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Resumo 
 

 

De uma forma geral, entre os fatores mais apontados para o crescimento das 
emissões de Gases de Efeito de Estufa (GEE), estão o crescimento económico 
e o crescimento das necessidades energéticas. Para identificar os 
determinantes das emissões de GEE, esta dissertação propôs e desenvolveu 
uma nova análise que liga a intensidade das emissões aos seus principais 
responsáveis. 

No primeiro ensaio, foi utilizada a técnica da ‘decomposição total’ para 
examinar a intensidade das emissões de CO2 e os seus componentes, 
considerando 36 setores económicos e o período entre 1996-2009 em 
Portugal. A indústria (em particular cinco setores industriais) contribui 
fortemente para os efeitos da variação da intensidade de CO2. Conclui-se, 
entre outros, que a intensidade das emissões reage mais significativamente a 
choques no peso dos combustíveis fósseis no consumo total da energia, 
comparativamente a choques em outras variáveis. 
 
No segundo ensaio, conduziu-se uma análise para 16 sectores industriais 
(Grupo A) e para o grupo dos cinco setores industriais mais poluentes (Grupo 
B), baseada no estudo da convergência para a intensidade das emissões e 
para os seus principais determinantes, bem como numa análise econométrica. 
Concluiu-se que existe convergência sigma para todos os efeitos, à exceção 
da intensidade dos combustíveis fósseis, enquanto a convergência gama se 
verificou para todos os efeitos com a exceção das emissões de CO2 por 
combustível fóssil e intensidade de combustível fóssil, no Grupo B. A partir da 
abordagem econométrica, concluiu-se que as variáveis consideradas têm uma 
importância significativa na explicação da intensidade das emissões de CO2. 
 
No terceiro ensaio foi analisada a indústria do turismo em Portugal durante o 
período de 1996-2009, em particular para dois grupos de subsetores que 
afetam a intensidade das emissões de CO2. A decomposição generalizada de 
variância e as funções de impulso-resposta  apontaram uma causalidade 
bidirecional entre intensidade de emissões e intensidade de energia para 
setores que afetam o turismo mais diretamente. O efeito da intensidade de 
emissões é positivo na intensidade da energia e o efeito da intensidade da 
energia na intensidade das emissões é negativo. A percentagem de 
combustíveis fósseis utilizados reage positivamente à estrutura económica e à 
intensidade do carbono, isto é, quando um setor ganha importância 
económica, tende a usar mais combustível fóssil e quando aumenta a 
intensidade do carbono, no futuro, o uso de combustíveis fósseis pode 
aumentar. Por outro lado, choques positivos na intensidade de energia tendem 
a reduzir a percentagem de combustíveis fósseis utilizados. 

 



 

 

 O objectivo do quarto ensaio é identificar os efeitos que contribuem para a 
intensidade dos gases de estufa na agricultura, bem como a sua evolução, 
Para isso, utilizou-se a técnica de ‘decomposição total’ no período 1995-2008 
para um grupo de países europeus. Ficou demonstrado que o uso de 
nitrogénio por área cultivada é um fator importante nas emissões e naqueles 
países cuja produtividade do trabalho aumenta, a intensidade das emissões 
tende a aumentar. O resultado implica que o caminho para reduzir as 
emissões na agricultura pode passar por uma melhor formação dos 
trabalhadores ligados à agricultura para melhorar a sua produtividade, o que 
pode conduzir a uma menor necessidade e uso de nitrogénio. 

O objectivo do último ensaio é examinar a causalidade de longo e curto prazo 
da quota de fontes renováveis na relação ambiental entre o desenvolvimento 
económico (PIB) e as emissões de CO2 por KWh de eletricidade produzida 
num conjunto de 20 países Europeus no período de 2001-2010. Esta nova 
abordagem sugere que a quota de fontes renováveis na produção de 
eletricidade é um determinante importante para explicar as diferenças na 
relação Rendimento-emissões de CO2 por Kwh nos países Europeus e que as 
evidências empíricas suportam a relação ambiental da curva de Kuznets.  

As contribuições desta dissertação para os assuntos relacionados com as 
emissões de CO2 a um nível setorial são as seguintes: primeiro, oferece uma 
nova abordagem econométrica da decomposição para analisar a evolução das 
emissões de CO2 que pode servir como um ponto de partida para futuras 
investigações. Segundo, apresenta uma abordagem híbrida, juntando a 
matemática e a economia de energia e um modelo econométrico para 
relacionar as emissões de CO2 na Europa e, em particular, em Portugal com 
base em teorias económicas. Terceiro, contribui para explicar as mudanças 
nas emissões de CO2 em setores económicos importantes para Portugal, 
conjugando considerações normativas aberta e explicitamente, com 
implicações políticas no comprometimento europeu, ao nível energético-
ambiental. 
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Abstract 

 
 

Overall, amongst the most mentioned factors for Greenhouse Gases (GHG) 
growth are the economic growth and the energy demand growth. To assess 
the determinants GHG emissions, this thesis proposed and developed a new 
analysis which links the emissions intensity to its main driving factors. 

In the first essay, we used the 'complete decomposition' technique to examine 
CO2 emissions intensity and its components, considering 36 economic sectors 
and the 1996-2009 periods in Portugal. The industry (in particular 5 industrial 
sectors) is contributing largely to the effects of variation of CO2 emissions 
intensity. We concluded, among others, the emissions intensity reacts more 
significantly to shocks in the weight of fossil fuels in total energy consumption 
compared to shocks in other variables. 

In the second essay, we conducted an analysis for 16 industrial sectors (Group 
A) and for the group of the 5 most polluting manufacturing sectors (Group B) 
based on the convergence examination for emissions intensity and its main 
drivers, as well as on an econometric analysis. We concluded that there is 
sigma convergence for all the effects with exception to the fossil fuel intensity, 
while gamma convergence was verified for all the effects, with exception of 
CO2 emissions by fossil fuel and fossil fuel intensity in Group B. From the 
econometric approach we concluded that the considered variables have a 
significant importance in explaining CO2 emissions and CO2 emissions 
intensity.  

In the third essay, the Tourism Industry in Portugal over 1996-2009 period was 
examined, specifically two groups of subsectors that affect the impacts on CO2 
emissions intensity. The generalized variance decomposition and the impulse 
response functions pointed to sectors that affect tourism more directly, i. e. a 
bidirectional causality between the intensity of emissions and energy intensity. 
The effect of intensity of emissions is positive on energy intensity, and the 
effect of energy intensity on emissions intensity is negative.  The percentage of 
fossil fuels used reacts positively to the economic structure and to carbon 
intensity, i. e., the more the economic importance of the sector, the more it 
uses fossil fuels, and when it raises its carbon intensity, in the future the use of 
fossil fuel may rise. On the other hand, positive shocks on energy intensity tend 
to reduce the percentage of fossil fuels used. 

  



 In fourth essay, we conducted an analysis to identify the effects that contribute 
to the intensity of GHG emissions (EI) in agriculture as well as their 
development. With that aim, we used the 'complete decomposition' technique 
in the 1995-2008 periods, for a set of European countries. It is shown that the 
use of Nitrogen per cultivated area is an important factor of emissions and in 
those countries where labour productivity increases (the inverse of average 
labour productivity in agriculture decreases), emissions intensity tends to 
decrease. These results imply that the way to reduce emissions in agriculture 
would be to provide better training of agricultural workers to increase their 
productivity, which would lead to a less need for energy and use of Nitrogen.  

The purpose of the last essay is to examine the long and short-run causality of 
the share of renewable sources on the environmental relation CO2 per KWh 
electricity generation- real GDP for 20 European countries over the 2001-2010 
periods. It is important to analyze how the percentage of renewable energy 
used for electricity production affects the relationship between economic 
growth and emissions from this sector. The study of these relationships is 
important from the point of view of environmental and energy policy as it gives 
us information on the costs in terms of economic growth, on the application of 
restrictive levels of emissions and also on the effects of the policies concerning 
the use of renewable energy in the electricity sector (see for instance European 
Commission Directive 2001/77/EC, [4]). 

For that purpose, in this study we use Cointegration Analysis on the set of 
cross-country panel data between CO2 emissions from electricity generation 
(CO2 kWh), economic growth (GDP) and the share of renewable energy for 20 
European countries. We estimated the long–run equilibrium to validate the 
EKC with a new approach specification.  

Additionally, we have implemented the Innovative Accounting Approach (IAA) 
that includes Forecast Error Variance Decomposition and Impulse Response 
Functions (IRFs), applied to those variables. This can allow us, for example, to 
know (i) how CO2 kWh responds to an impulse in GDP and (ii) how CO2 kWh 
responds to an impulse in the share of renewable sources. 

The contributions of this thesis to the energy-related CO2 emissions at 
sectorial level are threefold: First, it provides a new econometric decomposition 
approach for analysing and developing CO2 emissions in collaboration with 
science societies that can serve as a starting point for future research 
approaches. Second, it presents a hybrid energy-economy mathematic and 
econometric model which relates CO2 emissions in Portugal based on 
economic theory. Third, it contributes to explain the change of CO2 emissions 
in important economic sectors in Europe, in particular in Portugal, taking 
normative considerations into account more openly and explicitly, with political 
implications at energy-environment level within the European commitment.  
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Chapter 1 

 

1. Introduction 

 

The massive development of modern societies has led to increasing power 

consumption on a global scale, as a result, the rational use of energy has become a 

key measure for the global economies and socio-economic development in a 

scenario of growing globalization.  

 

Today’s global warming is unequivocal, and most of the increase in global average 

temperature since the mid-50s is due to anthropogenic emissions. The emissions of 

air pollutants are closely related to the same origin (fossil fuel combustion), 

interacting physically and chemically in the atmosphere, causing a variety of 

environmental impacts at a local, regional and global scale. 

 

In China, the world’s most populous country, the average emissions of CO2 

increased by 9% to7.2 tonnes per capita. China is now within the range of 6 to 19 

tonnes per capita emissions. The United States remain one of the largest emitters of 

CO2, with 17.3 tonnes per capita, despite a decline due to the recession in 2008-

2009, when oil prices were high and and the use of natural gas increased.  In the 

European Union, CO2 emissions dropped by 3% to 7.5 tonnes per capita, according 

the report ‘Long-Trend in global CO2 emissions’, by the European Commission’s 

Joint Research Centre (JRC) and the Netherlands Environmental Assessment 

Agency [1]. 

 

According to the IPCC report [2] the total annual emissions of GHG have increased 

steadily during the last three decades at an average rate of 1.6% a year, especially 

carbon dioxide (CO2) emissions which in that period represented a growth rate of 

nearly 1.9% a year, mostly because of fossil fuel consumption. The energy 

consumption of fossil fuels (such as coal, oil and natural gas) as the main European 

and worldwide energy production sources, led to an increase of greenhouse gas 

emissions and pollutants including carbon dioxide (CO2). 
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While for much of the twentieth century, greenhouse gases emissions (GHG) were 

neglected, their effects resulted in constant climate changes. At the beginning of the 

90s this problem gathered the world’s attention because of the global warming, 

converging in 1997 to the preparation of the Kyoto Protocol, whose measures among 

others sought for a commitment to force a drastic reduction in GHG emissions for all 

countries that approved it. 

 

1.1. Motivation 

 

The greenhouse gases emissions, (GHG) particularly the dioxide carbon emissions 

(CO2) of an economy, are directly correlated with energy consumption (particularly 

with fossil fuels consumption). Power consumption is determined by the aggregated 

consumption of the various sectors of the economy, and by the size and structure 

reflected in the economy’s added-value. All this, combined with the various ways of 

producing energy, from conventional fossil fuels to the newer renewable sources, is a 

complex chain of driving determinants that may explain the bigger or the smaller 

variability of GHG emissions. 

 

Today CO2 emissions account for around 75% of global GHG emissions. While 

global CO2 emissions decreased in 2009 (by 1.5%) due to the economic slowdown, 

trends varied depending on the country’s context: in developing countries (non-Annex 

I, see Section 3.3) emissions continued to grow by 3%, led by China and India, while 

emissions from developed countries fell sharply (by 6.5%), IEA [3]. Most CO2 

emissions come from energy production, with fossil fuel combustion representing two-

thirds of global CO2 emissions. Indications of trends for 2010 suggest that energy-

related CO2 emissions will rebound to reach their highest level ever at 30.6 

gigatonnes (GtCO2), a 5% increase from the previous record in 2008. 

 

Under the OECD Environmental Outlook, [4] demand for energy is projected to 

increase by 80% between 2010 and 2050. Transport emissions are projected to 

double between 2010 and 2050, due in part to a strong increase in the demand for 

cars in developing countries, and to the growth in aviation. However, CO2 emissions 

from land use, land-use change and forestry (LULUCF), driven in the last 20 years by 
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the rapid conversion of forests to grassland and cropland in tropical regions, are 

expected to decline over time and even become a net sink of emissions in the 2040-

2050, timeframe in OECD countries by the European Commission’s Joint Research 

Centre (JRC) and the Netherlands Environmental Assessment Agency [5]. 

 

The carbon intensity of gross world product (GWP), defined as the ratio Fossil 

Fuel/GDP, provides a measure of the CO2 emissions required to produce a unit of 

economic activity at a global scale. In the 3 decades before 2000, the carbon intensity 

of GDP declined from 0.35 kilograms of carbon (kgC)/dollar in 1970 to 0.24 kgC/dollar 

in 2000. This trend represents a decrease (improvement) of 1.3% per year. 

Since 2000, however, the carbon intensity of GDP stopped decreasing and has 

increased (deteriorated) at 0.3% per year, according Raupach MR, Marland G, Ciais 

P, Le Que´re´ C, Canadell JG, Klepper G, and Field CB, [6]. 

Continuous improvements in the carbon intensity of the world economy are 

postulated in practically all scenarios for future emissions. The effect of these 

projected improvements is to hold the rate of global emissions growth below the rate 

of global economic growth. The recent combination of rapidly increasing emissions 

and deteriorating carbon intensity of GDP amplifies the challenge of stabilizing 

atmospheric CO2, according Nakicenovic N and Swart S. [7]. 

 

It is then of  utmost importance to focus on the analysis and evaluation of the 

mitigation of emissions issue, and how the emission intensity drivers or explanatory 

determinants may contribute to later reflections on the instruments, measures and 

targets  achieved for local domestic, regional or supranational economies. 

 

It is important to analyze the effects, especially CO2 emissions of the driving 

determinants, on how both sectorial emissions intensity and pollutant gases 

developed over time. In the European Union (EU15) the energy-related Carbon 

Dioxide emissions, produced by the manufacturing sector, changed in the period 

1990-2010 between 37% and 30%.  Both the direct effect (fuel driven) and the 

indirect effect (due to industrial electricity consumption) contributed to these 

emissions. At worldwide level, the manufacturing sector accounted for 26% of the 
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global energy use and for 18.5% of global CO2 emissions in 2010, (European 

Environmental Agency, [8]). 

 

When we realize that most of the energy used comes from fossil fuels (coal, oil and 

natural gas), which in percentage is far greater in the manufacturing and energy 

sectors than the average for the Portuguese economy, this issue becomes highly 

relevant and highlights the relative high value of intensity of emissions in these 

sectors. For example, in 2009 this percentage was of 95.3% for the manufacturing 

and energy sectors compared with 82.4% of the average of the economy. However, 

this path is changing with an increasing use of renewable sources of energy, in 

particular, the expansion of windmills, [8]. The differences in the emissions intensity 

at sectorial level in Portuguese subsectors show the important disparities between 

the energy mix in the different activities affected by nature in the long-term 

differences among the fossil fuel intensity consumption.  

