr/Ca ratios tend to enhance the sintering ability of glass−powder compacts. 

2. The conversion of structural units from Q2 to Q1+Q4 indicates that increasing the 

Sr/Ca ratio perturbs the glass network more effectively and allows new crystalline 

phases to be formed when heated to sufficiently high temperature. 

Diopside−based crystalline phase was dominant at lower Sr/Ca ratios whilst 

Sr−akermanite phase emerged at higher Sr/Ca ratios. 

3. The crystalline phase assemblage evolved up to 500 h heat treatment and then 

remained essentially unchanged with further heat treatment up to 1000 h.  

4. The thermal and mechanical properties of the glass−ceramics produced under 

various heat−treatment conditions are well correlated with the structure and 

crystalline phase assemblages. 

5. Although their adhesion to the surface of stabilized−zirconia electrolytes and 

metallic interconnects needs to be improved, the overall functional properties of 

these glass−ceramics qualify them for further experimentations as sealants for 

SOFC. 
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5.4 Sintering behaviour of lanthanide–containing glass–ceramic sealants 

for solid oxide fuel cells 

 A detailed investigation dedicated towards evaluating the influence of lanthanides on 

sintering behaviour of alkaline−earth aluminosilicate glass/GCs has been carried out with 

an aim to develop suitable GC sealant for solid oxide fuel cells. The following 

conclusions can be drawn from the discussed results: 

1. All the glasses exhibit CTE in range of (9 – 10.5) x 10−6 K−1 while the sintered 

GCs exhibit CTE in the range of (9.8 – 11.12) x 10−6 K−1 which is appropriate 

for sealing applications in SOFC. 

2. The sintering initiates in all the glasses in the temperature range of 620 – 650 

ºC followed by glass−in−glass phase separation consequentially leading to 

two stage sintering behaviour . 

3. Well sintered and dense GCs were obtained after sintering of glass powders at 

850 ºC for 1h with crystalline phase assemblage dominated primarily by 

diopside based crystalline phases. 

4. The electrical conductivity of the investigated GCs varied between (1.19 – 

7.33) x 10−7 S cm−1 (750 – 800 ºC). La−containing GCs exhibit highest 

electrical conductivity while Yb−containing GCs exhibited the lowest value.  

5. The as developed GCs possess high amount of residual glassy phase (~30 – 96 

wt.%) along with appropriate flow behaviour and CTE matching at SOFC 

operating temperatures (850 – 900 ºC), thus making them suitable candidates 

for self−healing GC seals for SOFC. In particular, GCs La−0.1, La−0.2, 

Nd−0.1 and Nd−0.2 are potential materials for sealing applications in SOFC. 

Also, GCs Gd−0.3 and Yb−0.3 demonstrate high sintering ability, 

mono−mineral crystalline phase assemblage and > 95 wt.% residual 

amorphous phase, thus, making them suitable candidates for self−healing 

glass seals.  
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5.5 Thermal and mechanical stability of lanthanide–containing glass–

ceramic sealants for solid oxide fuel cells 

 

The data presented and discussed along this part of the work enable drawing the 

following conclusions: 

1. The glasses Gd–0.3 and Yb–0.3 demonstrated a sluggish crystallization behaviour  

in comparison to their lanthanum and neodymium containing analogues and, 

consequently, featured high residual glassy phase contents after sintering for 1 h 

at 850 ºC.  

2. Prolonged heat treatment at 850 ºC for 250–1000 h caused intensive 

crystallization of pyroxene based phases and lanthanide–containing silicate 

oxyapatites that was accompanied by a significant drop of the residual amorphous 

glassy phase content. These processes are accompanied with a moderate increase 

of the electrical conductivity, which remains, however, low enough for SOFC 

applications.  

3. All the GC seals bonded well to Sanergy HT metallic interconnects and 8YSZ 

solid electrolyte, without the formation of gaps or deleterious phases.  

4. The investigated GCs featured good mechanical reliability with flexural strength 

values within the range of 110–140 MPa and Weibull modulus, m ~8.9–16.6 after 

heat treatment at 850 ºC for 1000 h.  
5. The glass composition Gd–0.3 appears as the most promising candidate for self–

healing sealants for SOFC due to its ability to maintain a relatively high 

crystalline/amorphous ratio of ~60/40 (wt.%) along with a stable crystalline phase 

assemblage during long run, and good performance in terms of mechanical 

reliability, electrical and thermal−shock resistances, oxygen leakage and thermal 

expansion. Long−term tests of electrical resistivity and oxygen permeation did not 

reveal essential degradation of this sealant.  
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5.6 Bi–layer glass–ceramic sealant for solid oxide fuel cells 

 
1. Smooth and void free bi−layered GCs were successfully obtained. The high 

amount of glassy phase (96 vol.%) presented in Gd−0.3 glass enabled the 

formation of smooth interface and strong bonding with the Sr−0.3. 

2. The as developed bi−layered GCs possess good mechanical reliability and wetting 

ability with Crofer22APU and Crofer22H, while having enough electrical 

resistivity. 

3. Irrespective of the partial conversion of amorphous to crystalline phases with 

annealing at working temperatures, the global electrical conductivity of these GC 

bi−layers was at least four orders of magnitude lower than target values for the 

electrolyte layer. This low conductivity, presumably dominated by ionic transport, 

is clearly compatible with the electrical functional requirement imposed to 

efficient SOFC sealing materials. 

4. Despite the interesting results achieved in this study, further experiments are 

needed for better evaluating the stability of the crystalline phase assembly of 

Gd−0.3 composition and its implications concerning the sealing performance at 

the SOFC’s stack operation temperature. 
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Future plan 

In order to overcome the challenges being faced by SOFCS community, we have 

developed a bi−layered GC sealing system. Based on the results obtanied, a new concept 

i.e., multilayer seal can be proposed. The inspiration behind the multilayer seal material 

is as follows: In general, glass materials are chemically stable when exposed to the 

hydrogen fuel gas or other metallic or ceramic fuel cell components. In addition, if the 

glass (i) does not crystallize at the elevated temperatures of normal operation of SOFCs 

and its Tg is below and Ts is above the SOFCs working temperature, it behaves as a 

self−healing material. Apart from this, it is known that ceramic materials have excellent 

long term chemical and thermal stability. Therefore, the development of SH−GC seals 

adjoined with rigid GC seals in a multi−layered fashion where rigid GC will be 

sandwiched between SH−GCs may provide a better solution. The rationale behind this 

idea is to develop two GC compositions with varying amorphous/crystalline content and 

their CTE matching to SOFC ceramic/metallic components. While the first and third GC 

layers in contact with SOFC components will have higher amorphous content (70−80 

vol.%), the second GC layer sandwiched between first and third GC layers will have an 

amorphous content varying between 20−30 wt.%. The presence of 20−30 % crystalline 

content in SH−glass controls the viscosity at operating temperature and stuck with in the 

stack. Whilst, the presence 20−30 wt.% glass content in layer 2 helps in making strong 

bond with the layers of 1 and 3rd. In addition, the second GC layer as a core of the whole 

system will impart mechanical integrity for the sandwiched layers along with the 

assurance of zero gas permeability. 

