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Abstract. An operational approach introduced by Gould and Hopper
to the construction of generalized Hermite polynomials is followed in
the hypercomplex context to build multidimensional generalized Her-
mite polynomials by the consideration of an appropriate basic set of
monogenic polynomials. Directly related functions, like Chebyshev poly-
nomials of first and second kind are constructed.
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1 Introduction

Gould and Hopper [10] defined the generalized Hermite polynomials Hλ
k,m of

order m and parameter λ by the operational identity

Hλ
k,m(x) := eλ(

d
dx )mxk, x ∈ R. (1)

Multidimensional analogues can be defined in the hypercomplex context of gener-
alized holomorphic function theory by considering an appropriate hypercomplex
exponential operator and a basic set of polynomials that can replace xk. Gener-
alized holomorphic function theory (more frequently called monogenic function
theory) generalizes to higher dimensions the theory of holomorphic functions of
one complex variable by using Clifford algebras. One significant difference to
the complex case is that in higher dimensions the set of monogenic functions
is not closed with respect to the usual multiplication. This aspect lead us to
the essential question: how to replace xk? As the sequence (xk)k∈N is an Ap-
pell sequence with respect to the derivative operator D := d

dx involved in (1),
one can consider for this replacement a monogenic Appell sequence with respect
to the hypercomplex derivative operator (for the hypercomplex derivative of a
monogenic function, see [11], based on the previous work about hypercomplex
differentiability contained in [13]). In this work we consider the monogenic Ap-
pell sequence defined in [9, 15] that contains the usual real and complex powers
as particular cases.
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The multidimensional counterpart in hypercomplex function theory of the
usual exponential operator is defined through the monogenic exponential func-
tion considered in [9, 15] that is based naturally on the constructed Appell se-
quence. Those analytic tools allow us to follow the operational approach (1) to
the construction of Gould-Hopper polynomials in the context of hypercomplex
function theory. A similar operational approach was already considered in [5] to
obtain monogenic generalized Laguerre polynomials.

The paper is organized as follows: in Section 2 the necessary basic notions of
Clifford analysis are introduced briefly and in sections 3 and 4 we prepare the
operational approach to generalize Hermite polynomials based on the hypercom-
plex counterpart of (1), which is the subject of Section 5. Finally in Section 6,
we establish a natural link between the constructed Gould-Hopper polynomials
and the monogenic Chebyshev polynomials of first and second kinds.

2 Basic notions

Let {e1, e2, · · · , en} be an orthonormal basis of the Euclidean vector space Rn
with the non-commutative multiplication rule

ekel + elek = −2δkl, k, l = 1, · · · , n,

where δkl is the Kronecker symbol. The set {eA : A ⊆ {1, · · · , n}} with

eA = eh1
eh2
· · · ehr

, 1 ≤ h1 ≤ · · · ≤ hr ≤ n, e∅ = e0 = 1,

forms a basis of the 2n-dimensional Clifford algebra C`0,n over R. Let Rn+1 be
embedded in C`0,n by identifying (x0, x1, · · · , xn) ∈ Rn+1 with the algebra’s
element x = x0 + x ∈ A := spanR{1, e1, . . . , en} ⊂ C`0,n. The elements of A
are called paravectors and x0 = Sc(x) and x = Vec(x) = e1x1 + · · · + enxn
are the so-called scalar resp. vector part of the paravector x. The conjugate of
x is given by x̄ = x0 − x and the norm |x| of x is defined by |x|2 = xx̄ =
x̄x = x20 + x21 + · · ·+ x2n. We consider functions of the form f(z) =

∑
A fA(z)eA,

where fA(z) are real valued, i.e. C`0,n-valued functions defined in some open
subset Ω ⊂ Rn+1. Continuity and real differentiability of f in Ω are defined
componentwise. The generalized Cauchy-Riemann operator in Rn+1, n ≥ 1, is
defined by

∂ := ∂0 + ∂x,

where

∂0 :=
∂

∂x0
, ∂x := e1

∂

∂x1
+ · · ·+ en

∂

∂xn
.

