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resumo 
 

 

Piezo e ferroeléctricos biorgânicos são materiais que estão a atrair para si 
uma importância crescente por força da sua compatibilidade intrínseca 
com ambientes biológicos e uma biofuncionalidade aliada a um forte efeito 
piezoeléctrico e polarização controlada, a temperature ambiente. Aqui 
estudamos a piezo e ferroelectricidade no mais pequeno aminoácido, a 
glicina, representando uma ampla classe de aminoácidos nao-
centrosimétricos. 
 
A glicina é um elemento básico e extremamente importante em biologia, 
uma vez que serve de unidade base de construção para proteínas. Três 
formas polifórmicas com diferentes propriedades são possíveis na glicina 
(α, β e γ). De especial interesse para várias aplicações são as estruturas 
não-centrosimétricas: β-glycina e γ-glycina. A mais interessante β-
polimorfa está a ser alvo de uma atenção reduzida, comparativamente às 
outras, por motivos de uma maior instabilidade a temperatura ambiente. 
Neste trabalho, Podemos crescer microcristais estáveis de glicina-β pela 
evaporação da solução aquosa num substrato (111)Pt/Ti/SiO2/Si que 
funciona como "template". Os efeitos da concentração da solução e da 
nucleação Pt-assistida no crescimento do cristal e evolução da fase foram 
estudados com recurso à difracção Raio-X e espectroscopia Raman. 
 
Adicionalmente, a técnica de "spin-coating" foi utilizada para a fabricação 
de nano-ilhas de glicina-β altamente alinhadas, com a orientação dos eixos 
cristalográficos normalizada pelo substrato de Pt. 
 
Estudamos a indução de domínios estruturais por meio da ponta do AFM e 
a variação da polarização nos sistemas moleculares da β-glicina através 
da técnica PFM (Microscopia de Piezo Força), comparando os resultados 
obtidos com modelação molecular e simulações computacionais. 
Mostramos que a β-glycina é de facto um piezoeléctrico à temperatura 
ambiente e a polarização pode ser controlada por aplicação de uma tensão 
a cortes não polares. A dinâmica destes domínios complanares é estudada 
como função da tensão aplicada e duração do pulso. A forma do domínio é 
ditada pela polarização interna e externa, cujo rastreio é mediado por 
defeitos e características topográficas. A teoria termodinâmica é aplicada 
para explicar a propagação dos domínios induzidos pela ponta do AFM. As 
nossas descobertas sugerem que a β-glycina é um ferroeléctrico uniaxial 
com propriedades controladas pelas fronteiras dos domínios 
(electronicamente carregadas), que em seu turno podem ser manipuladas 
por tensão externa. 
 

 

 



 

  
 

 

 

 

 

 

 

 

 

 

Adicionalmente, propriedades ópticas não-lineares da β-glycina foram 
investigadas por um método de segunda geração harmonica (SHG). Este 
método confirmou que a simetria axial é preservada em cristais crescidos 
sem pós-tratamento, reflectindo a esperada simetria P21 da fase β. A 
direcção da polarização espontânea mostrou ser paralela ao eixo 
monoclínico [010] e direccionada no comprimento do cristal. Estes dados 
foram confirmados por modelação computacional molecular. Medições 
ópticas revelaram também um valor relativamente elevado para a 
susceptabilidade óptica não-linear (50% maior que no quartzo com corte 
em z). 
 
O pontencial uso de cristais de β-glycina estáveis em diversas aplicações 
são também discutidos. 
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abstract 

 
Bioorganic ferroelectrics and piezoelectrics are becoming increasingly 
important in view of their intrinsic compatibility with biological 
environment and biofunctionality combined with strong piezoelectric 
effect and switchable polarization at room temperature. Here we study 
piezoelectricity and ferroelectricity in the smallest amino acid glycine, 
representing a broad class of non-centrosymmetric amino acids. 
 
Glycine is one of the basic and important elements in biology, as it serves 
as a building block for proteins. Three polymorphic forms with different 
physical properties are possible in glycine (α, β and γ), Of special interest 
for various applications are non-centrosymmetric polymorphs: β-glycine 
and γ-glycine. The most useful β-polymorph being ferroelectric took 
much less attention than the other due to its instability under ambient 
conditions. In this work, we could grow stable microcrystals of β-glycine 
by the evaporation of aqueous solution on a (111)Pt/Ti/SiO2/Si substrate 
as a template. The effects of the solution concentration and Pt-assisted 
nucleation on the crystal growth and phase evolution were characterized 
by X-ray diffraction analysis and Raman spectroscopy. 
 
In addition, spin-coating technique was used for the fabrication of highly 
aligned nano-islands of β-glycine with regular orientation of the 
crystallographic axes relative the underlying substrate (Pt). 
 
Further we study both as-grown and tip-induced domain structures and 
polarization switching in the β-glycine molecular systems by 
Piezoresponse Force Microscopy (PFM) and compare the results with 
molecular modeling and computer simulations. We show that β-glycine is 
indeed a room-temperature ferroelectric and polarization can be switched 
by applying a bias to non-polar cuts via a conducting tip of atomic force 
microscope (AFM). Dynamics of these in-plane domains is studied as a 
function of applied voltage and pulse duration. The domain shape is 
dictated by both internal and external polarization screening mediated by 
defects and topographic features. Thermodynamic theory is applied to 
explain the domain propagation induced by the AFM tip. Our findings 
suggest that β-glycine is a uniaxial ferroelectric with the properties 
controlled by the charged domain walls which in turn can be manipulated 
by external bias. 
 
 

 

 

 



 

  
 
 
 
 
 
 
 
 
 
 
 
Besides, nonlinear optical properties of β-glycine were investigated by a 
second harmonic generation (SHG) method. SHG method confirmed that 
the 2-fold symmetry is preserved in as-grown crystals, thus reflecting the 
expected P21 symmetry of the β-phase. Spontaneous polarization 
direction is found to be parallel to the monoclinic [010] axis and directed 
along the crystal length. These data are confirmed by computational 
molecular modeling. Optical measurements revealed also relatively high 
values of the nonlinear optical susceptibility (50% greater than in the z-
cut quartz).  
 
The potential of using stable β-glycine crystals in various applications are 
discussed in this work. 
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Creating artificial biomimetic materials with multiple functions similar to those of 

living bodies is an important frontier for advanced society in near future. Electromechanical 

coupling is one of the important functional properties of several classes of organic and 

bioorganic materials [1] and is one of the essential features of biological and living systems, 

in particular, regarding their electrical and mechanical signalization [2,3]. It is based on the 

complex dipolar properties and dipole-dipole interactions conjugated with hydrogen bonds 

network in biomolecular systems with different levels of self-assembly and hierarchy.  

Recently, electromechanical coupling in various biomolecular structures (both 

crystalline and natural composites) based on important biological molecules has been 

observed and several materials have demonstrated functional properties similar to their 

inorganic counterparts, namely, sufficiently strong piezoelectricity and, furthermore, apparent 

ferroelectric-like behavior [4]. Understanding the relationship between the generated electric 

fields and applied mechanical stress is the main motivation for studying piezoelectricity in 

biological systems and artificial biomaterials. Since the early stage of investigation of 

biological piezoelectricity, researchers have proposed the undeniable role of 

electromechanics in the biological tissue development, in the movement of muscles and in the 

functioning of the nerve system of the body [5,6]. However, initial studies of biological 

systems have been performed on the macroscopic level, such as conventional 

electromechanical tests and dielectric measurements. Due to the complex hierarchical 

structure of these biomaterials, they provide only an averaged signal and quantitative 

piezoelectric measurements have not been unambiguously conducted.  

Of further interest is that new bioorganic ferroelectric/piezoelectric materials have the 

potential to replace some traditional inorganic ones in practical devices, for example they can 

be used as natural biocompatible elements in medical implants, biosensors, bioelectronics, 

harvesting systems, MEMS, etc. [7].  

In addition, in the last two decades, there has been an increasing application of 

ferroelectrics in miniaturized systems, pushing research towards size effects and nanoscale 

studies. It is therefore important to understand and to investigate ferroelectric properties 

down to the nanoscale. In this regard, the emergence of Piezoresponse Force Microscopy 

(PFM) offers a powerful tool to probe local piezoelectricity and ferroelectricity at the 

nanoscale [8]. PFM is a scanning probe technique based on the converse piezoelectric effect 

that is present in all ferroelectric materials. This technique allows both the detection and the 
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manipulation of the polarization state with a resolution down to 10 nm. It has been 

extensively used to study a variety of biological tissues, biopolymers and molecular crystals 

[7,9,10]. Using this technique, sophisticated domain structures have been imaged, domain 

switching characteristics have been determined, and biological ferroelectricity has been 

discovered [11,12].  

In most studied examples of biomaterials, the presence of polar molecules and their 

inherent chirality are possibly the intrinsic reasons of electromechanical effects in them. 

Thus, a systematic way to understand the origin of this electromechanical coupling in a 

biomaterial is to study first the elementary blocks constituting a tissue rather than a complex 

biological system such as protein fibrils or even more deeply within the element structure of 

proteins (i.e., amino acids).  

It has been reported [13,14] that many amino acids have a non-centrosymmetric 

crystal structure and can be even ferroelectric when probed at small dimensions. 

Unfortunately, existing data on local electromechanical properties of amino acids is limited to 

experimental results obtained before the development of nanotechnological methods such as 

Atomic Force Microscopy (AFM) and its novel modes like PFM.  

In order to understand the electromechanical properties of glycine molecules we need 

to study their properties using both macroscopic techniques such as X-ray, Raman scattering, 

non-linear optics, etc but also the local methods including Scanning Probe Microscopy such 

as AFM/EFM/PFM. These studies require well-defined structure rather than a complicated 

biological tissue. Furthermore for any application of them as a functional biomaterial in 

practical devices we need to investigate the relation between the functional properties and 

their three-dimensional polar structure. For these two reasons, the assembly of ordered 

molecules as a single crystal is preferable for our study. 

Recent studies on the simplest amino acid glycine have demonstrated that it is a 

suitable material with apparent ferroelectric properties and square piezoresponse hysteresis 

loops at room temperature [15]. Glycine is one of the basic and important elements in biology 

as it serves as a building block for many biological macromolecules, such as peptides or 

proteins [16]. The main structural and physical properties of glycine crystals are reviewed 

and studied in this work, in particular in the context of their notable piezoelectric and 

ferroelectric properties. 
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Glycine can exists in three major polymorphic forms at ambient conditions: α, β and γ 

phases. From symmetry considerations, piezoelectricity can exist only in non-symmetric 

polar materials. It has been long time known that α-glycine crystals are centrosymmetric [17] 

and, therefore, do not exhibit any property described by the 3
rd

 rank tensor such as 

piezoelectricity or second harmonic generation (SHG). On the contrary, γ- [18] and β-glycine 

[19] polymorphs are strongly non-centrosymmetric (with two differently formed and oriented 

by individual dipoles of each glycine molecules) and, therefore, can be used as a 

biocompatible nonlinear optical and piezoelectric/ferroelectric material [20,21]. 

  The overall objective of this dissertation was first to develop a method of growing 

useful β- and γ-glycine crystals with well-defined shape and morphology from the solution 

and to investigate the conditions that affect the growth of crystals and polymorph selectivity. 

To achieve this goal, several synthesis methods were tried. A full set of the structural 

parameters of the crystal polymorphs was obtained in order to understand their 

electromechanical properties. Due to that, all the grown crystals were first characterized by 

the combination of structural characterization methods such as optical microscopy, X-ray 

diffraction (XRD), Raman spectroscopy and non-linear optical response.  

 The second objective was to investigate their electromechanical properties on the 

nano- and microscale level using PFM and characterize their domain structure and the 

switching properties so that to understand the microscopic mechanisms of their 

ferroelectricity.  

Following this Introduction the present thesis is organized in six Chapters:  

In Chapter 1, the fundamentals of piezoelectricity, ferroelectricity and domain 

structures are first presented and then followed by a short overview of the history and 

advances in studying these phenomena in biological materials and synthetic molecular 

ferroelectrics. The latest developments in molecular ferroelectrics revealed by PFM and the 

mechanism of ferroelectricity in molecular crystals are discussed. Then a brief overview of 

nonlinear optical phenomena, particularly in organic crystals is presented. Finally, this 

Chapter will end up with the description of the potential applications of organic ferroelectrics 

and possible opportunities for using them in specific devices in the near future.  

In Chapter 2, the introduction to amino acids in general and piezoelectricity in 

crystalline amino acids is presented. Various crystal growth techniques useful for this work 
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are briefly mentioned. In particular, glycine polymorphism, possible crystal structures and  

crystallization processes to obtain α- , β- and γ-glycine are discussed. 

In Chapter 3, the detailed description of the experimental techniques used for the 

characterization and phase determination of glycine crystals (including optical microscopy, 

X-ray diffraction and Raman spectroscopy) is given.  

The basic principles and experimental setup of AFM are introduced, followed by a 

more detailed description of the relevant PFM mode. Then the experimental procedures 

employed for domain imaging and switching of polarization are described and quantitative 

analysis of the PFM signal is briefly discussed. Besides, the technique used for the second-

order non-linear optical susceptibility measurement is presented. 

The obtained experimental results are depicted, analyzed and discussed in the two 

following experimental Chapters. 

In Chapter 4, several synthesis methods were applied to grow single crystals of all 

three phases of glycine (α-, β- and γ-polymorphs) from solution. The morphology and 

polymorphic forms of the crystals produced in these experiments have been analyzed by 

optical microscopy and X-ray diffraction. β-glycine was found to be unstable at normal 

ambient conditions and phase transition was detected using XRD. Therefore, a simple method 

of stabilization of the β-phase is introduced based on the evaporation of aqueous solution on 

crystalline Pt(111) substrates. As a result, we could grow sufficiently stable β-glycine 

microcrystals with well-defined habit and clear morphology on the commercial 

(111)Pt/Ti/SiO2/Si substrates. X-ray diffraction analysis and Raman spectroscopy confirmed 

the preferential growth and stability of β-phase. The ability to grow stable β-phase crystals 

allowed studying their ferroelectric and nonlinear optical properties in detail in the following 

Chapter.   

In Chapter 5, PFM technique was applied to probe the piezoelectric response and 

ferroelectric switching in both β- and γ-phases. The γ-glycine is found to be a purely 

piezoelectric (not ferroelectric) with a unique polar axis along the crystallographic c 

direction.  

Further, PFM tip-induced domain structures and polarization switching in β-glycine 

were studied. We show that β-glycine is indeed a room-temperature ferroelectric and 

polarization can be switched by applying a dc bias to non-polar cuts via a conducting tip of 

AFM. Dynamics of these in-plane ferroelectric domains is studied as a function of applied 
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voltage and pulse duration. Non-linear thermodynamic theory is applied to explain the 

domain shape upon switching by the voltage applied to the tip of AFM. Our findings suggest 

that the ferroelectric properties of β-glycine are controlled by the charged domain walls 

which are in turn can be manipulated by external bias. Additionally, the pronounced decay of 

the switched domains was observed depending on the domain size. 

Computational modelling of both β- and γ-phases was performed using a HyperChem 

7/8 package and the importance of the network of the hydrogen bonds for the stability of 

glycine crystal structure is discussed. The developed molecular model and calculated physical 

parameters such as polarizability, saturated polarization, piezo- and electrostriction 

coefficient were found to be close to the obtained experimental data.  

In addition, we show that the non-linear optical coefficients of β-glycine are 

comparable to those of reference z-cut (001) quartz. Highly anisotropic second harmonic 

generation signal is found to be compatible with the crystallographic symmetry of β-glycine. 

Biomolecular modelling is applied for understanding of the relationship between the crystal 

structure and nonlinear properties.  

Chapter 6 concludes the thesis with a summary of the entire work carried out towards 

the objectives and outlines some potential directions for future developments. 
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This Chapter starts from the standard definitions of piezoelectricity, ferroelectricity, 

Curie temperature, polarization hysteresis and domain structure in general. Then the general 

property discussion is followed by the historical overview of the piezoelectric and 

ferroelectric features observed in biological materials. After that, recent developments in 

synthetic organic ferroelectrics including microscopic mechanisms governing ferroelectricity 

in these materials are reviewed. In addition, a brief overview of relevant nonlinear optical 

phenomena (mainly in organic crystals) is presented. Finally, current and future applications 

of organic ferroelectrics and their potential for emergent in devices are discussed.  

1.1. Fundamentals of Piezoelectric and Ferroelectric Effects 

Electromechanical coupling is one of the general characteristics of a wide range of 

inorganic and organic materials. The linear electromechanical coupling is called 

piezoelectricity. This property can be observed in non-centrosymmetric materials (in 20 of 

the 32 point groups) in which the application of mechanical stress results in electrical 

polarization (direct piezoelectric effect), while the application of an electric field results in a 

mechanical deformation (converse piezoelectric effect).  

In both direct and converse piezoelectric effects there is a linear relation between the 

mechanical stress (strain) and electric polarization (field). The mathematical relations in the 

tensorial form can be expressed as: 

 

Pi = dijk  σjk    direct effect,         (1.1) 

and 

Sjk = dijk Ei     inverse effect,       (1.2) 

 

where dij is the piezoelectric coefficient with the unit of m/V (or C/N), σjk is the stress tensor, 

Pi is the induced polarization, Ei is the applied electric field, and Sjk is the field induced strain 

tensor. Piezoelectric coefficients dijk are described by a 3
rd

-rank tensor having maximum 18 

components in triclinic crystals but with higher symmetry the number of independent 

components is reduced. The magnitude of the piezoelectric coefficient dij is affected by many 

factors including degree of crystallinity, degree of orientation (texture), existing domain 
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structure and intrinsic piezoelectric coefficients of a properly oriented monodomain single 

crystal [22,23].  

Piezoelectric materials are used in a numerous number of devices, such as force and 

displacement sensors, electrically driven actuators and ultrasonic transducers [24,25]. Sensors 

make use of the direct piezoelectric effect that transforms mechanical signals into electrical 

response, e.g. to measure acceleration (accelerometers), pressure and acoustic vibrations. 

Actuators work vice versa, transforming electrical signals into mechanical responses and are 

used in various electrically driven actuators and force generators. Finally, in transducers both 

effects are used within the same device, e.g. in ultrasonic imaging systems. 

Among the 20 piezoelectric crystal classes, there are ten pyroelectric groups with a 

unique polar axis, in which spontaneous polarization exists and varies with temperature. The 

spontaneous polarization is the average electric dipole moment per unit volume of the crystal. 

