
ON 2-MICROLOCAL SPACES WITH ALL EXPONENTS VARIABLE

ALEXANDRE ALMEIDA∗ AND ANTÓNIO CAETANO

Abstract. In this paper we study various key properties for 2-microlocal Besov and
Triebel�Lizorkin spaces with all exponents variable, including the lifting property, em-
beddings and Fourier multipliers. We also clarify and improve some statements recently
published.

1. Introduction

Function spaces with variable integrability already appeared in the work of Orlicz [47],
although the modern development started with the paper [35] of Ková£ik and Rákosník.
Corresponding PDE with non-standard growth have been studied approximately since
the same time. For an overview we refer to the monographs [12, 14] and the survey [26].
Apart from interesting theoretical investigations, the motivation to study such function
spaces comes from applications to �uid dynamics [49], image processing [11, 25, 51], PDE
and the calculus of variations, see for example [1, 18, 40].
Some ten years ago, a further step was taken by Almeida and Samko [5] and Gurka, Har-

julehto and Nekvinda [24] by introducing variable exponent Bessel potential spaces Ls,p(·)
(with constant s). As in the classical case, these spaces coincide with the Lebesgue/Sobolev
spaces for integer s. Later Xu [57] considered Besov Bs

p(·),q and Triebel�Lizorkin F s
p(·),q

spaces with variable p, but �xed q and s.
In a di�erent context, Leopold [36, 37] considered Besov type spaces with the smooth-

ness index determined by certain symbols of hypoelliptic pseudo-di�erential operators.

Special choices of such symbols lead to spaces B
s(·)
p,p of variable smoothness. More general

function spaces with variable smoothness B
s(·)
p,q and F

s(·)
p,q were explicitly studied by Besov

[7], including characterizations by di�erences.
More recently all the above mentioned spaces were integrated into larger scales simi-

larly with the full classical Besov and Triebel�Lizorkin scales with constant exponents.
However, such extension requires all the indices to be variable. Such three-index gen-
eralization was done by Diening, Hästö and Roudenko [15] for Triebel�Lizorkin spaces

F
s(·)
p(·),q(·), and by Almeida and Hästö [3] for Besov spaces B

s(·)
p(·),q(·). This full extension led to
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immediate gains, for example with the study of traces where the integrability and smooth-
ness indices interact, see [15, 4], and it also provided an important uni�cation. Indeed,
when s ∈ [0,∞) and p ∈ P log(Rn) is bounded away from 1 and ∞ then F s

p(·),2 = Ls,p(·)
([15]) are Bessel potential spaces, which in turn are Sobolev spaces if s is integer ([5]). On
the other hand, the variable Besov scale above includes variable order Hölder-Zygmund
spaces as special cases (cf. [3, Theorem 7.2]).
It happens that the smoothness parameter can be generalized in di�erent directions.

In the so-called 2-microlocal spaces Bw

p,q and F
w

p,q the smoothness is measured by a certain
weight sequence w = (wj)j∈N0 , which is rich enough in order to frame spaces with variable
smoothness and spaces with generalized smoothness (see [19]). The 2-microlocal spaces
already appeared in the works of Peetre [48] and Bony [8]. Later Ja�ard and Meyer [28],
[29], and Lévy Véhel and Seuret [38] have also used such spaces in connection with the
study of regularity properties of functions. Function spaces with constant integrability
de�ned by more general microlocal weights were also studied by Andersson [6], Besov [7],
Moritoh and Yamada [42] and Kempka [31].
The generalization mixing up variable integrability and 2-microlocal weights was done

by Kempka [32] providing a uni�cation for many function spaces studied so far. However,
in the case of Besov spaces the �ne index q was still kept �xed.
In this paper we deal with the general Besov and Triebel-Lizorkin scales Bw

p(·),q(·) and
Fw
p(·),q(·) on Rn with all exponents variable. After some necessary background material

(Section 2), we discuss in Section 3 the characterization in terms of Peetre maximal
functions (Theorem 3.1) and, as a consequence, the independence of the spaces from the
admissible system taken (Corollary 3.2). Although such statements have already been
presented by Kempka and Vybíral in [33], their proofs contain some unclear points, see
the details in the discussions after Theorem 3.1 and Corollary 3.3 below.
In the remaining sections we prove some key properties for both scales Bw

p(·),q(·) and
Fw
p(·),q(·): the lifting property in Section 4; embeddings in Section 5; �nally, Fourier mul-

tipliers in Section 6. For other key properties, like atomic and molecular representations
and Sobolev type embeddings, we refer to our paper [2].
We notice that recently in [39] a very general framework was proposed for study-

ing function spaces and proving similar properties for the related spaces. Although the
framework suggested over there is very general in some aspects, it does not include Besov
and Triebel-Lizorkin spaces with variable q. This fact is very relevant, since the mixed
sequences spaces behind do not share some fundamental properties as in the constant
exponent situation.

2. Preliminaries

As usual, we denote by Rn the n-dimensional real Euclidean space, N the collection of
all natural numbers and N0 = N ∪ {0}. By Zn we denote the lattice of all points in Rn

with integer components. If r is a real number then r+ := max{r, 0}. We write B(x, r)
for the open ball in Rn centered at x ∈ Rn with radius r > 0. We use c as a generic
positive constant, i.e. a constant whose value may change with each appearance. The
expression f . g means that f ≤ c g for some independent constant c, and f ≈ g means
f . g . f .
The notation X ↪→ Y stands for continuous embeddings from X into Y , where X

and Y are quasi-normed spaces. If E ⊂ Rn is a measurable set, then |E| stands for its
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(Lebesgue) measure and χE denotes its characteristic function. By supp f we denote the
support of the function f .
The set S denotes the usual Schwartz class of in�nitely di�erentiable rapidly decreasing

complex-valued functions and S ′ denotes the dual space of tempered distributions. The
Fourier transform of a tempered distribution f is denoted by f̂ while its inverse transform
is denoted by f∨.

2.1. Variable exponents. By P(Rn) we denote the set of all measurable functions
p : Rn → (0,∞] (called variable exponents) which are essentially bounded away from
zero. For E ⊂ Rn and p ∈ P(Rn) we denote p+E = ess supE p(x) and p−E = ess infE p(x).
For simplicity we use the abbreviations p+ = p+Rn and p− = p−Rn .
The variable exponent Lebesgue space Lp(·) = Lp(·)(Rn) is the class of all (complex or

extended real-valued) measurable functions f (on Rn) such that

%p(·)(f/λ) :=

∫
Rn
φp(x)

(
|f(x)|
λ

)
dx

is �nite for some λ > 0, where

φp(t) :=


tp if p ∈ (0,∞),

0 if p =∞ and t ∈ [0, 1],

∞ if p =∞ and t ∈ (1,∞].

It is known that %p(·) de�nes a semimodular (on the vector space consisting of all
measurable functions on Rn which are �nite a.e.), and that Lp(·) becomes a quasi-Banach
space with respect to the quasi-norm

‖f |Lp(·)‖ := inf
{
λ > 0 : %p(·) (f/λ) ≤ 1

}
.

This functional de�nes a norm when p− ≥ 1. If p(x) ≡ p is constant, then Lp(·) = Lp is
the classical Lebesgue space.
It is worth noting that Lp(·) has the lattice property and that the assertions f ∈ Lp(·)

and ‖f |Lp(·)‖ <∞ are equivalent for any (complex or extended real-valued) measurable
function f (assuming the usual convention inf ∅ = ∞). The fundamental properties
of the spaces Lp(·), at least in the case p− ≥ 1, can be found in [35] and in the recent
monographs [14], [12]. The de�nition above of Lp(·) using the semimodular %p(·) is taken
from [14].
For any p ∈ P(Rn) we have

‖f |Lp(·)‖r =
∥∥∥|f |r|L p(·)

r

∥∥∥ , r ∈ (0,∞),

and
‖f + g |Lp(·)‖ ≤ max

{
1, 2

1
p−−1

}(
‖f |Lp(·)‖+ ‖g |Lp(·)‖

)
.

An useful property (that we shall call the unit ball property) is that ρp(·)(f) ≤ 1 if and
only if ‖f |Lp(·)‖ ≤ 1 ([14, Lemma 3.2.4]). An interesting variant of this is the following
estimate

(2.1) min
{
%p(·)(f)

1
p− , %p(·)(f)

1
p+

}
≤ ‖f |Lp(·)‖ ≤ max

{
%p(·)(f)

1
p− , %p(·)(f)

1
p+

}
for p ∈ P(Rn) with p− <∞, and %p(·)(f) > 0 or p+ <∞. It is proved in [14, Lemma 3.2.5]
for the case p− ≥ 1, but it is not hard to check that this property remains valid in the
case p− < 1. This property is clear for constant exponents due to the obvious relation
between the quasi-norm and the semimodular in that case.
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For variable exponents, Hölder's inequality holds in the form

‖f g |L1‖ ≤ 2 ‖f |Lp(·)‖‖g |Lp′(·)‖

for p ∈ P(Rn) with p− ≥ 1, where p′ denotes the conjugate exponent of p de�ned
pointwisely by 1

p(x)
+ 1

p′(x)
= 1, x ∈ Rn.