The higher dimensional analogue to an holomorphic function is now a C1(Ω)-
function f satisfying the equation

∂f = 0 (resp.f∂ = 0)

and it is called left monogenic (resp. right monogenic).
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We suppose that f is hypercomplex differentiable in Ω in the sense of [11,
13], i.e. it has a uniquely defined areolar derivative f ′ in each point of Ω (see
also [14]). Then f is real differentiable and f ′ can be expressed by

f ′ =
1

2
∂,

where ∂ := ∂0 − ∂x is the conjugate Cauchy-Riemann operator. Since a hyper-

complex differentiable function belongs to the kernel of ∂, it follows that in fact
f ′ = ∂0f like in the complex case.

3 Basic homogeneous monogenic polynomial sequence

In this section, we consider a special set of monogenic basis functions defined
and studied in [8, 9, 15], namely functions of the form

Pkn(x) =

k∑
s=0

T ks (n)xk−s x̄s, (2)

where

T ks (n) =

(
k

s

)
(n+1

2 )(k−s)(
n−1
2 )(s)

(n)k
, (3)

and a(r) denotes the Pochhammer symbol, i.e. a(r) = Γ (a+r)
Γ (a) , for any integer

r > 1, and a(0) := 1.
We remark that Pn0 (x) = 1 and Pnk (0) = 0, k > 0, in consequence of the

homogeneity of these functions. Moreover, for each k ≥ 1, Pnk is a polynomial of
degree of homogeneity exactly k and under the additional (but natural) condition
Pkn(1) = 1, it holds (see [9])

1

2
∂Pkn = kPnk−1, k ≥ 1.

This means that (Pkn)k∈N is an Appell sequence.

Particular cases:

1. Consider x = 0. Taking into account that

k∑
s=0

T ks (n) = 1, we get Pkn(x) = xk0 ,

i.e., Pkn are the usual powers in the real variable x0, for each k=0,1,2,. . . .
Notice that this case can be formally included in the above definitions as the
case n = 0, with T k0 (0) = 1 and T ks (0) = 0, for 0 < s ≤ k.

2. Consider x0 = 0. Then we obtain the essential property, which characterizes
the difference to the complex case,

Pkn(x) = ck(n)xk, (4)
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where

ck(n) :=

k∑
s=0

(−1)sT ks (n) =


k!!(n− 2)!!

(n+ k − 1)!!
, if k is odd

ck−1(n), if k is even

(5)

and c0(n) = 1. As usual, we define (−1)!! = 0!! = 1.

Using equality (4), the binomial-type formula for this Appell sequence (see
[5]) can be written as

Pnk (x) =

k∑
s=0

(
k

s

)
xk−s0 Pns (x)

=

k∑
s=0

(
k

s

)
cs(n)xk−s0 xs. (6)

From the above representation, we can easily compute the first polynomials:

Pn0 (x) = 1 Pn1 (x) = x0 +
1

n
x

Pn2 (x) = x20 +
2

n
x0x+

1

n
x2 Pn3 (x) = x30 +

3

n
x20x+

3

n
x0x

2 +
3

n(n+ 2)
x3.

We observe that in the complex case (n = 1), the polynomials P1
k coincide, as

expected, with the usual powers zk. In fact, from (5), we get ck(1) = 1, for all
k. Then, the binomial-type formula (6) permits to state that

P1
k(x) =

k∑
s=0

(
k

s

)
xk−s0 xs = (x0 + e1x1)

k ' zk.

We remark that the study of Appell sequences in the hypercomplex context
started in [9, 15] and it has been object of interest in recent years ([1, 6, 12]) for
different purposes.

4 Monogenic exponential function

The existence of a generalized holomorphic exponential function was from the be-
ginning on in Clifford analysis a principal question. The first attempts towards a
meaningful definition of an exponential function in the context of Clifford analy-
sis have been [2, 17] and both papers rely on the Cauchy-Kowalevskaya extension
approach (see also [4]), starting from the exponential function with imaginary
argument and asking for a monogenic function which restriction to the real axis
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equals to the exponential function with real argument. Another possibility, mo-
tivated by the fact that hypercomplex differentiability is granted for monogenic
functions, is to use the hypercomplex derivative of a monogenic function. This
approach was followed in [6, 9, 15] to define a monogenic exponential function f
as a solution of the simple first order differential equation f ′ = f , with f(0) = 1,
where f ′ stands for the hypercomplex derivative of f . The combination of this
approach with the constructed Appell sequence (Pkn)k∈N leads to the monogenic
exponential function in Rn+1 defined by