If such spontaneous polarization can be reversed by the application of an external electric 

field, then the pyroelectric material is called ferroelectric. Thus, all ferroelectrics are also 

pyroelectric and piezoelectric, although the opposite is not true. The spontaneous polarization 

of a ferroelectric material usually decreases upon heating and above a critical temperature 

which is called the Curie temperature Tc, the crystal phase becomes paraelectric with a non-

polar structure. This property (temperature-dependent polarization) can be used in infrared 

detectors and thermal imaging systems [26]. The relative dielectric constant has a distinct 

maximum in the vicinity of the Curie temperature. Depending on whether the spontaneous 

polarization changes continuously or discontinuously at the Curie point, the phase transition 

can also be classified as second or first order [27,28].  

As discussed above, main signature of ferroelectrics is the spontaneous polarization 

(Ps) of a ferroelectric crystal which can be reversed under the influence of a high enough 

external electric field. This process is called polarization switching. The critical electric field 

required to reverse polarization in ferroelectrics is called coercive field Ec, which also varies 

with the temperature, frequency and amplitude of the applied field. The switchability of the 

spontaneous polarizations causes the hysteretic relationship between the instant polarization 

Ps and the electric field E (Fig. 1.1a). This hysteretic dependence is called ferroelectric P-E 

hysteresis loop. The value of polarization at zero field is called the remnant polarization PR. 

When the positive and negative coercive fields and remnant polarizations in both remnant 

states are equal to each other, the hysteresis loop is ideally symmetric relative to the P and E 
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axes. In reality, the loops are often asymmetric due to several factors including dissimilar 

electrodes, internal bias field due charged defects, inhomogeneous mechanical stresses, 

composition gradients across the thickness etc that can all affect the shape of the loop. In 

addition to the polarization-electric field hysteresis loop, polarization switching under electric 

field in ferroelectric materials leads to a strain-electric field hysteresis, which has a butterfly 

shape as shown in Fig. 1.1b [29].  

 

Figure 1.1. (a) Typical polarization-electric field (P-E) hysteresis loop in ferroelectric 

material and (b) Ideal strain-electric field (x-E) hysteresis (butterfly) loop in uniaxial 

ferroelectrics in which polarization reverses by 180° [29]. 

Ferroelectrics as multifunctional electroactive materials are suitable for a large 

number of applications [30] such as capacitors (especially for thin film capacitors due to large 

dielectric permittivities and small thickness) [31], electro-optic devices [32,33], surface 

acoustic wave (SAW) transducers [34], and non-volatile ferroelectric random access 

memories (FRAM) [35,36] in which the direction of the spontaneous polarization can be used 

to store information and the information bits are retained if the power is turned off.   

Ferroelectricity was first observed in Rochelle salt crystal, containing organic tartrate 

ions [37]. For a while, Rochelle salt was the only known ferroelectric material. However, the 

rapid progress in ferroelectric field occurred only after the development of perovskite 

ferroelectrics such as barium titanate (BTO) [38] and lead zirconate titanate (PZT) families 

[39]. After some time, a few other molecular systems, such as well-known triglycine sulfate 

were discovered [40]. Today, among ferroelectric materials, the perovskite-type compounds, 

(a) (b) 
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particularly PZT, are the most studied and technologically are the most widely used due to 

their large piezoelectric coefficients and electromechanical coupling constants. However, 

they contain lead and it is a major environmental concern. Now considerable efforts were 

focused on searching lead-free alternatives of PZT. In addition, traditional piezoelectric 

ceramics are rigid, heavy, and require high temperature processing, which limits their 

application in certain areas. 

In this context, in order to expand the range of applications of ferroelectric materials, 

molecular and bio-molecular ferroelectrics have been recently drawing much attention and a 

large number of organic ferroelectrics with properties comparable to perovskite oxides have 

been synthesized. They have several advantages including light weight, mechanical 

flexibility, non-toxicity, and low processing temperatures (e.g. by the solution growth). They 

are also environmentally friendly as they are do not contain lead and can be easily 

functionalized, e.g. for biosensor applications, which have motivated this perspective [7]. 

Intrinsic biocompatibility and the possibility of self-assembling are also fascinating properties 

of some molecular ferroelectrics which are made of biological building blocks.  

Despite of many advantages, organic ferroelectric typically suffer from low 

spontaneous polarization, low transition temperature and weak piezoelectric properties even 

at low temperatures. Recent results on croconic acid [41] and disopropylammonium chloride 

(bromide) [42,43]
 
have been indeed a breakthrough due to a combination of high enough 

transition temperature and polarization combined with low coercive field and switchability. 

These discoveries paved the way for using organic ferroelectrics in various applications.  

In section 1-3 and 1-4, the progress and mechanism of ferroelectricity in biological 

tissue and synthesized molecular ferroelectrics, are explained in detail. In section 1-6 more 

details about the current and expected future applications of organic and biomolecular 

ferroelectric are discussed. 

1.2. Ferroelectric Domains and Domain Walls 

In general, ferroelectric crystal does not exhibit the same polarization orientation 

throughout the material. It can be divided into spatial regions with different directions of 

polarization, called ferroelectric domains. Each domain has uniform polarization and is 

separated by the domain walls. Domain walls are characterized by the angle between the 
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polarization directions on both sides of the wall. A number of technological applications of 

ferroelectrics such as nonlinear-optical and electro-optical devices are critically dependent on 

the ability to create controlled domain configurations in ferroelectric materials. Hence the 

understanding of domain formation, dynamics of domain wall motion, stabilization 

mechanisms, and structure of domain walls are of fundamental interest for the field of 

domain engineering and opens wide opportunities to optimize device performance.  

In general, ferroelectric single crystals have a unique crystallographic orientation, but 

they may contain areas with uniform polarization directions called ferroelectric domains. 

They are oriented in a particular way to be compatible with crystallographic orientation and 

to minimize both electrostatic and mechanical energies. For example in PbTiO3, six 

equivalent polarizations can be formed in the crystal depending on the stress and electric field 

conditions upon cooling. Ferroelectric polycrystals (ceramics) are composed of many 

individual grains with random crystallographic orientations which are in turn split into 

domains [44]. 

For platelet crystals domains with out-of-plane polarization are called c domains, 

while the domains with in-plane polarization are called a domains. Domain walls which 

separate two polar domains are called 180º domain walls if the angle between the polarization 

orientations of the neighboring domains is 180°; if the domains’ polarization angle is not 

180° – for example, they are  90º or 71º – they are called 90º or 71º domain walls, or 

generally, non-180º domain walls. 180º ferroelectric domain walls can be classified into three 

types according to the relative angle between the domain-wall plane and the polarization 

vector. One widely observed type is electrically neutral domain walls, which have a domain 

wall parallel to P inside the adjacent domains (Fig. 1.2). The other two types are head-to-head 

or tail-to-tail charged domain walls, where the domain wall plane is not parallel to P and 

hence positive or negative uncompensated bound charges are present at the domain wall (Fig 

1.2). The mobility of charged and neutral domain walls under an electric field can be 

different. In conventional ferroelectrics, charged 180° domain walls are thermodynamically 

unstable because they are energetically unfavorable [45]. Consequently, charged domain 

walls have been rarely observed in ferroelectric materials such as PbTiO3 crystals [46], PZT 

thin films [47] and, recently, in uniaxial organic ferroelectrics [48].  
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Figure 1.2. Three possible configurations for 180
°
 domains. Orientation of spontaneous 

polarization with respect to the wall plane is shown by arrows [49]. 

1.3. Piezoelectricity and Ferroelectricity in Biomaterials 

Piezoelectricity in biological materials was first observed and described by Fukada 

and Yasuda in 1957 [50]. They discovered both direct and converse piezoelectric effects in 

dry bone samples cut from the femur of man and ox. Piezoelectricity in bone was attributed 

to the collagen fibrils as an organic crystalline matrix. Collagen is a kind of protein and the 

polarization or the displacement of hydrogen bonds in the polypeptide chains of collagen 

crystal was suggested to be an origin of the observed piezoelectric effect [51]. After 

observation of piezoelectricity in collagen, piezoelectric effect has been also observed in a 

number of biological materials which contain molecular arrays of proteins or polysaccharides 

like tendons, muscles, teeth [52], exoskeletons [53], glands [54], nerve fibers [55], membrane 

protein [56], and cornea [57].  

Soon after the discovery of biological piezoelectricity, pyroelectricity was observed in 

bone and tendon by Sidney Lang in 1966 [58] and, subsequently, in many other biological 

systems [59,60]. Later on, many authors claimed the existence of ferroelectricity in several 

biological materials. Fascinating theories were proposed regarding the functional role of 

ferroelectricity in voltage-dependent ion channels and biological membranes by Leuchtag 

[61,62]. He considered dielectric constant ε as a nonlinear function of electric field in the 

classical electrodiffusion model to explain the membrane function. He could fit the existing 

ion-channel data [63] with the Curie-Weiss law (apparent manifestation of ferroelectric phase 

transition) in biomembranes. Ermolina et al.[56] observed a liquid-crystal-like ferroelectric 

behavior in bacteriorhodopsin, an integral protein of the purple membrane of Halobacterium 

salinarium, embedded into the lipid biomembrane. Similarly, the Curie-Weiss law was found 

to be valid suggesting apparent ferroelectric-like behavior, the presence of a long-range order 
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in the regular positions of molecules and the symmetry loss at some critical temperature 

called Curie temperature [64]. All these phenomena are essential for various complex bio-

objects but cannot be strictly called ferroelectric in a classical sense because of the variety of 

different mechanisms involved (due to, e.g., flexoelectricity in membranes or presence of 

water in bone). This makes the assignment of biological phenomena under electric field to 

ferroelectricity difficult, and sometimes speculative. The hindrance in ferroelectric hypothesis 

was also due to the fact that biological samples being soft could not endure the mechanical 

force required for electromechanical measurement and are subject to strong electrostatic 

effect. Another obstacle was the inability to look at the nanoscale to assign the observed 

complex electromechanical behavior to the particular structure unit and thus to understand the 

mechanism of the polar behavior and polarization reversal. Therefore, biological 

ferroelectricity remains elusive, and no direct experimental evidence has been presented until 

very recently.  

During the last decade, rapid development of Scanning Probe Microscopy including 

Piezoresponse Force Microscopy (PFM) and Switching Spectroscopy PFM has led to the 

possibility of probing electromechanical properties of biomaterials along with their 

topography. The first study on biopiezoelectricity at the nanoscale was reported by Halperin 

et al. in bone [65]. Later both lateral and vertical piezoelectricity in tooth dentin and enamel 

were reported and it was revealed that dentin shows higher piezoelectricity with respect to 

enamel [66,67]. This behavior was attributed to the high fraction of piezoelectrically active 

protein components in dentin. Recently electromechanical properties of collagen fibrils 

[68,69], human nails [70] and also artificial biomaterials such as peptide nanotubes [71,72] 

have been studied with the nanoscale resolution via PFM.  

The first indication of polarization switching under sufficiently high electric field in 

biological tissue, generally called bioferroelectricity was reported by Li and Zeng in shells 

[73,74,75] using PFM. After that bioferroelectricity was observed in the soft biological 

tissue; elastin protein of the aortic wall in mammals [76,77]. Therefore, the constituents of 

proteins such as amino acids, lipids and amyloid-like structures could be responsible for 

ferroelectricity in complex tissues. As such, apparent piezo- and ferroelectricity in these 

systems should be studied first to understand the global behavior of the complex biological 

systems. In this context, new materials class based on element structure of mentioned 

ferroelectric tissue such as crystalline amino acids (glycine), peptides (self-assembled 
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nanotubes) [71] and lipid/ferroelectric bilayers [78] have been synthesized. In-depth 

understanding of the electromechanical behavior in these structures under an applied electric 

field will open a pathway for further insight into the piezoelectric and ferroelectric 

phenomena in complex biological materials. 

In addition to natural and synthetic biomaterials, organic molecular ferroelectrics with 

properties comparable to inorganic perovskite oxides have been synthesized [79]. The 

structure and microscopic mechanism of ferroelectricity in these materials are described in 

detail in the next section.  

1.4. Structural Design and Mechanism of Ferroelectricity in Organic 

Molecular Crystals  

The development of the organic ferroelectric had been quite slow since the discovery 

of ferroelectric effect [37]. However, recently a large number of organic ferroelectrics, 

mostly two-component and few single component molecular crystals have been synthesized. 

The microscopic mechanisms governing ferroelectricity in these organic ferroelectrics are 

usually attributed to order-disorder, displacive and proton-transfer types or mixed 

characteristics of these which are dependent on the design strategies. Ionic displacements in 

perovskite oxides have resulted in large spontaneous polarization and excellent piezoelectric 

and ferroelectric properties (Fig. 1.3). Such a mechanism is apparently less probable in 

molecular systems due to their large molecular volume and weaker bonds [80].  

 

Figure 1.3. Polarization switching mechanism of a typical inorganic perovskite BaTiO3 

[81]. 
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Most of the current literature on molecular ferroelectrics is divided into four 

categories:  

The first and most simple possible design is that the permanent dipoles of the polar 

molecules such as thiourea [82], polyvinylidene fluoride (PVDF) polymer and co-polymers 

[83] generate spontaneous polarization in the organic solids, and the ferroelectric transition 

can arise from the reorientation of these polar components (Fig. 1.4). 

 

Figure 1.4. Schematic molecular structure and polarization switching of P(VDF-TrFE) 

polymer [81]. 

The second group developed from interaction between two nonpolar molecules such 

as donor and acceptor in a charge-transfer (CT) complex. Electrons can transfer between the 

donor (D) and acceptor (A) pairs through a neutral-to-ionic transition, which breaks the 

symmetry in the lattice and leads to forming dipolar DA dimers and polarization. As shown 

in Fig. 1.5 there can be two possible configurations with opposite polarity (DA DA… and 

AD AD...). Therefore, ferroelectricity of this polar structure mainly comes from the 

intermolecular charge transfer rather than from the displacement of point charge. 

Ferroelectric polarization of CT complexes under external electric field can be switched by 

the change of stacking style of A-D molecules, resulting in ionic displacement and charge 

redistribution to finally produce different polarizations (Fig. 1.6) [84].  

One successful example of charge-transfer ferroelectric complexes is the 

tetrathiafulvalene-chloranil (TTF-CA), which demonstrates a distinct hysteresis loop with a 

large remnant polarization of 6.3 μC/cm
2 

[85]. These co-crystals normally have higher 

polarization, ferroelectricity at low temperature, first-order ferroelectric phase transition and 
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large dielectric constant [79]. However, the charge-transfer complexes have some problems, 

such as current leakage. Because most of these CT complexes are semiconductors, the neutral 

to ionic transition requires a narrow charge gap which may lead to current leakage and 

degradation of the spontaneous polarization [86]. 

  

Figure 1.5. Schematics of neutral-to-ionic transition in the charge transfer complex with 

two possible polarities [86]. 

 

Figure 1.6. Schematic representation of electric field- or temperature- induced ferroelectric 

switching of charge-transfer complexes between different phases (HS versus LS phases) 

[84]. 

The third strategy to obtain organic ferroelectrics is to utilize proton dynamics in 

hydrogen bonds to contribute to ferroelectric properties. There exist two types of hydrogen 

bond ferroelectricity: displacive and proton-transfer. In the displacive type, the molecules do 

not necessarily have permanent dipoles, but the crystal polarization comes from relative 

displacement of protons in the crystal through intermolecular interaction. Horiuchi et al. 

synthesized two-component molecular ferroelectrics connected by hydrogen bonds to form a 
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co-crystal with large spontaneous polarizations at room temperature [87], such as nonpolar 

co-crystals made of phenazine (Phz) with proton accepting nitrogen atoms and chloranilic 

acid (H2ca) or bromanilic acid (H2ba) with proton donation O–H groups (Fig. 1.7a) [88]. 

Above the Curie temperature, all the hydrogen bonds have equal lengths and the net 

dipole moment is therefore zero. Below the Curie temperature, the polarization of co-crystal 

is determined by the displacement of hydrogen atoms on one side of the H2ca acid molecule 

toward the nitrogen atom of phenazine while the other side remains almost unchanged (Fig. 

1.7b,c). Therefore, ferroelectricity originates from an asymmetric O–H bond elongation of 

the intermolecular O–H…N bonds and the relative molecular displacement as drawn 

schematically in Fig. 1.7d. These co-crystals have a first-order ferroelectric phase transition, 

high dielectric permittivity, and high resistivity [88].  

 
 

Figure 1.7. a) Crystal structures of a-Phz–H2ca in the b-axis projections. b,c)  Molecular 

structures of H2ba in paraelectric and ferroelectric phase. d) Schematic of alternating acid–

base molecules with intermolecular hydrogen bonds in every chain. Blue and yellow arrows 

indicate the displacement directions of proton and the molecules in the ferroelectric phase, 

respectively [89]. 

In the second type observed in early ferroelectrics, proton transfer is important as was 

proved in Rochelle salt [37] and inorganic potassium dihydrogen phosphate KH2PO4 (KDP). 

In the KDP family, the collective site-to-site transfer of protons in the O–H…O bonds, 

between PO4
3-

 ions switches the spontaneous polarization (Fig. 1.8) [90].  

(a) (b) (c) 

(d) 
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Figure 1.8. Protons transfer in the O–H…O bonds of KH2PO4. 

Similar proton dynamics have been observed in co-crystals of  [H-55dmbp][Hia] [91], 

and the strong hydrogen bonding suggests possible tautomerism that transforms the O–H…N 

bonds into the ionic with O
-
…H–N

+
 form and simultaneously changes the p-electron 

molecular geometry. 

Recently this strategy was also demonstrated in a number of organic single-

component low molecular-mass crystals which all have proton donor and acceptor moieties to 

bind molecules into a dipolar chain. For example a room temperature polarization of 20 

μC/cm
2 

and ferroelectric stability up to 130°C was reported in croconic acid which is the 

highest value among the low-molecular-weight organic ferroelectrics [41]. In the crystal 

structure, molecules are arranged in two-dimensional sheets, and each one can transfer two 

protons from hydroxyl groups to the carbonyl groups of adjacent molecule during the 

polarization switching by an external electric field (Fig. 1.9a,b). Therefore, ferroelectric 

switching is attributed to the collective proton ordering in intermolecular hydrogen bonds 

through proton tautomerism on O_H…O bonds. In comparison with bulk molecule rotation, 

moving protons only within the hydrogen bond would be generally advantageous in 

minimizing steric hindrance for polarization reversal and decrease the coercive field.  



Introduction to Piezoelectricity and Ferroelectricity 
 

23 
 

 

Figure 1.9. a) Schematic illustration of hydrogen-bonded sheets in croconic acid crystal. 

The arrows show the electric polarity of each sheet. b) Change of chemical-structure 

polarity through the p-bond switching and intermolecular proton-transfer processes [41]. 