From the spaces Lp(·) we can also de�ne variable exponent Sobolev spaces W k,p(·) in the
usual way (see [14], [12] and the references therein).
In general we need to assume some regularity on the exponents in order to develop

a consistent theory of variable function spaces. We recall here some classes which are
nowadays standard in this setting.
We say that a continuous function g : Rn → R is locally log-Hölder continuous,

abbreviated g ∈ C log
loc , if there exists clog > 0 such that

|g(x)− g(y)| ≤ clog
log(e+ 1/|x− y|)

for all x, y ∈ Rn. The function g is said to be globally log-Hölder continuous, abbreviated
g ∈ C log, if it is locally log-Hölder continuous and there exists g∞ ∈ R and Clog > 0 such
that

|g(x)− g∞| ≤
Clog

log(e+ |x|)

for all x ∈ Rn. The notation P log(Rn) is used for those variable exponents p ∈ P(Rn)
with 1

p
∈ C log. We shall write clog(g) when we need to use explicitly the constant involved

in the local log-Hölder continuity of g. Note that all (exponent) functions in C log
loc are

bounded.
As regards the (quasi)norm of characteristic functions on cubes Q (or balls) in Rn, for

exponents p ∈ P log(Rn) we have

(2.2) ‖χQ |Lp(·)‖ ≈ |Q|
1

p(x) if |Q| ≤ 1 and x ∈ Q,

and

‖χQ |Lp(·)‖ ≈ |Q|
1
p∞ if |Q| ≥ 1

(see [14, Corollary 4.5.9]), using the shortcut 1
p∞

for
(
1
p

)
∞.

2.2. Variable exponent mixed sequence spaces. To deal with variable exponent
Besov and Triebel�Lizorkin scales we need to consider appropriate mixed sequences
spaces. For p, q ∈ P(Rn) the mixed Lebesgue-sequence space Lp(·)(`q(·)) ([15]) can be
easily de�ned through the quasi-norm

(2.3) ‖(fν)ν |Lp(·)(`q(·))‖ :=
∥∥‖(fν(x))ν |`q(x)‖ |Lp(·)

∥∥
on sequences (fν)ν∈N0 of complex or extended real-valued measurable functions on Rn.
This is a norm if min{p−, q−} ≥ 1. Note that `q(x) is a standard discrete Lebesgue space
(for each x ∈ Rn), and that (2.3) is well de�ned since q(x) does not depend on ν and the
function x→ ‖(fν(x))ν |`q(x)‖ is always measurable when q ∈ P(Rn).
The �opposite� case `q(·)(Lp(·)) is not so easy to handle. For p, q ∈ P(Rn), the mixed

sequence-Lebesgue space `q(·)(Lp(·)) consists of all sequences (fν)ν∈N0 of (complex or ex-

tended real-valued) measurable functions (on Rn) such that %`q(·)(Lp(·))
(
1
µ
(fν)ν

)
< ∞ for
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some µ > 0, where

(2.4) %`q(·)(Lp(·))
(
(fν)ν

)
:=
∑
ν

inf
{
λν > 0 : %p(·)

(
fν/λ

1
q(·)
ν

)
≤ 1
}
.

Note that if q+ <∞ then (2.4) equals the more simple form

(2.5) %`q(·)(Lp(·))
(
(fν)ν

)
=
∑
ν

∥∥∥|fν |q(·)|L p(·)
q(·)

∥∥∥.
The space `q(·)(Lp(·)) was introduced in [3, De�nition 3.1] within the framework of the so
called semimodular spaces. It is known ([3]) that

‖(fν)ν |`q(·)(Lp(·))‖ := inf
{
µ > 0 : %`q(·)(Lp(·))

(
1
µ
(fν)ν

)
≤ 1
}

de�nes a quasi-norm in `q(·)(Lp(·)) for every p, q ∈ P(Rn) and that ‖ · |`q(·)(Lp(·))‖ is a
norm when q ≥ 1 is constant and p− ≥ 1, or when 1

p(x)
+ 1

q(x)
≤ 1 for all x ∈ Rn. More

recently, it was shown in [34] that it also becomes a norm if 1 ≤ q(x) ≤ p(x) ≤ ∞.
Contrarily to the situation when q is constant, the expression above is not necessarily a
norm when min{p−, q−} ≥ 1 (see [34] for an example showing that the triangle inequality
may fail in this case).
It is worth noting that `q(·)(Lp(·)) is a really iterated space when q ∈ (0,∞] is constant

([3, Proposition 3.3]), with

(2.6) ‖(fν)ν |`q(Lp(·))‖ =
∥∥(‖fν |Lp(·)‖)ν |`q∥∥.

We note also that the values of q have no in�uence on ‖(fν)ν |`q(·)(Lp(·))‖ when we consider
sequences having just one non-zero entry. In fact, as in the constant exponent case, we
have ‖(fν)ν | `q(·)(Lp(·))‖ = ‖f |Lp(·)‖ whenever there exists ν0 ∈ N0 such that fν0 = f and
fν ≡ 0 for all ν 6= ν0 (cf. [3, Example 3.4]).
Simple calculations show that given any sequence (fν)ν of measurable functions, �nite-

ness of ‖(fν)ν |`q(·)(Lp(·))‖ implies (fν)ν ∈ `q(·)(Lp(·)), which in turn implies fν ∈ Lp(·) for
each ν ∈ N0. Moreover,

‖(fν)ν |`q(·)(Lp(·))‖ ≤ 1 if and only if %`q(·)(Lp(·))
(
(fν)ν

)
≤ 1 (unit ball property)

(see [3]).
We notice that both mixed sequence spaces Lp(·)(`q(·)) and `q(·)(Lp(·)) satisfy the lattice

property.
The next lemma can be proved following the arguments used in the proof of Theo-

rem 6.1 (i),(iii) in [3].

Lemma 2.1. Let p, q, q0, q1 ∈ P(Rn). If q0 ≤ q1 then we have

Lp(·)(`q0(·)) ↪→ Lp(·)(`q1(·)) and `q0(·)(Lp(·)) ↪→ `q1(·)(Lp(·)).

Moreover, if p+, q+ <∞ then it also holds

`min{p(·),q(·)}(Lp(·)) ↪→ Lp(·)(`q(·)) ↪→ `max{p(·),q(·)}(Lp(·)).

We notice that the Hardy-Littlewood maximal operator is not, in general, a good tool
in the spaces Lp(·)(`q(·)) and `q(·)(Lp(·)). Indeed, as observed in [3] and [15], such operator is
not bounded in these spaces when q is non-constant. A way of overcoming this di�culty is
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to use convolution inequalities involving radially decreasing kernels, namely the so-called
η-functions having the form

ην,R(x) :=
2nν

(1 + 2ν |x|)R
, x ∈ Rn,

with ν ∈ N0 and R > 0. Note that ην,R ∈ L1 when R > n and that ‖ην,R |L1‖ depends
only on n and R.

Lemma 2.2. Let p, q ∈ P log(Rn) and (fν)ν be a sequence of non-negative measurable
functions on Rn.

(i) If 1 < p− ≤ p+ <∞ and 1 < q− ≤ q+ <∞, then for R > n there holds

‖(ην,R ∗ fν)ν |Lp(·)(`q(·))‖ . ‖(fν)ν |Lp(·)(`q(·))‖.
(ii) If p− ≥ 1 and R > n+ clog(1/q), then

‖(ην,R ∗ fν)ν |`q(·)(Lp(·))‖ . ‖(fν)ν |`q(·)(Lp(·))‖.

The convolution inequality in (i) above was given in [15, Theorem 3.2], while the
satement (ii) was established in [3, Lemma 4.7] and [33, Lemma 10].

2.3. Admissible weights.

De�nition 2.3. Let α, α1, α2 ∈ R with α ≥ 0 and α1 ≤ α2. We say that a sequence of
positive measurable functions w = (wj)j belongs to class Wα

α1,α2
if

(i) there exists c > 0 such that

0 < wj(x) ≤ cwj(y)
(
1 + 2j|x− y|

)α
for all j ∈ N0 and x, y ∈ Rn;

(ii) there holds
2α1 wj(x) ≤ wj+1(x) ≤ 2α2 wj(x)

for all j ∈ N0 and x ∈ Rn.

A sequence according to the de�nition above is called an admissible weight sequence.
When we write w ∈ Wα

α1,α2
without any restrictions then α ≥ 0 and α1, α2 ∈ R (with

α1 ≤ α2) are arbitrary but �xed numbers. Some useful properties of class Wα
α1,α2

may be
found in [31, Remark 2.4].

Example 2.4. A fundamental example of an admissible weight sequence w is that formed
by the 2-microlocal weights

wj(x) = 2js(1 + 2j d(x, U))s
′

where s, s′ ∈ R and d(x, U) is the distance of x ∈ Rn from the (�xed) subset U ⊂ Rn.