 

For instance, the tourism industry has dramatically changed in the past decade, 

combining and accelerating the environmental degradation with a steadily increasing 

energy demand, which is raising the concern of policy makers regarding the adverse 

effects of energy use. More recently, the impact of tourism on environment and 

climate changes has attracted the attention of international and national institutions. 

According to the World Travel and Tourism Council [9], the travel and tourism 

industry contributed with 7.8% of the total EU GDP and created over 8.4% of the total 

employment. 

 

Although tourism makes a relevant contribution to the economy and involves the 

transportation and hosting of tourism consumers, it depends on a wide range of 

service infrastructures such as ports, airports, roads, railways and 

telecommunications, which heavily contribute to the consumption of energy and to the 

emission of carbon dioxide. These tourism activities motivated the research 

concerning the relationships between the energy consumption, share of fossil fuel 

consumption and dioxide emissions.  
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 Agriculture, another important economic sector, has been responsible, in the last two 

decades, for about 10% of the total annual emissions of greenhouse gases emitted in 

Europe, [8]). The agricultural sector is not included in the EU Trading Scheme as part 

of the negotiations of carbon credits. Nevertheless, countries are concerned about 

adopting other environmental policies that aim at reducing GHG emissions in the 

agricultural sector, thereby contributing to the achievement of Kyoto Protocol goals. In 

order to design a policy to address this issue, it is important to analyze how the 

intensity of Greenhouse Gases emissions (GHG emissions/ agricultural value added) 

has evolved and what factors influence the variation of that intensity. 

 

In this research, the decomposition analysis techniques and the convergence 

analysis techniques associated to or supplemented with econometric techniques (as 

described in the contributions of the methodology, in subsection 12.4 of this chapter) 

were used to analyze and estimate the relationship between emissions and their 

determinants. These approaches will allow the identification of causality and main 

drivers’ relationships as well as their variability and convergence, thus contributing to 

a plausible explanation to changes in emissions and pollutants. Hereby being 

enhanced as an evolution and a convergence or divergence relationship and over 

time a causality at the sectorial level of economy. 

 

1.2. Context for the research 

 

1.2.1. Kyoto Protocol, policies and measures for climate changes 

 

In order to face the climate changes, the Kyoto Protocol has been established as the 

main objective by the European Union, signed in 1997 under the United Nations 

Convention on Climate Change (United Nations Framework Convention on Climate 

Change, UNFCCC). This Protocol had to be ratified technically in 2005 by the 

governments of Russia, Japan, Canada and New Zealand that jointly accounted 55% 

of global CO2 emissions, according to the base year of 1990. 

 

One of the fundamental principles arising from the United Nations Convention on 

Climate Changes which sustains the Protocol is the unilateral agreement of ‘’common 
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differentiated responsibility’’. It is the commitment where developed countries take the 

lead in mitigating emissions compared to developing countries, recognizing with this 

differentiation that industrialized countries are responsible for most of the current 

percentage of greenhouse gases in the atmosphere. However, at the same time they 

have the financial and technological capacity to decrease emissions and therefore 

reduce climate changes.  

 

For all countries in the UNFCCC, there is a set of listed obligations, the most 

important being: (i) preparation of inventories of greenhouse gas emissions, (ii) 

formulation and implementation of national mitigation programs, (iii) encouragement 

to technological innovation in production processes and (iv) investments in 

environmental education and civic awareness towards Global Climate Changes. 

 

Annually, deviations are analyzed and discussed so that corrective mechanisms can 

be proposed in order to control GHG emissions and meet the agreed variable targets 

between the industrialized countries that signed the protocol. The effort to diminish 

global GHG emissions was set to at least 5% below the level observed in 1990 for the 

period of 2008-2012, seeing as some countries could increase their emissions, while 

others compromised in reducing them. That cut in the emissions could be achieved 

with the use of flexible measures such as: (i) carbon trading scheme, (ii) joint 

implementation and (iii) clean development mechanisms. 

 

The international carbon trading scheme was created with the purpose of allowing a 

country (company) ‘’Annex I’’, to sell a portion of its emission share to another country 

(company) ‘’Annex I’’. The main mechanism of trading emissions currently in use is 

the EU ETS, in force since 2005. In the initial phases, a limited number of sectors 

were included: energy activities (combustion, refineries, coke ovens); iron and steel 

(production and processing); mineral industries (cement, glass, ceramic products); 

and pulp and paper, (see report Environmental Portuguese Agency, 2008). This was 

followed by a second stage, Phase II, starting in 2008 and ending in 2012, linked to 

the first period after the Kyoto Protocol ratification. In this second stage, in the CO2 

emission system, the following sectors were covered: the petrochemical industry, 

ammonia, aluminium and aviation,[10] Currently we are in the last stage, Phase III  
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(started in 2013 and ending in 2020), in which Member States of the EU ETS will 

have greater flexibility in excluding small production facilities that emit up to 25.000 

tons of CO2 in a period of three years from the system. It is also expected to cover 

6% more of the emission sources than in Phase II, EU [11] 

 

The measures of joint implementation (JI) allow countries (companies) ‘’Annex I’’ to 

implement projects based on clean technologies within the territory of other countries 

‘’Annex I’’. For this mechanism, the emission reduction (with respect to the base line 

in the countries where the project originated), can be used to reduce the emissions 

which the target country compromised to, thus, its purpose is mainly: (i) to enhance 

the option of developed countries to fund projects for GHG emission reduction in 

other countries, (ii) to work as an element of exploitation of new energy sources, (iii) 

to be a first step to the establishment of an international system of tradable GHG 

shares between countries which compromised to reach emission targets.  

 

The projects of clean development mechanisms allow countries (companies) from 

“Annex I” to fund projects based on clean technologies in “non Annex I” countries. If 

the emission reduction is additional, it may be excluded from the “Annex I” country 

(company) objective, responsible for the implementation of the project. 

 

Portugal signed and ratified the Kyoto Protocol in 1998 and 2002 respectively. It was 

then settled, according to the sharing agreement, that Portugal should bound its 

emissions in that period 2008-2012 to no more than 27%, comparatively to the 

reference year 1990, which in absolute terms  means the amount of GHG emissions 

could not exceed the value of 382 million tons of CO2 during the regulatory period. 

 

According to the information presented in Table 1 which shows the emission 

reduction targets for the EU countries, including 12 countries that joined the EU after 

the ratification, all except Cyprus and Malta have individual emission targets under 

agreement. The common objective of a collective reduction in 8% emissions is 

guaranteed by the contribution of each member of the EU-15. 
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Table 1 - Burden-sharing target of the EU – Target 2008-2012 

EU 15 – Countries Emissions allowed above 1990 
level (%) 

EU – Others 
Countries 

Emissions allowed 
above 1990 level (%) 

Austria -13 Bulgaria -8 

Belgium -7,5 Slovakia -8 

Denmark -21 Slovenia -8 

Finland 0 Estonia -8 

France 0 Hungary -6 

Germany -21 Latvia -8 

Greece 25 Lithuania -8 

Ireland 13 Poland -6 

Italy -6,5 Czech Republic -8 

Luxembourg -28 Romania -8 

Netherlands -6   

Portugal 27   

Spain 15   

Sweden 4   

UK -12,5   

EU 15 Kyoto target -8 EU Kyoto target -8 

 

Source: UNFCC (2008) 

 

In order to fulfill the targets of the Kyoto Protocol, Portugal drew the following tools for 

mitigating CO2 emissions: (i) The National Climate Change Program (NCCP), where 

a group of measures and internal policies at various economic sector levels are 

developed in order to mitigate GHG emissions, (ii) The National Plan for Attributing 

Emission Licenses (PNALE) applicable to an identified group of GHG emitting 

facilities listed in the EU ETS – European Union Emission Trading System; (iii) The 

Portuguese Carbon Fund, aimed at developing activities for achieving GHG emission 

credits through the investment in flexibility mechanisms of the Kyoto Protocol, 

specifically, joint implementation or projects for clean development mechanisms. 

 

Being a significant element for public policy and State Members economies, the 

Energy-Climate Package sets the main targets to achieve in 2020 as follows: 

(i) A change in the current system of EU ETS, in particular regarding the 

definition of emission bounds for the various sectors at a European level, 

integration of other greenhouse gases other than CO2, and an annual reduction 

in order to achieve the goal of a global reduction of 20% comparatively to 2005 

emissions; 
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(ii) A target to diminish emissions of greenhouse gases (GHG) for the sectors 

not covered by the emissions trading scheme (construction, transport, wastes), 

so that all contribute jointly for Portugal to achieve a limit of +1% growth in GHG 

emissions compared to  2005; 

(iii) Legally binding targets to increase the share of renewable energy in the 

energy mix, reflecting the needs and potential of each country,  with Portugal 

aiming at 31% energy coming from renewable sources, including 10% bio fuel in 

transports; 

(iv) New rules on carbon capture, storage and environmental subsidies. 

 

Regarding the supranational goals, stands the importance of meeting the objectives 

of the global Climate Changes and the exposure of the European countries to the 

international volatility of oil prices, since according to the report from the IEA [8] near 

85% of the oil consumed in the EU is imported. 

 

To achieve the efficiency objectives set by the European Commission, this 

supranational entity seeks to establish a group of measures or guidelines in order to 

develop improvements in energy performance. It also seeks higher standards for the 

labeling of equipment, use of more efficient vehicles with incentives for the use of 

public transport, penalty fees for the inefficient use of energy, and incentives to 

promote public policies that support the use of renewable energy sources and the 

consequent increase in efficiency with the use of bio fuels. 

 

There is consensus that concerted efforts of the EU to diminish its emissions are 

prime focus in the energy sectors, since over 80% of GHG emissions in the EU are 

due to activities in these sectors. To identify the most efficient policies and measures 

to reduce GHG emissions, in 2009 the European Commission launched the 

European Climate Change Programme, EU [11]. 

 

In the first program, there is a set of policies and measures to diminish GHG 

emissions based on cost-benefits that must be highlighted: (i) Emissions Trading, (ii) 

Joint Implementation (JI), (iii) Clean Development Mechanism (CDM), and (iv) 

Demand and supply of energy. In the second program, the outcome was mainly of 
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transversal policies such as the creation of a system of emission trading licenses in 

the EU, namely the EU ETS. 

 

Portugal recently approved (in 2008 and 2010) an important plan to meet the 2020 

targets, designated National Strategy for Energy. This Strategy set the most relevant 

policies to the key area of energy with the fundamental operating principles: (i) 

Competitiveness, growth and financial independence, (ii) Investment in renewable 

energy resources, (iii) Promotion of energy efficiency, (iv) Insurance of the security of 

the energy supply, (v) Promotion of the sustainability of the National Strategy for 

Energy 2020. 

 

In the area of renewable energies and bio fuels, the Portuguese Plan sets the 

following targets for 2020, (see Resolution of Board of Ministers nº29/2010 de 15 de 

April) [12]: 

(i) Hydropower: 8600 MW of installed capacity by 2020; implementation of an 

action plan for small hydro for the licensing of 250 MW and the development of 

reversible installed capacity; 

(ii) Wind energy: installation of 2000 MW already allocated in 2010, with a target 

of 8500 MW in 2020; 

(iii) Solar: Installation of 1500 MW by 2020; review and update of the Micro-

generation Program and introduction of a new Mini-generation Program; 

inclusion of a new industrial ‘’Cluster’’ based on concentrated solar energy for 

promotion projects and solar thermal demonstration; 

(iv) Biomass: effective installation of 250 MW already allocated; introduction of 

flexible mechanisms for the implementation of projects to promote the 

production of forest biomass; 

(v) Waves, geothermal and hydrogen: implementation of the pilot zone for wave 

energy with an installation capacity of 250 MW up to 2020; promotion of a new 

range in the geothermal field, also with an installed capacity of 2050 MW in 

2020 exploiting the hydrogen potential; 

(vi) Bio fuels and Biogas: implementation of European directives and best 

practices associated with bio fuels; exploration of the potential of the biogas 

from the anaerobic digestion of wastes.  
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Summing up, at a European level, with the specificities for the Portuguese case, the 

priorities and requirements regarding the efficient use of resources are related to the 

commitment to reduce GHG emissions. As previously described, there are goals, 

instruments, national and supranational measures that can mitigate emissions with 

the definition of targets. For these objectives, targets, instruments, measures and 

policies to be achieved, a greater effort is necessary to control the environment in all 

energy sectors. The growing demands for environmental and climate changes control 

may however be seen as an opportunity to adapt and innovate, finding new solutions 

that are more environmentally and economically efficient. One of the relevant issues 

that arises is to what extent the fossil reserves will be able to meet the growth in 

energy consumption, particularly in the energy-intensive sectors and in what way the 

climate and environmental changes will be felt locally, regionally, nationally and 

globally due to their use. 

 

1.2.2. The Energy- related CO2 emissions 

 

Since 1990, the reference year for the Kyoto commitment, the levels of emissions of 

greenhouse gases geographically have changed significantly in some countries. In 

1990, OECD countries were responsible for most of the emissions, while in 2012 they 

were responsible for about 40% of the emissions related specifically to the global 

energy consumed (Figure 1.1). 

Figure 1.1 – Energy-related CO2 emissions by 

country 

 

 

Source: Redrawing the energy-climate map, International 

Energy Agency, 2013 

Figure 1.2 – Growth in global GDP and in 

energy-related CO2 emissions 

 

 

Source: Redrawing the energy-climate map, International 

Energy Agency, 2013 
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Also, according to this graph there is a drop of approximately55% in emissions in 

2000, while the primary energy demand reaches 53% of global GDP measured in 

purchasing power parity terms. It is essential to highlight the importance of the weight 

of China in the remaining group of countries belonging to the BRIC (including Russia, 

Brazil, India and South Africa) whose emissions have high levels, reaching, in 2012, 

an emission level which was greater than the sum of emissions from all remaining 

members. Regarding India, in 2012 its emissions strengthened its position making it 

the third largest country emitter. Meanwhile, developing countries present growing 

emission level rates in the last years analyzed, due to being countries which export 

contents with significant greenhouse gases. 

 

According to Figure 1.2, IEA [13], the progress and trends in the behaviour of CO2 

emissions is closely related to the levels of growth of global economies, whose 

descendent trend in the last 40 years is closely connected to the oil price crisis in the 

late 70s and more recently to the financial crisis and consequent economic recession 

of the global economies. From the analysis of the progress between the GDP and 

CO2 trend, it is observed that the levels of GDP are higher than the emission levels 

for the graphically analysed years, especially in the last decade 2000-2010. At this 

time some behaviours were close in the uptrend and downtrend for both, exceeding 

CO2 and GDP levels in 2002-2005, the years before the Kyoto Protocol entered into 

force (2005). Those facts in this last decade are associated, on one hand, to the 

growth of global energy demand and on the other hand, interconnected with the fossil 

fuel demand growth in developing countries. 
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                                Figure 1.3 – GDP and energy-related CO2 emissions in selected countries 

 

                                  Source: Redrawing the energy-climate map, International Energy Agency, 2013 

 

Emphasizing what was previously mentioned, [13], Figure 1.3 shows the levels of 

emissions and economies growth, where a significant difference over time between 

GDP and CO2 emissions can be observed. After observing the graph, one can say 

the GDP doubled and tripled their levels over the 40 years of analysis, while CO2 

emissions grew at a rate of 2% and 18% respectively for the OECD Europe and 

United States. In turn, in China and India, these levels of growth rates of economic 

activity and emissions were close, despite the countries presenting different stages of 

economic development. Emission levels of CO2 in China in 2006 were higher than 

the emissions observed in the United States despite the fact that the Chinese 

economy represents only a third of the size of the U.S. economy. 