In this category, room-temperature ferroelectricity and antiferroelectricity was 

revealed in benzimidazole derivatives, a hydrogen-bonded ferroelectric made of imidazole 

unit, which are biological building blocks [92] with polarization of 5 to 10 μC/cm
2
. Its proton 

donor and acceptor moieties easily bind molecules into a dipolar chain, which is often 

bistable in polarity due to the amphoteric nature of the molecules. Ferroelectric polarization 

can be switched through proton dynamics on N_H…N bond as shown in Fig. 1.10. 

 

Figure 1.10. Hydrogen bonding (broken lines) and polarization reversal mechanism 

through the proton tautomerism of the imidazole moiety [92]. 

(a) (b) 

 

a) b) 
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In addition, Tayi and coworkers [93] recently synthesized the hydrogen-bonded CT 

complexes between a pyromellitic diimide (PMDI)-based acceptor and three donors that are 

derivatives of naphthalene, pyrene and TTF. These polar and switchable systems incorporate 

both the advantageous features of proton dynamics mechanism and charge-transfer process of 

organic ferroelectrics. They possess room-temperature ferroelectricity and clear hysteresis 

loop was observed in all three complexes at 300 K with remnant polarization exceeding 1 

μC/cm
2
. At low temperature, the polarization for PMDI-TTF was found to be as large as 55 

μC/cm
2 

which is
 
the highest among known molecular systems. This molecular structure 

retains its properties up to 153 °C. 

The fourth approach is to utilize the disorder-order of atomic position in each single 

molecule, resulting in an asymmetric structure. This ferroelectric mechanism has been 

discovered recently in two simple diisopropylammonium (DIPA) salts, DIPA chloride 

(DIPAC) [42] and DIPA bromide (DIPAB) [43]. DIPAC shows a spontaneous polarization of 

8.9 μC/cm
2 

and a Tc of 440 K, and DIPAB has a large polarization of 23 μC/cm
2 

and a Tc of 

426 K, comparable to that of barium titanate. Their ferroelectricity is believed to arise from 

the order-disorder behavior of N atoms. DIPAB demonstrates a large dielectric constant and a 

low dielectric loss at room temperature, in addition to its excellent ferroelectric properties. 

All these features open the pathway for practical applications for them to substitute the 

traditional perovskite ferroelectrics. 

Most of organic ferroelectrics have high optical transparency and large nonlinear 

response with respect to the electromagnetic radiation in the optical range. Therefore, they 

have potential application in various nonlinear-optical devices. In the following section a 

brief discussion of these phenomena and their advantage in organic ferroelectrics is 

presented. 

1.5. Nonlinear Optical Properties of Ferroelectric Materials 

Nonlinear optics is a phenomenon arising from the interactions of optical radiation 

with materials to yield new optical wave in a nonlinear way. In recent years, domain 

engineering was focused on the fabrication of periodic ferroelectric domain structures with 

desirable parameters for the manufacturing of devices. Engineerable nonlinear optical 

materials have permitted the development of a wide range of tunable coherent light sources 
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based on quasi-phase-matching (QPM), causing a great deal of interest in view of their 

potential applications in the areas of laser technology, photonic devices, high density data 

storage technology and optical interconnects [94,95].  

The effect of the electric field vector E of the incoming light is to polarize the 

material. This polarization can be calculated using the following relation:   

�⃗⃗� = 0𝜒
(1).�⃗⃗�  + 𝜒(2). �⃗⃗� . �⃗⃗�  + 𝜒(3). �⃗⃗� . �⃗⃗� . �⃗⃗�  + … ,   (1.3) 

 

where 0 is the free-space permittivity and 𝜒(1), 𝜒(2), 𝜒(3) are the first order (linear), second 

order (nonlinear) and third order (nonlinear) susceptibility tensors, respectively. Usually the 

second order processes are much more important in magnitude than those of higher orders for 

the moderate electric field commonly present in the materials. Second harmonic generation 

(SHG), in particular, corresponds to the appearance of a frequency component that is exactly 

twice that of the input light. SHG was discovered by Franken et al. in 1961 just after the 

development of intense laser sources [96]. Since then this process has become very important 

for many applications, such as frequency doublers, frequency converters, electro-optic 

modulators and nonlinear optical microscopy. The majority of the early nonlinear optical 

materials were based on inorganic crystals, such as potassium dihydrogen phosphate (KDP), 

lithium niobate (LiNbO3) [97], potassium titanyl phosphate (KTP) etc. [98]. They have large 

electro-optical and nonlinear optical coefficients and desirable properties for materials 

applications, including good mechanical properties, high optical damage threshold and the 

fact that they can be grown as large crystals. However, inorganic materials have important 

drawbacks such as the “trade-off” problem between response time and magnitude of optical 

nonlinearity. Moreover, they have problems with optical quality because of the strong 

absorption in the visible region. This is deleterious for many possible applications.  

An important development in nonlinear optical materials occurred in 1970, when 

Davydov et al. reported a strong second-order NLO effects in organic molecules having 

electron donor and acceptor groups connected with a benzene ring. This discovery led to an 

entirely new concept of molecular engineering to synthesize new organic materials for the 

SHG studies. However, very few materials have been studied for this purpose yet potentially 

there are innumerable organic substances to choose from.  
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Molecular compounds have received intense interest due to their larger NLO 

efficiencies and large amount of design flexibility. Furthermore, they show extremely fast 

response to external electric fields as compared to their inorganic counterparts [99]. The 

drawback of organic materials is that they often have lower thermal and photochemical 

stability. 

1.6. Current Applications of Organic Ferroelectrics and Future Prospects 

Despite the good progress made recently in the organic-ferroelectrics materials, 

continuous research is needed to better understand molecular mechanism and to improve the 

performance of molecular ferroelectrics in order to gradually replace them with inorganic 

materials in devices.  

Nowadays, the most widely used organic ferroelectrics are VDF based polymers and 

their oligomers. PVDF has such unique properties as flexibility, ruggedness, low acoustic 

impedance and availability as thin films, but a somewhat smaller electromechanical coupling 

factor. They found numerous applications as non-volatile memory devices [100], opto-

electronic memories [101], biomedical sensors [102], capacitors [103] and nanogenerators 

that convert natural vibrations to electricity by harvesting energy from the movement of the 

human arm [104] or from respiration [105].  

Another example, biologically compatible harvesting elements were created based on 

1,4-diazabicyclo[2.2.2]octane perrhenate (dabcoHReO4) ferroelectric microcrystals 

embedded in the polymer fibers by electrospinning [106]. 

However, these materials represent a relatively narrow class of synthetic organic 

crystals with a limited variability of the physical properties and unknown biocompatibility. 

Apparently, new materials classes based on natural tissue components such as aminoacids, 

peptides or lipids should be explored in view of their natural biocompatibility and variability 

[107]. 

We expect that newly developed molecular ferroelectrics will open novel perspectives 

for the applications. They offer great opportunities for the development of a new generation 

of natural piezoelectric materials and nano-devices that could be implanted in the human 

body (in vivo), as a bio-memory for storing programs to deliver drugs or as a nanocatalyst for 

controlling chemical reaction because ferroelectric domain orientation affects the chemical 
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reactivity of the surface in adsorption, catalytic and photochemical processes. In addition, the 

lower coercive field required for reverse polarization compared to organic polymers could 

lead to a significant breakthrough in computer memory technology and to reduce its electrical 

power demands.  

Of even greater interest is the direct use of ferroelectric tissues instating implanted 

molecular ferroelectric devices. For example, it may be possible to monitor the natural 

polarization state of the biological system for early diagnosis and to manipulate with its 

polarization states as new ways of fighting disease [7]. 
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This Chapter starts with the explanation of importance of amino acids in living 

systems and introduction to their piezoelectric properties. The basic principles of 

crystallization and various crystal growth techniques with emphasis on evaporation from 

solution are introduced. The process of nucleation (including homogeneous and 

heterogeneous nucleation) and growth of the crystals is discussed. After the overview of the 

relevant literature on glycine polymorphs (α, β and γ), their relative stabilities and growth 

methods for all polymorphs with the focus on the β-glycine will be presented. 

2.1. Amino Acids 

Amino acids are organic compound with the general formula HCCO2
-
NH3

+
R, where 

R is a lateral chain characteristic of each molecule. Amino acids are extremely important in 

biochemistry, nutrition, neurology, psychiatry, pharmacology, nephrology, and 

gastroenterology. One particularly important function is to serve as the building blocks of 

proteins of all living beings, which are chains of amino acids. Each protein has its own 

unique amino acid sequence that is specified by the nucleotide sequence of the gene encoding 

in the deoxyribonucleic acid (DNA) molecule. As such, amino acids play a fundamental role 

in physiology, origin and evolution of life. Among their properties as life-coordinating 

molecules, the chemical and catalytic ones were the most studied up to now. There are twenty 

different amino acids and most of them can also exist with a highly ordered crystal structure 

in the solid phase, due to their inherent self-assembly and molecular-recognition capabilities. 

Single crystals of all the primary amino acids can be grown from an aqueous (or other) 

solution. Crystalline amino acids belong to the family of hydrogen-bonded crystals. 

Hydrogen bonding (HB) interactions play an essential role in their crystal structure and 

present complex networks of HB create different crystalline polymorphs [108]. 

Polymorphism is the ability of crystalline materials to exist in different molecular packing yet 

with the same chemical compositions. Polymorphs can have different mechanical, thermal, 

and physical properties [109].  

In solution, most amino acids are in the zwitterionic form in which the amino group is 

represented as -NH3
+
, and carboxyl as -COO

-
. In such a bipolar form there is significant 

molecular dipole moment, then continuing in the crystalline form. From a crystallographic 

point of view, molecular crystals formed from amino acids are a class of polar materials and 



Chapter 2 

32 
 

the majority of them have non-centrosymmetric crystal structures. This means that they are 

potentially piezoelectric, pyroelectric with nonlinear optical properties and, possibly, 

ferroelectric [14,110]. 

In some cases, inorganic derivatives of amino acids such as amino acid sulphate and 

phosphate salts have shown ferroelectric behavior. For instance, triglycine sulphate (TGS) is 

a salt of glycine with inorganic counterion ((CH2NH2COOH)3 H2SO4) and is known for room 

temperature ferroelectricity (Ps = 3.8 μC/cm
2
, Tc ≈ 50 °C) [40]. Semiorganic TGS family has 

excellent pyroelectric properties and second order phase transition of order-disorder type. 

Other examples are betaine phosphite (BPI) and glycine phosphite (GPI). Typically amino 

acids with inorganic compounds have better mechanical and thermal properties relative to the 

purely organic amino acids. 

Lemanov et al. investigated piezoelectricity in pure amino acids crystals in respect to 

the temperature dependence of ultrasonic properties. He found that γ-glycine and DL-alanine 

are the strongest amino acid piezoelectrics (comparable to, or even stronger than quartz 

crystals). L-alanine, L-valine, L-glutamic and DL-tyrosine possess much weaker piezoelectric 

activity [14,110,111].  

2.2. Crystal Growth Techniques and Principles of Crystallization 

Crystal growth techniques are classified into three main categories: growth from 

solutions, from melts and from vapor phases. The choice of a particular crystal growth 

method depends on the material to be crystallized, its quality, size, growth rate, its physical 

and chemical properties in particular and the nature of the method. 

In general, solution growth is simple and inexpensive. Amino acid crystals are 

typically grown from the solution. Crystallization from the solution has two stages: 

nucleation and growth. Nucleation is the formation of a new solid phase from a 

supersaturated mother phase. In the nucleation step, three important concepts are critical 

nucleus, homogeneous and heterogeneous nucleation. In supersaturated homogeneous 

systems, nuclei can appear once sufficient supersaturation has been generated to overcome 

the energy barrier for nucleation and when sufficient time has passed for critical sized 

clusters to form, crystallization begins. Heterogeneous nucleation involves the nucleation on 

the substrate, in the presence of impurity particles in the medium, on the wall of a 
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crystallizer, etc. All of them serve as the catalytic agents for the process of nucleation of the 

new phase. Therefore, activation energy for heterogeneous nucleation is lower than that for 

homogeneous nucleation and, under the same temperature and pressure conditions, 

heterogeneous nucleation occurs at lower supersaturation than homogeneous nucleation 

[112].  

Nucleation is followed by the crystal growth, which is the process of further addition 

and integration of growth units to the existing nuclei/crystals. Both crystal nucleation and 

growth occur in supersaturated solution but the supersaturation level requirements for 

nucleation and crystal growth are different. There are many methods to achieve this 

supersaturation on which the crystallization technique depends [113]. Amino acid crystals 

can be produced by different methods from the solution. The slow evaporation of a solution is 

the simplest method to grow crystals [114]. Other commonly used techniques include slow 

cooling of the solution, solvent diffusion, vapor diffusion, sublimation and many variations of 

these. The choice of the technique is dictated by the necessary size of the sample. From the 

above mentioned methods, slow evaporation from solution and droplet evaporation on the 

crystalline substrate was used for the crystallization of glycine in this work.  

Droplet evaporation offers some advantages such as a reduction in production steps 

when compared to traditional crystallizations; however, it is sometimes difficult to control 

and to model the product properties because of flow patterns of the droplets and following 

irreproducibility [115]. Droplet evaporation has been used in various self-assemblies. In this 

method, evaporation increases the level of concentration gradually to produce supersaturation 

and induce crystallization. The volume of the initial droplet, concentration of the solution, 

interaction between molecules and substrate and environmental conditions such as 

temperature, relative humidity, hydrophilicity-hydrophobicity of the substrate and external 

pressure all influence the size and quality of the resulting crystals. As mentioned above, 

crystallization on the substrate is an inhomogeneous nucleation and growth since the 

evaporation rate at the droplet edge is higher than that inside. Fast evaporation at the edges of 

a droplet results in a flow directed from within the droplet towards the edges. This flow 

carries molecules with it, and these molecules are deposited at the boundary of the droplet. 

After that, the molecules inside the droplet contribute to the crystal growth [116]. 
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2.3. Glycine Polymorphs 

In our work, among the 20 natural amino acids, glycine has been selected because it 

has significant piezoelectricity at room temperature and it has recently shown ferroelectric 

properties [15] and thus presents significant interest for biomedical and electronic 

applications. Glycine is the simplest amino acid and is widely used as an excipient for 

proteins and pharmaceutical reagents production [117]. It has been also recognized as the 

symbolic origin of life based on its presence in extraterrestrial objects [118].  In the gaseous 

state glycine exists in non-ionic form, whereas in solution and in crystalline state it is in the 

form of the zwitter ion [119]. Figure 2.1 shows the structure of glycine molecule in the 

zwitterionic form. 

 

Figure 2.1. Glycine structure 

Glycine as a classical polymorphic material exists in three major polymorphic forms 

at ambient conditions: α, β and γ phases [120] and under some extreme conditions other 

metastable phases were also obtained [121]. The polymorphs of glycine differ in the packing 

arrangement of the +NH3-CH2-COO- zwitterions via a hydrogen-bond network between 

them. It has been found that the bulk glycine polymorphs display different thermodynamic 

stability (in the order of γ > α > β) and different crystal symmetries based on different 

zwitterion packing during growth. γ-polymorph is thermodynamically the most stable form of 

glycine, α-glycine is the metastable form and β is the least stable phase under ambient 

conditions. However, metastable α and β polymorphs can be preserved in a dry atmosphere 

for a long time because they have large enough kinetic barriers for transformation. Under 

humid NH3 vapor, α-phase typically converts into the γ-polymorph [122]. The β-polymorph 

irreversibly transforms into α or γ forms in the presence of a humid air, under increasing 

temperature, in the presence of NH3, or under grinding. This transformation appears by the 

loss of transparency of the crystals [123,124]. 
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Structural peculiarities and physical properties of these glycine polymorphs have been 

considered in a lot of publications, especially as pharmaceutical reagents since different 

molecular self-assemblies in the solid state can affect drug performance, bioavailability and 

safety. Thus a complete characterization of all possible polymorphs is considered as an 

essential step in pharmaceutical industry to choose the best drug formulation with desirable 

properties [125]. However, there have been only a few attempts carried out to study the 

piezoelectric properties of these materials. The physical arrangement and hydrogen bonds of 

the molecules within the unit cell are responsible for the ferroelectric and dielectric properties 

of the materials. In the following, the molecular structure of glycine polymorphs (α, β and γ), 

their relative stabilities and growth methods for each polymorph will be discussed. 

α-glycine Structure and Crystal Growth Methods 

The structure of α-glycine was first investigated by Albrecht and Corey and later by 

Marsh [17,126]. The centrosymmetric α-glycine easily crystallizes from saturated pure 

aqueous solution with evaporation [114]. In the α-polymorph, glycine dimers are linked by 

hydrogen bonds in double antiparallel layers and the layers are connected together by Van der 

Waals interaction. Formed crystals usually have bipyramid morphology with monoclinic 

crystal structure and centrosymmetric space group (P21/n, Z = 4). From a thermodynamic 

point of view α- phase is less stable than the γ-phase, but there are no phase transitions at 

room temperature. Therefore, its transition to the γ-phase should be prohibited kinetically 

[119,127]. 

β-glycine Structure and Crystal Growth Methods 

β-glycine was first reported by Fisher in 1905, and the structure was investigated later 

by Bernal and Iitaka [19,128]. To induce crystallization of the β- or γ-polymorphs, 

zwitterionic glycine monomers are necessary as building units rather than cyclic dimers. In 

the β-polymorph, single polar layers create a monoclinic structure similar to the α-phase but 

with a non-centrosymmetric space group (P21, Z = 2) [129].  

The β-polymorph of glycine was mostly crystallized by adding antisolvent (either an 

alcohol or acetone) to a concentrated solution of glycine [19,130,131]. Other used techniques 

were spray-drying [132] and freeze-drying [133,134]. However, the obtained crystals were 

frequently unstable under ambient conditions, and rapid conversion into a more stable α-
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phase was observed in this material [19,132]. Moreover, some of these methods did not lead 

to the pronounced habit with the well-defined shape, and the grown β-glycine was only 

present as a mixture with α-crystals. Due to these limitations there are only a few reports on 

the physical properties of β-glycine.  

There were a few attempts to stabilize the useful β-phase under ambient conditions. 

For instance, Hamilton et al. [135] obtained stable nanocrystals of β-glycine embedded in 

nanometer-scale channels. They found that the nanocrystals grown within the channels of 

pore diameters less than 24 nm persist for at least one year against transformation to other 

forms and transform slowly to α-glycine over several days if grown within bigger pore 

diameters. In another paper, Lee et al. [136,137] studied the effect of the substrate on the 

polymorph selectivity of glycine. They obtained all three polymorphs of glycine on a 

patterned substrate with self-assembled monolayers (SAMs) consisting of hydrophilic gold 

islands surrounded by hydrophobic domains. According to their result, the main crystals 

phase (in a natural aqueous solution) was the α-phase and the frequency of β-glycine 

appearance increased for smaller metallic islands and under reducing concentrations. This 

result was important to understand that the preferential growth of β-glycine can be mediated 

by using an appropriate substrate that can accelerate the nucleation and further growth of the 

desired phase.  