From the present study Sr−0.3 GCs could be used as a rigid GC layer in a multilayer 

seal due to the following reasons: (i) good sintering ability suitable for SOFC sealants; 

(ii) stable phase assemblage with >85 % crystallized fraction after 250 h of heat 

treatment, (iii) excellent thermal stability properties such as CTE and mechanical strength 

along a period of 1,000 h at 900 ºC, (iv) well bonding to the Sanergy HT metallic 

interconnect and 8YSZ ceramic electrolyte without forming any undesirable interfacial 

layers at the joints of SOFC components and GC both in air and reduced atmosphere 
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condition, (v) the stability of electrical conductivity in various atmosphere during the 

period of 250 h and (vi) has the good thermal shock resistance with 8YSZ ceramic plate. 

On the other hand, Gd−0.3 glass can be used as starting point to develop a self−healing 

GC layer fulfilling all the required properties, including the following: 

1. Stable and higher amorphous quantity after prolong heat treatment (~3000 h) at 

850 ºC. 

2. Self−healing behaviour at temperatures slightly above the SOFCs working 

temperature range. 

 

After the successful development of self−healing glass/GC layer from the Gd−0.3 glass, 

future work in this area may be addressed to the following issues: 

a) The interfacial strength between SHGC and rigid GC layers can be studied by 

nano−indentation technique.  

b) Diffusion of elements across the interface between SHGC and rigid GC layer 

should be addressed. 

c) The chemical interaction between SH−GC sealants and SOFC components should 

be studied after prolonged heat treatments (~3000 h) at SOFC operating 

conditions. 

d) Temperature dependence of viscosity is another concern which should be 

addressed while improving the properties of sealant. 

e) Self−healing behaviour should be studied by in−situ SEM. 

f) Thickness dependence properties of multilayer seal should be studied  

g) Also, it will be necessary to study the influence of seal design on the thermal 

stresses in SOFC stack using finite elemental analysis technique which will 

include the development of three−dimensional model of SOFC stack. 

h) Before the final application of Di based GC sealant in SOFC stack, its 

performance should be evaluated in model cells. After successful experimentation 

in model cells, this sealant should be applied to SOFC stacks. 

 



165 
 

References 

[1] Wachsman ED, Lee KT. Lowering the temperature of solid oxide fuel cells. Science 

2011;334:935-9. 

[2] Wachsman ED, Marlowe CA, Lee KT. Role of solid oxide fuel cells in a balanced 

energy strategy. Energy & Environmental Science 2012;5:5498. 

[3] Fuel cell annual report-2012, Office of Fossil Energy Fuel Cell Program, NETL. 

[4] Minh NK, Takahashi T. Science-and-Technology-of-Ceramic-Fuel-Cells. The 

Netharland: Elsevier; 1995. 

[5] Larminie J, Dicks A. Fuel Cell Systems Explained. second ed. West Sussex, England: 

John Wiley & Sons Ltd,; 2003. 

[6] Stolten D, Emonts B. Fuel Cell Science and Engineering: Materials, Processes, 

Systems and Technology. Weinheim, Germany: wiley-VCH Verlag Gmbh &Co. KGaA; 

2012. 

[7] Haile S, Dane A. Boysen D, Chisholm C, Merle R. Solid acids as fuel cell 

electrolytes. Nature 2001;410:910-4. 

[8] Adams TA, Nease J, Tucker D, Barton PI. Energy Conversion with Solid Oxide Fuel 

Cell Systems: A Review of Concepts and Outlooks for the Short- and Long-Term. 

Industrial & Engineering Chemistry Research 2013;52:3089-111. 

[9] Singhal SC. Solid oxide fuel cells for power generation. Wiley Interdisciplinary 

Reviews: Energy and Environment 2014;3:179-94. 

[10] Ellen I-T, Andre W, Dirk H. Materials and technologies for SOFC-components. . 

Journal of the European Ceramic Society 2001;21:1805–11. 

[11] Freiman S, Mecholsky Jr J. The fracture of brittle materials: testing and analysis,. 

USA: American Ceramic Society  and John Wiley & Sons.,; 2012. 

[12] Refi J. Fiber Optic Cable - A lightguide. USA: abc TeleTraining, Inc.; 1991. 

[13] Zhao Y, Xia C, Jia L, Wang Z, Li H, Yu J, et al. Recent progress on solid oxide fuel 

cell: Lowering temperature and utilizing non-hydrogen fuels. International Journal of 

Hydrogen Energy 2013;38:16498-517. 



166 
 

[14] Fuel cell handbook. EG&G Technical Services, Science Applications International 

Corporation, . 6th ed. U.S. Department of Energy Office of Fossil Energy, Morgantown, 

West Virginia. : Springfield; 2002. 

[15] Minh NQ, Takahashi T. Science and Technology of Ceramic Fuel Cells. 

Amsterdam: Elsevier; 1995. 

[16] Sammes N. Fuel Cell Technology: Reaching Towards Commercialization. London: 

Springer; 2006. 

[17] Perfilyev MV, Demin AK, Kuzin BL, Lipilin AS. High-Temperature Electrolysis of 

Gases. Nauka, Moscow1988. 

[18] Tsipis EV, Kharton VV. Electrode materials and reaction mechanisms in solid oxide 

fuel cells: a brief review. III. Recent trends and selected methodological aspects. Journal 

of Solid State Electrochem 2011;15:1007-40. 

[19] Gellings PJ, Bouwmeester HJM. Handbook of Solid State Electrochemistry. . Boca 

Raton: CRC Press; 1997. 

[20] Kharton VV. Solid State Electrochemistry I: Fundamentals, Materials and their 

Applications. Weinheim: Wiley-VCH; 2009. 

[21] Mahapatra MK, Lu K. Glass-based seals for solid oxide fuel and electrolyzer cells – 

A review. Materials Science and Engineering: R: Reports 2010;67:65-85. 

[22] Basu RN, Blass G, Buchkremer HP, Stöver D, Tietz F, Wessel E, et al. Simplified 

processing of anode-supported thin film planar solid oxide fuel cells. Journal of the 

European Ceramic Society 2005;25:463-71. 

[23] Fergus JW. Sealants for solid oxide fuel cells. Journal of Power Sources 

2005;147:46-57. 

[24] Jacobson AJ. Materials for Solid Oxide Fuel Cells. Chemistry of Materials 

2010;22:660-74. 

[25] Mahapatra MK, Lu K. Seal glass for solid oxide fuel cells. Journal of Power Sources 

2010;195:7129-39. 

[26] Lessing PA. A review of sealing technologies applicable to solid oxide electrolysis 

cells. Journal of Materials Science 2007;42:3465-76. 

[27] Xue LA, Yamanis J, Piascik J, Ong ET. Alkali-free composite sealant materials for 

solid oxide fuel cells. US Patent 75213872009. 



167 
 

[28] Warrier SG, Yamanis J, Tulyani S, Benn RC. Compliant seals for solid oxide fuel 

cell stack. US Patent 79770042011. 

[29] Yoo YS, Han YH, Kang TK. Single cell and stack structure for solid oxide fuel cell 

stack. US Patent 68640092005. 