 

Given that Chapter 2, Chapter 3 and Chapter 4 of this research focus on the problem 

of power consumption, level of economic activity, consumption of fossil fuels and 

emissions of greenhouse gases at a sectorial level in Portugal, below we present a 

descriptive subsection regarding the evolution of these variables: 
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Figure 1.4 – GHG emissions (without 

LULUCF) 

 

 

Source: Portuguese National Inventory Report on 

Greenhouse Gases, 1990-2011, Agência Portuguesa do 

Ambiente, 2013 

Figure 1.5 – Primary energy consumption 

trends and share of fossil/renewables in 2011 

 

Source: Portuguese National Inventory Report on 

Greenhouse Gases, 1990-2011, Agência Portuguesa do 

Ambiente, 2013 

 

According to Figure 1.4, we can see that in the 90s there was a steady growth in total 

CO2 emissions. Portugal showed moderate growth behaviour at the beginning of 

2000 but after the entry into force of the Protocol Kyoto in 2005, there was a 

downward trend in emissions. Most recently (in 2011) the emissions estimated at 

about 70 Mt of CO2 which represented a growth rate of 15% compared to the levels 

of the base year 1990, (Portuguese Environmental Agency, [14]). 

 

It is important to highlight that for the analysis period, the average annual rate of 

emissions was less than 1%, however, there are different behaviours of that evolution 

for the three periods. Thus, in the period 1990-1995 the average rate of emission was 

around 3.7%, in the second period from 1995-1999 it reached about 4.7% average 

annual growth and in the last period there are two distinct trends, for the sub-period 

2000-2005 a moderate growth rate and from 2005 onwards we have a decline in the 

emissions pace. 

 

In the Portuguese National Inventory Report [14], the following are mentioned as 

factors for the growth of emissions among others: (i) the economic growth and the 

growth of primary energy demand, (ii) the increase of the volume of road transport 

and distance supported by strong infrastructure development   (road infrastructure 

and fast growth in private car ownership).  
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The determinants of climate change with reference to the rainfall, varied significantly 

for some of the years of analysis. This involves significant changes in hydropower 

production and as a result of these determinant, substantial inter-annual variations in 

emissions of greenhouse gases are produced. 

 

It appears that most of these emissions are related to the energy sector, which is 

responsible for about 93% of total CO2 emissions due to the consumption pattern of 

fossil energy sources used. According to the graph in Figure 1.5, we can assume that 

on average, over the period of analysis from 1990-2011, about 83% of the energy 

consumed was produced using  conventional non-renewable sources, that is, fossil 

fuels, (coal, oil and natural gas). The renewable sources represented on average 

about 17%, although, this scenario is changing due to progressive increments of 

these renewable sources, including energy from sources of natural gas and wind 

power plants (Portuguese Environmental Agency, [14]. 

 

Figure 1.6 – GHG emissions per capita, per 

unit of GDP and energy consumption 

 

Source: Portuguese National Inventory Report on 

Greenhouse Gases, 1990-2011, Agência Portuguesa do 

Ambiente, 2013 

Figure 1.7 – GHG emissions and renovals by 

sector 

 

Source: Portuguese National Inventory Report on 

Greenhouse Gases, 1990-2011, Agência Portuguesa do 

Ambiente, 2013 

 

 

Regarding Figure 1.6, we observe that during the 1990s, Portugal experienced a 

significant economic growth with a GDP growth of about 43% in the period 1990-

2011, which corresponds to an average annual increase of 2.0%. The strongest 

growth occurred from the years 1993 to 2000 where the average annual growth rate 

reached 4.0%. Since 2001, the economic growth slowed down considerably, 

contributing at least partially, for the more moderate emissions growth recorded in 
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recent years. Despite that, in the year 2010, there was a reduction in emissions of 

greenhouse gases of about 6.6% reaching a record low since 1995. At the sectorial 

level, complementing the analysis with Figure 1.8, the energy sector, in the category " 

other sectors ", shows a significant increase in emissions in the 1990-2005 period of 

about 55.5% but with a downward trend of at least 1% in the overall period 1990-

2011. This development is in line with the trend recorded since 2006, of dissociation 

between the evolution of the economic activity and the emission of greenhouse 

gases. This was due to the decisive fact that 2010 was the year of highest rainfall 

since 2001, along with the continued growth in the use of other forms of cleaner 

energy emissions, namely the natural gas and wind power. Fuel burning, either fossil 

or not is the main source of emission of air pollutants. Nevertheless, in recent years 

this situation seems to be changing with the decrease of the growing rate, essentially 

by the gain of value in the renewable energy supply chain. We can also add the fact 

that the increase in activity, the transfer of fossil fuels and the energy produced and 

consumed in the markets or economies, increased associated greenhouse gas 

emissions, see Institute National Statistic- INE [15]. 

 

It is also noted (Figure 1.9), for the reporting period, that the Agriculture sector 

registered a level close to 11% of total emissions in 2011, although this level 

represents a decrease of about 8% compared to the base year of 1990. This 

development is related with the small livestock production (especially pigs), the 

decrease in fertilizer consumption and the loss of importance of the sector in the 

economy. On one hand, the wastes display a significant growth of approximately 38% 

since 1990, reaching a level of about 12% of the total emissions in the year 2011. On 

the other hand, we highlight the importance of industrial processes growth of 10% 

since 1990 and representing about 7.6% of total emissions in 2011, see INE. [15] 
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Figure 1.8 – GHG emission intensity per GAV generated unit, per sector/activity 

 

Source: Conta das emissões atmosféricas – 1995-2010, Instituto Nacional de Estatística, 2012 

 

 

Figure 1.9 – Agriculture, forestry and fishing on GAV and on environmental indicators 

 

Source: Conta das emissões atmosféricas – 1995-2010, Instituto Nacional de Estatística, 2012 

 

Similarly to agriculture, forestry and fishing, (fig.1.9), this branch also records, in the 

environmental indicators, a weight which is higher than that observed in the economic 

activity. The energy, water and sanitation along with the industry, is in 2010 the 

highest contributor to the potential level of the greenhouse gas effect (26.1%). 

Examining the variation between the years 1995 and 2010, there was a decrease in 

the level of emissions of greenhouse gases (-18.4%). Between these years there was 

a considerable decline in the level of emissions of acidifying gases (-85.4%) and its 

weight in the acidification potential. In 2010 it was 10.8% compared to36.2% in 1995. 

Despite a significant increase in GVA of this sector (78.1%) between 1995 and 2010, 

its weight in the economy (2.9%) was significantly reduced compared to the relative 

weight of the three environmental indicators, INE [15] 
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Figure 1.10 – Trends of fuel consumption per fuel type 

 

Source: Portuguese National Inventory Report on Greenhouse Gases, 1990-2011, Agência Portuguesa do Ambiente, 2013 

 

Regarding Figure 1.10, IEA [13],whose analysis refers to the structure of the energy 

consumption in Portugal by fuel type in 2010, the most used form of energy by the 

economy is  diesel (26.6%), followed by natural gas (22.1%) and biomass (14.8%) 

which represent more than 60% of the total energy (associated with emissions) 

consumed by the country. Comparatively to the five-year period 1995-1999, it is 

concluded that natural gas is not  bet on by the country due to its practically 

nonexistence in the period (3.1%) and the fact that  in 2010 it is considered the 

second most important form of energy. Natural gas has been replacing the expensive 

and very polluting fuel oil (19.3% of importance for 1995-1999 and only 7.0% in 2010) 

and coal (17.1% in 1995-1999 and 8.1% in 2010), which is a source of electricity 

production with high environmental impact. 

 

In Figure 1.11, INE [15], sectorial developments in energy consumption show that the 

sectorial structure has changed over the period of analysis. The services sector 

recorded the most significant increase in the sectorial energy consumption with an 

increase of 145% during the analysis period of 1990-2011, with an important 

reference to the level of 218% reached in the period 1990-2005. However, in 2011 

the service sector together with the household sector represented 28% of total energy 

consumption. Equally important is the contribution of the industrial sector, showing a 

slight decrease of 4% of energy consumption, that is, the industrial sector accounted 

for 35% of the final energy demand in 1990, reaching a rate of 31% in 2011.In 

contrast to the increasing importance of the transport sector with changes of the 
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levels of 31% in 1990 to the level of 38% in early 2000, with the behaviour of the final 

demand in the sector representing 91% between 1990-2005 but alternating with a 

counter-cycle with a decline of about 12% in the period 2005-2011, INE [15]. 

 

 

Figure 1.11 – Final energy consumption by main sectors and fuel 

 

Source: Portuguese National Inventory Report on Greenhouse Gases, 1990-2011, Agência Portuguesa do Ambiente, 2013 

 

 

In terms of energy consumption by type of fuel, in accordance with Figure 1.11 we 

can focus on a sectorial level where the resources of fossil fuels, particularly 

petroleum derived products tend to represent a growing importance in the analysed 

period 1990-2011, especially in road transport. The fuel gas was 29% in 2004, 

representing the loss of importance of this type of fuel, as in 1990 it was responsible 

for nearly 40% in the energy consumption structure. 

 

1.3. Methodologies Options  

 

1.3.1. Decomposition analysis 

 

To assess the determinants of carbon intensity, analysts often use the Kaya identity, 

which links the carbon intensity to its main driving factors.  In the literature about 

decomposition of the effects of the emission intensity and energy intensity, there are 

mainly two approaches: the structural decomposition analysis (SDA) and the index 

decomposition analysis (IDA). 
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IDA uses index number concept in decomposition1. The advantage of the IDA is that 

it can readily be applied to any available data at any level of aggregation (Ma and 

Stern, [16]). Each IDA can be applied in a period-wise or time-series manner. In a 

period-wise analysis there is a comparison between one determined year and the 

base year, which makes the analysis sensitive to the choice of these years. On the 

other hand, it does not disclose the evolution of the clarifying factors throughout time. 

The times series analysis makes an annual decomposition of the factors, which 

allows seeing its evolution throughout time. 

 

In IDA approach there are mainly two methodologies: Laspeyres IDA and Divisia IDA. 

Ang and Zhang [17] and Sun [18] give/provide, respectively, details on these two 

methodologies.  The Laspeyres IDA include basic Laspeyres index, Paasche index, 

Fisher ideal index, Shapley index and Marshall–Edgeworth index, etc. The Divisia 

IDA includes the Arithmetic Mean Divisia Index (AMDI) and the Logarithmic Mean 

Divisia Index (LMDI). 

 

Initially, the Laspeyres decomposition approach always led to a residual, which could 

be of a considerable size. To illustrate this see Zhang et al [19]. Sun [18] who 

proposed a complete decomposition analysis where the residual term is distributed 

among the considered effects. This decomposition has long been used in the 

empirical literature because it can be simply calculated and easily understood. Zhang 

and Ang [20] refer to this as the refined Laspeyres method. 

 

These techniques constitute a widely accepted analytical tool for policy making in 

energy and environmental issues. In the case of the European Union (EU), several 

studies have used IDA techniques in economic sectors2. For instance, Diakoulaki and 

Mandaraka [21], refined Laspeyres model to determine the impact of output effect, 

the utility mix effect, the energy mixed effect, the energy intensity effect and the 

structural effect in the EU manufacturing sector for the period 1990-2003.  

 

                                                           
1
 See Ang and Zhang [16], Sun [17], Paul and Bhattacharya [22], Wang et al.[23], Wu et al. [24], Lee and Oh [25], Lise [26], and 

Diakoulaki and Mandaraka [21] for some applications, and Liu et al [27] and Ang and Zhang [28] for reviews about works that 
use this methodology. 

2
 See for instance Liaskas et al., [29]; Sun [18] and [30], Bhattacharyya and Matsumura [31]. 
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1.3.2. Convergence analysis 

 

Given all these specific objectives, we believe that the use of the convergence 

analysis, allows us to evaluate, in the long-term, the existence of differences between 

the CO2 emission intensities and its main drivers in the Portuguese activities or 

sectors and subsectors; and also allows to reach some conclusive evidence on the 

frequency in the changes of these differences of the intensities of emissions and their 

drivers. As usual, the decomposition analysis leaves a residual term, which is the 

unexplained portion of the change in an aggregate variable, and the decomposition 

analysis is an expansion series truncated after the first order terms. 

 

Although, the European market for emissions permits and imposes different caps to 

the various sectors, for analysis of the effects on this market in Portugal, they are 

exposed to a common commitment and to the uniformity of public policies, for 

example, among others, the policy of reducing fossil fuel intensity and promoting 

renewable energy sources supporting the mitigation of CO2 emissions intensity. 

Therefore it is important to: (i) know if there is a common pattern of emissions 

intensity, fuel intensity and energy intensity, between industries (convergence), to 

know if it justifies a more specific application of energy policies between sectors; (ii) 

study the long term effects of those specific variables on the mitigation of CO2 

emissions. These two approaches, decomposition analysis and convergence analysis 

can give relevant information for the policy making with regard to the timing of policy 

interventions and to the choice of policy instruments. 

 

Specific in sectorial industrial studies, among others, Strazicich and List [32], 

examined a time path (1960-1997) of carbon dioxide emissions in twenty-one 

industrial countries and tested the convergence for stochastic and conditional 

convergence. Using both panel unit root tests and cross-section regressions, they 

found significant evidence that CO2 emissions converged. Liddle [33], analyzed the 

aggregated and sectorial convergence in the electricity intensity and energy intensity 

in IEA/OECD countries, and concluded that there was convergence, since the 

countries with the highest intensities exhibited downward trends, and many of the 

other countries showed slight increasing trends. Aggregate electricity intensity 
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converged among countries, but less dramatically than aggregate energy intensity. 

The three analyzed sectors (residential, industry and commercial) converged at 

different rates. Commercial electricity intensity has a distribution that is most 

characterized by a bell-shape while industry and residential electricity intensity have 

more bimodal distributions. Camarero et al. [34] using Phillips and Sul [35] 

methodology, tested the convergence of CO2 emissions intensity and their 

determinants among OECD countries over the period 1960-2008, and they found that 

differences in emissions intensity convergence were more determined by differences 

in convergence of the carbonization index rather than differences in the energy 

intensity. 

 

1.3.3. Econometric techniques 

 

In some issues of this research it is normal to use the decomposition analysis, that 

leaves a residual term, which is the unexplained portion of the change in an 

aggregate variable, and the decomposition analysis is an expansion series truncated 

after the first order terms. For that limitation, and their contribution to the literature to 

study the influence of determinant variables of energy related on CO2 emissions we 

used the Panel Corrected Standard Errors (PCSE) estimator. This methodology 

allows, on the one hand, to observe whether there is a common behaviour among the 

variables determining the emissions for the two groups of industries. If so, then it is 

useful to study the influence in terms of elasticity, of these same variables, on 

emissions. This allows us to evaluate the effect that energy policies affecting the 

variables studied will have on emissions, and if common policies will have the same 

effect on the behaviour of the variables for the various industries. 

 

On the other hand, there are no known studies with Vector Autoregressive (VAR) 

models nor with Innovative Accounting Approach (IAA), that is, advanced generalized 

forecast error variance decomposition and generalized impulse response techniques 

using ratios of decomposition of emissions intensity. However, it is important to 

mention some recent studies applied to variables, such as energy consumption, 

emissions and GDP. 
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The generalized forecast variance decomposition approach estimates the 

simultaneous shock effects using a VAR system to test the strength of causal 

relationship between some variables, for example, among others, in the study of 

energy related CO2 emissions: dioxide emission intensity, emissions by fossil fuels 

ratio, fossil fuel intensity, energy intensity and economic structure. The variance 

decomposition approach indicates the magnitude of the predicted error variance for a 

panel series accounted by innovations from each of the independent variables over 

different time horizons. We also provided a rough analysis of how long it takes for the 

variable to go back to the equilibrium after the long run relationship has been 

shocked. The IRFs show the dynamic responses of time series to a one period 

standard deviation shock and indicate the direction of the response to each of the 

shocks. Thus, a random shock in one innovation in the VAR sets up a chain reaction 

over time in all variables in the VAR. IRFs calculate these chain reactions [36]. 