γ-glycine Structure and Crystal Growth Methods 

γ-glycine was first obtained by Iitaka [18]. The crystal structure of γ-glycine is 

essentially different. The zwitterions are organized in triple helices around the 31 screw-axis 

which are linked together by lateral hydrogen bonds and form a three dimensional network. 

The crystal structure of γ-glycine belongs to the hexagonal non-centrosymmetric space group 

P31 or P32 with three molecules in the unit cell.  

If the formation of the dimers in solution, and the growth of the α-polymorph, is 

inhibited, then the stable γ-polymorph grows under crystallization conditions closer to 

equilibrium (slow crystallization), whereas very quick precipitation gives the β-polymorph 

[120]. 

In prior studies it was reported that γ-glycine crystals can be obtained by changing the 

solutions pH [137], by adding special salts (such as sodium chloride, potassium chloride, 

ammonium chloride, lithium bromide) to glycine solution [138,139,140] or addition of a 
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tailor-made additive [141]. The additive does not interfere with the crystal structure; it 

influences nucleation and growth kinetics. γ-phase crystals also can be created by exposing 

the supersaturated aqueous glycine to an electric field [142], or using irradiation with 

polarized laser light [143,144]. These may promote crystallization of the γ form through the 

arrangement of monomers in a head-to-tail orientation along the polar c-axis of crystal.  

Recently, Guangwen He et al. grew γ-glycine crystals from neutral aqueous solutions 

through slow evaporation of water using an evaporation-based crystallization platform [145], 

because a slow evaporation process allows the molecules to be arranged in the lowest energy 

state during the formation of nuclei. However, the resulting crystals did not have any 

preferred orientation and shape and agglomerated together.  
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A variety of techniques are available to characterize the polymorphic phases of 

glycine. In this Chapter, the description of the experimental techniques used for the 

characterization and phase determination of glycine crystals are introduced.  

Also, after presenting a short introduction of AFM technique and experimental setup, 

PFM operating principle will be explained along with the experimental procedures employed 

for domain imaging and quantitative PFM characterization. Besides, the measurement 

technique used for the second-order non-linear optical susceptibilities is described.  

3.1. Characterization Techniques 

3.1.1. Optical Microscopy 

Optical microscopy is a simple technique, which magnifies the object by using visible 

light and a system of lenses. We expected to produce different phases of glycine structures 

during crystallization. Optical microscopy is used for polymorph determination via 

observation of crystal morphology and for in situ monitoring the growth process during 

crystallization. Different polymorphic forms of crystals have distinct shapes which can be 

used with image analysis techniques for determining the polymorphic form. However, the 

shape is not always conclusive in characterizing the polymorphic form. A polarized 

microscope could be used to assess the level of misorientation in the crystals. 

An optical microscope (Nikon Eclipse LV 150) with parallel and crossed polarizer 

and analyzer wave plate modes was used to visualize all the grown samples in this 

experiment.  

3.1.2. X-Ray Diffraction 

X-ray diffraction (XRD) is a powerful technique which can be used as the primary 

step to identify the crystalline phases and to determine the structure of the obtained glycine 

crystals. In X-ray diffraction a collimated beam of X rays is incident on a specimen and is 

diffracted by the crystalline phases in the specimen according to Bragg's law (nλ = 2d sinθ, 

where d is the spacing between crystallographic planes). A randomly orientated powder 

sample of a polymorph has a unique powder X-ray diffraction (PXRD) pattern, which is now 

the most common tool for polymorph identification. 
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Each crystal form of a given molecule has a unique powder X-ray diffraction pattern, 

made of diffraction peaks in certain positions and with differing intensities. When more than 

one polymorph is present, PXRD can give information on the relative amounts of different 

polymorphs in the mixture through the area under the peaks. PXRD can also give information 

on the preferred orientation of crystals.  

Single crystal X-ray diffraction can be used to confirm the grown crystal as a single 

crystal and give detailed information of crystal structures, such as cell parameters values, 

crystal symmetry, and space group.  

In this experiment, XRD patterns of glycine samples were collected with a powder 

diffractometer (Siemens D500) using Cu Kα radiation (λ = 1.54059 Å). The diffraction 

patterns were recorded in a reflection geometry at room temperature in the range 5°−70° with 

steps of 0.02°. The single crystal X-ray diffraction data were collected on a Bruker SMART 

Apex (II) CCD-based diffractometer at 150 K using graphite-monochromatized Mo Kα 

radiation (λ = 0.710 73 Å). The results are discussed in the Chapter 4. 

3.1.3. Raman Spectroscopy 

Raman spectroscopy is another structural characterization tool that detects the 

vibrational motion of chemical bonds. The Raman spectrum arises from the inelastic 

scattering of optical radiation (photons) by the electron clouds that make up the chemical 

bonds in the crystals. The scattered photon is related to the incident photon by frequency, ω, 

which is also called the Raman shift [146]. Thus the spectrum is sensitive to the lengths, 

strengths, and arrangement of bonds in the crystal structure. Different crystal structures tend 

to have distinct peak positions and intensities as a result of vibrational changes of molecules 

in the crystal lattice. 

In the linear approximation, polarization, P, induced in the molecule under the 

influence of electric field of the incoming light, E = E0 cos(ω0t), can be written as :  

P = α E,       (3.1) 

where α is the polarizability tensor of the molecules, which characterizes the mobility of the 

electron cloud that makes up the chemical bonds, i.e. how easily it can be displaced or 

deformed under the influence of an external electric field.   
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Atomic vibrations near the equilibrium position periodically change the state of the 

electron shells and, therefore, the polarizability tensor. Thus, the components of the 

polarizability tensor αij equilibrium position can be expanded in a series in the normal 

coordinates Q: 

𝛼ij = (𝛼ij)0 + ∑ (
∂𝛼ij

∂Qk
)0 Qk + ⋯k     (3.2) 

Therefore the polarization can be written as:  

𝑃 = 𝛼0𝐸0 cos(𝜔0𝑡) +
1

2
(

𝜕𝛼

𝜕𝑄𝑘
)
0
 𝑄k0

𝐸0cos (𝜔0 − 𝜔𝑖)𝑡 +
1

2
(

𝜕𝛼

𝜕𝑄𝑘
)
0
 𝑄k0

𝐸0cos (𝜔0 +

            𝜔i)𝑡         (3.3) 

And the light is scattered at three frequencies: 𝜔0, 𝜔0 − 𝜔i and 𝜔0 + 𝜔i. The first 

term in this expression represents the elastic (Rayleigh) scattering of light without changing 

the frequency. The second and third terms represent inelastic Raman scattering, with 𝜔0 − 𝜔i 

and 𝜔0 + 𝜔i corresponding to Stokes and anti-Stokes Raman scattering, respectively.    

Raman spectroscopy is a fast analysis method without any post-processing and widely 

used, when the crystals are small and microfocus capabilities are important. Raman imaging 

is also possible, which adds important information about the crystal orientation and domain 

width.  

In this work, Micro-Raman measurements were performed in a backscattering 

geometry using a WiTec alpha 300 AR confocal Raman microscope which combines the 

analytical capabilities of Raman spectroscopy (RS) and the high spatial resolution of a 

confocal microscope. An objective (10×, NA = 0.55) focused the exciting light (solid state 

laser, λ = 488 nm) onto the sample (spot diameter about 260 nm). A diffraction grating of 600 

dashes/mm with a spectral resolution of 3.19 cm
−1

 at λ = 488 nm was used for light 

decomposition. All measurements were done at room temperature. 

In this work, Raman scattering has been used for the detection of the polymorphic 

forms and to study polymorphic transformation [147].  
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3.2. Piezoresponse Force Microscopy (PFM) Technique 

3.2.1. Introduction to Atomic Force Microscopy (AFM)  

Scanning probe microscopy (SPM) is a unique tool for studying topography and 

physical parameters of materials. It offers several different possibilities to obtain information 

on the domain configurations of ferroelectric thin films, single crystals and ceramics. AFM is 

currently the most broadly employed tool in the SPM family, since it can measure a wide 

range of surface properties on any kind of materials, ranging from topography to surface 

potential, from electrical to magnetic properties. Moreover, AFM measurements can be 

performed under normal (ambient) temperature and pressure, thus not requiring special 

environmental conditions. In the standard experimental AFM systems, there are three main 

components for imaging the surface of the sample: a cantilever with probing tip sharpened 

down to several tens of nanometers, a piezo-electric scanner which controls the position of 

the sensing probe relative to the surface, and the optical system to measure the deflection or 

torsional twist of the cantilever. The two main imaging modes for all kinds of AFM systems 

are non-contact mode and contact mode. When the tip is brought to the sample in contact 

with or tapping the surface, it will be affected by a combination of the surface forces. Those 

forces cause cantilever bending and torsion and these deformations of the cantilever are 

detected by measuring the displacement of the laser spot, which is reflected from the back of 

the cantilever, on the position sensitive photo detector. Its resolution in the Z direction is of 

the order of subnanometer, while the lateral one is limited by the tip radius of curvature, i.e., 

in the order of a few tens of nanometers. 

A difference in mechanical, structural, electrochemical, dielectric and piezoelectric 

properties of opposite ferroelectric domains may provide distinct contrast in the AFM contact 

mode. In the non-contact regime, domains can be visualized by detecting surface polarization 

charge and surface potential. Currently, the most widely used AFM method for studying 

domain polarization and nanoscale switching behavior in ferroelectric materials is the so-

called Piezoresponse Force Microscopy (PFM). PFM works in a contact regime based on the 

detection of local bias-induced surface deformation [148]. In this research, focused on the 

piezoelectric and ferroelectric properties of glycine crystals, we used PFM technique as the 

main experimental method. 
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3.2.2. Principle of Piezoresponse Force Microscopy (PFM) 

PFM utilizes a basic experimental setup of Atomic Force Microscopy in which a 

conductive tip is brought into contact with the sample surface under a constant force (Fig. 

3.1). The sample is positioned on the macroscopic bottom electrode and the PFM tip acts as a 

movable top nanoelectrode. The tip scans the sample and the bias voltage Vtip = Vdc + Vac . 

cos(ωt) is applied via the tip to the sample. The applied voltage creates an alternating electric 

field that causes the local deformation of the sample (expansion or contraction) due to reverse 

piezoelectric effect. Surface displacement is translated into the deflection of a cantilever A = 

A0 + A1ω cos (ωt + ϕ) and this response is mechanically passed on to the cantilever and can be 

optically detected by the movement of the reflected laser on the four-quadrant photodiode as 

shown in Fig. 3.1 [149]. 

 

Figure 3.1. Experimental setup of Piezoresponse Force Microscope. 

The signal collected by the photodetector is analyzed by the lock-in amplifier and the 

phase and amplitude of the response can be obtained in addition to the regular topography. 

The phase of the electromechanical response, ϕ, gives information on the polarization 

direction of the sample below the tip. The amplitude, A = A1ω/Vac, defines the strength of the 

piezoelectric activity of the surface. The sign of the piezoelectric effect depends on the 

relative orientation of polarization of the sample and applied electric field [150,151]. 
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           Vertical vs. Lateral PFM 

Deformation caused by the applied AC voltage can occur in any direction, and 

therefore, it leads to deflection, bending (buckling) and torsion of the cantilever. PFM can be 

operated in two modes, namely, vertical (VPFM) and lateral (LPFM) as schematically 

presented in Fig. 3.3. VPFM enables distinguishing the domains with a different out-of-plane 

component of the polarization. For domains whose polarization vector is oriented 

perpendicular to the surface, applying an electric field parallel to it results in the expansion of 

the sample. In this case, surface oscillations are in phase with the tip voltage, and ϕ = 0. For 

domains with antiparallel orientation of the field and polarization the sign is reversed and the 

phase difference will be in 180°(i.e. ϕ = 180°). (Fig. 3.3a,b).  

In addition to the vertical displacement of the cantilever, there exists another type of 

PFM measurement. When the polarization is parallel to the sample surface, the voltage 

applied to the tip results in an in-plane surface displacement which is then translated into 

cantilever torsion (Fig. 3.3c,d). The torsion of the cantilever is measured by the lock-in 

technique in the same way as the modulated deflection signal in the photo-detector is 

measured in VPFM. These types of measurements are called lateral PFM (LPFM) [152]. The 

piezoelectric coefficient (relationship between the strain and the applied electric field) 

measured in the direction of the applied field is usually called the longitudinal coefficient 

(d33), and that measured in the direction perpendicular to the field is known as the shear 

coefficient (d15). Combining vertical and lateral PFM signals can be used to create a 2D 

vector PFM map of molecular orientation in piezoelectric biomaterials [153].  
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Figure 3.3. Schematic illustration of (a,b) vertical PFM, and (c,d) lateral PFM. 

           Switching PFM 

In addition to domain structure imaging and quantitative local electromechanical 

measurement, PFM can be used for the investigation of nanoscale domain switching under an 

external electric field. In switching measurements a probing tip is fixed at a certain location 

on a sample surface. If voltage pulses higher than the characteristic coercive voltage are 

applied to the tip, the spontaneous polarization under the tip can be switched. This allows the 

creation of any desired pattern of ferroelectric domains. With PFM imaging after each pulse, 

nascent domains can be visualized and it provides direct information about the local coercive 

field strength for nucleation of new domains and velocity of domain wall motion. The second 

approach of polarization switching behavior is to measure the hysteresis loops in the pulse 

mode. In this case, a sequence of dc voltage pulses with the same duration and with the 

amplitude cycled from -Vmin to Vmax is applied and the piezoresponse is measured between the 

pulses at each step (Fig. 3.4). Because no bias voltage is applied during the measurements, 

the contribution related to electrostatic interaction is minimized and actual remanent 

piezoresponse is detected.  
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The shape and/or shift of the hysteresis loop contain important information about the 

switching mechanism, spontaneous polarization, saturated polarization, coercive field and 

imprint Im in case of asymmetry hysteresis ( Im= (V
+
+V

-
)/2).  

 

Figure 3.4. a) Probing dc bias wave form in switching PFM. τ1 is the writing period, τ3 is 

the reading period and τ2 is the waiting interval. b) Illustration of piezoelectric hysteresis 

loop, forward and reverse coercive voltages, V
+ 

and V
−
, nucleation biases, Vc

+ 
and Vc

−
, and 

forward and reverse remanent and saturation piezoresponses, R0
+
, R0

−
,
 
Rs

+
 and Rs

−
, are 

shown [154]. 

The high spatial resolution (down to several nanometers), investigation of local 

piezoelectric properties, analysis of ferroelectric domain wall structures and its correlation 

with microstructural features and local spectroscopy capabilities make PFM a well-suited tool 

for nanoscale ferroelectric studies [155,156]. 

3.2.3. Experimental Setup for PFM Measurements 

For this study the piezoresponse measurements were performed mainly with a 

commercial AFM (Ntegra Prima, NT-MDT, Russia) equipped with an external function 

generator (FG120, Yokogawa, Japan) and a lock-in amplifier (SR830, Stanford Research 

System, USA). A conductive Si cantilevers (from Nanosensors) with resonance frequency 

and spring constants of 75 kHz and 3 N/m, respectively were used throughout the experiment.   

(a) (b) 
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           Domain Visualization and Switching Measurement of Glycine Crystals by PFM 

PFM was used to investigate the local piezoelectricity and to image the apparent 

ferroelectric domain structure in piezoelectric phases of glycine (both β and γ). During 

imaging, a harmonic ac voltage (typically 10 V), was applied locally to the sample via the 

PFM tip, leading to sample deformation due to converse piezoelectric effect. The specific 

measurement frequency (~ 15 kHz) was chosen to be well below the resonance frequency of 

the contact, identified in a frequency sweep in order to minimize any interference from 

topography or elasticity variations in the sample surface to the PFM signal.  

Only β-glycine microcrystals which were isolated and in full contact with the Pt 

substrate were chosen for analysis. In order to find the polarization direction orientation of 

the structural units inside the crystals, we use orientational PFM-imaging. In this method 

comparing PFM contrast in the vertical and lateral images and considering the geometry 

between tip and crystal axes reveals important information about the polarization direction of 

crystals. For the lateral response mode PFM measurement, the orientation of glycine 

microcrystals with respect to the cantilever axis can affect the magnitude of the piezoelectric 

signal. Thus the substrate was rotated prior to the experiment to align the long axis 

(polarization direction) of the studied crystal perpendicularly to the cantilever axis in order to 

detect maximum shear piezoelectric deformation. This geometry also minimizes any 

contribution of cantilever buckling with the measured lateral signal [157]. 

Switching spectroscopy PFM was performed to confirm polarization switchability of 

domains [158]. In these measurements, the tip is fixed in a predefined position on the sample 

surface and voltage bias pulses of variable strength and duration are applied. Domain 

configurations are imaged immediately after each pulse. In some cases, we could observe an 

instability of the switched domains (polarization backswitching). In these cases, several scans 

were done until the stable domain configuration was reached. In order to obtain 

piezoresponse hysteresis loop, a sequence of dc voltage pulses was applied to the PFM tip in 

a cyclic manner and piezoresponse (typically Acosθ) was measured between the pulses [154]. 
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           PFM Calibration  

In order to convert the voltage output signal to length units for quantitative PFM 

measurement, the deflection and torsional sensitivity coefficient (nm/V ) of the cantilever was 

required. The out-of-plane deflection sensitivity was measured based on the standard analysis 

of the force curve acquired from pressing the AFM probe on a glass substrate. The in-plane 

sensitivity was calculated based on the geometry of the cantilever and the measured out-of-

plane deflection sensitivity as described by Peter et al. [159,160]. It was shown that R = 

2L/3h, where R is the in-plane/out-of-plane sensitivity ratio, L is the length of the cantilever, 

and h is the tip height plus cantilever thickness. For cantilevers used in this study, L = 225 μm 

and h = 12 μm, with the out-of-plane deflection sensitivity of 97.4 nm/V, and therefore the 

in-plane sensitivity was calculated as 1217.5 nm/V.   

In order to obtain the absolute value of piezocoefficient, the slope of piezoresponse 

curve of a glycine microcrystal was measured at a point while varying the amplitude of the 

electric bias from 0 to 15V. 

3.3. Nonlinear Optical Measurements 

As mentioned in the Chapter 1, second harmonic generation (SHG) is due to the 

emitted light at frequency which is two times that of incident light. The relation between the 

SHG intensity and the electric field of incident light E  in non-centrosymmetric crystals is 

proportional to nonlinear polarization squared  222 
iPI  and can be written in a tensor 

form as:  


 kjijki EEP )2(2

 ,      (3.4) 

where i, j, k represent the coordinates x, y, z and )2(

ijk  (the nonlinear susceptibility tensor) is 

defined by the crystallographic structure of the crystal. Analogously to the refractive index 

(which characterizes the optical properties but also reflects crystallographic structure as well), 

the nonlinear susceptibility tensor depends on the optical transitions and reflects even more 

strongly the crystallographic structure. In order to get this information, a set of measurements 
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should be performed, namely, SHG intensity vs. azimuthal rotation of the sample and 

polarization rotation of the incident light. 