[30] Badding EM, Cortright EJ, Ketcham TD, Lineman MD, Julien JD, Sun Y. Solid 

oxide fuel cell stack and packet designs. Eur. Patent 14468472002. 

[31] Draper R, Zhang G, Ruka RJ, Litzinger KP, Zafred PR, R.A. Basel Solid oxide fuel 

cell generator including a glass sealant. US Patent 80973812012. 

[32] Ko HJ, Lee HW, Lee JC, Lee JH, Song HS, Kim JS, et al. Solid oxide fuel cell 

sealant comprising glass matrix and ceramic fiber and method of manufactoring the 

same. US patent 0147866 A12005. 

[33] Goel A, Shaaban ER, Tulyaganov DU, Ferreira JMF. Study of Crystallization 

Kinetics in Glasses along the Diopside-Ca-Tschermak Join. Journal of the American 

Ceramic Society 2008;91:2690-7. 

[34] Tong J, Han M, Singhal SC, Gong Y. Influence of Al2O3 addition on the properties 

of Bi2O3–BaO–SiO2–RxOy (R=K, Zn, etc.) glass sealant. Journal of Non-Crystalline 

Solids 2012;358:1038-43. 

[35] Smeacetto F, Chrysanthou A, Salvo M, Moskalewicz T, D'Herin Bytner F, Ajitdoss 

LC, et al. Thermal cycling and ageing of a glass-ceramic sealant for planar SOFCs. 

International Journal of Hydrogen Energy 2011;36:11895-903. 

[36] Chang H-T, Lin C-K, Liu C-K, Wu S-H. High-temperature mechanical properties of 

a solid oxide fuel cell glass sealant in sintered forms. Journal of Power Sources 

2011;196:3583-91. 

[37] Zachariasen WH. The atomic arrangement in glass. Journal of American Chemical 

Society 1932;54:3841-51. 

[38] Larsen PH, Poulsen FW, Berg RW. The influence of SiO2 addition to 2MgO-Al2O3-

3.3P2O5 glass. Journal of Non-Crystalline Solids 1999;244:16-24. 

[39] Ghosh S, Das Sharma A, Kundu P, Mahanty S, Basu RN. Development and 

characterizations of BaO–CaO–Al2O3–SiO2 glass–ceramic sealants for intermediate 

temperature solid oxide fuel cell application. Journal of Non-Crystalline Solids 

2008;354:4081-8. 



168 
 

[40] Bansal NP, Gamble EA. Crystallization kinetics of a solid oxide fuel cell seal glass 

by differential thermal analysis. Journal of Power Sources 2005;147:107-15. 

[41] Meinhardt KD, Kim DS, Chou YS, Weil KS. Synthesis and properties of a barium 

aluminosilicate solid oxide fuel cell glass–ceramic sealant. Journal of Power Sources 

2008;182:188-96. 

[42] Ghosh S, Kundu P, Das Sharma A, Basu RN, Maiti HS. Microstructure and property 

evaluation of barium aluminosilicate glass–ceramic sealant for anode-supported solid 

oxide fuel cell. Journal of the European Ceramic Society 2008;28:69-76. 

[43] Yang Z. Chemical interactions of barium–calcium–aluminosilicate-based sealing 

glasses with oxidation resistant alloys. Solid State Ionics 2003;160:213-25. 

[44] Stephens EV, Vetrano JS, Koeppel BJ, Chou Y, Sun X, Khaleel MA. Experimental 

characterization of glass–ceramic seal properties and their constitutive implementation in 

solid oxide fuel cell stack models. Journal of Power Sources 2009;193:625-31. 

[45] Meinhardt KD, Vienna JD, Armstrong TR, Pederson LR. Glass-Ceramic Material 

and method of making. United states2002. 

[46] Larsen PH, james PF. Chemical stability of MgO/CaO/Cr2O3–Al2O3–B2O3–

phosphate glasses in solid oxide fuel cell environment. Journal of Materials Science 

1998;33:2499-507. 

[47] Liu WN, Sun X, Koeppel B, Khaleel M. Experimental Study of the Aging and Self-

Healing of the Glass/Ceramic Sealant Used in SOFCs. International Journal of Applied 

Ceramic Technology 2010;7:22-9. 

[48] Liu WN, Sun X, Khaleel MA. Study of geometric stability and structural integrity of 

self-healing glass seal system used in solid oxide fuel cells. Journal of Power Sources 

2011;196:1750-61. 

[49] Gross SM, Federmann D, Remmel J, Pap M. Reinforced composite sealants for solid 

oxide fuel cell applications. Journal of Power Sources 2011;196:7338-42. 

[50] Pascual MJ, Guillet A, Durán A. Optimization of glass–ceramic sealant 

compositions in the system MgO–BaO–SiO2 for solid oxide fuel cells (SOFC). Journal of 

Power Sources 2007;169:40-6. 

[51] Donald IW, Metcalfe BL, Gerrard LA. Interfacial Reactions in Glass–Ceramic-to-

Metal Seals. Journal of the American Ceramic Society 2008;91:715-20. 



169 
 

[52] Coillot D, Méar FO, Podor R, Montagne L. Autonomic Self-Repairing Glassy 

Materials. Advanced Functional Materials 2010;20:4371-4. 

[53] Govindaraju N, Liu WN, Sun X, Singh P, Singh RN. A modeling study on the 

thermomechanical behavior of glass-ceramic and self-healing glass seals at elevated 

temperatures. Journal of Power Sources 2009;190:476-84. 

[54] Singh RN. Sealing technology for solid oxide fuel cells (sofc). International Journal 

of Applied Ceramic Technology 2007;4:134-44. 

[55] Zhang T, Tang D, Yang H. Can crystalline phases be self-healing sealants for solid 

oxide fuel cells? Journal of Power Sources 2011;196:1321-3. 

[56] Zhang T, Zou Q, Zhang J, Tang D, Yang H. Development of ceramic sealant for 

solid oxide fuel cell application: Self-healing property, mechanical stability and thermal 

stability. Journal of Power Sources 2012;204:122-6. 

[57] Donald IW, Mallinson PM, Metcalfe BL, Gerrard LA, Fernie JA. Recent 

developments in the preparation, characterization and applications of glass- and glass–

ceramic-to-metal seals and coatings. Journal of Materials Science 2011;46:1975-2000. 

[58] Shelby JE. Introduction to glass science and technology. Cambridge: The Royal 

Society of Chemistry; 1997. 

[59] Ganster P, Benoit M, Kob W, Delaye JM. Structural properties of a calcium 

aluminosilicate glass from molecular-dynamics simulations: a finite size effects study. 

Journal of Chemical Physics 2004;120:10172-81. 

[60] Kaur B, Singh K, Pandey OP. Microstructural study of Crofer 22 APU-glass 

interface for SOFC application. International Journal of Hydrogen Energy 2012;37:3839-

47. 

[61] Chou Y-S, Thomsen EC, Choi JP, Stevenson JW. Compliant alkali silicate sealing 

glass for solid oxide fuel cell applications: Combined stability in isothermal ageing and 

thermal cycling with YSZ coated ferritic stainless steels. Journal of Power Sources 

2012;197:154-60. 