 

In last issue of this thesis, we analyzed the existence of differences between the CO2Kwh 

emission and their main drivers, including the economic growth measure and the share of 

renewables allows some conclusive evidence on the frequency in the changes of the CO2 

Kwh emissions and their factors. In order to confirm the validity of the panel data model 

estimation the following tests are going to be conducted: panel unit root tests, a panel 

cointegration test and dynamic panel causality tests. The ECM is a comprehensive 

linear regression equation that provides a description of the possible nature of 

interdependence of the short run movements of cointegrated variables under study. It 

also characterizes the nature of interdependence of the short-run movements of CO2 

Kwh emissions, real GDP and share of renewable sources. To investigate these 

relationships, based on error correction models, the Full Modified Ordinary Least 

Squares (FMOLS) and Dynamic Ordinary Least Squares (DOLS) methods will also 

be considered in this study.   

 

We begin the cointegration analysis with the application of panel unit root tests to 

verify whether or not the variables are nonstationary. Panel unit root tests are often 

grouped into two main categories: first-generation tests, which assume cross-

sectional independence [37–40]; and second generation tests, which explicitly allow 

for some form of cross-section dependence [41]. Once assured the non-stationarity, 

one must test the cointegration hypothesis of the series. The Engle-Granger [42] 



24 

 

methodology is usually used in testing cointegration. After assuring both the 

nonstationarity of the variables of the equation and the presence of cointegration 

between them, it is possible to infer what deviations from the long-term equilibrium of 

the variables influence the short-term dynamics. In this last issue, particular attention 

will be directed to the following two parameters: i  and i , the speed of adjustment 

from the error correction term and the vector of parameter of long-run equilibrium 

relationship. It is expected that the term i  would different from zero and that this 

parameter would be significantly negative under the assumption that the variables 

return to their long-run equilibrium. In this last issue, the Environmental Kuznets 

Curve model is estimated following several approaches, according to the 

assumptions made regarding the homogeneity of the short and long-term parameters 

among the panel of European countries. 

 

1.4. Structure of the Thesis 

 

This doctoral thesis is divided into six chapters, including this introduction in chapter 

1. This section provides a brief abstract of extended essays, their contribution to the 

literature and their implications. 

 

 

Chapter 2:  Decomposition analysis and Innovative Accounting Approach for 

energy-related CO2 emissions intensity over 1996-2009 in Portugal  

 

In Portugal, GHG emissions were about 74.6 MT of CO2 in 2009, an increment of 

26% compared with the 1990 levels3, which puts this country within the limits 

imposed by Burden Sharing Agreement (27%). This accomplishment was possible 

due to the significant inflexion in emission path over the last years, explained, not 

only by the economic crisis, but also by the efficiency gains of the economy (lowering 

the carbon intensity of the national product). It is highly relevant to identify the factors 

that influence global changes in CO2 emissions intensity and also to individualize 

them at sectorial level.  In this research Issue, we used the 'complete decomposition' 

technique developed by Sun [18] and applied by Zhang et al. [19] to examine CO2 

                                                           
3
 See Agência Portuguesa do Ambiente [8].  
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emissions intensity and its components. We considered CO2 intensity for 36 

economic sectors as well as its reflecting changes over the 1996-2009 period. In 

addition, we have implemented the Innovative Accounting Approach (IAA) that 

includes forecast error variance decomposition and Impulse Response Functions 

(IRFs), applied to the factors in which emissions intensity was decomposed.  It is 

always interesting to know how one variable responds to an impulse in another 

variable ceteris paribus, that is, in an exercise of comparative statics. We used the 

'complete decomposition' technique to examine CO2 emissions intensity and its 

components, considering 36 economic sectors in the 1996-2009 period. In addition, 

we have implemented the Innovative Accounting Approach that includes forecast 

error variance decomposition and Impulse Response Functions, applied to the factors 

in which emissions intensity was decomposed. It is shown that CO2 emissions 

intensity diminished significantly in the considered period. Energy intensity of 

economic sectors is the most important effect in the determination of the CO2 

emissions intensity. The technologies used are more efficient and less polluting, for 

the same amount of fuel used. Moreover, there was a substitution between fossil 

fuels in favour of less polluting fuels, but the technologies related to fossil fuels may 

still have a significant role. After making the decomposition analysis we observed that 

the emissions intensity decreased, and the effect that contributed more to this was 

energy intensity. The sectors that have contributed more to reduce the intensity of 

emissions through the reduction of energy intensity are the Manufacture of coke, 

refined petroleum products and Construction. Yet, there are sectors that contributed 

to reduce energy intensity because they lost importance in the economy such as 

Agriculture, Forestry and Fishing, Electricity, gas, steam and air-conditioning supply, 

the Manufacture of chemicals and chemical product, the Manufacture of rubber and 

plastics products, and other non-metallic mineral products, the Manufacture of wood 

and paper products, and printing. 

 

There is bidirectional causality between CO2 emissions intensity and the share of 

fossil fuels in total energy consumption. Emissions by fossil fuel and energy intensity 

affect the structure of the economy in behalf of less energy intensive sectors. 

Emissions intensity reacts more significantly to shocks in the weight of fossil fuels in 

total energy consumption compared to shocks in other variables. 
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Chapter 3: Carbon Dioxide Emissions Intensity of Portuguese Manufacturing 

Industry: A Convergence Analysis and Econometric Approach 

 

Portugal managed to meet the Kyoto Target for the period 2008-2012. In 2011 it 

showed a level of emissions which was 16% higher than the 1990 level (its limit was 

27%), Portuguese Environmental Agency, [14]. However, the goals of reducing 

emissions are not restricted to this period. In 2009 a new package of environmental 

measures was adopted at the EU level, known as the 20-20-20 targets: by 2020 there 

should be a 20% reduction of Greenhouse Gases (GHG) emissions compared with 

1990, 20% share of renewable energy in EU energy consumption, and energy 

improvement by 20%. 

 

To meet these goals, it is important to realize which variables affect GHG emissions, 

particularly the intensity of emissions (emissions by unit of output). It is important to 

understand the evolution and influence between emissions intensity, energy intensity, 

and the share of fossil fuels in total energy consumption. 

 

The purpose of this issue is to study: (i) the existence of convergence (sigma and 

gamma) of some relevant ratios as Carbon Dioxide (CO2) emissions intensity, CO2 

emissions by fossil fuel consumption, fossil fuel intensity, energy intensity and 

economic structure, between manufacturing sectors in Portugal, and (ii) the influence 

that the consumption of fossil fuels, the consumption of aggregate energy and GDP 

have on CO2 emissions, and the influence that the ratios in which CO2 emissions 

intensity decomposes can affect that variable, using an econometric approach, 

namely Panel corrected standard errors estimator. 

 

From this analysis we can highlight two sets of conclusions. The first one is related 

with convergence. In what concerns sigma convergence, emissions and energy 

intensity, sectors tend to have similar behaviour, even these similarities are greater 

for industries in group B. There is also convergence in the economic structure, higher 

for group A. In fact, in 1999 there were more discrepancies between sectorial GDP 

than in 2009. Sectors with great importance in 1999, as CB, CC and CG decreased 



27 

 

their importance significantly. Particularly in group B, the sectors CG, EC and D lost 

relative importance in consideration of the CD sector. In terms of the mix of fossil 

fuels used, industrial sectors are not yet harmonized, that is, there is not a common 

behaviour between sectors. CI factor is also irregular in its pattern of convergence for 

the two groups but the trend is to converge, which is more evident for group A. 

Therefore, for the intensity of emissions and for energy intensity, there is a trend 

towards harmonization of sectors for the whole period, which is most evident in group 

B. The harmonization is greater in group B for the intensity of emissions and for 

energy intensity. Gamma convergence verifies for all ratios, with exception of CO2 

emissions by fossil fuel and fossil fuel intensity in group B.  For emissions by fossil 

fuel and the structure of the economy there is more harmonization in group A. 

 

From the econometric approach we concluded that the considered variables have a 

significant importance in explaining CO2 emissions and CO2 emissions intensity. In 

the latter, elasticities of  CO2 emissions by fossil fuel consumption, fossil fuel 

consumption by energy consumption, energy intensity and the economic structure, 

are respectively of 113%, 97%, 96% and 98% on the dependent variable, ceteris 

paribus. For group B the magnitude of the impacts is greater.  

 

These results of this issue show that these ratios are crucial to reducing the CO2 

intensity of Portuguese sectors, especially in the industries listed in Group B, 

particularly in what concerns increasing energy efficiency and the use of renewable 

energy, both points focusing on European policy (2009/28/CE directive) [43]. On the 

other hand, the results of the two methodology approaches can give relevant 

information for the policy making with regard to the timing of policy interventions and 

to the choice of policy instruments. 

 

Chapter 4: Is there convergence and causality between the drivers of energy - 

related CO2 emissions among the Portuguese Tourism Industry? 

 

The Portuguese strategic plan for tourism for 2007-2015 period has proposed to 

increase the tourism contribution to the Portuguese economic activity (measured by 

GDP). For that purpose, one of the challenges is the reduction of the tourism energy 
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consumption and CO2 emissions. On the other hand, Portugal has integrated EU 

Directives and Decisions related to mitigation (2008/101/EC], [44] and 2009/406/EC) 

[45] into national law. Mitigation is seen as a way to reduce expected negative 

impacts on climate change. Furthermore, there is national financial support and 

incentive systems for investments in energy efficiency and renewable energies, 

moreover, environmental policies are also expected to encourage technological 

progress, the use of alternative fuels, infrastructures and improvements in operations. 

More sustainable tourism practices are also expected to meet emerging tourist 

demands, (OECD, [46]). 

 

This study examines the impacts on CO2 emissions intensity in two distinct group 

activities or sectors, namely: group 1, including accommodation and food, 

transportation, wholesale retail and shopping; and group 2, including entertainment 

and recreation, postal and communication services and others services in Portugal 

over 1996-2009 period. Using two different methodologies, in the first phase we used 

the convergence analysis with two measures proposed called Sigma-convergence 

and Gamma-convergence.  In the second phase, to assess the ability to forecast 

values, we developed the Innovative Accounting Approach. We included the driving 

forces, as follows: CI effect can be expressed by the ratio CO2/Fossil fuel; CE effect 

can be expressed by the ratio Fossil fuel/Energy consumption; EI effect is measured 

by the ratio Energy Generation/GDP; ES effect is explained by the ratio GDP of 

tourism activity /GDP total. We can see in group 1, the highest degree of 

convergence is presented by the CE effect as this value in 2009 is close to zero. ES 

and EI effect present a similar convergence pattern, although not as pronounced as 

the CE effect, while for group 2, once again the CI effect shows some strong 

divergence between 1996 and 1998, although, thereafter it starts to converge. ES, EI 

and CE effect convergence pattern is similar, with all three effects slightly diverging 

between 2001 and 2004 when they start to converge again. On the other hand, in the 

results of Innovative Accounting Approach, the bidirectional causality was found 

between CO2 emissions intensity to EI effect between CO2 emissions intensity to CI 

effect in group 1, between CO2 emissions intensity to ES effect, and between CO2 

emissions intensity to EI effect in group 2. 

 



29 

 

We also found the unidirectional causality in Group 1 from CO2 emissions intensity to 

CI effect, from CO2 emissions intensity to CE effect, from CO2 emissions intensity to 

ES effect, from CE effect to CI effect and from EI effect to ES effect, while in Group 2 

there is unidirectional causality from CO2 emissions intensity to CI effect, from CO2 

emissions intensity to CE effect and from CE effect to CI effect. 

 

Chapter 5: Decomposition of energy-related GHG emissions in agriculture over 

1995-2008 for European countries 

 

According to the EEA, [47] agriculture has been responsible, in the last two decades, 

for about 10% of the total annual emissions of greenhouse gases emitted in Europe. 

The EU Trading Scheme does not consider the agricultural sector as part of the 

negotiations of carbon credits, nevertheless countries are concerned about adopting 

other environmental policies that aim at reducing GHG emissions in the agricultural 

sector, thereby contributing to the achievement of the Kyoto Protocol goals. For the 

design of a policy of this kind, it is important to understand how the intensity of 

Greenhouse Gases (GHG) emissions (GHG emissions/ agricultural value added) has 

evolved and what factors contribute to the variation of that intensity. 

 

The objective of this issue is to identify the effects in which the intensity of GHG 

emissions (EI) in agriculture can be broken down and analysed, as well as their 

evolution and which of them has more importance in determining the intensity of 

emissions in agriculture. Considering the previous analysis, we decided to use the 

'complete decomposition' technique developed by Sun [18] and applied by Zhang et 

al. [19] to examine agriculture GEE emissions intensity and to decompose it in 

several effects or components, based on the variables presented above. We 

considered agriculture emissions intensity for 15 countries as well as its reflecting 

changes over the 1995-2008 period. The change of EI can be decomposed into five 

effects: (i) the changes in GHG emissions compared to the fossil fuels consumption 

(EF effect), (ii) the changes in fossil  fuels consumption compared to the use of 

Nitrogen in agriculture (FN effect), (iii) the change in use of Nitrogen in agriculture by 

ha of utilized agricultural area (NA effect), (iv) the change in utilized agricultural area 

per worker (AL effect) and the inverse of average labour productivity in agriculture 
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(LVA effect). It is shown that NA effect and LVA effect were the ones that had a 

greater contribution to the variation of EI. This means that the use of Nitrogen per 

cultivated area is an important factor of emissions and in those countries where 

labour productivity increases (LVA decreases), emissions intensity tends to decrease. 

It is shown that NA effect and LVA effect were the ones that had a greater 

contribution to the variation of EI. This means that the use of Nitrogen per cultivated 

area is an important factor of emissions and that in those countries where labour 

productivity increases, emissions intensity tends to decrease. 

 

These results imply that the way to reduce emissions in agriculture could be by a 

better training of agricultural workers to increase their productivity, which would lead 

to a less need for energy and use of Nitrogen. On the other hand, there may be an 

exaggerated focus on the use of fossil fuels as a source of emissions, while this study 

shows that the use of Nitrogen represents a more important role in determining 

emissions than the use of fossil energy. Apart from their relation to GHG emissions, 

nitrates are also a major source of water pollution, so it is important to establish a 

European strategy for the effective adoption of sustainable agricultural practices, 

specifically by reducing the use of nitrates and other fertilizers or their application in 

divided doses. 

 

Chapter 6: Is the share of renewable sources determining the relation CO2 

Kwh- Income in electricity generation? 

There are several articles that have studied the connection between economic growth 

and emissions, testing the hypothesis of the Environmental Kuznets Curve (EKC). 

However, the relation between emissions from electricity production and GDP is not 

focused on literature. Those studies that include electricity are based on the amount 

of energy consumed, which is inherently linked to a volume of emissions, but don’t 

directly include the emissions resulting from its production. Studies focus specifically 

on the relationship between economic growth and energy consumption, in particular 

electricity consumption. The study of the latter relationship is important because 

electricity production is, as we have seen, a major source of emissions, but on the 

other hand it is also an important way to reduce them, if there is a replacement of 

fossil fuels with renewable energy in electricity production. It is then important to 
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analyze, how the reduction of emissions in this sector may undermine the economic 

growth of European countries. Moreover, it is important to analyze how the 

percentage of renewable energy used for electricity production affects the relationship 

between economic growth and emissions from this sector. The study of these 

relationships is important from the point of view of environmental and energy policy 

as it gives us information on the costs in terms of economic growth, on the application 

of restrictive levels of emissions and also on the effects of the policies concerning the 

use of renewable energy in the electricity sector (see for instance European 

Commission Directive 2001/77/EC, [4]). 