In nonlinear optical measurements (SHG method), the light from a solid-state laser 

based on a titanium-doped sapphire crystal was used. The output of a Ti:sapphire laser (800 

nm) had a pulse width of 100 fs, a repetition rate of 80 MHz, and an average power of 30 

mW focused onto a spot of about 50 μm in diameter. A reflecting geometry was used with the 

incidence and reflection SHG light fixed at 45° relative to the sample plane. The reflected 

SHG signal was discriminated by color filters and measured by a photon counting system 

(see Fig. 3.5 for details).   

For the polarization studies, a polarizer placed in front of the sample and an analyzer 

placed beyond the sample were used (Fig. 3.5). Thus, the variation in the mutual orientation 

of the electric field vector for the incident and reflecting beams allowed determination of all 

components of the nonlinear susceptibility tensors χ which are responsible for the 

polarization and symmetry dependences. In the following results, the electric field vector 

parallel (perpendicular) to the incidence plane will be termed as P (S) output, respectively.  

As a reference sample for the azimuthal and polarization rotation measurements we 

have used a z-cut (001) quartz plate with a well-known nonlinear susceptibility tensor. 

2
1

3

4

5

 

Figure 3.5. Schematic of the measurement setup for the acquisition of azimuthal and 

polarization dependences of SHG signal: 1 – polarizer, 2 – λ/2 wave plate, 3 – sample, 4 – 

analyzer; 5 – photomultiplier tube. 
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In this Chapter, the preparation of single crystals of all three phases of glycine: α-, β-, 

and γ-forms from solution and the conditions that affect the growth of crystals and polymorph 

selectivity are discussed. All the obtained crystals were first characterized by the combination 

of optical microscopy and X-ray diffraction.  

In the following of this Chapter, some template-assisted methods are shown to be well 

suited for the synthesis of stable β-glycine microcrystals. The crystallization process of 

glycine driven by the evaporation of aqueous solution on crystalline (111)Pt/Ti/SiO2/Si 

substrates is discussed in detail. The effects of the solution concentration and Pt-assisted 

nucleation on the crystal growth and phase evolution are evaluated using X-ray diffraction 

analysis and Raman spectroscopy.   

Finally, we describe the growth of highly aligned micro- and nanoislands of β-glycine 

on Pt substrates by spin-coating technique. 

4.1. Crystallization from Solution 

α-glycine 

Glycine powder (99% pure) was purchased from Sigma Aldrich. Powder X-ray 

diffraction (PXRD) analysis confirmed that as-received glycine was in the α-form. α-glycine 

crystals were simply prepared by evaporation from pure, 3M aqueous solution of glycine at 

neutral pH without the presence of any additive as described in section 2.3 of Chapter 2. The 

α-phase usually crystallizes in bi-pyramids morphology as shown in Fig. 4.1. The type of 

crystals polymorph was confirmed using PXRD and the positions of the peaks in the X-ray 

spectrum were found to be in a good agreement with the data available in JCPDS database 

(00-032-1702) for α-glycine (Fig. 4.2).  

 

Figure 4.1. Optical microscopy image of single crystals of α-glycine. 

5 mm 
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Figure 4.2. The indexed powder XRD pattern of α-glycine crystal. 

In the α-polymorph, glycine dimers are linked to each other by hydrogen bonds in 

double antiparallel layers and the layers are connected together by van der Waals interaction. 

The individual molecular dipole of each glycine molecule is compensated by that in opposite 

direction and formed crystals have centrosymmetric space group (P21/n, Z = 4) and, 

consequently, cannot have piezoelectric properties [161]. 

γ-glycine  

Although the γ polymorph is thermodynamically the most stable form of glycine 

known at ambient conditions, crystallization of γ-glycine in neutral aqueous solutions is 

typically hindered by the formation of the kinetically favored α form. In this work, single 

crystals of γ-glycine were grown from aqueous solution by slow evaporation method in the 

presence of lithium nitrate that suppressed the formation of α-glycine. As the formation of 

pure γ-glycine crystals starts below a certain rate of evaporation, the crystallizing solution 

stays close to equilibrium throughout the evaporating process allowing the system to sample 

the lowest free energy state during the formation of nuclei. Aqueous solution of glycine 

(Sigma-Aldrich, 99%) and lithium nitrate (Sigma–Aldrich, 99.5%) in 2:1 mole ratio was 

prepared in deionized water (resistivity 18.2 MΩ.cm) at room temperature. The prepared 

solution was stirred for four hours in order to dissolve fully and then filtered with a Whatman 

filter paper. The solution was taken in a beaker, closed with a perforated cover and allowed to 
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evaporate slowly at ambient temperature. A few days after solvent evaporation, the solution 

becomes supersaturated and tiny crystals were seen. They were allowed to grow for bigger 

dimension and 5 weeks later, crystals with hexagonal prismatic morphology were obtained 

(Fig. 4.3). Lithium cations do not enter the crystal structure, but remain in the solution as free 

ions; they just influence nucleation and growth kinetics. Glycine crystals grew along the c 

direction, possessing (010) and (100) lateral faces (Fig. 4.3). 

 

Figure 4.3. Optical microscopy image of single crystals of γ-glycine. 

The powder XRD confirmed the formation of a pure single γ-phase structure. The 

positions of the peaks in the x-ray spectrum were found to be in a good agreement with the 

data available in JCPDS database (00-006-0230) for γ-glycine. The various planes of 

reflections were indexed in PXRD as shown in Figure 4.4. The calculated cell parameters of 

the γ-glycine crystal from single crystal XRD data are a = b = 7.038 Å, c = 5.48 Å, α = 90
o
, β 

= 90
o
, γ = 120

o
 and V = 233.9 Å

3
, which agree well with the literature data [162]. 

10 mm 
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Figure 4.4.  An example of the indexed powder XRD pattern of γ-glycine crystal. 

β-glycine  

As mentioned in Chapter 2, the unstable β-glycine was typically crystallized at high 

supersaturation, such as that which occurs during anti-solvent crystallization. In this work, a 

slightly undersaturated aqueous solution of glycine was prepared (5ml), and then ethanol was 

added quickly to this solution (10ml). A lot of thin needles of β-glycine appeared within 

minutes as presented in Fig. 4.5 a,b. If crystals stayed in the solution for a longer time, β-

glycine was found to recrystallize to an α-form within 20 min of contact with solution. 

Transformation from the β to α glycine was monitored using optical microscopy, as seen in 

Fig. 4.5 c-f. Needle-like β-glycine crystals first begin to break into many small crystals and 

then dissolve. With the dissolution of needle-like crystals, the supersaturation of the solution 

increases and stable bipyramidal crystals corresponding to α-form start to appear. This 

transformation can occur because of the interplay of thermodynamics and nucleation kinetics 

of the two polymorphic forms. In the similar experiment we have found that the speed of the 

transformation is even faster if the initial portion of water to ethanol increases.  
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Figure 4.5. Microscopic images taken during solution-mediated transformation from the β- 

to the α-form of glycine in the aqueous ethanol solution. 

However, if the crystals were isolated rapidly after growth by filtration, washed with 

ethanol, and dried in an oven at 60 °C, we could have almost pure β-glycine. The crystal 

structure of β-glycine is shown in Fig. 4.6. The X-ray diffraction pattern of β-glycine has 

characteristic peaks at 18
o
, 24

o
, and 28

o
 as shown in Fig. 4.7 (black spectrum). The positions 

of the peaks in the powder X-ray data were found to be in a good agreement with the data 

available in JCPDS database (00-002-0171) for β-glycine. However, the problem was the 

instability of the crystal under ambient conditions. Crystals were kept at room temperature 

and humidity for three weeks and then x-ray diffraction was performed from the same batch 

 

        

    

        

    

300 µm 
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of the sample (red line in Fig. 4.7). A spontaneous transformation of β to α-phase was 

observed by the comparison of two diffraction patterns (Fig. 4.7).  

 

Figure 4.6. Optical microscopy image of single crystals of β-glycine grown from 

water/ethanol solution.  

 

Figure 4.7. Comparison of XRD pattern of the initial β-glycine crystals and its 

transformation after 3 weeks of shelf time. 

In order to synthesize stable single crystals of the glycine β-polymorph, we chose the 

crystal growth on Pt substrates as detailed in the following section.  

 

 

100 µm 
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4.2. Crystal Growth on the Substrate  

Besides inherent capability of amino acids to molecular recognition and self-assembly 

through their functional group (-COO
- 

and -NH3
+
), the adsorption of amino acids 

(specifically, glycine) on the metal and oxide surfaces has made them attractive for the 

synthesis of functional nanostructures. The nature of these interfacial bindings on a solid 

surface has been reported for glycine in many papers. For example, glycine was found to 

adsorb in the zwitterionic form on Pt(111) [163] and Au [164] substrates and in ionic form on  

Cu surface (110) [165]. Therefore, we conclude that the crystal growth of glycine on the solid 

surface can be controlled by the intermolecular and molecule-substrate interactions.   

In this section, a simple method of the stabilization of β-phase is been demonstrated 

based on the evaporation of glycine solution on commercial (111)Pt/Ti/SiO2/Si substrates. 

4.2.1. Sample Preparation 

The droplet evaporation technique was used for the molecular self-assembly and 

crystal growth on (111)Pt/Ti/SiO2/Si substrates. In this process, the supersaturation and 

crystallization conditions are controlled by the evaporation rate. Different concentrations of 

glycine solutions (1.77, 0.66, 0.133, and 0.0133 M) were prepared by dissolving various 

amounts of glycine powder in an ultrapure water. All solutions were rigorously stirred and 

filtered before crystallization. Commercial (111)Pt/Ti/SiO2/Si substrates (Inostek, 30–200 nm 

Pt deposited on the 10nm Ti adhesion layer and the substrate were thermally oxidized Si 

(100) wafer) were cleaned with alcohol and pure water in an ultrasonic bath. Glycine 

solutions were dropped (50 μL) onto clean surfaces using a micropipette. The surface was left 

for crystallization under ambient conditions (21 °C, humidity 30%) until the droplet dried out 

completely (Fig. 4.8). 

 

Figure 4.8. Schematic of the crystal growth on the surface. 
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4.2.2. Structural Characterization of Glycine Microcrystals 

Glycine crystals were obtained by the evaporation of microdrops of the water-based 

solutions on (111)Pt/Ti/SiO2/Si substrates. PXRD analysis confirmed the existence of all 

three α-, β-, and γ-polymorphs, but the distribution and the size of grown crystals were found 

to be strongly dependent on the initial solution concentration. Table 1.4 summarizes the 

presence of different glycine polymorphs crystallized on the substrate as a function of the 

solution concentration. Apparently, all three phases were present in the crystals grown from 

the concentrated solutions, while only β- and α-phases were observed for lower 

concentrations. The β-phase was found to be a dominant one as discussed in detail below. 

Table 1.4 Polymorph distribution of glycine crystals grown on a Pt surface at 21 °C 

 

 

 

 

In order to quantify the phase content, X-ray diffraction patterns were obtained from 

the crystals attached to the substrate. The spectra were compared with the data available in 

JCPDS database (00-032-1702 for α-glycine, 00-002-0171 for β-glycine, and 00-006-0230 

for γ-glycine). The presence of each phase was revealed by the presence of the corresponding 

peaks in PXRD data. The positions of peaks substantiate the existence of all glycine phases at 

higher concentration (1.77 and 0.66 M), while at lower concentrations (0.133 and 0.0133 M) 

only α- and β-phase were seen (Fig. 4.9). Raman spectroscopy was then used for the detailed 

identification of crystalline forms.  

Concentration of glycine Polymorph distribution 

133 mg/mL = 1.77 M α, β, γ 

50 mg/mL = 0.66 M α, β, γ  

10 mg/mL = 0.133 M α, β 

1 mg/mL = 0.0133 M α, β 
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Figure 4.9. X-ray diffraction patterns of different glycine samples grown on the 

Pt/Ti/SiO2/Si substrates from the solutions of (a) 1.77, (b) 0.66, (c) 0.133 and (d) 0.0133 M 

concentrations. 

Since we were interested only in β-phase, we focused on the study of batches grown 

from the diluted solutions. As an example, Fig. 4.10 demonstrates optical micrographs of all 

three types of crystal morphologies found on a Pt substrate for the 0.133 and 0.0133 M 

concentrations: the bipyramidal, the transparent needle-shaped, and the dendrite-type crystals, 

respectively.  

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Figure 4.10. Optical images of (a) bipyramidal α-glycine and needle-shaped β-glycine and 

(b) dendrite β-glycine. 

Following deposition, we used the micro-Raman spectroscopy to identify the 

polymorphic form of each crystal type in the 0.0133, 0.133, and 0.66 M concentration 

samples. In this technique, a phase analysis is typically performed by the determination of 

each phase fingerprints (PF) in Raman spectra and by the comparison of the peak positions 

with literature data [166,167]. Raman spectra for three studied crystal morphologies are 

considerably different (Fig. 4.11). In particular, three separate spectral regions, 100−260, 

1200−1600, and 2800−3200 cm
−1

, were compared to distinguish all three polymorphic forms. 

The first region includes mainly glycine lattice vibrations. Since glycine phases differ in the 

individual molecule’s packing, this region represents the most important PFs. The second 

spectral region contains bands corresponding to torsional vibrations of the CH2 group 

(spectral line at about 1327 cm
−1

) and symmetrical stretching of the CO2 group (spectral line 

at about 1414 cm
−1

). As such, these lines can be used as PFs for phase identification. 

β 

  α 

100 µm 

β 

50 µm 

(b) 

(a) 
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Probably, the most convenient PF can be found in the third spectral region, where the bands 

of symmetric and antisymmetric stretching vibrations of the CH2 group are present. The line 

position in the vicinity of 2960 cm
−1

 strongly depends on the glycine phase and varies from 

2953 cm
−1

 for β-phase up to 2972 cm
−1

 for α-phase. Thus, Raman spectroscopic analysis 

fully confirmed that the needle-shaped and dendrite crystals belong to β-phase, while 

bipyramidal crystals were all of an α-phase (Fig. 4.10). (Raman spectroscopy measurements 

have been carried out by Dr. Pavel Zelenovsky in Ural Federal University, Ekaterinburg, 

Russia.)  

 

Figure 4.11. Three spectral regions of the Raman spectra used for the identification of the 

glycine crystal phases. Measurements were made on samples with 0.133 and 0.66 M 

concentrations. 
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At high solution concentrations, the γ- and β-phases were observed in addition to 

bipyramidal crystals of α-phase. However, at low solution concentrations, γ-phase is absent, 

as confirmed by Raman measurements. This observation establishes that the rate of 

supersaturating generation and drying conditions can control the polymorph selectivity 

through changing the crystal growth kinetics and thermodynamics as discussed below. 

Crystallization of the needle-shaped β-glycine for all concentrations is in agreement 

with the basics of Ostwald law [168], which states that the crystallization from a solution 

should start from the nucleation of the least stable polymorph and then it should transform to 

a more stable phase. It is true also for the glycine-based solutions: we have shown that the 

less stable β-phase is formed first (Figs. 4.12 and 4.13). At high concentration (0.66 M) (Fig. 

4.12), since the time between the appearance of first β-crystals (Fig. 4.12b) and complete 

drying (Fig. 4.12f) was sufficiently long (almost 20 min), the β-crystals nucleated at the 

periphery of the drop could eventually grow to a large size, but part of them was readily 

transformed to α- or γ-phases through the contact with the solution. In the central part of the 

drop, α-crystals of a bipyramidal shape had also enough time to nucleate and grow. 
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Figure 4.12. Optical images of the glycine crystals growth during evaporation of a 0.66 M 

solution drop on a Pt/Ti/SiO2/Si substrate. All images are the same scale. 

In contrast, at lower concentrations (0.133 M, Fig. 4.13) β-crystals were the 

predominant species on the surface, because the solution reached the saturation before 

completely drying, thus nucleation and growth occurred in a few seconds (Fig. 4.13c−e). In 

other words, β-crystals appear some minutes before drying and do not have time to transform 

to the undesirable α-phase. As such, nonequilibrium precipitation and fast drying yield the 

kinetically limited polymorph, β-phase, at the expense of the undesirable γ- and α-phases. All 

these studies suggest that kinetic restrictions on crystal nucleation and growth have a 

β 
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dominant effect on polymorph selectivity, despite the thermodynamic driving force caused by 

the relative stability of different polymorphs. 

In addition, the dendrite β-glycine structure grows very fast on the Pt substrate 

between microcrystals for low solution concentration (Fig. 4.13e). Thin liquid between the 

crystals raptures by dewetting, and dendrite crystals are created due to 2D nucleation on the 

surface. This phenomenon, usually referred as spinodal dewetting [169], and the specific 

formed dendrite patterns are highly dependent to the type of chosen substrate [170]. Little 

difference in the grown structures was observed upon repeating the growth experiments with 

slightly different relative humidity and temperatures. After complete drying, β-crystals were 

stabilized through their contact with the Pt substrate and we did not see any further 

transformation to other phases within 1 month of the shelf time under ambient conditions. 

The grown β-crystals possessed the identical Raman spectra and looked uniform and 

transparent under a polarized light (Fig. 4.14). The average sizes of β-glycine needle-shaped 

crystals grown from the diluted solution (about 30 × 200 μm
2
) were comparable to those 

reported in the literature [171]. At 0.133 M concentration, the (001) peak of β-glycine (2θ = 

18°) was considerably increased (Fig. 4.9). This confirms that the (001) crystal planes are 

parallel to the substrate and that the growth direction of the needle crystals is along the (100) 

plane (b direction). 
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Figure 4.13. Optical images of the glycine crystals grown by the evaporation of 0.133 M 

solution drop on Pt/Ti/SiO2/Si substrate. All images are the same scale. 
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Figure 4.14. Optical image of two β-glycine crystals obtained after 1 month of shelf 

storage. 