[62] Chou Y-S, Thomsen EC, Williams RT, Choi JP, Canfield NL, Bonnett JF, et al. 

Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Thermal 

cycle stability and chemical compatibility. Journal of Power Sources 2011;196:2709-16. 



170 
 

[63] Coillot D, Méar FO, Nonnet H, Montagne L. New viscous sealing glasses for 

electrochemical cells. International Journal of Hydrogen Energy 2012;37:9351-8. 

[64] Smeacetto F, Salvo M, Ferraris M, Casalegno V, Asinari P. Glass and composite 

seals for the joining of YSZ to metallic interconnect in solid oxide fuel cells. Journal of 

the European Ceramic Society 2008;28:611-6. 

[65] Smeacetto F, Salvo M, D’Hérin Bytner FD, Leone P, Ferraris M. New glass and 

glass–ceramic sealants for planar solid oxide fuel cells. Journal of the European Ceramic 

Society 2010;30:933-40. 

[66] Smeacetto F, Salvo M, Ferraris M, Cho J, Boccaccini AR. Glass–ceramic seal to join 

Crofer 22 APU alloy to YSZ ceramic in planar SOFCs. Journal of the European Ceramic 

Society 2008;28:61-8. 

[67] Smeacetto F, Chrysanthou A, Salvo M, Zhang Z, Ferraris M. Performance and 

testing of glass-ceramic sealant used to join anode-supported-electrolyte to Crofer22APU 

in planar solid oxide fuel cells. Journal of Power Sources 2009;190:402-7. 

[68] Smeacetto F, Salvo M, Ferraris M, Casalegno V, Asinari P, Chrysanthou A. 

Characterization and performance of glass–ceramic sealant to join metallic interconnects 

to YSZ and anode-supported-electrolyte in planar SOFCs. Journal of the European 

Ceramic Society 2008;28:2521-7. 

[69] Zhang T, Zou Q, Zeng F, Wang S, Tang D, Yang H. Improving the chemical 

compatibility of sealing glass for solid oxide fuel cells: Blocking the reactive species by 

controlled crystallization. Journal of Power Sources 2012;216:1-4. 

[70] Liu W, Sun X, Khaleel M. Predicting Young's modulus of glass/ceramic sealant for 

solid oxide fuel cell considering the combined effects of aging, micro-voids and self-

healing. Journal of Power Sources 2008;185:1193-200. 

[71] Heydari F, Maghsoudipour A, Hamnabard Z, Farhangdoust S. Mechanical properties 

and microstructure characterization of zirconia nanoparticles glass composites for SOFC 

sealant. Materials Science and Engineering: A 2012;552:119-24. 

[72] Heydari F, Maghsoudipour A, Hamnabard Z, Farhangdoust S. Evaluation on 

Properties of CaO–BaO–B2O3–Al2O3–SiO2 Glass–Ceramic Sealants for Intermediate 

Temperature Solid Oxide Fuel Cells. Journal of Materials Science & Technology 

2013;29:49-54. 



171 
 

[73] Arora A, Singh K, Pandey OP. Thermal, structural and crystallization kinetics of 

SiO2–BaO–ZnO–B2O3–Al2O3 glass samples as a sealant for SOFC. International Journal 

of Hydrogen Energy 2011;36:14948-55. 

[74] Arora A, Kumar V, Singh K, Pandey OP. Structural, thermal and crystallization 

kinetics of ZnO–BaO–SiO2–B2O3–Mn2O3 based glass sealants for solid oxide fuel cells. 

Ceramics International 2011;37:2101-7. 

[75] Chou YS, Stevenson JW, Xia GG, Yang ZG. Electrical stability of a novel sealing 

glass with (Mn,Co)-spinel coated Crofer22APU in a simulated SOFC dual environment. 

Journal of Power Sources 2010;195:5666-73. 

[76] Chou Y-S, Stevenson JW, Meinhardt KD. Electrical Stability of a Novel Refractory 

Sealing Glass in a Dual Environment for Solid Oxide Fuel Cell Applications. Journal of 

the American Ceramic Society 2010;93:618-23. 

[77] Chou Y-S, Stevenson JW, Singh P. Effect of pre-oxidation and environmental aging 

on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing 

glass with metallic interconnect. Journal of Power Sources 2008;184:238-44. 

[78] Wang S-F, Hsu Y-F, Lu H-C, Lo S-C, Cheng C-S. B2O3-free SiO2–Al2O3–SrO–

La2O3–ZnO–TiO2 glass sealants for intermediate temperature solid oxide fuel cell 

applications. International Journal of Hydrogen Energy 2012;37:5901-13. 

[79] Sharma K, Kothiyal GP, Montagne L, Méar FO, Revel B. A new formulation of 

barium–strontium silicate glasses and glass-ceramics for high-temperature sealant. 

International Journal of Hydrogen Energy 2012;37:11360-9. 

[80] Tiwari B, Dixit A, Kothiyal GP. Study of glasses/glass-ceramics in the SrO–ZnO–

SiO2 system as high temperature sealant for SOFC applications. International Journal of 

Hydrogen Energy 2011;36:15002-8. 

[81] Ananthanarayanan A, Kothiyal GP, Montagne L, Tricot G, Revel B. The effect of 

P2O5 on the structure, sintering and sealing properties of barium calcium aluminum boro-

silicate (BCABS) glasses. Materials Chemistry and Physics 2011;130:880-9. 

[82] Kaur G, Pandey OP, Singh K. Interfacial study between high temperature SiO2–

B2O3–AO–La2O3 (A = Sr, Ba) glass seals and Crofer 22APU for solid oxide fuel cell 

applications. International Journal of Hydrogen Energy 2012;37:6862-74. 



172 
 

[83] Kumar V, Rupali, Pandey OP, Singh K. Thermal and crystallization kinetics of 

yttrium and lanthanum calcium silicate glass sealants for solid oxide fuel cells. 

International Journal of Hydrogen Energy 2011;36:14971-6. 

[84] Kumar V, Sharma S, Pandey OP, Singh K. Thermal and physical properties of 

30SrO–40SiO2–20B2O3–10A2O3 (A = La, Y, Al) glasses and their chemical reaction with 

bismuth vanadate for SOFC. Solid State Ionics 2010;181:79-85. 

[85] Kumar V, Pandey OP, Singh K. Effect of A2O3 (A=La, Y, Cr, Al) on thermal and 

crystallization kinetics of borosilicate glass sealants for solid oxide fuel cells. Ceramics 

International 2010;36:1621-8. 

[86] Kumar V, Arora A, Pandey O, Singh K. Studies on thermal and structural properties 

of glasses as sealants for solid oxide fuel cells. International Journal of Hydrogen Energy 

2008;33:434-8. 

[87] Ojha PK, Rath SK, Chongdar TK, Gokhale NM, Kulkarni AR. Physical and thermal 

behaviour of Sr–La–Al–B–Si based SOFC glass sealants as function of SrO content and 

B2O3/SiO2 ratio in the matrix. Journal of Power Sources 2011;196:4594-8. 

[88] Jin T, Lu K. Thermal stability of a new solid oxide fuel/electrolyzer cell seal glass. 