In this case we have w ∈ W |s
′|

min{0,s′},max{0,s′}. The particular case U = {x0} (for a given

point x0 ∈ Rn), corresponds to the typical weights

(2.7) wj(x) = 2js(1 + 2j |x− x0|)s
′
.

Example 2.5. If s : Rn → R is in class C log
loc , then the weight sequence given by

wj(x) = 2js(x)

is in class Wclog(s)

s−,s+ . This follows from the estimate

2js(x)ηj,2R(x− y) . 2js(y)ηj,R(x− y), x, y ∈ Rn, j ∈ N0,
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which holds for R ≥ clog(s) (see [33, Lemma 19] as a variant of [15, Lemma 6.1]).

Example 2.6. Let (σj)j be a sequence of nonnegative real numbers satisfying

d1σj ≤ σj+1 ≤ d2 σj, j ∈ N0,

for some d1, d2 > 0 independent of j. If we de�ne the (constant) sequence w by

wj(x) ≡ σj, j ∈ N0,

then we see that w ∈ W0
log2 d1,log2 d2

.

Example 2.7. Let ρ(x) be an admissible weight function, that means

0 < ρ(x) . ρ(y)(1 + |x− y|2)
β
2 , x ∈ Rn (β ≥ 0).

Taking wj(x) = 2jsρ(x) (s ∈ R) we obtain an admissible sequence belonging to class
Wβ

s,s.

2.4. 2-microlocal spaces with variable integrability. We say that a pair (ϕ,Φ) of
functions in S is admissible if

• supp ϕ̂ ⊂ {ξ ∈ Rn : 1
2
≤ |ξ| ≤ 2} and |ϕ̂(ξ)| ≥ c > 0 when 3

5
≤ |ξ| ≤ 5

3
;

• supp Φ̂ ⊂ {ξ ∈ Rn : |ξ| ≤ 2} and |Φ̂(ξ)| ≥ c > 0 when |ξ| ≤ 5
3
.

Set ϕj := 2jnϕ(2j·) for j ∈ N and ϕ0 := Φ. Then ϕj ∈ S and

supp ϕ̂j ⊂ {ξ ∈ Rn : 2j−1 ≤ |ξ| ≤ 2j+1} , j ∈ N.
Such a system {ϕj} is also said admissible.
Now we are ready to recall the Fourier analytical approach to function spaces of Besov

and Triebel-Lizorkin type.

De�nition 2.8. Let w = (wj)j ∈ Wα
α1,α2

and p, q ∈ P(Rn).

(i) Bw

p(·),q(·) is the set of all f ∈ S ′ such that

(2.8) ‖f |Bw

p(·),q(·)‖ :=
∥∥(wj(ϕj ∗ f))j | `q(·)(Lp(·))

∥∥ <∞.
(ii) Restricting to p+, q+ <∞, Fw

p(·),q(·) is the set of all f ∈ S ′ such that

(2.9) ‖f |Fw

p(·),q(·)‖ :=
∥∥(wj(ϕj ∗ f))j |Lp(·)(`q(·))

∥∥ <∞.
The sets Bw

p(·),q(·) and Fw

p(·),q(·) become quasi-normed spaces equipped with the quasi-

norms (2.8) and (2.9), respectively. As in the constant exponent case, they agree when
p = q, i.e., Bw

p(·),p(·) = Fw

p(·),p(·).
In the sequel we shall write Awp(·),q(·) for short when there is no need to distinguish

between Besov and Triebel-Lizorkin spaces.

Example 2.9 (2-microlocal spaces). A fundamental example of 2-microlocal spaces (from
which the terminology seem to come from) are the spaces constructed from the special
weight sequence given by (2.7). Such spaces have been considered by Peetre [48], Bony
[8], Ja�ard and Meyer [28], [29]. The latter authors have used, in particular, the spaces
Hs,s′
x0

= Bw

2,2 and Cs,s′
x0

= Bw

∞,∞ in connection with the study of regularity properties of
functions using wavelet tools.

Example 2.10 (variable smoothness). If wj(x) = 2js(x) with s ∈ C log
loc , then Bw

p(·),q(·) =

B
s(·)
p(·),q(·) and Fw

p(·),q(·) = F
s(·)
p(·),q(·) are the scales of spaces with variable smoothness and

integrability introduced in [3] and [15], respectively.
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Example 2.11 (generalized smoothness). When w = (σj)j is a sequence as in Example
2.6, then Awp(·),q(·) = Aσp(·),q(·) are spaces of generalized smoothness. For constant exponents

p, q a systematic study of such spaces was carried out by Farkas and Leopold [19] (even
considering more general partitions of unity in their de�nitions), see also the study by
Moura in [45]. Spaces of generalized smoothness (and constant integrability) have been
introduced by Goldman [22] and Kalyabin and Lizorkin [30]. We note that such type of
function spaces were also considered in the context of interpolation in [13, 41].

Example 2.12 (weighted spaces). If wj(x) = 2jsρ(x) as in Example 2.7 then we get
weighted function spaces (see [17, Chapter 4] and [27] for constant p and q).

For simplicity we will omit the reference to the admissible pair (ϕ,Φ) used to de�ne
the quasi-norms (2.8) and (2.9). As we will see below, we shall obtain the same sets
Bw

p(·),q(·) and F
w

p(·),q(·) for di�erent choices of such pairs, at least when p and q satisfy some

regularity assumptions (see Corollary 3.2).

3. Maximal functions characterization

Given a > 0, f ∈ S ′ and (ψj)j ⊂ S, the Peetre maximal functions are de�ned as(
ψ∗j f

)
a
(x) := sup

y∈Rn

|ψj ∗ f(y)|
1 + |2j(x− y)|a

, x ∈ Rn, j ∈ N0.

It is well known that these functions constitute an important tool in the study of prop-
erties of several classical functions spaces starting with getting equivalent quasi-norms.
For Besov spaces with variable smoothness and integrability this topic was studied in [16]
using modi�ed versions of the Peetre maximal functions above. The characterization via
maximal functions was extended to the general setting of the spaces Awp(·),q(·) in papers

[32, Corollary 4.7] (in the F case) and [33, Theorem 6] (in the B case).
The next statement integrates both cases and makes a critical improvement to the

corresponding results from those papers (see explanations below).

Theorem 3.1. Let w ∈ Wα
α1,α2

and L ∈ N0 with L > α2. Let also Ψ, ψ ∈ S be such that

(3.1) |Ψ̂(ξ)| > 0 on {ξ ∈ Rn : |ξ| ≤ kε},

(3.2) |ψ̂(ξ)| > 0 on
{
ξ ∈ Rn : ε

2
≤ |ξ| ≤ kε

}
,

for some k ∈]1, 2] and ε > 0, and

(3.3) Dγψ̂(0) = 0 for 0 ≤ |γ| < L.

De�ne
ψ0 := Ψ and ψj := 2jnψ(2j·), j ∈ N.

(i) If p, q ∈ P log(Rn) and a > α + n
p−

+ clog(1/q), then

‖f |Bw

p(·),q(·)‖ ≈
∥∥(wj(ψj ∗ f))j | `q(·)(Lp(·))

∥∥ ≈ ∥∥∥(wj(ψ∗j f)a)j ∈ `q(·)(Lp(·))∥∥∥
for all f ∈ S ′.

(ii) If p, q ∈ P log(Rn) with max{p+, q+} <∞, and a > α + n
min{p−,q−} , then

‖f |Fw

p(·),q(·)‖ ≈
∥∥(wj(ψj ∗ f))j |Lp(·)(`q(·))

∥∥ ≈ ∥∥∥(wj(ψ∗j f)a)j |Lp(·)(`q(·))∥∥∥
for all f ∈ S ′.
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Instead of (3.1), (3.2) what usually one �nds in the literature (see, e.g. [50, (1)], [56,
(2.17)], [32, (4),(5)], [33, (8),(9)], [39, (3.6)]) reads, in our notation, respectively

|Ψ̂(ξ)| > 0 on {ξ ∈ Rn : |ξ| < 2ε},

|ψ̂(ξ)| > 0 on
{
ξ ∈ Rn : ε

2
< |ξ| < 2ε

}
.