The observed stability and preferred growth of β-glycine can be attributed to the 

interaction between the glycine molecules and highly crystalline Pt/Ti/SiO2/Si substrate. In 

general, the nucleation and growth of organic molecular crystals on the crystalline substrates 

are controlled by chemical interactions rather than by the epitaxial relationship [172]. The 

adsorption and surface interaction mechanism of glycine molecule on Pt surface have been 

studied a long time ago [163,173]. It was reported that the glycine zwitterions could adsorb 

on the Pt surface through the interactions of both deprotonated carboxyl (−COO
−
) and 

protonated amino (−NH3
+
) groups. In this bonding, the lone-pair orbital of the oxygen atom 

overlap with orbitals of the three adjacent Pt atoms forming the hollow site, and the lone-pair 

orbitals of the nitrogen atom could well couple to the Pt dz2 orbital in the on-top position 

[174]. We believe that, due to this interaction, Pt surface acts as a nucleation site for glycine 

crystals through bonding and stabilization of the initial β-phase nuclei. Therefore, it 

facilitates the growth and prevents further rearrangement of molecules and phase 

transformation into other phases. Since the observed solid–solid phase transformation starts 

from the crystal–substrate interface, chemical interaction of glycine with Pt may prevent this 

transformation in an adlayer and thus consequently slow down the transformation of the 

entire crystal. These observations reveal the potential of Pt-coated substrates to control the 

polymorphic selectivity, stability, and preferred orientation of β-glycine. 

Dendrite β-glycine structures were even more stable as compared to needle-shaped 

ones under ambient conditions over a period of several months due to their nanoscale 

thickness and better interaction between the glycine functional groups with Pt substrate. 

50 µm 
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In addition to micro-Raman data, single crystal X-ray diffraction measurements have 

been done for the crystals of needle-like and bipyramidal shapes. The results revealed that the 

needle-shaped crystals (assigned to β-phase by Raman spectroscopy) belong to the 

monoclinic system (group P21) with the following unit cell parameters: a = 5.08 Å, b = 6.25 

Å, c = 5.36 Å, β = 113.43°, and α = γ = 90°. These values are very close to those reported 

previously in the literature [175]. As expected, bipyramidal crystals (α-phase) exhibited 

reflections characteristic for the monoclinic structure (symmetry P21/n), and the following 

cell parameters were extracted: a = 5.08 Å, b = 11.90 Å, c = 5.46 Å, β = 111.29°, and α = γ = 

90°. These values are also in a good agreement with the literature data [176]. Therefore, we 

can conclude that the preferential growth of high-quality glycine β-polymorph was achieved 

by the careful control of the growth conditions and choice of the suitable substrate (Pt).  

4.3. Glycine Thin Films 

The difficulties in the growth of large bulk single crystals of β-glycine have motivated 

us to try to prepare thin films of glycine for easier miniaturization and integration. Several 

methods exist for the formation of ordered layers of organic materials on surfaces. Among 

them spin coating offers a simple inexpensive method which was extensively applied for the 

deposition of thin layers of polymers thin films [177] and nanostructures of functional 

molecules [178]. For the spin-coating process the arrangement and adsorption of molecules 

with special functional groups on the surface can be achieved almost instantaneously 

depending on the rotation speed. Here, we show that this simple and widely used method can 

be used for the fabrication of regular arrays of β-glycine micro- and  nanoislands with regular 

in-plane orientation of crystallographic axes of β-glycine on Pt substrates. 

4.3.1. Thin Film Preparation 

Glycine films were prepared by the spin-coating of glycine solutions. A drop of the 

glycine solution (50 ml and 0.13 M) was placed on the Pt-coated Ti/SiO2/Si substrate by a 

micropipette and then the substrate was rotated at a speed of 2000 rpm for 3 min to spread out 

and to simultaneously dry the solution. The centrifugal force pushes the solution to flow 

radially outward the center of rotation while decreasing its thickness, as the solvent 
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evaporates. As a result of this process, glycine micro- and nanoislands were grown by the 

evaporation and the spin-coated assisted process. 

4.3.2. Structural Characterization of Thin Films 

Figure 4.15 shows the representative optical morphology of the films, comprising the 

regions with ordered islands and distinguishable “grain boundaries” separated areas with 

different orientations of nanoislands. By the evaporation of the solvent during spinning, the 

fluid thickness is reduced to the point at which strong immersion capillary attraction arises 

between the particles that assists the self-organization of the particles into long-range ordered  

array of nanoislands [179]. Therefore, the ordering of the glycine particles at Pt surface by 

spin coating is controlled by the inter-particles and molecule-substrate interactions. 

Large open voids appear randomly throughout the film due to dewetting phenomenon. 

Dewetting normally arises from fluctuations in the film thickness, and non-wettable nature of 

the substrate causes the film to rupture at random positions [180]. At the edge of holes liquid 

draws itself onto the crystal in order to minimize the amount of liquid in contact with the 

substrate and the rim thickness of these holes increases. 

 

 

Figure 4.15. Optical image of β-glycine film. 

Generally speaking, deposition of glycine on plane substrates as nano-/microscale 

islands via spin coating is a non-equilibrium process in which the delicate balance exists 
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between the centrifugal force, rate of evaporation and crystal growth rate. Such has the 

following advantages: fast fabrication time, preferential growth of useful β-phase, and easy 

control of nanoislands size and orientation relative to the center of the drop.  

Raman spectroscopy was used to identify the structure of individual islands and 

direction of the crystallographic axes relative to the center of each grain. Analysis of the 

position of spectral peaks confirmed that all islands belong to ferroelectric beta phase. Inside 

each grain there is a spherulite-like structure [181]; these spherulites, growing from central 

parts, outward along the radial directions governed by four-fold symmetry arrangements of 

islands (Fig. 4.16a). By using the polarized Raman spectra we could prove that b- (polar) and 

c-axes of the film laid in plane of the substrate, and the c-axis laid preferably along the 

longest axis of each island (i.e. in the radial direction), while the b-axis was perpendicular. 

(Fig. 4.16b,c). 

 

 

Figure 4.16. (a) Radial arrangement of the glycine islands and development of spherulitic 

structure. (b) and (c) Identification of the axes orientation of each glycine island by 

polarized Raman spectroscopy. 

(a) 
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Important parameters that affect the structural formation of spin-coated crystals are the 

concentration of solution and spinning speed. With increasing concentration and decreasing 

rotational speed, the films become thicker and denser but less homogeneous [182]. However, 

we did not do any quantitative measurements the film thickness as function of the spinning 

speed and solution concentration. 

Thus obtained glycine particles were stable under ambient conditions over a period of 

one year, perhaps due to its nanoscale dimension and good contact with the Pt substrate. 

4.4. Summary 

Single crystals of all three phases of glycine were grown from the solution at room 

temperature. Their polymorphic phase, crystalline structure, and stability were examined by 

combined methods of optical microscopy, X-ray diffraction, and Raman spectroscopy.  

Due to inherent instability of β-glycine at ambient conditions, a simple method of 

stabilization of the β-phase is demonstrated based on the evaporation of aqueous solution on 

crystalline Pt(111) substrates. We have found that the interplay between the concentration of 

the glycine solution and crystallization effect of the surface results in the preferential growth 

of glycine β-phase with well-defined shape and morphology. These two parameters are 

suggested to be the major factors controlling the evaporation rate and growth kinetics. As a 

result, β-glycine needle-shaped crystals with the average size of 30 × 200 μm
2
 were grown on 

Pt/Ti/SiO2/Si under ambient conditions. No encapsulation in polymers or nanopores was 

indeed needed to maintain the stability of β-phase.  

Glycine thin films were grown on Pt-coated Si substrates by spin coating method. The 

self-organization process during spin-coating creates the ordered particle arrays due to 

capillary and other forces.
 
Film morphology is dominated by the “grains”, each composed of 

one spherulite-like structure. The orientation of crystal axes inside each grain area was 

determined by the precise analysis of the position of the Raman spectrum lines. 
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 Non-centrosymmetric crystals such as β-glycine (space group P21) and γ-glycine 

(space group P32) are of special interest for bioelectronics, biomechanics and bioMEMS 

applications. In this Chapter we attempt to analyze the electromechanical properties of both 

γ- and β-glycine forms to establish their piezoelectric activity and possible switching 

behavior.  

The switching process and creation of elongated ferroelectric domains as well as 

dynamics of domains propagation under different voltage pulses with variable height and 

durations are studied in the ferroelectric phase of β-glycine. Thermodynamic theory is 

applied to explain the variation of domain length and aspect ratio under the voltage applied to 

the PFM tip. The process of domain backswitching is also investigated. In addition, 

piezoelectric activity and switching behavior are being theoretically approached by molecular 

modeling. 

In the following of this Chapter, the non-linear optical properties of β-glycine are 

studied. Second harmonic generation (SHG) signal was compared with the crystallographic 

symmetry of β-glycine and with biomolecular modelling. Finally, possible applications of 

glycine crystals with controlled domain structure in various applications are discussed. 

5.1. PFM in γ-glycine 

The non-centrosymmetric structure of γ-glycine crystal was characterized for local 

piezoelectricity and possible ferroelectric properties. A detailed study of the piezoelectricity 

was carried out by in-plane (lateral) and out-of-plane (vertical) PFM. The out-of-plane PFM 

is measured by the piezoelectric response directed along the normal to the crystal surface, 

while the in-plane mode as shear response of the cantilever. 

The crystals were cut parallel to the (100) and (001) planes (Fig. 5.1a). 

Piezoelectricity was studied on both polished planes of glycine by means of vectorial PFM. 

In general, PFM contrast confirms the polarization homogeneity on each surface and high 

enough crystallinity of the samples. The values piezoresponse amplitude and phase allows 

determining the orientation of the polarization P in each plane. In Fig. 5.1b,c the (100) 

surfaces show a significant in-plane (IP) signal with uniform contrast of phase which is 

reversed upon rotation of the crystal by 180 degrees. The plane cut normally to c axis (001) 

displays significant out-of-plane (OOP) contrast providing information about vertical 
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polarization component (Fig. 5.1d). Here again with rotation of the crystal at 180 degrees 

(along c direction), the vertical signal is reversed (Fig. 5.1e) (bright and dark contrasts: 

polarization pointing out and down of the plane, respectively). 

Combination of all of these facts confirms the unipolar alignment of glycine 

molecules arranged to form a crystal down to a nm resolution and proves that the contrast is 

due to piezoelectric nature of the crystal. However, both planes of a sample were not 

switchable even up to 200 V. Thus, γ-glycine is a piezoelectric crystal with a unique polar 

direction axis along the c direction and without ferroelectricity, making it a potential 

candidate for piezoelectric and nonlinear optical (NLO) applications. 

 

 

Figure 5.1. (a) The γ-crystal axes orientation and cutting directions (b) IP-PFM of (100) 

plane, (c) after 180° rotation, (d) OOP-PFM images for (001) plane, and (e) after 180° 

rotation. The positive and negative signals demonstrate opposite orientations of 

corresponding polar vectors. 
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5.2. PFM in Needle-shaped β-glycine 

5.2.1. Domain Imaging 

Piezoelectricity and domain structure of a needle-shaped β-glycine microcrystal were 

studied by using PFM. Figure 5.2a shows the position of the cantilever relative to the crystal 

during scanning. Fig. 5.2(b-h) presents typical topography and piezoresponse images 

(amplitude and phase) acquired on the surface of β-glycine microcrystals comprising several 

domain boundaries. According to the topography image (Fig. 5.2b), β-glycine grows in a 

layer manner and a number of defects are generated on the surface of the crystal. These 

topographic defects apparently correlate with the distribution of ferroelectric domains. Only 

an in-plane polarization (shear piezocontrast) was observed (Fig. 5.2c,d) with almost zero 

out-of-plane one (Fig. 5.2f,g). The bright and dark contrasts of the in-plane phase image (Fig. 

5.2d) indicate an apparent 180
o
 phase difference and suggest an antiparallel polarization 

direction in adjacent domains (as shown in Fig. 5.2d by arrows). The in-plane (shear) signal 

is significantly reduced at domain walls as expected (Fig. 5.2e) [183]. This could be a result 

of domain wall clamping and averaging effect of the piezoresponse by the finite size of the 

tip [183]. A comparison of the in-plane piezoresponse with a single crystal x-ray diffraction 

data indicates that the spontaneous polarization of as-grown domains is parallel to the crystal 

axis b of the monoclinic phase of a β-polymorph.    

There is only slight variation in the out-of-plane phase, so there is not enough 

evidence of out-of-plane domains (Fig. 5.2g). However, there is an increase in the out-of-

plane signal for charged domain walls only in the situation when the cantilever lever is 

parallel to the charged domain walls (Fig. 5.2f,h). In order to find the origin of this response, 

the sample was rotated physically as explained below. 
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Figure 5.2. (a) Schematic of cantilever position on a needle-shaped β-crystal, (b) 

Topography, (c) LPFM amplitude, (d) LPFM phase, (e) Cross-sections across the domain 

wall on the topography and LPFM amplitude images (marked by green line), (f) VPFM 

amplitude, (g) VPFM phase, and (h) Cross section across the domain wall on the 

topography and VPM amplitude. 

Comparing piezocontrast in the vertical and lateral images and considering the 

geometry of the PFM tip and crystal axes allowed revealing information about the 

spontaneous polarization direction of the crystal and boundaries [184]. When the cantilever is 

perpendicular to the long axis of the crystal, the in-plane contrast is maximal (Fig. 5.2a). 

After rotating the crystal (180°), the signal will be reversed. Upon rotation the sample at 90 

degrees (Fig. 5.3a), in-plane contrast disappears inside domains and the charged domain 

walls, which are now perpendicular to the lever, give enhanced in-plane response (out-of-

plane signal is absent), which is coincident with topography (Fig. 5.3b-d). It confirms that 

inside the domains spontaneous polarization lies in the b direction of the β-phase crystal (Fig. 

5.2a). The arrows show the orientation of the polarization with respect to the domain wall 

(c) (e) (d) 

(f) (g) (h) 

(a) (b) 
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(Fig. 5.3c). This means that the response from the boundaries in Fig. 5.2f is not due to the 

true out-of-plane polarization vector or topography effect, but rather to some buckling of the 

cantilever. For the case of IP polarization vectors parallel to the cantilever axis, the shear 

strain from the sample induces buckling oscillations, which are detected as OP signal [185]. 

This explanation was confirmed by domain switching experiments as described below. 

These observations suggest the presence of a complex structure of charged domain 

walls, which includes a thin layer with polarization directed parallel to defect (Fig. 5.3.e). 

This is the reason why domain wall becomes seemingly wider. In the in-plane phase image 

(Fig. 5.3.d), one can notice the areas with the opposite contrast, which is obviously connected 

with opposite signs of the related "head-to-head" and "tail-to-tail" charged walls. 

 

Figure 5.3. (a) Schematic of the cantilever position on a needle-shaped β-crystal, (b) 

Topography, (c) LPFM amplitude, (c) LPFM phase and (d) A cartoon sketch of 

ferroelectric domain walls according to PFM (overlaid) and its derivative images. 
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Thus, the domain walls in β-glycine are apparently true 180
o
 domains separating 

domains with the polarizations parallel to the domain wall plane and charged domain walls in 

which polarization discontinuity leads to an additional energy associated with such domain 

configurations. The combination of both domain types represents a typical step-like domain 

structure similar to that recently observed in α-6,6’-dimethyl-2,2’-bipiridinium chloranilate 

[186]. 

Figure 5.4 shows a part of the step-like domain structure overlaid on the 3D 

topography image. It clearly indicates that the 180
o 

domains are mostly coincident with the 

cleavage planes of the crystal. The steps in topography correspond to the atomic planes of β-

glycine. Since the crystal surface was not polished, it may be suggested that stabilization of 

180
o
 domain walls occurs at these growth defects and their density is controlled by the 

density of atomic steps at the surface. It is natural to propose that β-glycine (grown at room 

temperature below Curie point) could decrease the domain wall energy by pinning 180
o
 

domain walls at the vertical steps on the surface (Fig. 5.4). These thermodynamically stable 

domains may not be easily switched under an applied electric field and thus the macroscopic 

remanent polarization can be reduced as compared to the single domain state [186].  

 

Figure 5.4. (a) LPFM contrast for the as-grown state, (b) Topography overlaid on the PFM 

contrast. Green and white lines represent charged and neutral domain walls, respectively. 

(b) 

(a) 
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The distinct feature of our β-glycine microcrystals is the presence of a large number of 

charged domain walls (either head-to-head or tail-to-tail). In uniaxial ferroelectrics, 180° 

domain walls typically separate antiparallel domains with polarization vector parallel to 

domain plane, so as to avoid high electrostatic energy associated with polarization 

discontinuity at the domain wall [44]. Consequently, charged domain walls have been rarely 

observed in ferroelectric materials, e.g. in PbTiO3 crystals [187], in PZT thin films [188] and, 

recently, in uniaxial organic ferroelectrics [44]. As-grown glycine crystal has both 

antiparallel (neutral) and charged ferroelectric domain walls appearing as a series of steps as 

shown schematically in Fig. 5.5. As seen from the comparison of PFM amplitude and 

topography cross-sections (Fig. 5.2e), the initial charged domain boundaries in the crystal are 

always associated with the topography trenches of about 6-7 nm in depth. This is an 

indication of the existence of topological defects which can be associated with the high 

electrostatic field compensated by electronic or ionic charges trapped at defect sites [189]. On 

the other hand, the associated strain at the charge domain wall is about 0.1% and corresponds 

to the change of crystal dimension due to d31 piezoelectric effect under an electric field of 

about 5 MV/cm. This naturally explains the existence of trenches (not protrusions) on the 

surface due to the negative sign of d31. Unfortunately, our microcrystals were too small to 

conduct conventional Sawyer-Tower polarization hysteresis measurements. 

 

Figure 5.5. Schematic of the domain configurations and polarization distribution on the 

growth steps of glycine crystals. 

By calibrating lateral displacement using an AFM scanner it was possible to determine 

the absolute value of the effective shear piezoelectric coefficient (d15eff) inside the domain. 

The in-plane sensitivity was calculated based on the geometry of the cantilever and out-of-

plane deflection sensitivity was measured as described by Peter et al. [190]. The 
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piezoresponse signal of β-glycine was measured at a point inside the domain while varying 

the amplitude of the ac bias from 0 to 15 V. The effective shear piezoelectric coefficient was 

calculated directly from the slope of the acquired curve and in-plane torsional sensitivity of 

the cantilever [190]. The value varied from point to point with an average effective 

coefficient of about 6 pm/V. It should be noted that this value cannot represent the true bulk 

coefficient and should be used with caution to evaluate piezoelectric activity of the amino 

acid crystals. Still this value is significantly greater than that of the corresponding coefficient 

of quartz (d14 = 0.76 pm/V) [191] and similar to that of ZnO [192].
 

5.2.2. Switchability of β-glycine 

In order to confirm polarization switchability in β-glycine, an external electric field 

was applied locally via a PFM tip to the crystal with in-plane polarization and domain 

switching was controlled by varying the amplitude and duration of dc bias pulses [193]. It is 

well known that the electric field created via PFM tip is inhomogeneous and has a maximum 

intensity in a direction perpendicular to the sample surface. Due to this effect, it is possible to 

create artificial domains with the polarization perpendicular to the ferroelectric surface and 

monitor their switching kinetics by measuring the domain diameter versus applied voltage 

[194,195]. Since switching in uniaxial ferroelectrics is limited to 180° reversal of the 

polarization, the field can create only a 180° domain with polarization parallel to the surface 

in in-plane domains.
 