Journal of Power Sources 2010;195:195-203. 

[89] Mahapatra MK, Lu K. Interfacial study of Crofer 22 APU interconnect-SABS-0 seal 

glass for solid oxide fuel/electrolyzer cells. Journal of Materials Science 2009;44:5569-

78. 

[90] Lu K, Mahapatra MK. Network structure and thermal stability study of high 

temperature seal glass. Journal of Applied Physics 2008;104:074910. 

[91] Lin C-K, Chen J-Y, Tian J-W, Chiang L-K, Wu S-H. Joint strength of a solid oxide 

fuel cell glass–ceramic sealant with metallic interconnect. Journal of Power Sources 

2012;205:307-17. 

[92] Chang H-T, Lin C-K, Liu C-K. High-temperature mechanical properties of a glass 

sealant for solid oxide fuel cell. Journal of Power Sources 2009;189:1093-9. 

[93] Chang H-T, Lin C-K, Liu C-K. Effects of crystallization on the high-temperature 

mechanical properties of a glass sealant for solid oxide fuel cell. Journal of Power 

Sources 2010;195:3159-65. 



173 
 

[94] Hao J, Zan Q, Ai D, Ma J, Deng C, Xu J. Structure and high temperature physical 

properties of glass seal materials in solid oxide electrolysis cell. Journal of Power Sources 

2012;214:75-83. 

[95] Gödeke D, Dahlmann U. Study on the crystallization behaviour and thermal stability 

of glass-ceramics used as solid oxide fuel cell-sealing materials. Journal of Power 

Sources 2011;196:9046-50. 

[96] Wang S-F, Lu C-M, Wu Y-C, Yang Y-C, Chiu T-W. La2O3–Al2O3–B2O3–SiO2 

glasses for solid oxide fuel cell applications. International Journal of Hydrogen Energy 

2011;36:3666-72. 

[97] Sun T, Xiao H, Guo W, Hong X. Effect of Al2O3 content on BaO–Al2O3–B2O3–SiO2 

glass sealant for solid oxide fuel cell. Ceramics International 2010;36:821-6. 

[98] Wang S-F, Wang Y-R, Hsu Y-F, Chuang C-C. Effect of additives on the thermal 

properties and sealing characteristic of BaO-Al2O3-B2O3-SiO2 glass-ceramic for solid 

oxide fuel cell application. International Journal of Hydrogen Energy 2009;34:8235-44. 

[99] Widgeon SJ, Corral EL, Spilde MN, Loehman RE. Glass-to-Metal Seal Interfacial 

Analysis using Electron Probe Microscopy for Reliable Solid Oxide Fuel Cells. Journal 

of the American Ceramic Society 2009;92:781-6. 

[100] Laorodphan N, Namwong P, Thiemsorn W, Jaimasith M, Wannagon A, 

Chairuangsri T. A low silica, barium borate glass–ceramic for use as seals in planar 

SOFCs. Journal of Non-Crystalline Solids 2009;355:38-44. 

[101] Lee S, Mysen B, Cody G. Chemical order in mixed-cation silicate glasses and 

melts. Physical Review B 2003;68:214206. 

[102] Kharton VV, Naumovich EN, Vecher AA. Research on the electrochemistry of 

oxygen ion conductors in the former soviet union. I ZrO2-based ceramic materials. 

Journal of Solid State Electrochemistry 1999;3:61-81. 

[103] Zhang T, Brow RK, Fahrenholtz WG, Reis ST. Chromate formation at the interface 

between a solid oxide fuel cell sealing glass and interconnect alloy. Journal of Power 

Sources 2012;205:301-6. 

[104] Zhang T, Fahrenholtz WG, Reis ST, Brow RK. Borate Volatility from SOFC 

Sealing Glasses. Journal of the American Ceramic Society 2008;91:2564-9. 



174 
 

[105] Zhang T, Zhang H, Li G, Yung H. Reduction of chromate formation at the interface 

of solid oxide fuel cells by different additives. Journal of Power Sources 2010;195:6795-

7. 

[106] Choi SR, Bansal NP, Garg A. Mechanical and microstructural characterization of 

boron nitride nanotubes-reinforced SOFC seal glass composite. Materials Science and 

Engineering: A 2007;460-461:509-15. 

[107] Zhao Y, Malzbender J, Gross SM. The effect of room temperature and high 

temperature exposure on the elastic modulus, hardness and fracture toughness of glass 

ceramic sealants for solid oxide fuel cells. Journal of the European Ceramic Society 

2011;31:541-8. 

[108] Mahapatra MK, Lu K, Bodnar RJ. Network structure and thermal property of a 

novel high temperature seal glass. Applied Physics A 2008;95:493-500. 

[109] Chang CYS, Wei WCJ, Hsueh CH. Viscosity of Ba–B–Si–Al–O glass measured by 

indentation creep test at operating temperature of IT-SOFC. Journal of Non-Crystalline 

Solids 2011;357:1414-9. 

[110] Ojha PK, Chongdar TK, Gokhale NM, Kulkarni AR. Investigation of 

crystallization kinetic of SrO–La2O3–Al2O3–B2O3–SiO2 glass and its suitability for SOFC 

sealant. International Journal of Hydrogen Energy 2011;36:14996-5001. 

[111] Mahapatra MK, Lu K, Liu X, Wu J. Compatibility of a seal glass with (Mn,Co)3O4 

coated interconnects: Effect of atmosphere. International Journal of Hydrogen Energy 

2010;35:7945-56. 

[112] Peng L, Zhu Q. Thermal cycle stability of BaO–B2O3–SiO2 sealing glass. Journal 

of Power Sources 2009;194:880-5. 

[113] Brown GE, Gibbs GV. Stereochemistry and ordering in the tetrahedral portion of 

silicates. American Mineralogist 1970;55:1587-607. 

[114] Chou Y-S, Stevenson JW, Singh P. Novel refractory alkaline earth silicate sealing 

glasses for planar solid oxide fuel cells. Journal of The Electrochemical Society 

2007;154:B644. 

[115] Zhang T, Brow RK, Reis ST, Ray CS. Isothermal crystallization of a solid oxide 

fuel cell sealing glass by differential thermal analysis. Journal of the American Ceramic 

Society 2008;91:3235-9. 



175 
 

[116] Volf MB. Glass science and technology. Amsrerdam: Elsevier; 1984. 

[117] Goel A, Tulyaganov DU, Kharton VV, Yaremchenko AA, Ferreira JMF. Electrical 

behavior of aluminosilicate glass-ceramic sealants and their interaction with metallic 

solid oxide fuel cell interconnects. Journal of Power Sources 2010;195:522-6. 

[118] Batfalsky P, Haanappel VAC, Malzbender J, Menzler NH, Shemet V, Vinke IC, et 

al. Chemical interaction between glass–ceramic sealants and interconnect steels in SOFC 

stacks. Journal of Power Sources 2006;155:128-37. 

[119] Story C, Lu K, Reynoldsjr W, Brown D. Shape memory alloy/glass composite seal 

for solid oxide electrolyzer and fuel cells. International Journal of Hydrogen Energy 

2008;33:3970-5. 