That is, apart from having here strict inequalities (which is a minor detail), only the case
k = 2 is usually considered. This is not a problem in itself, but, depending on what has
already been proved and how the B and F spaces are originally de�ned, one might end
up claiming results which are not really proved. The problem we are about to mention
does not arise in the classical case with constant exponents because the independence of
the spaces from the dyadic resolution of unity taken as in [53, De�nition 2.3.1] has been
proved (see, e.g. [53, Theorem 2.3.2]) independently of the classical counterpart of our
Theorem 3.1 (and with k = 2), and therefore we can use a particular dyadic resolution of
unity which �ts in the hypothesis of the latter theorem in order to expand the universe of
systems {ϕj} which can be used in the de�nition of the B and F spaces without changing
them. A summary of what we can get in this way in the classical situation, including
historical remarks, can be seen in [54, Section 1.3] (see, in particular, Theorem 1.7 there
for the counterpart of our Theorem 3.1 with k = 2).
However, in [32] and [33], in a setting of variable exponents, though a theorem like

Theorem 3.1 (with k = 2) is stated, what is actually proved is that the de�nition of the
spaces is independent of the dyadic resolutions of unity producing systems which satisfy
the hypotheses of the theorem for some ε > 0 (and k = 2). Since not all dyadic resolutions
of unity considered in those papers produce systems with such characteristics (not even
if we allow k to vary in ]1, 2]), that claimed independence was not completely proved.
Our point of view for the de�nition of the spaces is di�erent, using in it a system
{ϕj} built from a so-called admissible pair as de�ned in the beginning of Subsection 2.4.
Even so, the problem of sticking to k = 2 in (3.1), (3.2) is that not all admissible
pairs produce systems satisfying such conditions, and therefore, taking into account the
approach followed in the proof, the independence of the space from such admissible pairs
would not be guaranteed. On the other hand, it is easy to see that any admissible
pair forms systems satisfying (3.1), (3.2) with ε = 6

5
and k = 25

18
. Since (3.3) is also

trivially satis�ed, the claimed independence is in fact proved. In some sense this is
already implicit in the statements given in the theorem, but we would like to stress it as
a separate important conclusion:

Corollary 3.2. Let w ∈ Wα
α1,α2

and p, q ∈ P log(Rn) (with max{p+, q+} < ∞ in the
F -case). Then the spaces Bw

p(·),q(·) and Fw

p(·),q(·) are independent of the admissible pair

(ϕ,Φ) taken in its de�nition, in the sense that di�erent such pairs produce equivalent
quasi-norms in the corresponding spaces.

The approach to Besov and Triebel-Lizorkin spaces that we are taking is also common
in the literature � see, e.g. [20, 21] in the case of constant exponents, and [15] and [3] in
the case of spaces with variable smoothness and integrability. The independence of the
variable Triebel-Lizorkin spaces from the particular admissible pair taken was proved in
[15] (under convenient restrictions on the exponents) with the help of the so-called ϕ-

transform, identifying F
s(·)
p(·),q(·) with a subspace of a suitable sequence space, following the

approach taken in the constant exponent situation in [21]. In [3] (see also [4, Remark 1.2]
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for a correction) the corresponding independence result for B
s(·)
p(·),q(·) was only settled for

a subfamily of admissible pairs.
As pointed out above, in the present paper we give a positive answer to the question of

the de�nition of the general 2-microlocal spaces Bw

p(·),q(·) and F
w

p(·),q(·) being independent
of the particular admissible pair taken. Surely there are dyadic resolutions of unity which
produce systems which satisfy the conditions of Theorem 3.1, and so it is also clear that
they give rise to the same 2-microlocal spaces with variable exponents. We are not aware,
however, of results showing that, in the variable setting, any dyadic resolution of unity
as in [53, De�nition 2.3.1] will give the same outcome.
Notice that Theorem 3.1 not only free us to be tied to a speci�c admissible pair, but

also ensures that more general pairs can indeed be used to de�ne the spaces instead of
the admissible ones, namely pairs (ψ,Ψ) satisfying the requirements of the theorem.
From Theorem 3.1 we can also derive a characterization of the spaces Awp(·),q(·) in terms

of the so-called local means (cf. [32, Corollary 4.8] and [33, Corollary 1]), which are
de�ned by

k(t, f)(x) := 〈f(x+ t·), k〉 := t−n〈f, k
( ·−x

t

)
〉 x ∈ Rn, t > 0,

for a C∞ function k on Rn supported in B(0, 1) and f ∈ S ′.

Corollary 3.3. Let k0, k
0 be C∞ functions such that

supp k0, supp k0 ⊂ B(0, 1) and k̂0(0), k̂0(0) 6= 0.

Let also w ∈ Wα
α1,α2

and N ∈ N0 be such that 2N > α2, and take kN := ∆Nk0 (the

Laplacian of order N of k0). If p, q ∈ P log(Rn), then

‖f |Bw

p(·),q(·)‖ ≈ ‖w0 k0(1, f) |Lp(·)‖+
∥∥∥(wj kN(2−j, f)

)
j∈N | `q(·)(Lp(·))

∥∥∥
and

‖f |Fw

p(·),q(·)‖ ≈ ‖w0 k0(1, f) |Lp(·)‖+
∥∥∥(wj kN(2−j, f)

)
j∈N |Lp(·)(`q(·))

∥∥∥
for all f ∈ S ′ (with the additional restriction max{p+, q+} <∞ in the F case).

Theorem 3.1 can be proved following the general structure of the proof done by Rychkov
[50] in the classical case (see also [56] for some correction of the argument) overcoming
the di�culties caused by the consideration of the general exponents. As we can see in
[32] and [33], where the variable exponent case was treated, the proof involves various
technical auxiliary results, for instance on the behavior of the Peetre maximal operators
on variable mixed sequence spaces. Another key tool in this approach is a kind of discrete
convolution inequality. A corresponding inequality within the framework of both variable
mixed sequence spaces was pointed out in full generality in [33], but the arguments used
there are unclear to us.
It is not our aim to repeat here the arguments leading to the proof of Theorem 3.1

but, due to the di�culty pointed out above, we shall give here a proof of the mentioned
discrete convolution inequality (see Lemma 3.4), using completely di�erent arguments.
At the same time this will be an opportunity to exhibit the kind of di�culties that
may appear when we are dealing with variable mixed sequence spaces, specially with
`q(·)(Lp(·)), when compared with the constant exponent situation.
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Lemma 3.4. Let p, q ∈ P(Rn) and δ > 0. For any sequence (gk)k of nonnegative
measurable functions on Rn, consider

(3.4) Gν(x) :=
∞∑
k=0

2−|k−ν|δ gk(x) , x ∈ Rn, ν ∈ N0.

Then we have

(3.5) ‖(Gν)ν |Lp(·)(`q(·))‖ . ‖(gν)ν |Lp(·)(`q(·))‖.

and

(3.6) ‖(Gν)ν |`q(·)(Lp(·))‖ . ‖(gν)ν |`q(·)(Lp(·))‖

Proof. Step 1 : The inequalities above need to be shown essentially for p, q ≥ 1. In fact,
if they hold in such case, then for arbitrary exponents p, q ∈ P(Rn) we can always take
r ∈ (0,min{1, p−, q−}) and proceed as follows:

‖(Gν)ν |`q(·)(Lp(·))‖r =
∥∥∥(Gr

ν)ν |` q(·)
r

(
L p(·)

r

)∥∥∥ ≤ ∥∥∥∥∥∑
k≥0

2−|k−ν|δ r grk |` q(·)
r

(
L p(·)

r

)∥∥∥∥∥
.

∥∥∥(grk)k |` q(·)
r

(
L p(·)

r

)∥∥∥ = ‖(gk)k |`q(·)(Lp(·))‖.

The argument works in the same way for the other inequality.
Step 2 : We prove (3.5) for p, q ≥ 1.

For any s ∈ [1,∞] and δ > 0, from Minkowski's inequality we can show that∥∥∥∥∥∥
(∑
k≥0

2−|k−ν|δak

)
ν≥0

|`s

∥∥∥∥∥∥ ≤ 2

1− 2−δ
‖(ak)k≥0 |`s‖

for every sequence (ak)k≥0 of nonnegative numbers. So for each x ∈ Rn we get∥∥(Gν)ν≥0 |`q(x)
∥∥ ≤ 2

1− 2−δ
∥∥(gk(x))k≥0 |`q(x)

∥∥ .
Taking the Lp(·)-norm in both sides and using the lattice property of Lp(·), we get inequal-
ity (3.5).
Step 3 : We prove (3.6) for p, q ≥ 1 and q+ <∞.

Suppose that ‖(gν)ν |`q(·)(Lp(·))‖ <∞ (otherwise there is nothing to prove). We want to
show that there exists a constant c > 0 such that

‖(Gν)ν |`q(·)(Lp(·))‖t ≤ c ‖(gν)ν |`q(·)(Lp(·))‖t =: c µ

(where t > 0 is a certain �xed number that is chosen below in a convenient way). This is
equivalent to show that, for µ > 0,∥∥∥∥ (Gν)ν

(c µ)1/t
|`q(·)(Lp(·))

∥∥∥∥ ≤ 1,

that is (by the unit ball property),

%`q(·)(Lp(·))

(
(Gν)ν
(c µ)1/t

)
≤ 1,
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which we shall do next. Take t = min{1, (p/q)−}. Using (2.5) we have

%`q(·)(Lp(·))

(
(Gν)ν
(c µ)1/t

)
=

∑
ν≥0

∥∥∥∥∥
∣∣∣∣ Gν

(c µ)1/t

∣∣∣∣q(·) |L p(·)
q(·)

∥∥∥∥∥ =
∑
ν≥0

∥∥∥∥∥
(
|Gν |t

c µ

)q(·)
|L p(·)

tq(·)

∥∥∥∥∥
1/t

≤
∑
ν≥0

∥∥∥∥∥∥
(

(c µ)−1
∑
l≥−ν

2−|l|δ t |gν+l|t
)q(·)

|L p(·)
tq(·)

∥∥∥∥∥∥
1/t

.