Recently, Pertsev and Kholkin [196] have theoretically shown that the 

180° in-plane polarization switching can be observed in uniaxial ferroelectrics when the 

initial polarization is parallel to the sample surface. In this approach, the PFM tip is 

represented as a line of charges [195] extending from Z = ℎ to Z = H (h is the distance 

between the tip apex charge and the crystal surface and H is the total tip height) and potential 

distribution created by the tip inside the ferroelectric crystal can be written in the form:  

ø𝑡𝑖𝑝 =
𝑉

ln[
2𝐻√ε𝑥ε𝑧

(𝑟𝑡𝑖𝑝 ε𝑒𝑥𝑡
)
]

ln [
𝐻− √ε𝑥 ε𝑧⁄ 𝑧 +√𝑥2 + (ε𝑥 ε𝑦⁄ )𝑦2+(𝐻 − √ε𝑥 ε𝑧⁄ 𝑧)

2
 

ℎ− √ε𝑥 ε𝑧⁄ 𝑧 +√𝑥2 + (ε𝑥 ε𝑦⁄ )𝑦2+(ℎ − √ε𝑥 ε𝑧⁄ 𝑧)
2
 

] (5.1) 

where x is a coordinate parallel to the polar axis (in our case b direction), z is the coordinate 

perpendicular to the surface, rtip is the effective radius of the tip, εext is the dielectric 
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permittivity of external media, and 𝑉 is the bias applied to the tip. The dielectric response in 

the surface plane is supposed to be anisotropic (ε𝑥 ≠ ε𝑦), where ε𝑥 is the dielectric 

permittivity along the polar 𝑥 direction and ε𝑦  is along the nonpolar one. The distribution of 

lateral field of the tip should be calculated as the derivative of potential ø𝑡𝑖𝑝 with respect to x: 

𝐸𝑥
𝑡𝑖𝑝

= −𝜕∅𝑡𝑖𝑝 𝜕𝑥⁄ .     (5.2) 

We calculated the lateral component of electric field intensity at the sample surface and at 

two different depths (10 and 20 nm) by using Eq. 5.2 and applied voltage 90 V. As expected, 

the inhomogeneous electric field induced by the tip in x-direction (𝐸𝑥
𝑡𝑖𝑝

) has opposite signs at 

right and left sides from the tip, reaching a maximum at a distance close to the tip and then 

decreasing slowly with distance (Fig. 5.6a). Therefore, the surface domain would grow only 

at one side of the PFM tip depending on the initial polarization of the crystal and the sign of 

applied electric field (Fig. 5.6b). Changing the bias sign reverses the direction of electric field 

produced by the tip and, therefore, creates domain in opposite direction (Fig. 5.6c). 

Interestingly, recent observation of the in-plane switching in congruent LiNbO3 single 

crystals demonstrates much richer phenomena, where in-plane domains grew in the same 

direction after the application of voltages of opposite signs [197]. 
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Figure 5.6. (a) The electric field intensity 𝐸𝑥
𝑡𝑖𝑝

 produced by the tip on the surface and with 

different depths in the bulk along the polar x axis. (b) and (c) Schematics of the expected 

in-plane domain configuration recorded by PFM tip with positive and negative bias, 

respectively. T-T is tail to tail and H-H is head to head configurations. 

Indeed, after the application of a high enough dc bias to the tip in contact with the 

surface, a new 180° domain is observed being sufficiently stable after switching. Nascent 

domains have a typical rectangular shape with high aspect ratio and wedge-shaped end (in 

order to decrease electrostatic energy associated with charged domain wall [44]). Place of 

application field is marked with blue arrows in Fig. 5.7 d. We note that the charged domain 

walls are not associated anymore with surface defects (i.e. with the topography change) and, 

therefore, electrically switched domains were not that stable as compared to the natural ones 

appearing during crystal growth. It is speculated that high electrostatic field associated with 

them could be partly compensated by the external rather than by internal charges from 

(b) (c) 

(a) 
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defects. It has been found that as-grown charged domain walls cannot be moved even under 

very high electric bias applied to the tip. 

Although there are no features on the topography, while there is enhanced OOP signal 

in charged wall as shown in VPFM amplitude and cross section across the domain wall (Fig. 

5.7e,g). Therefore, it confirms again that OOP signal in a charged wall is not due to a surface 

but rather to a bulk effect.  

 

Figure 5.7. PFM image of the domain structure of the crystal after the application of an 

external field, (a) Surface deflection, (b) topography, (c) LPFM amplitude, (d) LPFM 

phase, (e) VPFM amplitude and (f) VPFM phase, (g) Cross-section along the domain wall 

(green line) on the amplitude profile. The arrow indicates the probe contact regions in the 

process of writing. 

Figures 5.8a and b represent domains appearing after the application of -90 V to the 

tip for two opposite polarization states and different pulse durations. The direction of the 

nascent domain is sensitive to the initial polarization direction and changes to the opposite 

one upon crystal rotation at 180
o
.  



Chapter 5 

88 
 

 

 

 

 

Figure 5.8. LPFM image of domains after writing in bright (a) and dark areas (b) by tip 

voltages of -90 V with different pulse durations (the arrows show the contact points of the 

AFM tip). 

Domains lengths were found to be dependent on the amplitude and duration of the 

applied voltage pulse. Figure 5.9 illustrates the voltage dependence of the domain length for 

fixed bias pulse duration (10 s). Independently of the voltage pulse duration, the critical 

voltage was about 65 V for both orientations of the initial polarization. Small variation of 

critical voltages (±5 V) probably originates from different defect structure (density, defect 

type) under the tip.   

 

Figure 5.9. Domain length as a function of applied voltage for fixed pulse duration (10 s). 

The value of threshold voltage needed for the appearance of domains on non-polar 

surface is more than three times greater than that necessary for the switching on the polar 

surface in glycine (𝑉𝑐𝑟 ≈  20 𝑉  according to Ref. [15] ). There are two reasons for that. First, 

due to dielectric anisotropy of the surface (ε𝑧 ε𝑥⁄ > 2) , the maximum value of 𝐸𝑧 is about 

two times higher than that of 𝐸𝑥, similar to the case of the non-polar surface of uniaxial 

LiNbO3.
 
Second, back switching effect could be more pronounced for in-plane domains 
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which are not sufficiently stable due to incomplete polarization screening [197]. Apparently, 

domains switched under lower voltages are unstable and the initial polarization state is 

recovered after the external field is switched off. This happens due to fundamental instability 

of the charged domain which cannot be completely screened with absence of the slow bulk 

screening processes [198]. 

The domain lengths were also found to depend on the duration of the applied voltage as 

seen in Fig. 5.10a. The threshold time was about 2 s. At shorter times the domains were not in 

the equilibrium and switched back after the field was removed. Domain wall velocity was 

calculated based on the dependence of the domain length on switching time (ν = dL/dt) and is 

plotted as a function of the domain length in Fig. 5.10b. Domain wall velocity significantly 

decreases with increasing domain length since the lateral electric field decreases with 

asymptotic behaviour (𝐸 
𝑥
𝑡𝑖𝑝~ 1/𝑥) with distance from the tip [196]. 

 

Figure 5.10. (a) Domain length as a function of writing time for the applied voltage -90 V. 

(b) Domain wall velocity of  as a function of domain length for the applied voltage -90 V. 

Ferroelectricity in organic crystals arises from the collective transfer of electrons in 

charge-transfer (CT) complexes [199] or protons transfer in hydrogen bonded crystals [200], which 

are different from ionic displacements in perovskite structure. The spontaneous polarization 

of glycine crystal comes from the interaction of permanent dipole moments of glycine 

molecules in the volume, but polarization of each chain can be inverted by dynamics of the 

intermolecular N-H…O bonds, similar to proton tautomerism of O-H…O bonds in croconic 

acid [1] or N-H…N bonds in benzimidazole derivatives [201]. This property is attributed to 

the amphoteric nature of glycine molecule which can donate or accept proton to each other. 

(a) (b) 
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With increasing voltage, the domain length reached high values, e.g., ~17 μm for 90 

V, or even more as shown in Fig. 5.9. At such distances the associated driving field from the 

tip is very weak or practically zero (according to 𝐸𝑥
𝑡𝑖𝑝

 equation, electric field under the tip of 

the probe is about 3000 kV/mm at the voltage of 90 V, the field at a distance of r ≈ 2 μm 

from the probe decreases to 5.2 kV/mm). Thus, the domain wall is not driven anymore by the 

electric field from the tip. This observation can be explained by the domain breakdown 

phenomenon, a domain growth process which was proposed by Molotskii et al. [202].
 
It 

states that the main driving force for domain propagation is a decrease in the depolarizing 

field energy of the system, rather than direct effect of the electric field induced by the tip. 

Probably in the case of glycine, the domain length increases with consecutive rearrangement 

of H atoms position in the intermolecular N-H…O bonds to satisfy the minimum free energy 

condition.  

The stability of the written domain structures is important for the application of 

ferroelectrics for memories. In glycine, the domains are stable for a short time only and then 

their length slowly decreases to reach stable configuration or sometimes they fully disappear 

similar to the case of single-domain strontium-barium niobate SBN crystals [203]. However, 

the time taken for the nucleated domain to switch back after removal of the field is a few 

hundred times shorter than the intrinsic switching time. 

5.3. Theoretical Calculations 

The equilibrium domain size under the voltages above the critical one was determined 

using a theoretical approach developed in Ref. 196 and the results were compared with the 

experimental results in Fig 5.9. To calculate the dimension of such in-plane domains, a 

coordinate system with the z axis perpendicular to the surface and the x axis parallel to the 

polar crystallographic direction is considered. The model is based on the minimization of the 

total free energy after the polarization switching inside the domain in the form  

 

∆𝐹 = 𝑈𝑑𝑤 + 𝑈𝑑𝑒𝑝 − 2𝑃𝑠 ∫ 𝐸𝑥
𝑡𝑖𝑝

(𝑥, 𝑦, 𝑧) 𝑑𝛺
 

𝛺
,  (5.3) 

 

where 𝑈𝑑𝑤 is the self-energy of the domain boundary separating the new domain from the 

surrounding crystal, 𝑈dep is the energy of a depolarizing field created by the polarization 
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charges on the domain surface and the last term represents the work 𝑊tip done by 𝐸tip during 

the polarization reversal inside the domain volume Ω.  

By minimizing the free energy numerically, critical bias voltage (𝑉𝑐𝑟) was evaluated and 

the domain lengths were calculated at and above critical voltage using the glycine crystal 

parameters calculated in Ref. 204: 𝑃𝑠 ≈ 0.11  𝐶 𝑚2⁄ , 𝜀𝑥 ≈ 5 , ε𝑧 = ε𝑦 ≈ 18, and domain 

surface energy density 𝛾 = 0.001 𝐽 𝑚2⁄ . In our calculations we considered the tip radius 

𝑟𝑡𝑖𝑝 = 30 nm, H = 10 μm, and h = 1 nm. The critical voltage was about 25 V for glycine 

while PFM scanning indicates domain appearance after the application of much higher 

voltage (~ 65 V). This discrepancy is might be due to instability of domains appearing under 

the lower voltages and their backswitching after the field removal [44].
 
Figure 5.11 compares 

the experimental and calculated domain lengths as a function of the voltage applied to the tip. 

At high voltages the experimental domain lengths are very close to those predicted by the 

thermodynamic theory. However, the experimental values at low voltages deviate from the 

expected theoretical behavior and domain sizes are smaller than predicted ones.  

This thermodynamics model provides equilibrium domain dimensions which are 

difficult to reach in real experimental conditions because of insufficient screening and 

consequent backswitching after the field removal. Additionally, the thermodynamic threshold 

voltage may be smaller than the observed one because of the voltage drop across a low-

permittivity layer at the sample surface, which is not taken into account in the theory. 

 

Figure 5.11. Measured (filled circles) and calculated (curve) domains length in the β-

glycine as a function of applied voltage. 

Calculated length 

Measured length 
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As mentioned in Fig. 5.7 the artificial domains are not associated with topography pits 

and therefore they are not very stable and decay under the driving force originated from the 

surface energy of the domain wall and the depolarization field energy after removing the 

switching voltage [205]. The decay of domains is a nonequilibrium thermodynamical process 

proceeding so as to lower the free energy of the system. It is affected by initial domain size, 

temperature, crystal defects, which can pin the domain walls, etc [206]. 

The decay process of domains with different length was measured after poling. Decay 

processes depended on the domain size. For longer domain as shown in Fig. 5.12a, firstly, the 

domain width becomes uniform through the entire domain, while the length remains almost 

unchanged. Then it shrinks relatively slowly in both directions. 80 minutes later, when it 

reaches to a critical size, rapidly drops to the as original state. For domain with smaller size 

(Fig. 5.12b), it is very unstable and totally switches back to the original state in less than 20 

minutes which reveals a fast decay process. Therefore, the larger domains survive more due 

to decrease in the domain decay driving forces. The discrepancies between theoretical and 

experimental values in the lower voltage (Fig. 5.11) might be due to higher speed of domain 

size decay in the first few minutes after switching off the field in smaller domains relative to 

larger size. It should be mentioned that the domain stability can also be influenced by the 

distance of neighboring domains which is important in the fabrication of periodically poled 

crystals by SPM poling method for applicability in electro-optical devices.  

 

Figure 5.12. The decay process of domain with length of (a) 14.7  μm and (b) 9.6  μm as a 

function of time. L and W are the length (µm) and width (µm) of domain in each time. 
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In our experiment, the domain width is not constant (wedge-like). Thus, we used the 

average domain width by dividing the measured reversed domain area by the domain length. 

5.4. Molecular Modelling 

Computational modelling of both glycine polymorphic phases (β and γ) were 

performed using a combined method with local density approximation (LDA) first principle 

calculations of crystal structures on Linux cluster and with molecular semi-empirical PM3 

calculations by HyperChem 8.0 [207]. The structural models obtained and the physical data 

(dipole moment, polarizations, dielectric permittivity, electrostriction and piezoelectric 

coefficients, etc.) were computed and compared with experimental data obtained by PFM. 

Figure 5.13 shows schematics of the individual glycine molecules dipole moment. 

Each glycine zwitterion contains a dipole moment directed from oxygen to nitrogen atom.  

 

Figure 5.13. The dipole moment orientation of an individual glycine molecule. 

The network of hydrogen bonds plays an essential role in organization of the crystal 

structure of glycine. Figure 5.14 displays both molecular crystallographic structures for β- 

and γ-glycine in two projections with marked hydrogen bonds network and resulting dipole 

moment. According to the modeling results, γ-glycine crystals consist of molecules in the 

form of zwitterions linked through NH…O hydrogen bonds. Molecules form triple helices 

around the 31 screw-axis passing through the c axis; these helices are linked together by the 

lateral hydrogen bonds, forming a three-dimensional noncentrosymmetric network of 

hydrogen bonds. Therefore, for γ-glycine, crystal structure does not consist of layers, but is a 

three-dimensional hydrogen-bonded network with total dipole moment and polarization 

strongly oriented along c (OZ) axis. Each nitrogen atom is surrounded by oxygen atoms, and 

 

N 

O 

O 
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each oxygen atom by nitrogen atoms, so the effect of such bonding will be enhanced by 

electrostatic forces between oppositely charged groups. The calculated value of polarization 

by unrestricted Hartree-Fock (UHF) PM3 method for modelled molecular cluster from 27 

individual glycine molecules shows that polarization P ≈ Pz = 0.17 C/m
2
 for this γ-glycine 

polymorphic crystal structure. The calculated volume of γ-glycine lattice unit cell is V = 

219.8 A
3
.  

The molecular arrangement in the crystal lattice of β-glycine is quite different with γ-

form. In the β-polymorph, we have layered structure. Zwitterionic glycine monomers are 

linked in single polar layers in XOZ plane and hydrogen bonds link the single polar layers 

along the monoclinic b-axis with alternating chain orientations and create a non-

centrosymmetric structure (P21 space group, Z = 2) [208]. A schematic diagram of the β-

glycine crystal structure is shown in Fig. 5.14. In this case, the dipole moment has several 

components, which are oriented at various angles to the main axis at each layer with 

oppositely directed and compensated components in ac (XOZ) plane. But the components 

along OY axis are summed up and the total polarization is directed along OY axis. The 

calculated values of the polarization components are smaller than for γ-glycine and have on 

average P ≈  Py ≈  0.1...0.12 C/m
2
.  

The specific features of all glycine phases are related to their hydrogen-bonded 

network system. There are two main types of H-bonds in β-glycine: within layer: H-bond 

with length L ≈ 1.179 Å and inter-layer: H-bond with length L ≈ 2.75 Å. As derived from IR-

experiments [209], hydrogen bonds within the layer are stronger than the inter-layer ones in 

β-glycine. In addition, the strongest hydrogen bond in the β-form being weaker than the 

weakest hydrogen bond in the γ-form. Such structural features lead to an easier mobility of 

the glycine molecule in β-glycine crystal under external electric field as compared to γ-

glycine where each individual molecule is fixed in a more stable position. The calculated 

volume of the β-glycine lattice unit cell is V = 158.9 A
3
 which is smaller as compared to γ-

glycine. 

The estimation of the coercive electric field for γ-glycine yields a higher value Ec ≈ 

30...80 MV/cm along c (OZ) axis, and it is hard (almost impossible) to switch polarization in 

this case. For β-glycine, we obtain smaller value of the coercive electric field Ec ≈ 10…15 

MV/cm for the Py polarization component (Fig. 5.15), which is much smaller and switching 
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phenomena are possible. This fact means that the individual glycine molecule in β-glycine 

structure moves easier and finds new stable positions under a relatively small dc field. 

 

Figure 5.14. Molecular models of two polymorphic glycine (β and γ) crystal structures for 

two projections (along a and c axes) with marked hydrogen bonds network and total dipole 

moment. 

Figure 5.15 represents the calculated polarization hysteresis loop for β-glycine. For the 

proposed molecular model of β-glycine the calculation procedure is not so easy and stable, 

because this cluster consists of only 16 individual glycine molecules and under applied 

electric field along OY axis some molecules, which are close to the surfaces of the cluster, 

are subject to non-uniform total electric field and, as a result, the convergence of calculations 

is far from regular and very good in this case. But, nevertheless, this model allowed us to 

estimate several important quantities and to obtain very good agreement with the 

experimental data. 
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Figure 5.15. Calculated hysteresis loop for molecular model of β-glycine crystal structure 

with average coercive field Ec ~ 0.003 a.u. ~ 1.5 GV/m. SP and Opt are single point 

calculations (at the fixed position of each atom of the modelled molecules) and 

optimization of molecular geometry under a varying electric field, respectively. 