[120] Scholze H. Ver: Dtsch Kerom Ges, 1962;391:63. 

[121] Pascual MJ, Duran A, Prado MO. A new method for determining fixed viscosity 

points of glasses. Physical Chemistry Glasses 2005;46:512-21. 

[122] Waloddi A W, Stockholm S. A stastical distrubution function of wide applicability. 

Journal of appled Mechanics 1951;18:293-9. 

[123] Larson AC, Dreele VRB. GSAS: General Structure Analysis System LANSCE, 

MS-H805;. Los Alamos National Laboratory,  Los Alamos, NM, 1998. 

[124] Toby BH. EXPGUI, a graphical user interface for GSAS. Journal of Applied 

Crystalography 2001;34:210-3. 

[125] Crofer 22 APU, Material data sheet no. 4046, December 2006, Thyssen Krupp 

VDM, Germany. 

[126] Sanergy HT, Material data sheet, Sandvik Materials Technology, Sandvik, Sweden. 

[127] Kharton V, Marques F, Atkinson A. Transport properties of solid oxide electrolyte 

ceramics: a brief review. Solid State Ionics 2004;174:135-49. 

[128] Pascual MJ, Kharton VV, Tsipis E, Yaremchenko AA, Lara C, Durán A, et al. 

Transport properties of sealants for high-temperature electrochemical applications: RO–

BaO–SiO2 (R=Mg, Zn) glass–ceramics. Journal of the European Ceramic Society 

2006;26:3315-24. 

[129] Chase MW. NIST-JANAF thermochemical tables, fourth edition. Journal of 

Physical Chemistry Reference Data 1998:1–1951. 



176 
 

[130] Goel A, Tulyaganov DU, Agathopoulos S, Ribeiro MJ, Basu RN, Ferreira JMF. 

Diopside–Ca-Tschermak clinopyroxene based glass–ceramics processed via sintering and 

crystallization of glass powder compacts. Journal of the European Ceramic Society 

2007;27:2325-31. 

[131] Goel A, Tulyaganov DU, Kharton VV, Yaremchenko AA, Ferreira JMF. The effect 

of Cr2O3 addition on crystallization and properties of La2O3-containing diopside glass-

ceramics. Acta Materialia 2008;56:3065-76. 

[132] Goel A, Ferrari AM, Kansal I, Pascual MJ, Barbieri L, Bondioli F, et al. Sintering 

and crystallization behavior of CaMgSi2O6–NaFeSi2O6 based glass-ceramics. Journal of 

Applied Physics 2009;106:093502. 

[133] Goel A, Tulyaganov DU, Goel IK, Shaaban ER, Ferreira JMF. Effect of BaO on 

the crystallization kinetics of glasses along the Diopside–Ca-Tschermak join. Journal of 

Non-Crystalline Solids 2009;355:193-202. 

[134] Goel A, Tulyaganov DU, Kharton VV, Yaremchenko AA, Eriksson S, Ferreira 

JMF. Optimization of La2O3-containing diopside based glass-ceramic sealants for fuel 

cell applications. Journal of Power Sources 2009;189:1032-43. 

[135] Goel A, Tulyaganov DU, Pascual MJ, Shaaban ER, Muñoz F, Lü Z, et al. 

Development and performance of diopside based glass-ceramic sealants for solid oxide 

fuel cells. Journal of Non-Crystalline Solids 2010;356:1070-80. 

[136] Goel A, Tulyaganov DU, Ferrari AM, Shaaban ER, Prange A, Bondioli F, et al. 

Structure, Sintering, and Crystallization Kinetics of Alkaline-Earth Aluminosilicate 

Glass-Ceramic Sealants for Solid Oxide Fuel Cells. Journal of the American Ceramic 

Society 2010;93:830-7. 

[137] Goel A, Pascual MJ, Ferreira JMF. Stable glass-ceramic sealants for solid oxide 

fuel cells: Influence of Bi2O3 doping. International Journal of Hydrogen Energy 

2010;35:6911-23. 

[138] Goel A, Reddy AA, Pascual MJ, Gremillard L, Malchere A, Ferreira JMF. 

Sintering behavior of lanthanide-containing glass-ceramic sealants for solid oxide fuel 

cells. Journal of Materials Chemistry 2012;22:10042. 



177 
 

[139] Kerstan M, Rüssel C. Barium silicates as high thermal expansion seals for solid 

oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD). Journal of 

Power Sources 2011;196:7578-84. 

[140] Buesser B, Gröhn A, Pratsinis S. Sintering Rate and Mechanism of TiO2 

Nanoparticles by Molecular Dynamics. The journal of physical chemistry C, 

Nanomaterials and interfaces 2011;115:11030-5. 

[141] Xu J, Sakanoi R, Higuchi Y, Ozawa N, Sato K, Hashida T, et al. Molecular 

Dynamics Simulation of Ni Nanoparticles Sintering Process in Ni/YSZ Multi-

Nanoparticle System. The Journal of Physical Chemistry C 2013;117:9663-72. 

[142] Pascual MJ, Duran A, Pascual L. Sintering process of glasses in the system Na2O-

B2O3-SiO2. Journal of Non-Crystalline Solids 2002;306:58-69. 

[143] Lara C, Pascual MJ, Durán A. Glass-forming ability, sinterability and thermal 

properties in the systems RO–BaO–SiO2 (R=Mg, Zn). Journal of Non-Crystalline Solids 

2004;348:149-55. 

[144] Mahapatra MK, Lu K. Sealing Evaluation of an Alkaline Earth Silicate Glass for 

Solid Oxide Fuel/Electrolyser Cells. Fuel Cells 2011;11:436-44. 

[145] Xiang Y, Du J. Effect of Strontium Substitution on the Structure of 45S5 

Bioglasses. Chemistry of Materials 2011;23:2703-17. 

[146] Marcio LFN, Cristina A. Viscosity of strong and fragile glass-forming liquids 

investigated by means of principal component analysis. Journal of Physics and Chemistry 

of Solids 2007;68:104-10. 

[147] Fujikura K, Karpukhina N, Kasuga T, Brauer DS, Hill RG, Law RV. Influence of 

strontium substitution on structure and crystallisation of Bioglass® 45S5. Journal of 

Materials Chemistry 2012;22:7395. 

[148] O’Donnell MD, Candarlioglu PL, Miller CA, Gentleman E, Stevens MM. Materials 

characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for 

bone regeneration. Journal of Materials Chemistry 2010;20:8934. 

[149] Reinsch S, Nascimento MLF, Müller R, Zanotto ED. Crystal growth kinetics in 

cordierite and diopside glasses in wide temperature ranges. Journal of Non-Crystalline 

Solids 2008;354:5386-94. 



178 
 

[150] Chou Y-S, Stevenson JW, Gow RN. Novel alkaline earth silicate sealing glass for 

SOFC. Journal of Power Sources 2007;170:395-400. 

[151] Young RA. Introduction to the Rietveld method. In: R. A. Young, editor. The 

Rietveld method. International Union of Crystallography Monographs on 

Crystallography. Oxford: Oxford University Press 1993;5:1–39. 