Expn(x) =

∞∑
k=0

Pkn(x)

k!
. (7)

Considering ω(x) :=
x

|x|
with ω2 = −1 as the equivalent for the imaginary

unit i, a closed formula for the monogenic exponential (7) in terms of Bessel
functions of integer or half-integer orders (depending on the dimension n) was
given in [9]:

Theorem 1. The Expn-function can be written in terms of Bessel functions of
the first kind, Ja(x), for orders a = n

2 − 1, n2 as

Expn(x0 + x) = ex0Γ (
n

2
)

(
2

|x|

)n
2−1 (

Jn
2−1(|x|) + ω(x)Jn

2
(|x|)

)
.

Let U1 and U2 be (right) linear modules over C`0,n and T̂ : U1 → U2 be a
hypercomplex (right) linear operator. The exponential function in Rn+1 defined
above permits to consider the exponential (right) operator

Expn(λT̂ ) =

∞∑
k=0

Pkn(T̂ )

k!
λk, λ ∈ R (8)

as a multidimensional counterpart in hypercomplex function theory of the usual

exponential operator eλQ =
∑∞
k=0

Qk

k! λ
k.

5 Monogenic generalized Hermite polynomials

We consider the exponential operator Expn(λ
(
1
2∂
)m

) applied to the Appell se-
quence (Pkn(x))k≥0 as a counterpart of Gould-Hoppers’ operational approach

(1) to define the hypercomplex generalized Hermite polynomials H
(λ)
k,m of integer

order m and real parameter λ as

H
(λ)
k,m(x) := Expn

(
λ

(
1

2
∂

)m)
(Pkn(x))

=

∞∑
r=0

1

r!
Prn

(
λ

(
1

2
∂

)m)
Pkn(x)

=

∞∑
r=0

1

r!

λr

2rm
Prn(∂m)Pkn(x). (9)
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Notice that

∂m = (∂0 − ∂x)m

=

m∑
j=0

(
m

j

)
∂m−j0 (−∂x)j

=

[m2 ]∑
i=0

(
m

2i

)
∂m−2i0 (−∂x)2i +

[m−1
2 ]∑
i=0

(
m

2i+ 1

)
∂m−2i−10 (−∂x)2i+1,

the latter being splitted into a sum of scalar operators and a sum of vectorial

operators, since −∂2x = ∆x, where ∆x = ∂2

∂x2
1

+ . . .+ ∂2

∂x2
n

is the Laplace operator

in Rn.
Then, for each r ≥ 0, the equality (6) gives

Prn(∂m)Pkn(x) =

r∑
s=0

(
r

s

)
cs(n)

 [m2 ]∑
i=0

(
m

2i

)
∂m−2i0 (−∂x)2i

r−s

×

[m−1
2 ]∑
i=0

(
m

2i+ 1

)
∂m−2i−10 (−∂x)2i+1

s

Pkn(x).

Since Pk (k = 0, 1, 2, . . .) are monogenic, then −∂xPkn(x) = ∂0Pkn(x) and we
can replace −∂x by ∂0 in the right-hand side of the above equality. For each
r ≥ 0, this procedure leads to

Prn(∂m)Pkn(x) =

r∑
s=0

(
r

s

)
cs(n)

 [m2 ]∑
i=0

(
m

2i

)r−s

×

[m−1
2 ]∑
i=0

(
m

2i+ 1

)s

∂mr0 Pk
n(x)

=

r∑
s=0

(
r

s

)
cs(n)2r(m−1)∂mr0 Pk

n(x),

where the latter equality is coming from the known properties of the Pascal’s
triangle,

[m2 ]∑
i=0

(
m

2i

)
=

[m−1
2 ]∑
i=0

(
m

2i+ 1

)
= 2m−1.

Observing that the monogenic sequence (Pkn)k≥0 is Appell, it follows that

∂mr0 Pk
n(x) =

k!

(k −mr)!
Pnk−mr(x), r ≤ [k/m]
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and therefore, for each 0 ≤ r ≤ [k/m], we obtain

Prn(∂m)Pkn(x) =

r∑
s=0

(
r

s

)
cs(n)2r(m−1)

k!