 

For that purpose, in this study we use Cointegration Analysis on the set of cross-

country panel data between CO2 emissions from electricity generation (CO2 kWh), 

economic growth (GDP) and the share of renewable energy for 20 European 

countries. We estimated the long–run equilibrium to validate the EKC with a new 

approach specification. Additionally, we have implemented the Innovative Accounting 

Approach (IAA) that includes Forecast Error Variance Decomposition and Impulse 

Response Functions (IRFs), applied to those variables. This can allow us, for 

example, to know (i) how CO2 kWh responds to an impulse in GDP and (ii) how CO2 

kWh responds to an impulse in the share of renewable sources. 

 

We can also infer that the share of renewable energy in electricity output will have 

significant influence on the shape of the EKC, which will shift downward as RES 

increases, suggesting lower (environmental) costs of development. From Panel 

Granger Causality tests we can highlight the bidirectional causality between GDP and 

RES (positive from GDP to RES and negative from RES to GDP). From Variance 

Decomposition analysis we confirm the relation of causality from GDP to RES. This 

shows that richer countries will naturally have more willingness to invest in renewable 

energy. The negative causality from RES to GDP, claims that the leading countries in 

renewable energy are less technically efficient than renewable energy laggards that 

are among the most technically efficient countries in Europe.  
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At the end of thesis, in chapter 7, we provide some concluding remarks, limitations of 

this research and suggestions for future research. 
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Chapter 2 

 

Decomposition analysis and Innovative Accounting 

Approach for energy-related CO2 emissions intensity over 

1996-2009 in Portugal  

 

2.1 Introduction 

 

2.1.1 Background and Motivation 

 

Energy consumption, emissions of Greenhouse Gases (GHG), and its connection to the 

economic growth have led to a growing concern among politicians and academics. 

Their aim is to draw effective energy and environmental policies that reduce overall 

energy consumption and energy dependence on fossil fuels, and thereby ensure long-

term environmental and economic sustainability and resilience. 

 

The literature has several studies on the evolution of energy intensity of economies 

(energy use per unit of output) [1-4] and on the intensity of emissions of pollutants 

(emissions per unit of output), [5-7]. In addition to exploring how these intensities evolve 

over time and between economic sectors, it is also important to know what influences 

them (which factors are behind its variations). In this sense, there have been several 

studies that decompose the energy intensity and emissions intensity in various effects 

or factors, based on their temporal and sector analysis. Studies on this subject give 

specific information about each country or sector, in order to apply appropriate energy 

policies in each case. This depends on the factor that has a greater responsibility in 

emissions intensity, or on which is easier to reduce. 
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The main effects that resulted from the decomposition of the intensity of CO2 emissions 

are the importance of fossil fuels in total energy consumption, energy intensity and 

sectoral structure of the economy. 

 

In Portugal, GHG emissions were about 74.6 MT CO2e in 2009, an increment of 26% 

compared with the 1990 levels1, which puts this country within the limits imposed by 

Burden Sharing Agreement (27%)2. This accomplishment was possible due to the 

significant inflexion in emission path over the last years, explained, not only by the 

economic crisis, but also by the efficiency gains of the economy (lowering the carbon 

intensity of national product)3.  

 

Despite this, the Portuguese energy intensity in terms of total energy requirements has 

been above many other European countries and clearly over the European average 

(except for 1996)4. This behaviour is even more remarkable in terms of final energy 

consumption, as reported in Mendiluce et al. [4] and in Diakoulaki and Mandaraka [9], 

where the final energy intensity was steadily increasing during that decade in some 

countries like Portugal and Spain. Therefore, the Portuguese economy has diverged 

from other European counterparts. That fact should induce a stronger political action by 

the Portuguese government in order to curve the energy intensity path.  

 

Regarding the importance of fossil fuels in Portuguese energy consumption, despite the 

downward trend5 (resulting from the replacement by renewable energies, with a 

particular expansion of windmills6), its importance is still significant (82.4% in 2009). 

 

Concerning the sectoral frame, we can see through data analysis7, that there is a weak 

positive linear relationship between the production of each sector and the consumption 

of fossil fuels, and between the production of each sector and its emissions. For 
                                                           
1
 See Agência Portuguesa do Ambiente [8].  

2
 Climate Action Network Europe in http://www.climnet.org/resources/euburden.htm. Per decision of EU Environment Council 16th 

June 1998. Reaffirmed by joint ratification of the 
Kyoto protocol on May 31st 2002: Council Decision 2002/358/EC 
3
 As showed by data from INE. Statistics Portugal. National Accounts 

4
 As showed by data from Eurostat 

5
 As showed by data from INE, Statistics Portugal, National Accounts. 

6
 See APA, 2012 

7
 INE statistic Portugal, National Accounts. 
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industries with low level of Gross Domestic Product (GDP) this relationship is stronger.  

However, there are some sectors that break that relationship, because they have a 

relatively low GDP and a high level of fossil fuel consumption and emissions (such as 

electricity, gas, steam and air-conditioning supply), or because they have a relatively 

high GDP, with a fuel consumption and emissions to a relatively low level (as wholesale 

and retail trade, repair of motor vehicles and motorcycles). 

 

It’s very relevant to identify the factors that influence changes in CO2 emissions 

intensity and also to individualise at sectoral level.  In this research paper, we used the 

'complete decomposition' technique developed by Sun [10] and applied by Zhang et al. 

[11] to examine CO2 emissions intensity and its components. We considered CO2 

intensity for 36 economic sectors as well as its reflecting changes over the 1996-2009 

period. In addition, we have implemented the Innovative Accounting Approach (IAA) 

that includes forecast error variance decomposition and Impulse Response Functions 

(IRFs), applied to the factors in which emissions intensity was decomposed.  It is always 

interesting to know how one variable responds to an impulse in another variable ceteris 

paribus, i.e., in an exercise of comparative statics. 

 

Joining these two methodologies, we will not only give an overview of what has been a 

past reality for these variables, how they are related to each other and how they have 

evolved, but also how they can influence each other in the future. Therefore, the present 

study is relevant to the design of appropriate energy and environmental policies, 

including meeting the objectives for the post Kyoto period.  

 

2.1.2 Literature review 

 

To assess the determinants of carbon intensity, analysts often use the Kaya identity, 

which links the carbon intensity to its main driving factors. We have, for instance: Ang 

and Pandiyan [12], Sun [13], Ang and Zang [14], Choi and Ang [15-16], Paul and 

Bhattacharya [17], Lu et al. [18], Wang et al. [19], Oh et al. [20], Akbostanci et al. [21] 

and Sheinbaum-Pardo et al. [22]. 
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In the literature about decomposition of the effects of the emissions intensity and energy 

intensity, there are mainly two approaches: the Structural Decomposition Analysis 

(SDA) and the Index Decomposition Analysis (IDA). A comparison between them can 

be found in Hoekstra and van der Bergh [23]. Theoretical and most relevant 

characteristics of SDA are reviewed by Rose and Casler [24]. IDA uses index number 

concept in decomposition8 and its advantage is that it can readily be applied to any 

available data at any level of aggregation (Ma and Stern, [31]).  

In IDA approach there are mainly two methodologies: Laspeyres IDA and Divisia IDA. 

Ang and Zhang [14] and Sun [10] give/provide, respectively, details on these two 

methodologies.   

 

Initially, the Laspeyres decomposition approach always led to a residual, which could be 

of a considerable size. To illustrate this see Zhang et al [11]. Sun [10] proposed a 

complete decomposition analysis where the residual term is distributed among the 

considered effects. This decomposition has long been used in the empirical literature 

because it can be simply calculated and easily understood. Zhang and Ang [32] refer to 

this as the refined Laspeyres method.   

 

These techniques constitute a widely accepted analytical tool for policy making in 

energy and environmental issues. In the case of the European Union (EU), several 

studies have used IDA techniques in economic sectors9.  

  

This technique has been also widely used for other countries outside EU. Paul and 

Bhattacharya [17], Wang et al. [26], Liu et al. [30], and Akbostanci et al. [21] are some 

examples.  

 

                                                           
8
 See Ang and Zhang [25], Sun [13], Paul and Bhattacharya [17], Wang et al.[26], Wu et al. [27], Lee and Oh [28], Lise [29], and 

Diakoulaki and Mandaraka [9] for some applications, and Liu et al [30] and Ang and Zhang [14] for reviews about works that use this 
methodology. 

 
9
 See for instance Liaskas et al., [33]; Sun [34] and [35], Bhattacharyya and Matsumura [36], Hatzigeourgiou (10), O`Mahony et al. 

[37] . 
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Also looking at the sectoral subject, many studies in relevant literature have examined 

energy intensity and/or emissions intensity of the manufacturing sector. For  instance, 

Huang [38], Sinton and Levine [39], Miketa [40], Hamilton and Turton [41] and Zhang 

[42], Paul and Bhattacharya [17], represented earlier studies of energy intensity or CO2 

emissions intensity in industrial sectors. Recently, Liao et al. [43], Ma and Stern [31], 

Zhang et al. [11], Zhao et al. [44], Oh et al. [20], Akbostanci et al. [21], Sheinbaum-

Pardo et al. [22], O`Mahony et al. [37],  extended earlier studies to sub-sectors.   

 

For instance, Sheinbaum-Pardo et al. [22] decomposed energy consumption and CO2 

emissions for Mexican manufacturing industries in the 1990-2008 period, using the 

LMDI method. They found important changes in the structure effect that pushed down 

emissions for 10 manufacturing industries’ subsectors. The energy intensity effect and 

the carbon index effect were negative in all subsectors, with the exception of Cement 

and other subsectors.  Another conclusion in their study  are the important changes in 

product mix in the case of aluminium, petrochemical, paper and pulp, basic chemicals, 

rubber, bottled waters and sugar.   

 

These studies are useful for understanding the methods of decomposition of energy–

related CO2 emissions and for identifying the factors that have influenced the changes 

in the level of energy–related CO2 emissions. The most common are the output effect, 

the energy mix effect, the energy intensity effect and the structural effect.  

Hatzigeougiou et al. [45] also use the population effect and Diakoulaki and Mandaraka 

[9] the utility mix effect. 

 

There is scarce literature about emissions intensity decomposition applied to Portugal. 

Diakoulaki and Mandaraka [9] focus on the manufacturing sector and examine energy 

related CO2 emissions in 14 EU countries, including Portugal. The authors explain 

changes in industrial CO2 emissions and also compare and evaluate the progress 

made in these countries in decoupling emissions from industrial growth. The analysis is 

performed for the period 1990–2003 and the refined Laspeyres model is used to 

determine the impact of 5 explanatory factors: output, energy intensity, structure, fuel 
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mix and utility mix. They show that Portugal presents a negative structural effect, and a 

stabilization or decline of more energy intensive sectors such as metal or heavy 

chemical industry in favour of less intensive ones.  They also reveal that Portugal has a 

weak decoupling effect, which means that the efforts undertaken have only 

compensated for a small part of the emissions owed to industrial growth and therefore 

emissions continue their upward trend, though with lower rates compared to the 

respective output rates. Comparing the decoupling index to the base year conditions, 

Portugal has initial carbon intensity well above the EU-14 average, which means that it 

failed to effectively exploit the existing reduction potential. 

 

Hatzigeourgiou, Polatidis and Haralambopoulos [45] show that during the period of 

1990-2020 the improvement in energy intensity in Portugal is the most significant factor 

that leads to a reduction in CO2 emissions, but with a moderate contribution of 16%, 

while the corresponding figure for the EU-25 is 40%. 

 

There are no known studies with Vector Autoregressive (VAR) models or with IAA (i.e., 

advanced generalized forecast error variance decomposition and generalized impulse 

response techniques) using ratios of decomposition of emissions intensity, but it is 

important to mention some recent studies, applied to variables such as energy 

consumption, emissions or the GDP. 

 

Zhang and Cheng [46], used the VAR Granger Causality and the Generalized Impulse 

Response to examine the causality among urban population, economic growth, energy 

consumption and CO2 emissions. Lee and Chien [47], applied Toda and Yamamoto 

Granger Causality and IAA to examine the relationship between energy consumption, 

capital stock and real income in G-7 countries. Menyah and Wolde-Rufael [48] explores 

the causal relationship among CO2 emissions, renewable and nuclear energy 

consumption and real GDP for the US; they also applied the Toda and Yamamoto 

Granger causality approach and generalized forecast error variance decomposition to 

examine the causality among the variables. Alam et al [49] investigates the causality 

relationships among energy consumption, CO2 emissions and income in India. They 
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applied the Toda and Yamamoto Granger causality and generalized impulse response 

function to examine the dynamic causality relationships among their variables. Lee and 

Chiu [50], applied the IAA to examine the relationship among nuclear energy 

consumption, real oil price, oil consumption and real income from highly industrialized 

countries. 

 

The remainder of this study is as follows: in Section 2 we present the data and 

methodology, in Section 3 the main results and in Section 4 the conclusions and policy 

recommendations. 

 

2.2 Data and Methodology 

  

All data was collected from INE (National Accounts), with a disaggregation of 36 

economic sectors (annual). The details about these sectors are in appendix (table 

A2.1). We considered the period 1996 – 2009, because it was the most recent period 

for which we had common data for all variables. 

 

We considered data about emissions of carbon dioxide from fossil origin, in 103 tons, 

denoted by CE. To obtain fossil fuels consumption, we add INE data about natural gas, 

coal and lignite, petroleum coke, fuel oil, diesel oil, motor gasoline, LPG and other 

petroleum products, in GJ, denoted by F. Total consumption of energy (emissions 

relevant), in GJ, is denoted by E, and/whereas Gross Domestic Product from the 

production side at market and constant prices, in 106 Euros, is denoted by GDP. 

 

2.2.1 Decomposition Analysis 

 

The CO2 emissions intensity (A) can be decomposed as follows:  

 

𝐴 =
𝐶𝐸𝑡
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In the summation symbol, “i” refers to the economic sector. The index variable “t” refers 

to the year. The change of CO2 emissions intensity between a base year 0 and a target 

year t, denoted by ∆A, can be decomposed into four effects: (i) the changes in the CO2 

emissions compared to the fossil fuels consumption (denoted by CI effect), (ii) the 

changes in the fossil fuels consumption compared to total energy consumption  

(denoted by CE effect), (iii) the change in energy intensity effect (denoted by EI effect) 

and (iv) changes in the economic structure effect (denoted by ES effect), as follows: 

 

∆𝐴 = 𝐴𝑡 − 𝐴0 = 𝐶𝐼𝑒𝑓𝑓𝑒𝑐𝑡 + 𝐶𝐸𝑒𝑓𝑓𝑒𝑐𝑡 + 𝐸𝐼𝑒𝑓𝑓𝑒𝑐𝑡 + 𝐸𝑆𝑒𝑓𝑓𝑒𝑐𝑡 

 

Where the effects are calculated using  a technique similar to the one used by Sun [34] 

and Zhang et al. [11]. We exemplify for CI effect: 

 

𝐶𝐼𝑒𝑓𝑓𝑒𝑐𝑡 = ∑ ∆𝐶𝐼𝑖𝐶𝐸𝑖
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To obtain the different effects in percentage of the total carbon intensity effect we 

calculated 

 

𝐶𝐼𝑒𝑓𝑓𝑒𝑐𝑡

∆𝐴
× 100% +

𝐶𝐸𝑒𝑓𝑓𝑒𝑐𝑡

∆𝐴
× 100% +

𝐸𝐼𝑒𝑓𝑓𝑒𝑐𝑡

∆𝐴
× 100% +

𝐸𝑆𝑒𝑓𝑓𝑒𝑐𝑡

∆𝐴
× 100% = 100% 

 

CI effect can be used to evaluate the fossil fuel quality and the substitution between 

fossil fuels; CE effect can be interpreted as the installation of abatement technologies 

and the substitution of fossil fuel for renewable energy sources; EI effect is the energy 

intensity effect, seen as a signal of the efficiency of the energy system, technology 
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choices, energy prices, energy conservation techniques and investments for energy 

saving; finally, ES effect shows the relative position of each sector in the economy. 