For each x ∈ Rn and ν ∈ N0, from Hölder's inequality (with the convention gj ≡ 0 for
j < 0) we get

∑
l≥−ν

2−|l|δ t |gν+l(x)|t ≤

(∑
l∈Z

2−|l|
δ
2
tq′(x)

) 1
q′(x)

(∑
l∈Z

2−|l|
δ
2
tq(x)|gν+l(x)|tq(x)

) 1
q(x)

(with the usual modi�cation when q′(x) = ∞). Using this pointwise estimate, letting

c = c1 · c2 with c1 :=
∑

l∈Z 2−|l|
δ
2
t and c2 ≥ 1, and applying Minkowski's inequality twice,

we derive

%t`q(·)(Lp(·))

(
(Gν)ν
(c µ)1/t

)
≤

∑
ν≥0

(∑
l∈Z

c−12 2−|l|
δ
2
t

∥∥∥∥∥
(
|gν+l|t

µ

)q(·)
|L p(·)

tq(·)

∥∥∥∥∥
)1/t

t

≤
∑
l∈Z

c−12 2−|l|
δ
2
t

∑
ν≥0

∥∥∥∥∥
(
|gν+l|t

µ

)q(·)
|L p(·)

tq(·)

∥∥∥∥∥
1/t
t

.

Choosing c2 = c1 as above (and consequently
√
c =

∑
l∈Z 2−|l|

δ
2
t), we obtain

%`q(·)(Lp(·))

(
(Gν)ν
(c µ)1/t

)
≤
∑
k≥0

∥∥∥∥∥
(
|gk|
µ1/t

)tq(·)
|L p(·)

tq(·)

∥∥∥∥∥
1/t

= %`q(·)(Lp(·))

(
(gk)k
µ1/t

)
≤ 1,

where the last inequality follows from the hypothesis that the corresponding quasi-norm
is less than or equal to 1 (recall the de�nition of µ above).
Step 4 : We prove (3.6) for any p, q ≥ 1 (including the case q+ =∞).

Let us assume that ‖(gν)ν |`q(·)(Lp(·))‖ < ∞. Again by the unit ball property, (3.6) will
follow from the inequality

(3.7) %`q(·)(Lp(·))

(
(Gν)ν
c µ

)
≤ 1,

where µ = ‖(gν)ν |`q(·)(Lp(·))‖ > 0 and c > 0 is a constant independent of µ. Let us then
prove (3.7).
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Under the convention gj ≡ 0 for j < 0, we get

%`q(·)(Lp(·))

(
(Gν)ν
c µ

)
=

∑
ν≥0

inf

{
λν > 0 : %p(·)

(
Gν

c µ λ
1/q(·)
ν

)
≤ 1

}

=
∑
ν≥0

inf

{
λν > 0 :

∥∥∥∥∥ Gν

c µ λ
1/q(·)
ν

|Lp(·)

∥∥∥∥∥ ≤ 1

}

≤
∑
ν≥0

inf

{
λν > 0 : c−1

∑
l∈Z

2−|l|δ

∥∥∥∥∥ gν+l

µλ
1/q(·)
ν

|Lp(·)

∥∥∥∥∥ ≤ 1

}
(3.8)

after using Minkowski's inequality in the last step of this chain. Let us de�ne

Iν,l := inf

{
λ > 0 : c−1c(δ)2−|l|δ/2

∥∥∥∥ gν+l
µλ1/q(·)

|Lp(·)
∥∥∥∥ ≤ 1

}
, ν ∈ N0, l ∈ Z,

with c(δ) :=
∑

l∈Z 2−|l|δ/2. We claim that, for each ν ∈ N0, the sum
∑

l∈Z Iν,l is not
smaller than the in�mum in (3.8). To prove this we can obviously assume that this sum
is �nite. For any ε > 0 we have

c−1c(δ)2−|l|δ/2
∥∥∥∥ gν+l
µ (Iν,l + ε2−|l|)1/q(·)

|Lp(·)
∥∥∥∥ ≤ 1,

so

c−1c(δ)
∑
l∈Z

2−|l|δ
∥∥∥∥ gν+l
µ (Iν,l + ε2−|l|)1/q(·)

|Lp(·)
∥∥∥∥ ≤∑

l∈Z

2−|l|δ/2.

Recalling the de�nition of c(δ), we also obtain

c−1
∑
l∈Z

2−|l|δ

∥∥∥∥∥∥∥
gν+l

µ
(∑

k∈Z(Iν,k + ε2−|k|)
)1/q(·) |Lp(·)

∥∥∥∥∥∥∥ ≤ 1,

and hence

inf

{
λ > 0 : c−1

∑
l∈Z

2−|l|δ
∥∥∥∥ gν+l
µλ1/q(·)

|Lp(·)
∥∥∥∥ ≤ 1

}
≤
∑
k∈Z

Iν,k + ε
∑
k∈Z

2−|k|.

Since the second series on the right-hand side converges and ε > 0 is arbitrary, we get
the desired estimate. Now using it in (3.8) and making a convenient change of variables
(choosing the constant c ≥ c(δ) and noting that q ≥ 1), we have

%`q(·)(Lp(·))

(
(Gν)ν
c µ

)
≤

∑
ν≥0

∑
k∈Z

inf

{
λ > 0 : c−1c(δ)2−|k|δ/2

∥∥∥∥ gν+k
µλ1/q(·)

|Lp(·)
∥∥∥∥ ≤ 1

}
≤

∑
ν≥0

∑
k∈Z

c−1c(δ)2−|k|δ/2 inf

{
σ > 0 :

∥∥∥∥ gν+k
µσ1/q(·) |Lp(·)

∥∥∥∥ ≤ 1

}
=

∑
k∈Z

c−1c(δ)2−|k|δ/2
∑
ν≥0

inf

{
σ > 0 :

∥∥∥∥ gν+k
µσ1/q(·) |Lp(·)

∥∥∥∥ ≤ 1

}
≤

∑
k∈Z

c−1c(δ)2−|k|δ/2 %`q(·)(Lp(·))

(
(gj)j
µ

)
≤ 1
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with the choice c = c(δ)2, taking into account our de�nition of µ. �

Remark 3.5. Of course we could have omitted Step 3 in the proof above since the argu-
ments in Step 4 work in fact for arbitrary exponents q. Nevertheless, giving a presentation
of a separate proof for bounded exponents q we want to stress that this case is more in-
tuitive and closer to the constant exponent situation.

4. Lifting property

Given σ ∈ R, the lifting operator Iσ is de�ned by

Iσf :=
[(

1 + | · |2
)σ/2

f̂
]∨
, f ∈ S ′.

It is well known that Iσ is a linear one-to-one mapping of S ′ onto itself and that its
restriction to S is also a one-to-one mapping of S onto itself.
The next proposition gives a lifting property for the 2-microlocal spaces of variable

integrability.

Theorem 4.1. Let w ∈ Wα
α1,α2

and p, q ∈ P log(Rn) (max{p+, q+} < ∞ in the F case).

Then Iσ maps Awp(·),q(·) isomorphically onto A
(−σ)w
p(·),q(·), where (−σ)w := (2−jσwj)j.

Moreover,
∥∥Iσ · |A(−σ)w

p(·),q(·)

∥∥ de�nes an equivalent quasi-norm in Awp(·),q(·).

Proof. For σ ∈ R and w ∈ Wα
α1,α2

we have (−σ)w ∈ Wα
α1−σ,α2−σ.

Let {ϕj} be an admissible system. Consider an auxiliary system {Θk} ⊂ S such that

Θ0(x) = 1 if |x| ≤ 1, supp Θ0 ⊂ {x ∈ Rn : |x| ≤ 2}
and

∞∑
k=0

Θk(x) = 1, ∀x ∈ Rn,

where
Θk(x) = Θ0(2

−kx)−Θ0(2
−k+1x) , k ∈ N, x ∈ Rn.

Then we have
supp Θk ⊂ {x ∈ Rn : 2k−1 ≤ |x| ≤ 2k+1} , k ∈ N.

With the understanding that Θ−1 ≡ 0, by straightforward calculations we get, for j ∈ N0,
x ∈ Rn and f ∈ S ′,

(2π)
n
2

∣∣∣∣(ϕj ∗ [(1 + | · |2
)σ

2 f̂
]∨)

(x)

∣∣∣∣ =

∣∣∣∣∣
([(

1 + | · |2
)σ

2

1∑
k=−1

Θj+k(·)
]∨
∗ ϕj ∗ f

)
(x)

∣∣∣∣∣
≤

(
ϕ∗jf

)
a
(x)

∫
Rn

∣∣∣∣∣[(1 + | · |2
)σ

2

1∑
k=−1

Θj+k(·)
]∨

(y)

∣∣∣∣∣ (1 + |2jy|a
)
dy

where a > 0 is arbitrary. We need to control the integral above, which is, up to a
multiplicative constant, dominated by

1∑
k=−1

∫
Rn

∣∣∣[(1 + | · |2
)σ/2

Θj+k(·)
]∨

(y)
(
1 + |2jy|a+n+1

)∣∣∣
1 + |2jy|n+1

dy.