(k −mr)!
Pnk−mr(x).

Then, for each k ≥ 0, substituting this expression in (9), we obtain the monogenic
generalized Hermite polynomials given by

H
(λ)
k,m(x) =

[k/m]∑
r=0

1

r!

k!

(k −mr)!
λr

2r
γr(n)Pnk−mr(x), (10)

where γr(n) =

r∑
s=0

(
r

s

)
cs(n) is the binomial transform of the sequence (cs)s≥0

with inverse cr(n) =

r∑
s=0

(
r

s

)
(−1)r−sγs(n) (see, e.g.[16]).

The constant polynomial H
(λ)
0,m(x) ≡ 1 (for any m,λ) is included in a natural

way in (10), since γ0(n) = 1 and Pn0 (x) ≡ 1, independently of the dimension n.

Special cases:

1. Real case (n = 0)

Recalling that cs(0) = 1 (s = 0, 1, 2, . . .), it follows γr(0) =

r∑
s=0

(
r

s

)
= 2r.

Taking into account also that P0
k(x) = xk0 , from (10) we obtain the known gen-

eralized Hermite polynomials or Gould-Hopper polynomials in the real variable
x0,

H
(λ)
k,m(x) =

[k/m]∑
r=0

1

r!

k!

(k −mr)!
λrxk−mr0 .

2. Complex case (n = 1)
For the case n = 1, the polynomials P1

k are isomorphic to the complex powers
zk (k = 0, 1, 2, . . .) and cs(1) = 1, for arbitrary s. Therefore γr(1) = 2r and (10)
is written now as

H
(λ)
k,m(x) ∼=

[k/m]∑
r=0

1

r!

k!

(k −mr)!
λr zk−mr.

3. The special choices of m = 2 and λ = − 1
2 in (10) lead to

Hn
k (x) := H

(−1/2)
k,2 (x) =

[k/2]∑
r=0

(−1)r
1

r!

k!

(k − 2r)!

1

4r
γr(n)Pnk−2r(x) (11)
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which corresponds to the generalization for the hypercomplex case of the well-
known Hermite polynomials defined on the real line. In fact, if x ≡ 0 (or n = 0)
then P0

k−2r(x) = xk−2r0 , γr(0) = 1,∀r and (11) has the form

H0
k(x) = H

(−1/2)
k,2 (x) =

[k/2]∑
r=0

(−1)r
1

r!

1

2r
k!

(k − 2r)!
xk−2r0 .

4. The choices m = 2 and λ = −1 in (10) as well as the consideration of the
variable 2x instead of x give the polynomials

H
(−1)
k,2 (2x) =

[k/2]∑
r=0

(−1)r
1

r!

k!

(k − 2r)!

1

2r
γr(n)Pnk−2r(2x), (12)

that for the particular case of n = 0 (real case) coincides with the ordinary
Hermite polynomials used frequently in physics and related to the Gaussian
function e−x

2
0 .

The first hypercomplex Hermite polynomials (11) are given by

Hn
0 (x) = 1

Hn
1 (x) = Pn1 (x)

= x0 +
1

n
x

Hn
2 (x) = Pn2 (x)− 1

2
(1 +

1

n
)

= x20 +
2

n
x0x+

1

n
x2 − 1

2
(1 +

1

n
)

Hn
3 (x) = Pn3 (x)− 3

2
(1 +

1

n
)Pn1

= x30 +
3

n
x20x+

3

n
x0x

2 +
3

n(n+ 2)
x3 − 3

2
(1 +

1

n
)

(
x0 +

1

n
x

)
.

It is easy to show that analogously to the classical case also the hypercomplex
Hermite polynomials form an Appell sequence, i.e.,

1

2
∂Hn

k (x) = kHn
k−1(x), k ≥ 1,

and, therefore, they satisfy the binomial-type theorem

Hn
k (x) = Hn

k (x0 + x) =

k∑
r=0

(
k

r

)
xr0 H

n
k−r(x).
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6 Monogenic Chebyshev polynomials of first and second
kinds

On the real line, the well-known Chebyshev polynomials of first kind Tk and
second kind Uk can be explicitly defined by

Tk(x) =
k

2

[k/2]∑
r=0

(−1)r
(k − 1− r)!
r!(k − 1− 2r)!