[152] Malzbender J, Zhao Y. Flexural Strength and Viscosity of Glass Ceramic Sealants 

for Solid Oxide Fuel Cell Stacks. Fuel Cells 2012;12:47-53. 

[153] Shaula AL, Kharton VV, Marques FMB, Kovalevsky AV, Viskup AP, Naumovich 

EN. Oxygen permeability of mixed-conducting composite membranes: effects of phase 

interaction. Journal of Solid State Electrochemistry 2005;10:28-40. 

[154] Reddy A, Tulyaganov D, Pascual M, Kharton V, Tsipis EV, Kolotygin V, et al. 

SrO-Containing diopside glass-ceramic sealants for solid oxide fuel cells: mechanical 

reliability and thermal shock resistance. Fuel Cells 2013;13:689–94. 

[155] Reddy AA, Tulyaganov DU, Pascual MJ, Kharton VV, Tsipis EV, Kolotygin VA, 

et al. Diopside–Ba disilicate glass–ceramic sealants for SOFCs: Enhanced adhesion and 

thermal stability by Sr for Ca substitution. International Journal of Hydrogen Energy 

2013;38:3073-86. 

[156] Lotfibakhshaiesh N, Brauer DS, Hill RG. Bioactive glass engineered coatings for 

Ti6Al4V alloys: Influence of strontium substitution for calcium on sintering behaviour. 

Journal of Non-Crystalline Solids 2010;356:2583-90. 

[157] Reddy AA, Tulyaganov DU, Kapoor S, Goel A, Pascual MJ, Kharton VV, et al. 

Study of melilite based glasses and glass-ceramics nucleated by Bi2O3 for functional 

applications. RSC Advances 2012;2:10955. 

[158] Oliveira J, Corria R, Fernandes M, Rocha J. Influence of the CaO/MgO ratio on the 

structure of phase separated glasses: a solid state 29Si and 31P MAS NMR study. Journal 

of Non-Crystalline Solids 2000;265:221-9. 

[159] James B. Murdoch, Stebbins JF. High-resolution 29Si NMR study of silicate and 

aluminosilicate glasses: the effect of network-modifying cations. American Mineralogist 

1985;70:332-43. 

[160] Lee SK, Yi YS, Cody GD, Mibe K, Fei Y, Mysen BO. Effect of Network 

Polymerization on the Pressure-Induced Structural Changes in Sodium Aluminosilicate 



179 
 

Glasses and Melts:27Al and17O Solid-State NMR Study. The Journal of Physical 

Chemistry C 2012;116:2183-91. 

[161] Hill RG, Stamboulis A, Law RV, Clifford A, Towler MR, Crowley C. The 

influence of strontium substitution in fluorapatite glasses and glass-ceramics. Journal of 

Non-Crystalline Solids 2004;336:223-9. 

[162] M. O. Prado, E. B. Ferreira, E. D. Zanotto. Sintering Kinetics of Crystallizing Glass 

Particles. A Review  Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2006. 

[163] Reddy AA, Tulyaganov DU, Goel A, Kapoor S, Pascual MJ, Ferreira JMF. 

Sintering and devitrification of glass-powder compacts in the akermanite–gehlenite 

system. Journal of Materials Science 2013;48:4128-36. 

[164] Gillot J, Roskosz M, Leroux H, Capet F, Roussel P. Crystallization of amorphous 

silicates far from equilibrium part II: Experimental insight into the key role of decoupled 

cation mobilities. Journal of Non-Crystalline Solids 2011;357:3467-73. 

[165] Benna P. Ca-Sr Substitution in Clinopyroxenes Along the Join CaMgSi2O6 -

SrMgSi2O6. TMPM Tschermaks Mineralogische und Petrographische 1982;30:37-46. 

[166] Nakamura E, Kushiro I. Trace element diffusion in jadeite and diopside melts at 

high pressures and its geochemical implication. Geochimica et Cosmochimica Acta 

1998;62:3151-60. 

[167] Lee SK, Stebbins JF. The Structure of Aluminosilicate Glasses:  High-Resolution 
17O and 27Al MAS and 3QMAS NMR Study. The Journal of physical Chemistry B 

2000;104:4091-100. 

[168] Lin C, Lin K, Yeh J-H, Shiu W-H, Liu C-K, Lee R-Y. Aging effects on high-

temperature creep properties of a solid oxide fuel cell glass-ceramic sealant. journal of 

Power Sources 2013;241:12-9. 

[169] Ojha PK, Chongdar TK, Gokhale NM, Kulkarni AR. Accelerated devitrification of 

a strontiumlanthanumaluminoborosilicate based intermediate temperature solid oxide fuel 

cell glass sealant and its effect on thermophysical behaviour of the glass ceramics. 

Journal of Power Sources 2013;221:28-34. 

[170] Carl WFTPu, Pistorius M. Lattice constants and thermal-expansion properties of 

the chromates and selenates of lead, strontium and barium. Z Kristallogr 1962;117:259-

72. 



180 
 

[171] Goel A, Tulyaganov DU, Agathopoulos S, Ferreira JMF. The effect of Al2O3 on 

sintering and crystallization of MgSiO3-based glass-powder compacts. Ceramics 

International 2008;34:505-10. 

[172] Makishima A, Kobayashi M, Shimohira T, Nagata T. Formation of aluminosilicate 

glasses containing rare-earth oxides. Journal of American Ceramic Society 

1982;65:C210-C1. 

[173] Loiseau P, Caurant D, Baffier N, Mazerolles L, Fillet C. Glass–ceramic nuclear 

waste forms obtained from SiO2–Al2O3–CaO–ZrO2–TiO2 glasses containing lanthanides 

(Ce, Nd, Eu, Gd, Yb) and actinides (Th): study of internal crystallization. Journal of 

Nuclear Materials 2004;335:14-32. 

[174] Shelby J, Kohli J. Rare-Earth Aluminosilicate Glasses. Journal of American 

Ceramic Society 1990;73:39-42. 

[175] Mi-tang W, Jin-shu C. Viscosity and thermal expansion of rare earth containing 

soda–lime–silicate glass. Journal of Alloys and Compounds 2010;504:273-6. 

[176] Marchi J, Morais DS, Schneider J, Bressiani JC, Bressiani AHA. Characterization 

of rare earth aluminosilicate glasses. Journal of Non-Crystalline Solids 2005;351:863-8. 

[177] Steimacher A, Barboza MJ, Farias AM, Sakai OA, Rohling JH, Bento AC, et al. 

Preparation of Nd2O3-doped calcium aluminosilicate glasses and thermo-optical and 

mechanical characterization. Journal of Non-Crystalline Solids 2008;354:4749-54. 

[178] Iftekhar S, Leonova E, Edén M. Structural characterization of lanthanum 

aluminosilicate glasses by 29Si solid-state NMR. Journal of Non-Crystalline Solids 

2009;355:2165-74. 

[179] Bonamartini Corradi A, Cannillo V, Montorsi M, Siligardi C, Cormack AN. 

Structural characterization of neodymium containing glasses by molecular dynamics 

simulation. Journal of Non-Crystalline Solids 2005;351:1185-91. 