 

The effects are calculated every year in the period 1996-2009. We’ve also calculated 

the effects between the last and the first year and for 36 sectors individually, for the year 

2009. 

 

We also made two additional analysis: i) dividing the 36 sectors in 2 groups: group A 

which includes 16 industrial sectors and group B, the 20 remaining sectors and ii) 

dividing the group A sectors in 2 groups: group C, that includes 5 energy sectors and 

group D, with the 11 remaining sectors. 

 

2.2.2 The Innovative Accounting Approach for Granger causality  

 

In a second step we have implemented the IAA that includes forecast error variance 

decomposition and IRFs.  

 

2.2.2.1 Generalized forecast variance decomposition 

 

The generalized forecast variance decomposition approach estimates the simultaneous 

shock effects using a VAR system to test the strength of causal relationship between 

dioxide emissions intensity (A), emissions by fossil fuels ratio (CI), fossil fuel intensity 

(CE), energy intensity (EI) and economic structure (ES) in the case of group C and 

group D, of Portuguese industry sectors. 

 

For instance, if the EI explains more of the forecast error variance of CO2 emissions 

intensity, then we deduce that there is unidirectional causality from EI to emissions 

intensity. The bidirectional causality exists if shocks in CO2 emissions intensity also 

affect EI in a significant way. If shocks occurring in both series do not have any impact 

on the changes in CO2 emissions intensity and in EI then there is no causality between 

the variables. 
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2.2.2.2 Impulse Response Functions 

 

We also provided a rough analysis of how long it takes for the variable to go back to the 

equilibrium after the long run relationship has been shocked.  

 

One can determine how CO2 emissions intensity responds due to its shock and to 

shocks in other ratios (CI, CE, EI and ES). For instance, we support the hypothesis that 

EI causes CO2 emissions intensity if the impulse response function indicates significant 

response of CO2 emissions intensity to shocks in EI according to shocks in other ratios.  

 

2.3 Results and Discussion 

 

2.3.1 Decomposition Analysis 

 

If we look at the effects for the considered period (1996-2009), we can see that the CO2 

emissions intensity (A) diminished significantly (-38.1%, obtained dividing variation of A 

(Var A) by the initial value of A), that is, the economy is emitting less CO2 by each unit 

of goods and services produced. However, there were years in which this intensity 

raised/increased, such as in 1999, 2002, 2004 and 2005 (see table A2.2 in appendix). 

 

We found that EI effect is the one that has more influence (bigger percentages) in the 

determination of Var A (see figure A2.1 in appendix). It means that the energy intensity 

of economic sectors is the most important effect in the determination of the CO2 

emissions intensity. 

 

Regarding the evolution of each effect (see figure A2.2 in appendix), we can infer the 

following facts: i) CI effect often presents negative values, and its trend is decreasing, 

but almost constant. It means that the economy is emitting less CO2, for the same 

quantity of fossil fuels used, which can reveal that the technologies used are more 

efficient and less polluting, for the same amount of fuel used, or that there was a 

substitution between fossil fuels in favour of less polluting ones; ii) CE effect is 
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increasing, despite in some years being positive and in others negative and has 

registered between 1996 and 2009, a negative variation. That is, in 2009 the economy 

was using less fossil fuel in relation to total energy consumption, compared to 1996, but 

this effect had a positive trend. This means that the technologies related to fossil fuels 

may still have a significant role; iii) EI is the most important effect because its magnitude 

of values hardly influences positively or negatively the global effect; it has a negative 

trend and iv) ES effect has a decreasing trend, but this tendency is difficult to interpret 

given the level of aggregation of data for economic sectors. 

 

The sectors that contributed the most to the reduction of emissions intensity were 

agriculture, forestry and fishing, electricity, gas, steam and air-conditioning supply, the 

manufacture of chemicals and chemical product, the manufacture of rubber and plastics 

products, and other non-metallic mineral products, the manufacture of wood and paper 

products and printing.  In these sectors ES effect was the greater influence, whereas in 

the manufacture of coke, and refined petroleum products and construction, EI effect 

was the greater influence (see figure 2.1). That is, the first ones diminished its 

importance in the economic structure, and the second ones diminished its energy 

intensity and consequently the emissions intensity.  

Figure 2.1 – Effects of decomposition of CO2 emissions intensity change (1996-2009) by sectors 
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2.3.1.1 Industrial sectors 

 

We calculated the same effects for industry separately, that is, for the 16 sectors with 

nº2 in A10 classification (see table A2.1 in appendix) which we will call group A sectors. 

We found very similar results compared to the general effects, that is, the industry is 

contributing largely to the effects of variation of CO2 emissions intensity. In table 2.1 

and figure 2.2, we can see the magnitude of the effects of industry sectors (group A) 

and of the other sectors (group B), compared to the general effects (for the 36 sectors), 

in percentage. The importance of group B in the determination of the general effects is 

negligible.  

 

Table 2.1 - Weight of effects of industries (group A) and the remaining sectors (group B) in % of 

the effects of all sectors 

 CI effect CE effect EI effect ES effect Var A 

 A B A B A B A B A B 

1996-1997 248% -148% 118% -18% 110% -10% 104% -4% 555% -480% 

1997-1998 98% 2% 104% -4% 102% -2% 108% -8% 136% -36% 

1998-1999 96% 4% 101% -1% 102% -2% 52% 48% 100% 0% 

1999-2000 136% -36% 98% 2% 100% 0% 102% -2% 101% -1% 

2000-2001 92% 8% 91% 9% 77% 23% 91% 9% 90% 10% 

2001-2002 100% 0% 98% 2% 108% -8% 112% -12% 144% -44% 

2002-2003 94% 6% 102% -2% 102% -2% 191% -91% 98% 2% 

2003-2004 79% 20% 100% 0% 108% -8% 11% 89% 242% -142% 

2004-2005 209% -109% 100% 0% 102% -2% -19% 119% 161% -61% 

2005-2006 -255% 355% 112% -12% 91% 9% 97% 3% 74% 26% 

2006-2007 -175% 275% 89% 11% 82% 18% 649% -548% 70% 30% 

2007-2008 104% -4% 93% 7% 71% 29% 98% 2% 76% 24% 

2008-2009 71% 29% 106% -6% 78% 22% 93% 7% 94% 6% 

1996-2009 73% 27% 106% -6% 76% 24% 87% 13% 81% 19% 
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Figure 2.2 - Weight of effects of industries (group A) and the remaining sectors (group B) in % of 

the effects of all sectors (1996-2009) 

 

 

For the industrial sector we can see in table 2.2., that Var A was negative for this period, 

that is, these sectors are issuing less CO2 per unit of GDP produced (-31%). EI effect is 

the most significant effect in this reduction, for most years, which reveals an effort to 

reduce the energy intensity in these activities. 

 

Looking at the emissions intensity of industrial sectors, for the year of 2009 (see figure 

2.3), we can see that there are 5 sectors that differ from the others: B (mining and 

quarrying), CD (the manufacture of coke, and refined petroleum products), CE (the 

manufacture of chemicals and chemical products), CG (the manufacture of rubber and 

plastics products, and other non-metallic mineral products) and D (electricity, gas, 

steam and air-conditioning supply). These are also some of the sectors that most 

contributed to the variation of emissions intensity in this period, as mentioned above. So 

we thought it relevant to do a particular analysis of these sectors. From now on we will 

call this set of sectors group C (and the remaining industrial sectors group D). We have 

included here, the energy sectors, particularly the sectors of coal, oil, electricity and gas. 
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Table 2.2 - Complete decomposition of CO2 emissions intensity change (1996-2009) for industrial 

sectors (Group A) 

 CI effect CE effect EI effect ES effect var A 

1996-1997 0.004 -211% -0.021 1076% -0.025 1321% 0.040 -2086% -0.002 100% 

1997-1998 -0.017 403% -0.020 477% 0.054 -1301% -0.022 522% -0.004 100% 

1998-1999 -0.010 -26% -0.075 -198% 0.121 318% 0.003 7% 0.038 100% 

1999-2000 0.005 -9% 0.050 -86% -0.095 163% -0.018 31% -0.058 100% 

2000-2001 -0.008 30% 0.006 -22% -0.003 10% -0.021 82% -0.026 100% 

2001-2002 -0.007 -47% -0.035 -240% 0.064 440% -0.008 -53% 0.014 100% 

2002-2003 0.004 -9% 0.057 -117% -0.114 237% 0.005 -10% -0.048 100% 

2003-2004 -0.002 -139% -0.039 -2972% 0.041 3183% 0.000 27% 0.001 100% 

2004-2005 0.002 19% -0.030 -247% 0.039 325% 0.000 3% 0.012 100% 

2005-2006 0.000 1% 0.041 -114% -0.097 268% 0.020 -55% -0.036 100% 

2006-2007 0.003 -12% 0.025 -107% -0.048 208% -0.003 11% -0.023 100% 

2007-2008 -0.005 36% -0.012 87% -0.009 66% 0.012 -90% -0.014 100% 

2008-2009 -0.002 11% 0.013 -66% 0.012 -60% -0.042 215% -0.020 100% 

1996-2009 -0.029 18% -0.031 19% -0.088 53% -0.017 11% -0.166 100% 

 

 

Figure 2.3 – Portuguese Industry Emissions Intensity in 2009 

 

 

 

We can see in figure 2.4, that the effects of this group of industries, represent an 

importance of nearly 100%, in each year of the period studied, which means that these 

5 sectors have a great influence on the determination of the observed intensity of CO2 

emissions. 
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Figure 2.4 - Relevance (in %) of the effects of group C in the effects of industrial sectors 

 

Figure 2.5 confirms the previous idea. The only effect that is not so relevant is the ES 

effect, which may mean that these sectors are losing importance in the structure of the 

economy. 

 

We can also observe that these five sectors contribute to 81% and 65% of the total 

variation of the emissions intensity, of the industry and of the overall economy, 

respectively.  

 

Figure 2.5 - Relevance (in %) of the effects of group C in the effects of industrial sectors, and in 

the effects of all 36 sectors, for the period 1996-2009 

 
% on effects of 16 industrial sectors % on effects of all 36 sectors
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In Figure 2.6 and in table 2.3, we can see that in group C there is a decrease of Var A 

for the period considered, and the EI effect reveals to be the most important one in this 

reduction. Nevertheless, in a few years it is the ES effect that predominates. This 

means that in the 5 most relevant sectors for determining the emissions intensity in 

Portugal, the reduction of energy consumption is critical, but it is also critical  to reduce  

the importance of these sectors in the economy (in favour of less polluting sectors). 

Note that the CE effect, though not predominant as the most important, has a significant 

relevance, and is opposite to the effect of EI. This makes sense because by definition of 

each effect, if power consumption decreases, then so should EI decrease and CE 

increase (for the same level of GDP and fossil fuels). 

 

Figure 2.6 - Complete decomposition of CO2 emissions intensity change (1996-2009) of group C 
sectors 
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Table 2.3 - Complete decomposition of CO2 emissions intensity change in percentage (%) of Var A 

of group C and D 

  CI effect CE effect EI effect ES effect 

  C D C D C D C D 

1996-1997 -29.4 57.7 337.0 -12.9 439.9 23.7 -647.6 31.4 

1997-1998 -1921.8 29.5 -2546.7 -8.9 6917.7 18.8 -2349.2 60.6 

1998-1999 -22.6 6.6 -173.5 27.9 287.0 36.0 9.1 29.5 

1999-2000 -8.9 -1170.3 -83.8 6311.4 158.7 -13927.4 34.0 8886.3 

2000-2001 34.4 19.5 -37.1 19.4 2.3 29.5 100.4 31.6 

2001-2002 -8.9 93.8 -183.9 -32.5 322.6 6.9 -29.8 31.9 

2002-2003 -11.0 51.7 -120.2 -18.8 240.2 124.1 -9.0 -57.0 

2003-2004 -27.5 6.9 -667.2 46.0 760.6 10.7 34.1 36.4 

2004-2005 16.3 3.9 -197.6 28.4 268.3 10.4 13.0 57.3 

2005-2006 1.7 -15.0 -121.5 59.0 279.2 3.7 -59.4 52.2 

2006-2007 -14.3 6.4 -124.5 53.5 228.3 21.9 10.5 18.2 

2007-2008 36.0 37.1 95.4 -12.0 78.2 -75.7 -109.6 150.5 

2008-2009 10.1 22.9 -68.8 -9.9 -61.3 -44.8 220.1 131.8 

1996-2009 16.3 23.7 19.1 18.0 62.1 14.7 2.5 43.5 

 

In relation to energy sectors, the manufacture of coke and refined petroleum products 

and the electricity, gas, steam and air-conditioning supply sectors (CD and D in figure 

2.1 above, respectively), we can see that they are the fifth and the second largest 

contributors to the reduction of CO2 emissions intensity, respectively, in the whole 

economy. Nonetheless, CD has the most important EI negative effect, that is, it is the 

main contributor for the reduction of CO2 emissions intensity, through the reduction of 

energy intensity. On the other hand, it also has the biggest positive ES effect, which 

almost eliminates the first effect. 

 

In the electricity, gas, steam and air-conditioning supply sector the ES, CE and CI 

effects have an important influence in the reduction of emissions intensity, while its EI 

effect is positive. It means that this sector lost importance in the economy, diminished 

its emissions and the use of fossil fuels, but even so had a bad result in energy 

intensity. On the other hand, the manufacture of coke, and refined petroleum products, 

reduced its emissions intensity by the reduction of energy intensity, but gained 

importance in economic structure. 
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Comparing the results with other studies that infer to Portugal, we can say that our 

conclusions confirm the results of Diakoulaki and Mandaraka [9] regarding the fact that 

ES effect is negative and that energy intensive sectors are reducing their importance in 

the economy. The relative importance that fossil fuels still show in the Portuguese 

economy is in accordance with the “decoupling effect” found by the authors. 

 

Hatzigeorgiou et al. [45], have in common the result that the EI effect is the most 

important in determining the variation of energy intensity, although in this study its 

importance is of 16% and ours is 56%. If we consider only the 5 sectors of group C, the 

percentage is of 62.1%, while for group D it is only 11%. The different results may have 

to do with the different periods analysed and the sectors considered. 

 

2.3.2 Generalized variance decomposition 

 

Table 2.4 presents the results of the generalized variance decomposition over a ten-

year period for group C and group D industry sectors. The variance decomposition 

explains how much of the predicted error variance of a variable is described by 

innovations generated from each independent variable in a system, over various time 

horizons.  