(2x)k−2r

and

Uk(x) =

[k/2]∑
r=0

(−1)r
(k − r)!
r!(k − 2r)!

(2x)k−2r.

An interesting link between these polynomials and the Gould-Hopper polyno-
mials was made in [7] using the integral representation of k! provided by the
Gamma function i.e., k! =

∫∞
0
e−t tk dt. We can follow an analogous procedure

to construct the hypercomplex analogues of the Chebyshev polynomials by con-
sidering the monogenic generalized Hermite polynomials (10) with the choice of
the parameters m = 2 and λ = − 1

t (t > 0) and considering the variable 2x
instead of x,

H
(−1/t)
k,2 (2x) =

[k/2]∑
r=0

(−1)r
k!

r!(k − 2r)!

1

tr 2r
γr(n)Pnk−2r(2x).

Multiplying each summand by e−t tk (t ∈ R+) and integrating, we get∫ ∞
0

e−t tkH
(−1/t)
k,2 (2x) dt=

[k/2]∑
r=0

(−1)r
k!

r!(k − 2r)!

∫ ∞
0

e−t tk−r dt
1

2r
γr(n)Pnk−2r(2x)

=

[k/2]∑
r=0

(−1)r
k!(k − r)!
r!(k − 2r)!

1

2r
γr(n)Pnk−2r(2x).

The monogenic Chebyshev polynomials of second kind can be defined as

Unk (x) :=
1

k!

∫ ∞
0

e−t tkH
(−1/t)
k,2 (2x) dt

=

[k/2]∑
r=0

(−1)r
(k − r)!
r!(k − 2r)!

1

2r
γr(n)Pnk−2r(2x),

For the cases n = 0 and n = 1 we obtain the Chebyshev polynomials of second
kind in the real and complex variables, respectively, as particular cases of Unk
(k = 0, 1, 2, . . .).

The monogenic Chebyshev polynomials of first kind can be obtained from the
generalized Hermite polynomials (10) for the same choices of the parameters m
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and λ and the same scaled variable 2x. Now, we consider the equality (k− 1)! =∫∞
0
e−t tk−1 dt and in analogous way, we get∫ ∞
0

e−t tk−1H
(−1/t)
k,2 (2x) dt=k!

[k/2]∑
r=0

(−1)r
(k − 1− r)!
r!(k − 2r)!

1

2r
γr(n)Pnk−2r(2x).

Defining the monogenic Chebyshev polynomials of first kind by

Tnk (x) :=
1

2(k − 1)!

∫ ∞
0

e−t tk−1H
(−1/t)
k,2 (2x) dt

=
k

2

[k/2]∑
r=0

(−1)r
(k − 1− r)!
r!(k − 2r)!

1

2r
γr(n)Pnk−2r(2x), k = 1, 2, . . .

we obtain the Chebyshev polynomials of first kind in the real and complex vari-
ables as particular cases of Tnk (k = 0, 1, 2, . . .) for n = 0 and n = 1, respectively.

In consequence of the homogeneity of the polynomials Pnk and the fact that
they form an Appell sequence, the monogenic Chebyshev polynomials of first
and second kinds are related by the equality

1

2
∂ Tk(x) = k Uk−1(x), k = 1, 2, . . . .

7 Concluding remarks

The construction of Hermite polynomials in the framework of Clifford algebras
was considered earlier by some authors. The so-called radial Hermite polyno-
mials were first constructed in [18] using the Cauchy-Kowalevskaya extension
of a suitable chosen generalization of the generating function of the Hermite
polynomials on the real line. The obtained polynomials are functions of a purely
vectorial argument as the next first examples show,

H0(x)=1

H1(x)=x

H2(x)=x2 + n

H3(x)=x3 + (n+ 2)x.

Also in [3] and using a different approach, another generalization of the Hermite
polynomials was considered in Clifford Algebras over the complex field. The ob-
tained polynomials are also functions of a pure vector argument and therefore
as before a direct compatibility with the real or complex case is not visible. Our
main motivation was to obtain monogenic generalizations of Hermite polynomi-
als that contain the real and the holomorphic cases as particular cases. More-
over, the construction of generalized Hermite polynomials with varying orders
and parameters permitted to construct the monogenic Chebyshev polynomials
in an easy way.
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