[180] McGahay V, Tomozawa M. Phase separation in rare-earth-doped SiO2 glasses. 

Journal of Non-Crystalline Solids 1993;159:246-52. 

[181] Goel A, Tulyaganov DU, Agathopoulos S, Ribeiro MJ, Ferreira JMF. 

Crystallization behaviour, structure and properties of sintered glasses in the diopside–Ca-

Tschermak system. Journal of the European Ceramic Society 2007;27:3231-8. 



181 
 

[182] Lara C, Pascual M, Duran A. Glass-forming ability, sinterability and thermal 

properties in the system RO-BaO-SiO2 (R = Mg, Zn). Journal of Non-Crystalline Solids 

2004;348:149-55. 

[183] Huczkowski P, Shemet V, Piron-Abellan J, Singheiser L, Quadakkers WJ, 

Christiansen N. Oxidation limited life times of chromia forming ferritic steels. Materials 

and Corrosion 2004;55:825-30. 

[184] Prado M, Zanotto E, Muller R. Model for sintering polydispersed glass particles. 

Journal of Non-Crystalline Solids 2001;279:169-78. 

[185] Mackenzie J, Shuttleworth R. A phenomenological theory of sintering. Proceedings 

of the Physical Society Section B 1949;62:833. 

[186] Martel L, Allix M, Millot F, Sarou-Kanian V, Véron E, Ory S, et al. Controlling the 

size of nanodomains in calcium aluminosilicate glasses. The Journal of Physical 

Chemistry C 2011;115:18935-45. 

[187] De Vekey R, Majumdar A. The effect of fabrication variables on the properties of 

cordierite based glass-ceramics. Glass tech 1974;15:71-80. 

[188] Stebbins J, Oglesby J, Kroeker S. Oxygen triclusters in crystalline CaAl4O7 

(grossite) and in calcium aluminosilicate glasses: 17O NMR. American Mineralogist 

2001;86:1307-11. 

[189] Rodrı́guez JL, Baudı́n C, Pena P. Relationships between phase constitution and 

mechanical behaviour in MgO–CaZrO3–calcium silicate materials. Journal of the 

European Ceramic Society 2004;24:669-79. 

[190] Schneider j, Mastelaro V, Panepucci H, Zanotto E. 29Si MAS-NMR studies of Qn 

structural units in metasilicate glasses and their nucleating ability. Journal of Non-

Crystalline Solids 2000;273:8-18. 

[191] Quintas A, Caurant D, Majérus O, Charpentier T, Dussossoy JL. Effect of 

compositional variations on charge compensation of AlO4 and BO4 entities and on 

crystallization tendency of a rare-earth-rich aluminoborosilicate glass. Materials Research 

Bulletin 2009;44:1895-8. 

[192] Sohn S-B, Choi S-Y, Kim G-H, Song H-S, Kim G-D. Suitable glass-ceramic 

sealant for planar solid-oxide fuel cells. Journal of American Ceramic Society 

2004;87:254-60. 



182 
 

[193] Kolitsch U, Seifert HJ, Aldinger F. Phase relationships in the systems RE2O3-

Al2O3-SiO2. Journal of Phase Equilibria 1998;19:426-33. 

[194] Orman JAV, Grove TL, Shimizu N. Rare-earth element diffusion in diopside: 

influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in 

silicates. Contributions to Mineralogy and Petrology 2001;141:687-703. 

[195] Gatto Rotondo G. Micro-Raman and SEM Analysis of Minerals from the Darhib 

Mine, Egypt. Journal of Analytical Sciences, Methods and Instrumentation 2012;02:42-7. 

[196] Sherriff BL, Grundy HD, Hartman JP. The relationship between 29Si MAS NMR 

chemical shift and silicate mineral structure. European Journal of Mineralogy 

1991;3:751-68. 

[197] Xue X, Kanzaki M. Al coordination and water speciation in hydrous 

aluminosilicate glasses: direct evidence from high-resolution heteronuclear 1H-27Al 

correlation NMR. Solid State Nuclear Magnetic Resononance 2007;31:10-27. 

[198] Stamboulis A, Matsuya S, Hill RG, Law RV, Udoh K, Nakagawa M, et al. MAS-

NMR spectroscopy studies in the setting reaction of glass ionomer cements. Journal of 

dentistry 2006;34:574-81. 

[199] Weber R, Sen S, Youngman R, Hart R, Benmore C. Structure of high alumina 

content Al2O3-SiO2 composition glasses. Journal of Physical chemistry B 

2008;112:16726-33. 

[200] Karamanov A, Arrizza L, Matekovits I, Pelino M. Properties of sintered glass-

ceramics in the diopside–albite system. Ceramics International 2004;30:2129-35. 

[201] Mahapatra MK, Lu K. Seal glass compatibility with bare and (Mn,Co)3O4 coated 

Crofer 22 APU alloy in different atmospheres. Journal of Power Sources 2011;196:700-8. 

[202] Ghaffari M, Alizadeh P, Rahimipour MR. Sintering behavior and mechanical 

properties of mica-diopside glass–ceramic composites reinforced by nano and micro-

sized zirconia particles. Journal of Non-Crystalline Solids 2012;358:3304-11. 

[203] Reddy AA, Goel A, Tulyaganov DU, Sardo M, Mafra L, Pascual MJ, et al. 

Thermal and mechanical stability of lanthanide-containing glass–ceramic sealants for 

solid oxide fuel cells. Journal of Materials Chemistry A 2014;2:1834. 



183 
 

[204] Richet P, Mysen BO, Ingrin J. High-temperature X-ray diffraction andRaman 

spectroscopy of diopside and pseudowollastonite. Physics and Chemistry of Minerals 

1998;25:401-14. 

[205] Reddy A, Goel A, Tulyaganov D, Kapoor S, Pradeesh K, Pascual M, et al. Study of 

calcium–magnesium–aluminum–silicate (CMAS) glass and glass-ceramic sealant for 

solid oxide fuel cells. Journal of Power Sources 2013;231:203-12. 

[206] Sorensen B, Sarraute S, Jorgensen O, Horsewell A. Thermally induced 

delamination of multilayers. Acta Materialia 1998;46:2603-15. 

 

 


	Binder1
	Modelo_tese_doutor_130 JMFF
	Final.pdf
	Modelo_tese_doutor_130 JMFF.pdf
	Content
	Thesis final Table1
	Figu
	LIST OF ABBREVIATIONS
	List of Publications
	Intro
	Document1
	Stat
	Experiment
	Result
	Document1
	4.1
	Document1
	4.2
	Document1
	4.3
	4.4
	4.5
	4.6
	Document1
	Concl
	Document1
	Future plan
	References


	Thesis final Table1
	Thesis final figure1
	Binder1
	Modelo_tese_doutor_130 JMFF
	Final.pdf
	Modelo_tese_doutor_130 JMFF.pdf
	Content
	Thesis final Table1
	Figu
	LIST OF ABBREVIATIONS
	List of Publications
	Intro
	Document1
	Stat
	Experiment
	Result
	Document1
	4.1
	Document1
	4.2
	Document1
	4.3
	4.4
	4.5
	4.6
	Document1
	Concl
	Document1
	Future plan
	References