First, the polarizability (α = ∆D ∆E ⁄ ) was found to be in the range α ~ 44…56 Å
3
 ~ 

(4.8…6.1)*10-39 Cm
2
V

-1
 for our molecular cluster from 16 individual glycine molecules. 

These data are close to the reported ones [210]. Second, we determined the electrostriction 

coefficient in the OY direction Qy (Q = s (∆P)2⁄ , where s = ∆V V⁄ ), which equals (in 

absolute value) to Qy ~ 3.87 m
4
C

-2
 and in perpendicular direction Qyx ~ 1.0 m

4
C

-2
. These 

values are close to those of other organic crystals with similar structure [211]. Using 

Clausius-Mosotti relation ( = (1 + 2k) (1 − k)⁄ , where k =  V⁄  ) [212] we estimated the 

permittivity  = 5, which is also close to experimental data ( = 6 [213]). 

Then, using a well-known linearized electrostriction relation d = 20QP
 
[211] we 

roughly estimated apparent piezoelectric coefficient in OY direction, which could correspond 

to the longitudinal piezocoefficient d33 in this case. The obtained values of piezoelectric 

coefficients are: d33 ~ -8.2 pmV
-1

 and d31 ~ -8.5 pmV
-1

 for β-glycine. The measured shear 

piezocoefficient for β-glycine is d15 ~ 10 pmV
-1

 which is close to our calculations in absolute 

magnitude. 

Using these data we also estimated the same quantities for γ-glycine. Assuming for 

simplicity that along Z axis Qz = ~ (0.5 – 1.0) m
4
C

-2
 we obtain d33 ~ (5.8 – 11.6) pmV

-1
 

(pCN
-1

). This result is in line with the experimental value d ~ 7.4 pCN
-1

 from Ref. [213]. As a 
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result, we can conclude the β-glycine crystals should be easier switchable and, consequently, 

demonstrate apparent ferroelectric properties. On the contrary, γ-glycine is not easily 

switchable, but has better piezoelectric properties.  

All in all, these computed data and obtained switching properties for both models of β- 

and γ-glycine polymorphic structures are fully in line with the experimental observations in 

PFM experiments. 

5.5. PFM in Dendrite-type β-crystals 

As mentioned in Chapter 4, the other morphology of β-phase that was found on the Pt 

substrates is dendrite-type. Figure 5.16 shows optical picture of part of dendrite crystals 

under polarizers light, different areas have distinguishing colors. 

 

Figure 5.16. Optical microscopy image of dendrite crystals of β-glycine. 

Dendrite crystals exhibit mainly twinned morphologies and their trunks are split in the 

centre. Most of the dendrites grow and expand further by not symmetrically branching 

mechanism, while side branches and secondary branches also show sequential twining.  

Piezoresponse Force Microscopy  confirmed that the dendrite-type β-glycine crystals 

exhibit piezoelectricity with both out-of-plane and in-plane components of polarization. Main 

twin boundary, side branches twin boundaries, and secondary side branches twin boundaries 

are identified by black, green, and blue lines, respectively (Fig. 5.17).  

Micron-sized ferroelectric domains were easily switchable under external electric 

field and the average coercive voltage was found to be around 30 V. Figure 5.18a displays the 
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in-plane piezoresponse image after poling in bright and dark areas. Piezoresponse hysteresis 

loops also were obtained for the maximum dc voltage of 50V (Fig. 5.18). Hysteresis loop is a 

clear signature of polarization switching on the local scale.  

 

 

 

 

 

 

Figure 5.17. (a)-(c) show topography, the vertical and lateral PFM images of as grown 

dendritic shape β-glycine. 

 

 

 

 

 

Figure 5.18. (a) Switching of ferroelectric domains with the application of dc voltage. (b) 

Hysteresis loop of the amplitude piezoresponse. 

5.6. PFM in Thin Films of β-crystals 

The significant ferroelectricity of the β-glycine crystal motivated us to process a thin 

film of glycine for easier miniaturization and integration, which we succeeded using the 

simple and inexpensive spin-coating approach. It is known that ferroelectric thin films may 

exhibit different properties from those of their bulk crystals [214] because surface/interface 

effect and dimensional effect commonly play an important role in polarization in thin 

ferroelectric films. 

(b) (c) (a) 

-30V 

-30V 
(a) (b) 
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Figure 5.19 represents topography (a), PFM-lateral and vertical (b,c) measurements of 

the self-assembled glycine structures in the area between partially connected grains. 

According to the topography, glycine nanocrystals array in some parts of the film were 

uniform and closely packed and some parts were dispersed monolayer (Fig. 5.19a). Capillary 

forces between the particles of the similar size are more attractive relative to non-identical 

particles. Therefore, the areas of particles with uniform size are more closely packed 

arrangement relative to area with non-homogeneous particles.  

PFM lateral image (Fig. 5.19b) shows a contrast only for a grain which polarization 

direction is perpendicular to the longest axis of the cantilever. In two other grains the contrast 

is weak because their polarization direction is parallel the cantilever axis and the contrast may 

arise only through the buckling effect. White arrows indicate the polarization orientation of 

each crystalline area (Fig. 5.19b). Vertical image (Fig. 5.19c) shows negligible contrast, in 

agreement with Raman measurements (ferroelectric axis b is oriented parallel to the 

substrate). The shear piezoelectric coefficient of the glycine film was derived between 12 and 

17 pm/V which is twice as that for a β-glycine single crystal.  

 

 

Figure 5.19. Representative images of topography (a), lateral (b) and vertical-PFM (c) 

measurements of the nanocrystalline glycine arrays on Pt substrate. 

Higher magnification PFM of the particles in a non-closed packed area shows that 

these nanoislands have near spherical shape. While analyzing the domain structure of each 

microcrystal, it appears that they can be in the monodomain state or can be divided into two 

domains (Fig. 5.20a). The nanocrystals were easily switchable and the average coercive 

voltage was found to be around 20 V (Fig. 5.20b).  
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Figure 5.20. Switching of glycine islands: (a) PFM In-plane image of virgin film, (b) PFM 

image after switching of some islands under application of  +20 V. 

5.7. Optical Characterization of β-glycine Single Crystal 

Ferroelectrics are also ideal materials for electro-optics and nonlinear optics 

applications (for polarization rotation and frequency conversion of light) [215], because the 

local direction of the polarization; hence, the properties of the material can be easily 

controlled through domain structure engineering. 

Due to strongly polar nature and the presence of hydrogen bonds, glycine has been for 

a long time recognized as a potential nonlinear optical (NLO) material in which the useful 

optical properties (large nonlinear optical coefficient, large birefringence, wide transparency 

range, high damage threshold, broad spectral and temperature bandwidth, etc.) are combined 

with the ability of chemical modification using molecular engineering and intrinsic 

biocompatibility [216,217]. 

During the optical characterization, both linear and nonlinear methods were used. In 

the linear part, optical images of the grown crystals were acquired with parallel and crossed 

polarizer and analyzer positions. This procedure allowed finding the crystals where the high 

frequency dielectric permittivity looked anisotropic and the highest nonlinear susceptibility of 

β-glycine polymorph was therefore expected.  

The nonlinear optical properties were obtained through the SHG measurements. 

Figure 5.21a,b represents the measured and fitted dependences of the SHG signal oriented 

parallel (P-out) and perpendicular (S-out) to the polarization of the incident light while 

rotating this polarization by 360°. In case of [010] crystallographic axes of β-glycine crystal 
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parallel to the incident light polarization direction, two different behaviors for P- and S-

output polarization dependences were observed. 

For P-output polarization, we observed two strong 180° peaks (Fig. 5.21a). We 

assume that these peaks are consistent with the strong dipole contribution of the −COO
−
, 

−NH3
+
 molecule groups aligned along the [010] crystallographic axes (Fig. 5.12c). Therefore, 

we deduce that the inherent polarization of β-glycine lies along [010] crystallographic axes. 

For the S-output polarization, we found four strong 180° peaks (Fig. 5.21b). We 

assume that these peaks contribute to the SHG signal owing to the zwitterions dipole 

precessions along the [100] crystallographic axes (Fig. 5.21d). 

These results are in agreement with the Hyperchem 8 [207] simulations of the β-

glycine molecules in the monoclinic crystal structure. The dipole moment of each molecule 

as well as the dipole moment of total crystal clusters was calculated using the unrestricted 

Hartree-Fock (UHF) PM3 method similarly to refs [218,219]. The polarization direction is 

determined from the −COO
−
 group to the −NH3

+
 group in the zwitterionic form of each 

individual glycine molecule in polar layers which is nearly normal to the Pt substrate surface 

(Fig. 5.21c). The layers are linked together via hydrogen bonds in the [010] direction while 

forming a monoclinic structure. The total dipole moment is found to be parallel to the native 

fast-growth crystallographic direction (b-axis). 
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Figure 5.21. Measured and fitted light polarization dependences of the SHG signal from β-

glycine for (a) P and (b) S output polarizations for crystallographic face (001). Molecular 

simulation of the (c) dipole moment of each glycine molecule as well as molecular cluster 

cut off from β-glycine crystal consisting of 4 layers and 16 molecules (160 atoms) with 

corresponding hydrogen bonds and (d) dipole moment of the −NH3
+
, −COO

−
 groups of 

individual (marked by green color) glycine molecule in each layer. 

In order to describe the obtained polarization dependences of )(2 I , equation 5.3 is 

rewritten for the point group C2 and crystal face (001). This gives six independent tensor 

components: 𝜒1 = 𝜒123 = 𝜒132; 𝜒2 = 𝜒113 = 𝜒131 = 𝜒311; 𝜒3 = 𝜒322 = 𝜒223 = 𝜒232; 

𝜒4 = 𝜒333; 𝜒5 = 𝜒312 = 𝜒321; 𝜒6 = 𝜒213 = 𝜒231 and SHG intensity as a function of 

polarization angle can be expressed as 

   

 4sin2sin4cos2cos)( 42420

2 SSCCCI  ,  (5.3) 

(c) (

d

(a) (b) 
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where iC  and iS  denote the corresponding fitting parameters in the SHG polar dependences, 

which are the linear combinations of nonlinear susceptibility
)2(

ijk  and Fresnel factors. 

The results of the simultaneous fitting of two curves (P-out and S-out SHG 

polarization) are in a good agreement with the nonlinear experimental data (Fig. 5.21a,b, 

solid lines), showing the amplitude of neighbor molecule oscillation, the same number of 

petals and their orientation. These facts confirm our conclusion about the dipole contribution 

of the −COO
−
, −NH3

+
 molecule groups aligned along the [010] crystallographic axes and the 

zwitterions dipole precessions along the [100] crystallographic axes. This gives the following 

values of nonlinear susceptibility tensor components: 𝜒1 = 0.36 pm/V; 𝜒2 = 0.73 pm/V; 

𝜒3 = 0.16 pm/V; 𝜒4 = 0.28 pm/V; 𝜒5 = 0.89 pm/V; 𝜒6 = 7.5 ∗ 10−4 pm/V. The absolute 

values were obtained using a z-cut (001) quartz with its nonlinear susceptibility tensor 

components equal to 𝜒1 = 0.8 pm/V,  𝜒2 = 0.017 pm/V [220]. However, the experimental 

dependences possessed a noticeable background at their minimum (theoretical curves should 

vanish to zero at the same points). Such deviation may arise due to several reasons, for 

example, it can be a result of the presence of 90
o
 domains [221,222] or originate from the 

light scattering on optical inhomogeneities.  

Thus, β-glycine crystals can be used to transform infrared and visible light into UV 

and near-UV radiation. Not only frequency conversion [223], but also amplitude and phase 

modulation can be used for optical communications and interconnections, optical switching 

data storage, and electro-optic applications [224]. The intrinsic biocompatibility expected in 

glycine could be helpful for bioimaging and photothermal therapy [225], where a light 

conversion to the UV is required for the generation of short lived toxic oxygen radicals. The 

possibility of obtaining ferroelectric patterns with any given configuration at moderate tip 

voltages (well below 100 V) in glycine crystal can be used to create regular microdomain 

patterns (by the vector lithography method) for providing tunable radiation [226,227]. Further 

work is needed to explore the potential of glycine for these applications.  

(The SHG measurements have been performed in collaboration with Prof. Elena 

Mishina group from Moscow State Institute of Radioengineering, Electronics, and 

Automation, Moscow, Russia.) 
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5.8. Summary 

Our findings suggest that γ-glycine is a piezoelectric crystal with a unique polar axis 

which cannot be switched by electric field (non ferroelectric). Contrarily, the presence of 

domain structure and switchability with the local application of an external electric field 

indicates the ferroelectric nature of β-glycine. 

Our experiments have shown that micro-crystals of β-glycine are uniaxial 

ferroelectrics with polarization vector parallel to monoclinic axis b. The orientation of the 

polar axis of the crystal has been confirmed by X-ray diffraction analysis and Raman 

microscopy. The domain structure of β-glycine consists of charged and neutral 180
o
 domain 

walls. The domain shape is dictated by the polarization screening and mediated by growth 

defects such as atomic steps and pits. Dynamics of these in-plane domains is studied as a 

function of applied voltage and pulse duration. Thermodynamic theory is applied to explain 

the domain propagation induced by the PFM tip. Our findings suggest that the properties of 

β-glycine are controlled by the charged domain walls which in turn can be manipulated by 

the tip-enhanced electric field. 

The conducted nonlinear optical measurements were consistent with the P21 

symmetry of β-glycine with spontaneous polarization parallel to the monoclinic b-axis and 

zwitterions dipole precessions along the a-axis. The nonlinear optical susceptibility of β-

glycine is found to about 50% greater than that of well-known nonlinear material z-cut (001) 

quartz. All results show that the glycine ferroelectric crystals have potential applications in 

ferroelectric and nonlinear optical devices. The reported results are explained by the idealized 

molecular models. 

Piezoresponse Force Microscopy measurements confirmed that the films of 

nanocrystalline β-glycine exhibit superior piezoelectricity relative to bulk β-glycine crystals 

and lower coercive field required reversing the polarization. 
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6.1. Conclusions 

The ability to grow stable glycine crystals has allowed us to study in detail the 

electromechanical and nonlinear optical properties in this technologically important material. 

We show that the smallest amino acid glycine possesses notable piezoelectric and 

ferroelectric properties. This underlines the significance of biopiezoelectric and 

bioferroelectric phenomena in living organisms (e.g., protein formation). Furthermore, this 

study could bring a variety of novel applications to glycine crystals as a biocompatible 

ferroelectric, which could be very useful for many new biomedical and nanoelectronic 

applications.  

 

On the basis of the results the following main conclusions were made: 

 Crystalline glycine can exist in three polymorphic forms (α, β, and γ) with different 

physical properties and it is possible to create selectively one of the polymorphs by 

controlling the solution type and crystallization conditions. α-glycine has a 

centrosymmetric structure (space group P21/n) and consequently cannot have 

piezoelectric property while the γ- and β-glycine possess non-centrosymmetric 

structure. Therefore, they were studied in more details in this thesis. 

 β-glycine was found as a unstable crystal against ambient conditions, therefore, a new 

method of stabilization of the β-phase is demonstrated based on evaporation of 

aqueous solution on crystalline Pt(111) substrates. We found that the interplay 

between the concentration of the glycine solution and crystallization effect of the 

surface results in the preferential growth of glycine β-phase with well-defined shape 

and morphology. These two parameters are supposed to be the major factors dictating 

the evaporation rate and growth kinetics. As a result, β-glycine needle-shaped crystals 

could be grown under ambient conditions. X-ray diffraction analysis and Raman 

spectroscopy confirmed the preferential growth and stability of β-phase. 

 The growth of stable β-glycine crystals has allowed us to study in details its domain 

structure geometry, switchability, and dynamics of the ferroelectric domain 

propagation by Piezoresponse Force Microscopy (PFM). The obtained PFM images 

on the non-polar crystal surface have shown as-grown structure consisted of domains 
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separated by neutral and charged domain walls (either head-to-head or tail-to-tail). 

Detailed study revealed topographic features at the as-grown charged domain 

boundaries; in contrast, the switched domains were not associated with surface 

defects. Domain polarization could be switched by applying a bias to non-polar cuts 

via a conducting tip of atomic force microscope (AFM). Thermodynamic theory is 

applied to explain the domain propagation under switching. Our findings suggest that 

the properties of -glycine are controlled by the charged domain walls which in turn 

can be manipulated by an external bias. 

 Based on the molecular modelling, we found that the network of hydrogen bonds 

plays an essential role in arrangement of glycine molecules in the crystal structures of 

glycine and dictates the difference in the properties of polymorphs. Computed data 

and obtained switching properties for both models of γ- and β-glycine polymorphic 

structures were compatible with the experimental observations in PFM experiments. 

 The second harmonic generation (SHG) measurements confirmed that the 2-fold 

symmetry is preserved in as-grown β-crystals, thus reflecting the expected P21 

symmetry of the β-phase. Spontaneous polarization direction is found to be parallel to 

the monoclinic [010] axis and directed along the crystal length. These data are 

confirmed by computational molecular modeling. Optical measurements revealed also 

relatively high values of the nonlinear optical susceptibility (50% greater than in the 

z-cut quartz).  

 The thin films of glycine nanoscale crystals were produced by using the simple spin-

coating approach. Ensemble of glycine nanocrystals was formed on the Pt substrate as 

a result of self-organized growth during spin-coating. The directions of nanocrystal 

axes on the substrate, piezoelectric and ferroelectric properties were studied.  

 All the results show that the β-glycine is a promising functional molecular crystal as a 

candidate for piezoelectric, ferroelectric, and nonlinear optical applications.  
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6.2. Future Work 

Obviously, further experiments and simulations are necessary for the full understanding of 

the role of glycine bioferroelectricity and biopiezoelectricity in the human body which is 

needed for future interdisciplinary research. Additionally, the development of bioorganic 

artificial materials with enhanced piezoelectric and ferroelectric properties is of high 

importance for future biologically compatible sensors, actuators, transducers, ferroelectric-

based memories, frequency conversion devices and other electronic components. However, 

there are still important issues that need to be addressed to move towards device applications. 

Accordingly, the future work should be focused on the following issues: 

 

 High resolution PFM study of the crystals in the liquid environment should be 

undertaken to reveal the nature of the structural defects and domain states. 

 The glycine film properties and homogeneity can be improved using different 

techniques for the preparation and deposition such as spin coating at a high 

temperature or annealing the films after preparation. Higher process temperatures can 

give more uniform films owing to higher solvent evaporation rate. The effect of 

spinning speed and concentration of glycine solution on the film properties should be 

investigated as well.  

 Furthermore, crystals of different amino acids (e.g. DL-alanine) should be grown and 

the entire set of the measurements should be done. This would expand the class of 

bioorganic ferroelectrics and reveal their role in the functioning of complex biological 

systems. 
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