Taking into account the pointwise inequality

(4.1)
∣∣∣Dγ

(
1 + |z|2

)σ/2∣∣∣ ≤ cσ,γ
(
1 + |z|2

)σ−|γ|
2
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and choosing a > 0 in the form

(4.2) a = 2l − n− 1,

for l ∈ N large enough, we can show that the previous sum can be estimated from above
by a constant times 2jσ. Hence we get

(4.3)

∣∣∣∣(ϕj ∗ [(1 + | · |2
)σ/2

f̂
]∨)

(x)

∣∣∣∣ . 2jσ
(
ϕ∗jf

)
a
(x)

with the implicit constant not depending on x ∈ Rn, j ∈ N0, f ∈ S ′. If we choose such
a > 0 satisfying a > α + n

min{p−,q−} + clog(1/q), from the lattice property of the mixed

sequence spaces and Theorem 3.1 we get

(4.4)
∥∥∥Iσf |B(−σ)w

p(·),q(·)

∥∥∥ . ∥∥∥(wj(ϕ∗jf)a)j(x) | `q(·)(Lp(·))
∥∥∥ ≈ ∥∥f |Bw

p(·),q(·)
∥∥ .

In the F case we can proceed exactly in the same way. Therefore Iσ is a continuous

operator from Awp(·),q(·) into A
(−σ)w
p(·),q(·). Its inverse operator, I−σ, is also continuous from

A
(−σ)w
p(·),q(·) into A

w

p(·),q(·). Indeed,∥∥I−σg |Awp(·),q(·)∥∥ =
∥∥∥I−σg |A(σ)(−σ)w

p(·),q(·)

∥∥∥ . ∥∥∥g |A(−σ)w
p(·),q(·)

∥∥∥ ,
so that f = I−σg ∈ Awp(·),q(·) if g ∈ A

(−σ)w
p(·),q(·). Since Iσf = g, the previous inequality yields∥∥f |Awp(·),q(·)∥∥ =

∥∥I−σ(Iσf) |Awp(·),q(·)
∥∥ . ∥∥∥Iσf |A(−σ)w

p(·),q(·)

∥∥∥ .
Combining this with (4.4) and the corresponding estimate for the F space, we get the
equivalence ∥∥f |Awp(·),q(·)∥∥ ≈ ∥∥∥Iσf |A(−σ)w

p(·),q(·)

∥∥∥ .
�

Our result includes, in particular, the lifting property that was proved in [15, Lemma 4.4]

for the spaces F
s(·)
p(·),q(·). Our proof here is completely di�erent and it is inspired by some

arguments in the proof of [39, Lemma 3.11]. We would like to stress that the bulk of
the proof above is to show the pointwise estimate (4.3), which has nothing to do with
variable exponents, and then combine it with the characterization given in Theorem 3.1.

5. Embeddings

Although we aim to work with function spaces independent of the starting system {ϕν},
the log-Hölder conditions are quite strong in the sense that some results work under much
weaker assumptions. This is the case of the next two statements, where the conditions
assumed over there are those actually needed in the proofs. The next embeddings should
then be understood to hold when the same �xed system is used for the de�nition of all
spaces involved.
The next corollary follows immediately from the embeddings given in Lemma 2.1.

Corollary 5.1. Let p, q, q0, q1 ∈ P(Rn) and w ∈ Wα
α1,α2

.

(i) If q0 ≤ q1 (and p+, q+0 , q
+
1 <∞ when A = F ), then

Awp(·),q0(·) ↪→ Awp(·),q1(·).
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(ii) If p+, q+ <∞, then

Bw

p(·),min{p(·),q(·)} ↪→ Fw

p(·),q(·) ↪→ Bw

p(·),max{p(·),q(·)}.

In particular, Bw

p(·),p(·) = Fw

p(·),p(·).

To complete the picture at the basic embeddings level, we give one more result which
generalizes various results that can be found in the literature for di�erent types of function
spaces.

Proposition 5.2. Let w ∈ Wα
α1,α2

, v ∈ Wβ
β1,β2

, p, q0, q1 ∈ P(Rn) and 1
q∗

:=
(

1
q−1
− 1

q+0

)
+
.

If
( vj
wj

)
j
∈ `q∗(L∞) when A = B or

( vj
wj

)
j
∈ L∞(`q∗) and p+, q+0 , q

+
1 < ∞ when A = F ,

then

(5.1) Awp(·),q0(·) ↪→ Avp(·),q1(·).

Proof. Since
Awp(·),q0(·) ↪→ Aw

p(·),q+0
and Aw

p(·),q−1
↪→ Awp(·),q1(·)

by Corollary 5.1, it su�ces to prove the claim for constant exponents q0, q1 ∈ (0,∞]. For
simplicity, let us write q0 and q1 instead of q+0 and q−1 , respectively.
We consider only the case A = F ; the other case can be proved in a similar way

by using (2.6) (recall that here q is constant). Let {ϕj} be an admissible system. We
consider �rst the case q0 ≤ q1 (so that q∗ = ∞). Using the monotonicity of the discrete
Lebesgue spaces, we derive∥∥f |F v

p(·),q1

∥∥ =
∥∥∥∥(vj(ϕj ∗ f))j | `q1

∥∥ |Lp(·)∥∥
≤

∥∥∥∥∥(w−1j vj)j | `∞
∥∥∥∥(wj(ϕj ∗ f))j | `q1

∥∥ ∣∣Lp(·)∥∥∥
≤

∥∥(w−1j vj)j |L∞(`∞)
∥∥∥∥∥∥∥(wj(ϕj ∗ f))j | `q0

∥∥ ∣∣Lp(·)∥∥∥
=

∥∥(w−1j vj)j |L∞(`∞)
∥∥∥∥f |Fw

p(·),q0

∥∥.
If q0 > q1 then we have q∗ = q0q1

q0−q1 when q0 <∞ and q∗ = q1 if q0 =∞. Let q := q0
q1
> 1.

The Hölder's inequality and the lattice property of the Lp(·) space yield

∥∥f |F v

p(·),q1

∥∥ =

∥∥∥∥∥∥
(
∞∑
j=0

∣∣w−1j vj
∣∣q1∣∣wj(ϕj ∗ f)

∣∣q1)1/q1 ∣∣Lp(·)
∥∥∥∥∥∥

≤
∥∥∥∥∥(w−1j vj)j | `q1q′

∥∥∥∥(wj(ϕj ∗ f))j | `q1q
∥∥ ∣∣Lp(·)∥∥∥

≤
∥∥∥∥∥(w−1j vj)j | `q∗

∥∥ |L∞∥∥∥∥∥∥∥∥(wj(ϕj ∗ f))j | `q0
∥∥ |Lp(·)∥∥∥

=
∥∥(w−1j vj)j |L∞(`q∗)

∥∥∥∥f |Fw

p(·),q0

∥∥,
which completes the proof. �

Remark 5.3. The main arguments used in the previous proof rely on [44, Proposi-
tion 1.1.13] (see also [10, p. 273]). The case A = B with constant exponents q0, q1
was studied in [43, Theorem 2.10] where the embedding Bw

p(·),q0 ↪→ Bv

p(·),q1 was proved via

atomic decompositions, under the assumptions
vj(x)

wj(x)
. 1 for q0 ≤ q1 and

vj(x)

wj(x)
. 2−jε (for

some ε > 0) for arbitrary q0, q1 ∈ (0,∞]. Even in this particular situation, the hypothesis
in [43, Theorem 2.10] is stronger than ours when q0 > q1, since it implies

( vj
wj

)
j
∈ `r(L∞)
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for any r ∈ (0,∞]. Similar comments are valid to the corresponding result for the case
A = F which was recently studied in [23, Theorem 2.11].

From the above proposition we immediately get the following embedding for spaces
with generalized smoothness:

Aσp(·),q0(·) ↪→ Aτp(·),q1(·)

for admissible sequences σ and τ satisfying (σ−1j τj)j ∈ `q∗ . For constant exponents
p, q0, q1, this result is contained in [10, Theorem 3.7] and [9, Proposition 2.11] in the cases
A = B and A = F , respectively.
For function spaces of variable smoothness, with w = (2js0(x))j and v = (2js1(x))j, the

embedding (5.1) can be written as

A
s0(·)
p(·),q0(·) ↪→ A

s1(·)
p(·),q1(·),

supposing (2j(s1(x)−s0(x)))j ∈ `q∗(L∞) in the case A = B, or (2j(s1(x)−s0(x)))j ∈ L∞(`q∗)
when A = F . It can be checked that both conditions are equivalent to the assumptions
(s0 − s1)− ≥ 0 for q∗ = ∞ and (s0 − s1)− > 0 for q∗ < ∞. Notice that the condition
(s0 − s1)− > 0 ensures that the embedding above holds indeed for any q0, q1 ∈ P(Rn).
For B spaces, this later statement was shown in [3, Theorem 6.1(ii)]. When q0 ≤ q1 the
assumption (s0 − s1)− ≥ 0 can be seen as an improvement of [3, Theorem 6.1(i)], since
now the smoothness parameter may change.