 

Table 2.4 - Variance decomposition of group C and D sectors 

 

  A CI CE EI ES 

Period C D C D C D C D C D 

Variance Decomposition of A 

1 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 96.51 95.72 0.01 0.11 0.00 1.30 0.43 2.75 3.05 0.12 

3 94.95 93.88 0.23 0.11 1.12 1.35 0.94 4.44 2.76 0.22 

4 93.92 92.37 0.21 0.32 2.03 1.24 1.08 5.82 2.75 0.25 

5 93.03 90.71 0.20 0.74 2.90 1.10 1.21 7.20 2.66 0.26 

10 90.16 80.54 0.80 4.05 5.46 1.06 1.17 14.14 2.42 0.22 
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  A CI CE EI ES 

Period C D C D C D C D C D 

Variance Decomposition of CI 

1 0.06 28.44 99.94 71.56 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.53 25.27 94.44 70.52 1.57 3.38 2.49 0.03 0.97 0.80 

3 1.87 24.35 92.89 70.85 2.78 3.43 1.78 0.16 0.68 1.20 

4 3.26 23.73 89.15 71.19 5.75 3.46 1.30 0.30 0.53 1.31 

5 4.54 23.26 86.02 71.55 7.99 3.35 1.03 0.50 0.42 1.34 

10 7.47 21.97 76.66 71.58 15.13 3.09 0.54 2.10 0.20 1.27 

Variance Decomposition of CE 

1 4.77 0.07 0.16 22.56 95.08 77.38 0.00 0.00 0.00 0.00 

2 5.21 0.29 0.37 24.86 89.08 74.09 0.82 0.45 4.51 0.30 

3 4.32 0.60 0.71 24.13 89.95 74.38 0.89 0.58 4.13 0.31 

4 4.04 1.22 1.18 23.50 89.35 74.02 0.98 0.95 4.45 0.30 

5 4.10 1.98 1.52 22.67 88.64 73.73 1.38 1.36 4.36 0.27 

10 5.53 6.62 1.97 18.68 85.32 69.63 2.64 4.87 4.53 0.21 

Variance Decomposition of EI 

1 97.84 47.00 0.32 8.34 0.21 7.88 1.63 36.77 0.00 0.00 

2 92.83 32.39 0.57 6.77 0.15 8.40 2.84 52.44 3.61 0.01 

3 91.05 25.94 0.97 6.72 0.74 8.10 3.94 59.23 3.30 0.01 

4 90.22 21.61 0.90 6.95 1.22 7.39 4.23 64.04 3.42 0.01 

5 89.67 18.29 0.85 7.16 1.61 6.68 4.47 67.86 3.40 0.01 

10 88.09 8.90 1.68 7.32 2.38 3.93 4.36 79.84 3.49 0.01 

Variance Decomposition of ES 

1 25.06 6.71 1.05 9.39 0.33 0.16 26.54 4.48 47.01 79.26 

2 23.58 3.47 2.07 8.45 0.79 0.52 22.76 8.65 50.81 78.91 

3 21.02 2.44 3.89 8.77 1.24 0.38 20.03 8.89 53.82 79.52 

4 19.28 2.00 5.39 9.60 1.48 0.36 18.08 8.88 55.77 79.16 

5 17.69 1.87 6.65 10.40 2.01 0.32 16.45 8.70 57.19 78.72 

10 13.55 2.76 9.20 13.13 2.46 0.22 12.36 7.54 62.43 76.35 

 

 

For group C sectors, the empirical evidence indicates that 90.16 per cent of CO2 

emissions intensity is due to its own innovative shocks. The standard deviation shock in 

CE is the variable that better explains energy pollutants intensity, although with a low 

percentage (5.46 per cent).  A small portion of CO2 emissions intensity is explained by 

innovative shocks in ES (2.42 per cent), EI (1.17 per cent) and CI (0.8 per cent). 
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A 15.13 per cent of CI is explained by one standard deviation shock in CE and 76.66 

per cent is due to CI effect by its own innovative shocks. A small portion of CI effect is 

explained by innovative shocks stemming in A (7.46 per cent) and an insignificant 

portion of CI is explained by EI and ES, i.e., 0.54 and 0.20 per cent respectively. 

 

CE explains itself by 85.32 per cent. A little contribution (5.53 and 4.53 per cent) exists 

in CE by shocks stemming in A and ES respectively. CI and EI explain CE minimally by 

1.97 and 2.64 per cent respectively. 

 

A strong and significant portion of 88.08 per cent of EI is explained by one standard 

deviation shock in CO2 emissions intensity and a small portion of 4.36 per cent is 

contributed to innovative shocks in EI.  

 

The contribution of CO2 emissions intensity and EI to ES are 13.55 and 12.36 per cent 

respectively and the remaining 62.43 per cent is explained by its own standard 

innovative shocks and by the shocks on CI (9.2 per cent) and CE (2.46 per cent).  

 

Taking 5% as a threshold, we can infer that there is bidirectional causality between CO2 

emissions intensity (A) and the share of fossil fuels in total energy consumption (CE). 

This means that one of the ways to reduce the emissions intensity will be by reducing 

the consumption of fossil fuels and increasing the use of renewable energy. The 

opposite will occur if we reduce emissions intensity by making investments in renewable 

energy, as we should have to monetize these same investments, and therefore reduce 

the use of fossil fuels. 

 

Considering also the reference of 5%, we can infer that there is unidirectional causality 

from A to CI, to EI and to ES, from CE to CI, from CI to ES and from EI to ES. This 

means that the intensity of emissions causes all the factors in which it decomposes... 

which makes sense by definition. On the other hand, the share of fossil fuels in total 

energy consumption affects emissions per unit of fossil fuel. In other words, if we reduce 

the share of fossil fuels, we will also reduce emissions per unit of fossil, because in 
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addition to reducing, there should be a change in the mix of fossil fuels in favour of 

cleaner fuels. Economic structure is also affected by the emissions by fossil fuels and 

energy intensity since the efforts made to change technology, to change fossil fuel mix 

and to reduce energy consumption, influence the importance of each sector in the 

economy. 

 

The results reported in Table 2.4 for D group sectors, indicate that dioxide emissions 

intensity is explained by EI (14.14 per cent), 80.54 per cent is contributed by its own 

innovative shocks, while the contribution of CI, CE and ES is negligible. 

 

For CI the contribution of CO2 emissions intensity is decreasing over time but explains 

21.97 per cent of its predicted error variance at period 10. The contribution of the other 

variables is negligible.  

 

For CE the contribution of CI is decreasing over time and explains 18.68 per cent of its 

predicted error variance at period 10. The contribution of emissions intensity is of 6.62 

per cent and the effects of EI and ES are insignificant. CO2 emissions intensity and CI 

are the relevant variables explaining EI (8.9 and 7.32 per cent respectively).  

 

A 13.13 per cent of ES is explained by one standard deviation shock in CI and a 76.35 

per cent is contributed to ES by its own innovative shocks. EI is also a relevant variable 

causing ES, with a percentage of 7.54. 

In group D industries, considering the percentage of 5%, we found unidirectional 

causality from A to CI and CE, from CI to CE, CI and to ES, and from EI to ES. This 

means that a reduction in emissions by fossil fuel implies a decrease of the importance 

of fossil energy consumption and also of energy intensity. 

 

Bidirectional causality is found between A and EI, which means that a lower emissions 

intensity causes low energy intensity and vice-versa. 
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Common to these two groups of industries we highlight the following: emissions 

intensity influences the emissions per unit of fossil fuel, that is, if A decreases, then CI 

decreases too, because we use less fossil fuels or the mix of fossil fuels is different. It is 

the emissions by fossil fuel and energy intensity that cause the structure of the 

economy. This means that if we reduce CI and EI we will change the mix of fossil fuels 

used in the economy or we will change the technology, which could adjust the 

importance of certain sectors in this economy. By changing the energy intensity there 

may be sectors that contract, including the energy-intensive ones in favour of less 

energy intensive ones. 

 

2.3.2.1 Impulse Response Functions  

 

With the aim of simulating the behaviour over time of the variables involved in the study, 

we analysed the IRFs underlying the two groups of industries (C and D). The IRFs 

indicate how long and to what extent the dependent variable reacts to shock in forcing 

variables. 

 

For group C sectors, we have the IRFs represented at figure 2.7. We can see that 

emissions intensity reacts more significantly to shocks in CE, compared to shocks in 

other variables. This reaction is positive, as well as the reaction to a shock in EI. 

Nevertheless, the latter ends up disappearing in the long term. The response to a shock 

in CI is negative until it reaches the 4th time horizon, becoming thereafter positive. The 

reaction to ES is negative, bigger in the short run, but dissipates in the long run. 

The intensity of emissions compared to fossil fuels reacts more sharply to shocks in CE 

(negatively) and to shocks in A (positively). Concerning shocks in EI and ES, the short 

run reaction is positive but after the third period it dissipates. 

 

For the weight of fossil energy consumption (CE), shocks that affect it more in the long 

run (positively) are the shocks in emissions intensity (A) and in the structure of the 

economy (ES). For ES there is a significant positive reaction in the short term, while for 

A the short-term reaction is negative, becoming positive in the 3rd period. The reaction 
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of CE to a shock in energy intensity is positive only until the second period. If a shock in 

CI occurs, then CE has a slightly negative reaction in the short run, becoming positive in 

the 2nd period and vanishing in the long run. 

 

Energy intensity has a significant and positive reaction to a shock in emissions intensity, 

with a slightly negative response to shocks in other variables. These responses become 

positive for shocks in CE and CI in the 2nd period and 5th respectively. 

 

The structure of the economy has a relevant reaction in the short term to a shock in 

energy intensity and in emissions intensity, being positive for the first variable and 

negative for the second. But these reactions almost vanish in the long run. ES shows a 

positive reaction to a shock in CI, which lingers in the long run. 

 

The analysis of IRFs suggests the occurrence of the same causality relationships that 

were observed in variance decomposition analysis. 

 

The results in figure 8 show reactions of the considered variables for group D industries. 

We confirm a positive response of CO2 emissions intensity due to one standard 

deviation shock in energy intensity. However, the response to CI changes from positive 

to negative after the 2nd time horizon, maintaining its level in the long run. 

 

The response of CI to shock in CO2 emissions intensity is positive but is decreasing in 

all time horizons. CI responds negatively to a shock in CE, which in turn responds 

positively to shocks in emissions intensity and negatively to shocks in CI and EI. Energy 

intensity is affected positively by emissions intensity but this effect tends to disappear in 

the long run. The reaction is negative to shocks in CI and CE. Finally, economic 

structure is affected positively by CI and negatively by EI. Emissions intensity also 

affects ES negatively but in the second period the reaction becomes positive. 
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Figure 2.7 - IRFs for Group C sectors 
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The analysis of IRFs suggests the occurrence of the same causality relationships that 

were observed in variance decomposition analysis, with the exception of the 

bidirectional causality between A and CI and unidirectional causality from CE to EI. 

Nevertheless, the reaction seen in IRFs is not significant for these different results. 

 

Figure 2.8 - IRFs for Group D sectors 
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2.4 Conclusions 

 

Is this research, we used the 'complete decomposition' technique to examine CO2 

emissions intensity and its components. We considered CO2 intensity for 36 economic 

sectors as well as its reflecting changes over the 1996-2009 period. In addition, we 

have implemented the IAA that includes forecast error variance decomposition and 

IRFs, applied to the factors in that emissions intensity was decomposed. 

 

With this analysis we can draw conclusions about the evolution of the intensity of CO2 

emissions in Portugal and what its main determinants were in the past, but also 

inference about the behaviour of these variables in the future. This allows us to make a 

more complete approach, since implementing any policy, in particular an energy or 

environmental policy, it is important to know the past context but also to know in what 

direction the future will evolve, because it is in this timeframe that the policy will have 

effects. 

 

After making the decomposition analysis we observed that the emissions intensity 

decreased, and the effect that contributed more to this was energy intensity. The 

sectors that have contributed more to reduce the intensity of emissions through the 

reduction of energy intensity are the manufacture of coke, refined petroleum products 

and construction. Yet, there are sectors that contributed to reduce energy intensity 

because of lower production in sectors of the economy such as agriculture, forestry and 

fishing, electricity, gas, steam and air-conditioning supply, the manufacture of chemicals 

and chemical product, the manufacture of rubber and plastics products, and other non-

metallic mineral products, the manufacture of wood and paper products, and printing. 

 

In 2009 the economy was using less fossil fuel in relation to total energy consumption, 

compared to 1996, but this effect had a positive trend. This means that the technologies 

related to fossil fuels may still have a significant role. 
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For the majority of sectors, since the energy intensity has more weight in determining 

the intensity of emissions, reducing energy consumption must be a priority in 

policymaking. This effect has already had a tendency of decreasing. This shows that the 

technologies used are more efficient and less polluting, for the same amount of fuel 

used, or that there was a substitution between fossil fuels in favour of less polluting 

energy. 

 

It has been shown that there are five critical sectors in determining the intensity of CO2 

emissions (mining and quarrying, the manufacture of coke, and refined petroleum 

products, the manufacture of chemicals and chemical products, the manufacture of 

rubber and plastics products, and other non-metallic mineral products and electricity, 

gas, steam and air-conditioning supply). The results of the decomposition of the energy 

intensity for these sectors have an important influence on the results for the economy as 

a whole. 

 

Looking at these five sectors, results show that the reduction of energy consumption is 

critical, as well as reducing the importance of these sectors in the economy (in favour of 

less polluting ones). 

 

Policies aimed at reducing the energy intensity will cause a reduction in fossil fuel 

consumption and / or a change in the mix of fossil fuels. Such policies have important 

effects on the sectoral structure of the economy’s GDP, in favour of less energy 

intensive sectors. 

 

In the future, particularly for industries, it is expected, that emissions intensity will affect 

and will be affected by the importance of fossil fuels in energy consumption. Any policy 

that encourages the reduction of the use of fossil fuels in favour of renewable energy 

will end up decreasing emissions intensity. 

 

The results reveal that a decrease in the use of fossil fuels will reduce emissions per 

unit of fossil fuel used. This shows that there will be a change in technology or a change 
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in the mix of fossil fuels used. In turn, this will require a change in the structure of the 

GDP of the economy in favour of less energy-intensive sectors. As it is shown that 

causality between A and CE and between A and CI is bivariate, this path will take us 

again to the reduction of energy intensity level. 

 

The present times of recession will help in the reduction of the emissions intensity 

through the decrease of economic activity. Additionally, other policies may help to follow 

the right path and make the most of these causal relationships. The European 

Commission presented in April 2011 a proposal with two main goals: (i) to contribute to 

growth and employment by shifting taxation from labour to consumption, (ii) to promote 

energy efficiency and consumption of more environmentally friendly products. 

Furthermore, the proposal aims to complement the existing European Union Emission 

Trade System (EU ETS) by applying a CO2 tax on sectors that are out of its present 

scope (transport, households, agriculture and small industries). If approved, this will 

result in a sort of hybrid regulation system for CO2 emissions.  

 

On the other hand, a few European Directives were aimed at improving the 

performance of uncovered sectors, namely the European Energy Performance in 

Buildings Directive (EPBD), the Ecodesign Directive, the Biofuels Directive and the 

Energy Services Directive.  

 

However, the sectors mentioned in this study as having greater relevance in 

determining the emissions intensity and its components are sectors that are already 

regulated by EUETS. 

 

Future research in this surrounding context can strike a study that decomposes 

emissions intensity including the population effect (as in Hatzigeorgiou [45]), and on the 

sectoral analysis the effect of the number of workers per sector could be considered. 