Theorem 5.4. Let w ∈ Wα
α1,α2

and p, q ∈ P log(Rn) (with max{p+, q+} < ∞ in the F
case). Then

(5.2) S ↪→ Awp(·),q(·) ↪→ S ′.

Proof. By Corollary 5.1 (ii) it is enough to show that S ↪→ Bw

p(·),q(·) ↪→ S ′. We shall prove

these embeddings using the lifting property. The proof of the embedding into S ′ will also
require, in particular, the use of the maximal characterization given by Theorem 3.1.
Step 1 : We show that S ↪→ Bw

p(·),q(·). If we take vj(x) := 2jwj(x), then (wjv
−1
j ) =

(2−j)j ∈ `q−(L∞) so that Bv

p(·),∞ ↪→ Bw

p(·),q(·) (by Proposition 5.2). Hence it remains

to show that S is continuously embedded into Bw

p(·),∞ (for given w ∈ Wα
α1,α2

and p ∈
P log(Rn)), that is, one needs to show that there exists N ∈ N such that

(5.3) sup
j∈N0

∥∥wj(ϕj ∗ f) |Lp(·)
∥∥ . pN(f),

for any f ∈ S, where

pN(f) := sup
x∈Rn

(1 + |x|)N
∑
|γ|≤N

|Dγf(x)|.

By straightforward calculations we �nd that

|ϕj ∗ f(x)| . (1 + |x|)−NpN(f), x ∈ Rn,

(with the implicit constant depending only on n, N and on the �xed system {ϕj}). From
the properties of the admissible weights, we also have

wj(x) |ϕj ∗ f(x)| . 2jα2w0(0) (1 + |x|)α−NpN(f), x ∈ Rn, j ∈ N0, f ∈ S.

Since (1 + | · |)α−N ∈ Lp(·) if (N − α)p− > n, we get (5.3) as long as α2 ≤ 0 and
N > α + n/p−. Nevertheless, the restriction on α2 can be overcome using the lifting
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property in the following way: take σ > 0 large enough such that α2− σ ≤ 0. The result
then follows from the composition of continuous maps:

S Iσ−−→ S id−→ B
(−σ)w
p(·),∞

I−σ−−−→ Bw

p(·),∞.

Step 2 : We prove the right-hand side in (5.2). Once again (cf. Corollary 5.1 (i)) it
su�ces to show that the space Bw

p(·),∞ is embedded into S ′. We want to prove that, for
every ψ ∈ S, there exists a constant cψ > 0 such that

(5.4) |〈f, ψ〉| ≤ cψ‖f |Bw

p(·),∞‖, ∀f ∈ Bw

p(·),∞.

Let {Θj} be a system as in the proof of Theorem 4.1 and such that, moreover, Θ0(x) is

radially strictly decreasing for |x| ∈ [1, 2]. Since for any f ∈ S ′ the identity
∑

j≥0 Θj f̂ = f̂
holds in S ′, one has

|〈f, ψ〉| ≤
∑
j≥0

|〈Θ∨j ∗ f, ψ〉|.

Given j ∈ N0 and m ∈ Zn, let Qjm denote the closed dyadic cube with sides parallel
to the coordinate axes, centered at 2−jm and with side length 2−j. Observing that the
collection {Qjm}m∈Zn forms a tessellation of Rn for each j ∈ N0, we get, for each N ∈ N,
the estimate

|〈Θ∨j ∗ f, ψ〉| .
∑
m∈Zn

2jN(1 + |m|)−N(1 + |2−jm|)−α
∫
Qjm

|(Θ∨j ∗ f)(x)| dx, j ∈ N0, f ∈ S ′,

where we took advantage of the estimate 1 + |y| ≈ 1 + |2−jm| for y ∈ Qjm. Since
(1 + |2−jm|)−α . w0(y) for y ∈ Qjm (recall De�nition 2.3 (i)), we also get

|〈Θ∨j ∗ f, ψ〉| .
∑
m∈Zn

2jN(1 + |m|)−N inf
y∈Qjm

w0(y)

∫
Qjm

|(Θ∨j ∗ f)(x)| dx

.
∑
m∈Zn

2jN(1 + |m|)−N |Qjm| inf
y∈Qjm

{
w0(y)

(
Θ∨∗j f

)
a
(y)
}

.
∑
m∈Zn

2j(N−n)(1 + |m|)−N |Qjm|−1/r
(∫

Qjm

[
w0(x)

(
Θ∨∗j f

)
a
(x)
]r
dx

)1/r

for any positive numbers r and a. Taking r ≤ p−, from Hölder's inequality with exponent
p̃(·) := p(·)/r we see that the last integral power is dominated by

21/r
∥∥[w0

(
Θ∨∗j f

)
a

]r |Lp̃(·)∥∥1/r ∥∥χjm |Lp̃′(·)∥∥1/r
where χjm denotes the characteristic function of the cube Qjm. Since p̃ ∈ P log(Rn), by
(2.2) we have ∥∥χjm |Lp̃′(·)∥∥ . |Qjm|1−r/p

−
.

Using this above, we estimate

(5.5) |〈Θ∨j ∗ f, ψ〉| . 2j(N−n+n/p
−)
∑
m∈Zn

(1 + |m|)−N
∥∥w0

(
Θ∨∗j f

)
a
|Lp(·)

∥∥ .
Taking a > α + n/p−, by Theorem 3.1 (now with ψj = Θ∨j ) we have the equivalence∥∥∥(wj(Θ∨∗j f)a)j | `∞(Lp(·))

∥∥∥ ≈ ‖f |Bw

p(·),∞‖.
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But w0(x) ≤ 2−jα1wj(x) for every j ∈ N0 and x ∈ Rn, so that∥∥w0

(
Θ∨∗j f

)
a
|Lp(·)

∥∥ . 2−jα1‖f |Bw

p(·),∞‖, ∀j ∈ N0.

Using this in (5.5) we get

|〈Θ∨j ∗ f, ψ〉| . 2j(N−n−α1+n/p−) ‖f |Bw

p(·),∞‖
if we take N > n. Therefore inequality (5.4) follows if we are careful in choosing a > 0
and n ∈ N satisfying

a > α + n/p− and n < N < α1 + n− n/p−.
Such a choice is always possible when α1 > 1 + n/p−. If this is not the case, then we can
choose σ < 0 small enough such that α1 − σ > 1 + n/p−. Then the result above can be

applied to the space B
(−σ)w
p(·),∞ and from the lifting property we get the claim for the general

case (similarly to what was done in Step 1). �

Remark 5.5. Step 2 of the proof above was inspired by the proof of [39, Theorem 3.14].
There is an alternative proof of embeddings (5.2) which takes advantage of Sobolev type
embeddings for Besov spaces with constant q (cf. [43, Theorem 2.11], [23, Theorem 2.13]).
We refer to our paper [2] for the topic of Sobolev type embeddings in full generality.

6. Fourier multipliers

Fourier multipliers constitute an important tool from the point of view of applications
to partial di�erential equations. By a Fourier multiplier for Awp(·),q(·) we mean a function

(or a tempered distribution) m for which∥∥(m f̂
)∨ |Awp(·),q(·)∥∥ . ‖f |Awp(·),q(·)‖ , f ∈ Awp(·),q(·).

If m is a C∞ function such that it and all of its derivatives are at most of polynomial
growth on Rn (i.e., they are essentially dominated by powers of the type (1 + | · |)M with

M ≥ 0), then
(
m f̂

)∨
makes sense for any f ∈ S ′.

Our �rst result concerning Fourier multipliers (involving that class of functions) can
be proved following the proof of Theorem 4.1, replacing (1 + |z|2)σ/2 by m(z) and using
the estimate

|Dγm(z)| ≤
(

sup
x∈Rn

(1 + |x|2)
|γ|
2 |Dγm(x)|

)
(1 + |z|2)−

|γ|
2

instead of (4.1). Hence the dependence on σ over there should be replaced along the
proof by

‖m‖2l := sup
|γ|≤2l

sup
x∈Rn

(1 + |x|2)
|γ|
2 |Dγm(x)| ,

where l ∈ N satis�es now a+n+ ε = 2l for some ε > 0 (playing the role of the 1 in (4.2))
and a > α + n

min{p−,q−} + clog(1/q). We leave the details to the reader.

Theorem 6.1. Let w ∈ Wα
α1,α2

and p, q ∈ P log(Rn) (max{p+, q+} < ∞ in the F case).
Let l ∈ N be such that

2l > α+
n

p−
+n+clog(1/q) (in the B case) or 2l > α+ n

min{p−,q−}+n (in the F case).

Then there exists c > 0 such that∥∥(m f̂
)∨ |Awp(·),q(·)∥∥ ≤ c ‖m‖2l ‖f |Awp(·),q(·)‖

for all m as considered before and all f ∈ Awp(·),q(·).
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The particular case wj(x) = 2js(x), corresponding to spaces with variable smoothness,
was recently studied in [46], but only bounded exponents were considered there (even in
the B space). The proofs over there follow the arguments from [52, Theorem 2.3.7] where
the constant exponent case is treated.
Recalling the notation from Theorem 4.1 we get the following corollary:

Corollary 6.2. Let w ∈ Wα
α1,α2

and p, q ∈ P log(Rn) (with max{p+, q+} < ∞ in the F

case). For any γ ∈ Nn
0 the di�erentiation operator Dγ is continuous from A

(|γ|)w
p(·),q(·) into

Awp(·),q(·).

Proof. Let m(x) := xγ(1+|x|2)−κ2 with κ ∈ N0. We can check that m and all of its deriva-
tives are C∞ functions of at most polynomial growth and, additionally, that if κ ≥ |γ|
then ‖m‖2l <∞ for all l ∈ N. In particular we can take l large enough in order to apply
Theorem 6.1 and conclude that the above m (with that choice of κ) is a Fourier multiplier
for every space Awp(·),q(·).

Consider now κ = |γ| and let f ∈ A(|γ|)w
p(·),q(·) (recall that (|γ|)w := (2j|γ|wj)j). By Theo-

rem 4.1 we know that Iκf ∈ A(|γ|−κ)w
p(·),q(·) = Awp(·),q(·) and that

∥∥Iκf |Awp(·),q(·)∥∥ ≈ ∥∥f |A(|γ|)w
p(·),q(·)

∥∥.
Thus we get∥∥Dγf |Awp(·),q(·)

∥∥ =
∥∥(xγ f̂(·))∨ |Awp(·),q(·)

∥∥ =
∥∥(m(·)Îκf

)∨ |Awp(·),q(·)∥∥
≤ c ‖m‖2l ‖Iκf |Awp(·),q(·)‖ ≈

∥∥f |A(|γ|)w
p(·),q(·)

∥∥,
which proves the claim. �

Remark 6.3. As in [52, pp. 59-60], from which the argument above is taken, �xing κ ∈ N,
for any γ ∈ Nn

0 such that |γ| ≤ κ, from Proposition 5.2 and the result above we see that∥∥∥Dγf |A(−k)w
p(·),q(·)

∥∥∥ . ∥∥∥Dγf |A(−|γ|)w
p(·),q(·)

∥∥∥ . ∥∥f |Awp(·),q(·)∥∥
and consequently ∑

|γ|≤κ

∥∥∥Dγf |A(−κ)w
p(·),q(·)

∥∥∥ . ∥∥f |Awp(·),q(·)∥∥ .
It can be shown that S is dense in Awp(·),q(·) when p, q are bounded (and p, q ∈ P log(Rn)).

This statement was formulated in [23, Theorem 2.13] for the F case and in [43, Theo-
rem 2.11] for the spaces Bw

p(·),q(·) for constant q only. The proofs mentioned over there rely

on classical arguments from [52] (cf. proof of Theorem 2.3.3). However, we can show that
the same result also holds for variable exponents q in the B case (when p+, q+ <∞ and
p, q ∈ P log(Rn)). Note that this corresponds to the usual restrictions p, q < ∞ already
known for constant exponents.
In the paper [2] we give a complete proof of the denseness of S in Awp(·),q(·) by taking

advantage of re�ned results on atomic decompositions. Thus, at least in the cases p+, q+ <
∞, we can then de�ne Fourier multipliers by completion.

De�nition 6.4. Let w ∈ Wα
α1,α2

and p, q ∈ P log(Rn) with max{p+, q+} < ∞. Then
m ∈ S ′ is said to be a Fourier multiplier for Awp(·),q(·) if∥∥(m f̂

)∨ |Awp(·),q(·)∥∥ . ‖f |Awp(·),q(·)‖
holds for all f ∈ S.
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Notice that this de�nition is coherent with the interpretation made before whenm ∈ S ′
is, in particular, a C∞ function with at most polynomial growth as well as all of its
derivatives.
Before stating the next result, we observe that there are functions λj ∈ S, j ∈ N0, such

that

λ0(x) = 1 if |x| ≤ 2 and λ0(x) = 0 if |x| ≥ 4,

λ(x) := λ0(x)− λ0(8x), λj(x) = λ(2−jx), j ∈ N, x ∈ Rn,

so that

λj(x) = 1 if 2j−1 ≤ |x| ≤ 2j+1 and λj(x) = 0 if |x| ≤ 2j−2 or |x| ≥ 2j+2

for j ∈ N.
Below we use the notation

‖m |hκ2‖ := ‖λ0m |Hκ
2 ‖+ sup

j∈N
‖λ(·)m(2j·) |Hκ

2 ‖,

where

Hκ
2 =

{
f ∈ S ′ : ‖f |Hκ

2 ‖ =
∥∥(1 + | · |2)κ/2f̂ |L2

∥∥ <∞}
stands for the classical Bessel potential space, κ ∈ N. As usual, we write m ∈ hκ2 meaning
that ‖m |hκ2‖ <∞.

Theorem 6.5. Let w ∈ Wα
α1,α2

and p, q ∈ P log(Rn) with max{p+, q+} <∞. Let

κ > α+
n

p−
+
n

2
+clog(1/q) (in the B case) or κ > α+

n

min{p−, q−}
+
n

2
(in the F case).

Then there exists c > 0 such that∥∥(m f̂
)∨ |Awp(·),q(·)∥∥ ≤ c ‖m |hκ2‖ ‖f |Awp(·),q(·)‖

for all m ∈ hκ2 and f ∈ Awp(·),q(·).

Proof. It is enough to prove the claim for all f ∈ S (and all m ∈ hκ2). We try to adapt
the proof of Theorem 4.1 to our present context, using now the functions λj instead of
Θj over there. Let {ϕj} be an admissible system. Noting that λj ≡ 1 on support of ϕ̂j
and that (λj(·)m)∨ is a entire analytic function of at most polynomial growth (by the
Paley-Wiener-Schwartz theorem), for each j ∈ N0 and x ∈ Rn, we have

(2π)
n
2

∣∣∣(ϕj ∗ (m f̂
)∨)

(x)
∣∣∣ ≤ (ϕ∗jf)a(x)

∫
Rn

(
1 + |2jy|a

)
|[λj(·)m]∨(y)| dy

with a > 0. We need to control appropriately the integral above. After the change of
variables given by 2jy = z, an application of Schwarz's inequality yields∫

Rn
(1 + |z|a)

∣∣[λj(·)m]∨(2−jz)
∣∣ 2−jn dz ≤

≤ c1

∫
Rn

(1 + |z|2)
1
2
(a+n+ε

2
)
∣∣[Λj(·)m(2j·)]∧(−z)

∣∣ (1 + |z|)−
n+ε
2 dz

≤ c2

(∫
Rn

(1 + |z|2)a+
n+ε
2

∣∣[Λj(·)m(2j·)]∧(z)
∣∣2 dz)1/2
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with c2 > 0 depending only on a, n and ε (ε > 0 at our disposal), where we used
Λj := λj(2

j·), j ∈ N0. By Plancherel's theorem we further estimate the right-hand side
of the inequality above by

c2

∥∥∥Λj(·)m(2j·) |Ha+n+ε
2

2

∥∥∥ = c2
∥∥Λj(·)m(2j·) |Hκ

2

∥∥ ≤ c2 ‖m |hκ2‖ ,

by choosing ε > 0 such that

κ = α +
n

p−
+
ε

2
+
n+ ε

2
+ clog(1/q) and a = α +

n

p−
+
ε

2
+ clog(1/q)

in the B case, or

κ = α +
n

min{p−, q−}
+
ε

2
+
n+ ε

2
and a = α +

n

min{p−, q−}
+
ε

2

in the F case, which is clearly possible by the assumption on κ. Putting everything
together, we obtain the estimate∣∣∣(ϕj ∗ (m f̂

)∨)
(x)
∣∣∣ . ‖m |hκ2‖ (ϕ∗jf)a(x) , j ∈ N0, x ∈ Rn,

Therefore, the desired inequality follows from this, the lattice property of the mixed
sequence spaces and Theorem 3.1. �

Similar results for the particular case wj(x) = 2js(x) are given in [46], although our
assumptions on κ are better. Corresponding statements for classical spaces Asp,q (then
with even better assumptions on κ) can be seen in [52, p. 117], [55, Proposition 1.19],
though with di�erent restrictions.
Since the Triebel-Lizorkin scale includes Bessel potential spaces, in particular we have

the following Fourier multipliers result:

Corollary 6.6. Let s ∈ [0,∞) and p ∈ P log(Rn) with 1 < p− ≤ p+ < ∞. If κ >
n

min{p−,2} + n
2
, then there exists c > 0 such that∥∥(m f̂

)∨ | Ls,p(·)∥∥ ≤ c ‖m |hκ2‖ ‖f | Ls,p(·)‖

for all m ∈ hκ2 and f ∈ Ls,p(·).
In particular, for any k ∈ N0 we have∥∥(m f̂

)∨ |W k,p(·)∥∥ ≤ c ‖m |hκ2‖ ‖f |W k,p(·)‖

for all m ∈ hκ2 and f ∈ W k,p(·).
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