 
 
 
 



 

 

65 

 

Appendix 
 
 
Table A2.1 - National Accounts Classification by Industry 
 

A10 A38 Description 

1 A Agriculture, forestry and fishing 

2 B Mining and quarrying  

2 CA Manufacture of food products, beverages and tobacco products 

2 CB Manufacture of textiles, wearing apparel and leather products 

2 CC Manufacture of wood and paper products, and printing 

2 CD Manufacture of coke, and refined petroleum products  

2 CE Manufacture of chemicals and chemical products  

2 CF Manufacture of basic pharmaceutical products and pharmaceutical preparations 

2 CG Manufacture of rubber and plastics products, and other non-metallic mineral products 

2 CH Manufacture of basic metals and fabricated metal products, except machinery and equipment 

2 CI Manufacture of computer, electronic  and optical products 

2 CJ Manufacture of electrical equipment 

2 CK Manufacture of machinery and equipment n.e.c. 

2 CL Manufacture of transport equipment 

2 CM Manufacture of furniture; other manufacturing; repair and installation of machinery and equipment 

2 D Electricity, gas, steam and air-conditioning supply 

2 E Water, sewerage, waste management and remediation activities 

3 F Construction 

4 G Wholesale and retail trade, repair of motor vehicles and motorcycles 

4 H  Transportation and storage 

4 I Accommodation and food service activities 

5 JA Publishing, audio visual and broadcasting activities 

5 JB Telecommunications 

5 JC Computer programming, consultancy and related activities; information service activities 

6 K Financial and insurance activities 

7 L Real estate activities 

8 MA Legal and accounting activities; activities of head offices; management consultancy activities; architecture 
and engineering activities; technical testing and analysis 

8 MB Scientific research and development 

8 MC Advertising and market research; other professional, scientific and technical activities; veterinary activities 

8 N Administrative and support service activities 

9 O Public administration and defence; compulsory social security 

9 P Education 

9 QA Human health services 

9 QB Social work activities 

10 R Arts, entertainment and recreation 

10 S Other services activities 

10 T 
Activities of households as employers of domestic personnel and undifferentiated goods and services 
production of households for own use 

10 U Activities of extra-territorial organizations and bodies 
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Table A2.2 - Complete decomposition of CO2 emissions intensity change (1996-2009) 

 

 CI effect CE effect EI effect ES effect Var A 

1996-1997 0.002 -471% -0.018 5079% -0.023 6641% 0.039 -11149% 0 100% 

1997-1998 -0.017 559% -0.019 623% 0.053 -1741% -0.02 659% -0.003 100% 

1998-1999 -0.01 -28% -0.075 -197% 0.118 311% 0.005 13% 0.038 100% 

1999-2000 0.004 -6% 0.051 -89% -0.095 164% -0.018 31% -0.058 100% 

2000-2001 -0.009 30% 0.006 -21% -0.003 11% -0.023 81% -0.029 100% 

2001-2002 -0.007 -68% -0.035 -353% 0.059 589% -0.007 -68% 0.01 100% 

2002-2003 0.005 -10% 0.056 -113% -0.112 228% 0.003 -5% -0.049 100% 

2003-2004 -0.002 -421% -0.038 -7148% 0.038 7103% 0.003 567% 0.001 100% 

2004-2005 0.001 15% -0.03 -398% 0.038 511% -0.002 -28% 0.007 100% 

2005-2006 0 0% 0.037 -75% -0.106 217% 0.02 -42% -0.049 100% 

2006-2007 -0.002 5% 0.028 -84% -0.059 177% 0 1% -0.033 100% 

2007-2008 -0.005 27% -0.013 72% -0.013 71% 0.013 -70% -0.018 100% 

2008-2009 -0.003 14% 0.012 -58% 0.015 -73% -0.045 217% -0.021 100% 

1996-2009 -0.04 20% -0.03 15% -0.115 56% -0.02 10% -0.205 100% 

 

 

Table A2.3 - Complete decomposition of CO2 emissions intensity change (1996-2009) for groups A 
and B 
 

 CI effect CE effect EI effect ES effect Var A 

 A B A B A B A B A B 

1996-1997 0.002 0.002 -0.020 -0.001 -0.026 0.001 0.039 0.001 -0.006 0.004 

1997-1998 -0.015 -0.002 -0.020 0.000 0.055 -0.001 -0.019 -0.003 0.001 -0.005 

1998-1999 -0.010 0.000 -0.074 -0.001 0.123 -0.002 0.004 -0.001 0.043 -0.005 

1999-2000 0.005 0.000 0.049 0.001 -0.093 -0.002 -0.020 0.002 -0.058 0.000 

2000-2001 -0.007 -0.001 0.007 -0.001 0.000 -0.002 -0.019 -0.002 -0.019 -0.007 

2001-2002 -0.002 -0.005 -0.036 0.002 0.064 0.000 -0.006 -0.002 0.020 -0.005 

2002-2003 0.005 -0.001 0.056 0.000 -0.113 -0.002 0.004 0.001 -0.047 -0.001 

2003-2004 -0.002 0.000 -0.037 -0.002 0.042 -0.001 0.002 -0.002 0.006 -0.004 

2004-2005 0.002 0.000 -0.029 -0.001 0.040 0.000 0.002 -0.002 0.015 -0.003 

2005-2006 -0.001 0.000 0.042 -0.001 -0.097 0.000 0.021 -0.001 -0.035 -0.002 

2006-2007 0.003 0.000 0.026 -0.001 -0.048 -0.001 -0.002 0.000 -0.021 -0.002 

2007-2008 -0.005 0.000 -0.012 0.000 -0.010 0.001 0.014 -0.002 -0.013 -0.001 

2008-2009 -0.002 0.000 0.013 0.000 0.011 0.001 -0.041 -0.001 -0.019 -0.001 

1996-2009 -0.022 -0.008 -0.026 -0.006 -0.083 -0.005 -0.003 -0.014 -0.134 -0.032 
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Figure A2.1 - Complete decomposition of CO2 emissions intensity change in percentage of var A 

 

 
Figure A2.2 - Complete decomposition of CO2 emissions intensity change (1996-2009) 

 
 

CI effect (%) CE effect (%) EI effect (%) ES effect (%)

0.118 

-0.205 
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Chapter 3 

Carbon Dioxide Emissions Intensity of Portuguese 

Manufacturing Industry: A Convergence Analysis and 

Econometric Approach 

 

3.1 Introduction 

 

3.1.1 Background and Motivation 

 

The energy-related Carbon Dioxide (CO2) emissions, in the European Union (EU)-15, 

produced by the manufacturing sector, changed between 1990- 2010 from 37% to 30%.  

The direct effect (fuel driven) and the indirect effect (due to industrial electricity 

consumption) both contribute towards these emissions. At worldwide level, the industrial 

(manufacturing) sector accounted for 26% of global energy use and 18.5% of global 

CO2 emissions in 2010 [1].  

 

Portugal managed to meet Kyoto Target for the period 2008-2012. In 2011 it showed a 

level of emissions 16% higher than the 1990 level (its limit was 27%) [2]. However, the 

goals of reducing emissions are not restricted to this period. In 2009 a new package of 

environmental measures was adopted at the EU level, known as the 20-20-20 targets: 

by 2020 there should be a 20% reduction of Greenhouse Gases (GHG) emissions 

compared with 1990, 20% share of renewable energy in EU energy consumption, and 

energy improvement by 20%. 

 

To meet these goals, it is important to realize which variables affect GHG emissions, 

particularly the intensity of emissions (emissions by unit of output). It is important to 

understand the evolution and influence between emissions intensity, energy intensity, 

and the share of fossil fuels in total energy consumption. 
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The main gas emitted in Portugal is CO2, representing approximately 74% of total 

GHGs emissions expressed as global warming potential (GWP) weighted emissions [2]. 

The energetic and industrial sectors are the major emitters of CO2 (68.2%), despite its 

weight declined in favour of the services and transport sectors (figure A3.1 in appendix). 

 

Indeed, the emissions intensity and the energy intensity of the industrial and energy 

sectors are well above the average of the economy (figure A3.2 and A3.3 in appendix), 

which highlights the importance of looking to these sectors as paramount in achieving 

environmental goals. 

 

The question becomes even more relevant if we observe that most of the energy used 

comes from fossil fuels (coal, oil and natural gas), and that this percentage is much 

higher in the manufacture and energy sectors than the average for the Portuguese 

economy (figure A3.4 in appendix). This explains the relative high value of intensity of 

emissions in these sectors. In 2009, this percentage was of 95,3% for the manufacture 

and energy sectors compared with 82,4% of the average of the economy. However, this 

path is changing with a progressive enhancement of renewable energy, in particular, the 

expansion of windmills [1]. 

 

Given the need to reduce the CO2 emissions coming from the manufacturing sector, it 

is important, for planning purposes, to know which manufacturing sub-sectors have the 

greatest potential for reducing energy use. CO2 emissions intensity is largely 

converging towards two distinct groups of that industry: one group with relatively high 

CO2 energy intensity (mainly energy sectors) and another with relatively low CO2 

emissions intensity. Robaina-Alves and Moutinho [3] refer that in Portugal there are 5 

manufacturing sectors that can be distinguished from the others by their emissions 

intensity: mining and quarrying, the manufacture of coke and refined petroleum 

products, the manufacture of chemicals and chemical products, the manufacture of 

rubber and plastic products, and other non-metallic mineral products and electricity, 

gas, steam and air-conditioning supply. Different energy drivers still are related and a 

priori, both spatial and temporal effects are expected between CO2 emissions intensity 
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and their drivers. On the one hand, there is a wide range of cross dependence of 

industrial sub-sectors and, on the other, the CO2 emissions intensity is expected to be 

mitigated over time. 

 

Although, the European Carbon Market imposes different caps to the various sectors 

(see Robaina-Alves, et. al. [4], for a sectoral analysis of the effects of this market in 

Portugal), they are exposed to a common commitment, and to the uniformity of public 

policies, for example, among others, the policy of reducing fossil fuel intensity and 

promoting renewable energy sources supporting the mitigation of CO2 emissions 

intensity. Therefore, it is important to: (i) know if there is a common pattern of emissions 

intensity, fuel intensity and energy intensity, between industries (convergence), to know 

if it justifies a more specific application of energy policies between sectors; (ii) study the 

long term effects of those specific variables on the mitigation of CO2 emissions. These 

two approaches can give relevant information for the policy making with regard to the 

timing of policy interventions and to the choice of policy instruments.  

 

Given all these specific objectives, we believe that the use of the convergence analysis, 

together with the use of the PCSEs econometric approach, allows us to evaluate, in the 

long-term, the existence of differences between the CO2 emission intensities and their 

main drivers in the Portuguese industrial sector and subsectors; and also allows to 

reach some conclusive evidence on the frequency in the changes of these differences 

of the intensities of emissions and their drivers. 

 

3.1.2 Literature Review 

 

In this research, we focused not only on CO2 emissions drivers, but also on the CO2 

emissions’ intensity drivers. In the latter, there are many studies that decompose CO2 

emissions intensity of manufacturing industries into several factors or effects. See for 

instance Huang [5], Sinton and Levine [6], Hamilton and Turton [7], Paul and 

Bhattacharya [8], Liao et al. [9], Ma and Stern [10], Zhang et al. [11], Zhao et al. [12], Oh 

et al. [13], Akbostanci et al. [14], Sheinbaum-Pardo et al. [15], O`Mahony et al. [16] and 
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Miketa [17] for studies of energy intensity or CO2 emissions intensity decomposition in 

industrial sectors. For Portugal, the following studies are known: Diakoulaki and 

Mandaraka [18], Hatzigeourgiou et al. [19] and Robaina-Alves and Moutinho [3], where 

the 'complete decomposition' technique to examine CO2 emissions intensity and its 

components is used. These studies are useful for understanding the methods of 

decomposition of energy–related CO2 emissions and for identifying the factors that 

have influenced the changes in the level of energy–related CO2 emissions. The most 

common are the output effect, the energy mix effect, the energy intensity effect and the 

structural effect. Hatzigeougiou et al. [19] also use the population effect and Diakoulaki 

and Mandaraka [18] the utility mix effect. 

 

To see if there is a common pattern in the pollution path or in the energy consumption 

path of different countries or sectors, there are works that analyse energy intensity or 

emissions intensity convergence. For instance, Robinson [20] uses the concepts of Beta 

convergence and stochastic convergence to study the ambition to create a single 

European Electricity Market. Newman et al. [21], assess Beta convergence of natural 

gas prices in European markets. Blot and Serranito [22], use the concepts of Sigma-

convergence, to justify the unit-root test analysis for the sectorial breaks in the fiscal 

policies in European Monetary Union (EMU). 

 

Especially in sectorial industrial studies, among others, Strazicich and List [23], 

examined the period 1960-1997 of carbon dioxide emissions in twenty-one industrial 

countries and tested the convergence for stochastic and conditional convergence. Using 

both panel unit root tests and cross-section regressions, they found significant evidence 

that CO2 emissions converged. Liddle [24], analysed the aggregate and sectoral 

convergence in the electricity intensity and energy intensity in IEA/OECD countries, and 

concluded that there is convergence, since the countries with the highest intensities 

exhibit downward trends, and many of the other countries show slight increasing trends. 

Aggregate electricity intensity has converged among countries, but less dramatically 

than aggregate energy intensity. The three analysed sectors (residential, industry and 

commercial) have converged at different rates. Commercial electricity intensity has a 
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distribution that is most characterized by a bell-shape while industry and residential 

electricity intensity have more bimodal distributions. Camarero et al. [25] using Phillips 

and Sul [26] methodology, test the convergence of CO2 emissions intensity and their 

determinants among OECD countries over the period 1960-2008, and they find that 

differences in emissions intensity convergence are more determined by differences in 

convergence of the carbonisation index rather than differences in the energy intensity. 

 

To study the influence of determinant variables on pollution we can refer to Hettige et al. 

[27], who used the panel OLS (fixed effects and random effects) for industrial water 

pollution, or Stern [28], who applied a panel data set for sulphur emissions using a 

econometric decomposition approach to estimate the Environmental Kuznets Curve 

(EKC) model. Cole et al. [29], used econometric panel estimation OLS with fixed effects 

and random effects to study the variables that influence pollution intensity. 

 

Others studied the influence of some variables on energy intensity, like Miketa [17], 

which conducted the panel analysis for ten manufacturing industries of 39 countries 

over 1971-1996. The results of this study show that capital formation has the effect of 

increasing energy intensity and this effect is stronger where sectorial output is larger.  

 

The purpose of this paper is to study: (i) the existence of convergence of some relevant 

ratios as CO2 emissions intensity, CO2 emissions by fossil fuel consumption, fossil fuel 

intensity, energy intensity and economic structure, between manufacturing sectors in 

Portugal, and (ii) the influence that the consumption of fossil fuels, the consumption of 

aggregate energy and GDP have on CO2 emissions, and the influence that the ratios in 

which CO2 emissions intensity decomposes can affect that variable, using an 

econometric approach.  As usual, decomposition analysis leaves a residual term, which 

is the unexplained portion of the change in an aggregate variable, and the 

decomposition analysis is a series expansion, truncated after the first order terms. For 

that limitation, we used the Panel Corrected Standard Errors (PCSE) estimator. In two 

different and complementary methodologies, we conducted the analysis for the 16 

aggregated manufacturing sectors (Group A) and for the group of the 5 most polluting 
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manufacturing sectors (concerning emissions intensity), composed mainly by energy 

sectors (Group B). This methodology allows one, on the one hand, to observe whether 

there is a common behaviour among the variables determining the emissions for the 

two groups of industries. If so, then it is useful to study the influence in terms of 

elasticity of these same variables on emissions. This allows us to evaluate the effect 

that energy policies affecting the variables studied will have on emissions, and if 

common policies will have the same effect on the behaviour of the variables for the 

various industries. 

 

The remainder of this paper is organised as follows. Section 2 describes the data and 

methodology. The main results are reported in Section 3 and Section 4 concludes. 

 

3.2 Data and Methodology 

 

We obtained the data from the INE (National Accounts), with an aggregation of 16 

Portuguese industrial sectors (group A) and a sub group of 5 industries (group B). We 

present a table in appendix with the sectors included in these groups. We considered 

the period 1996 – 2009, because it was the most recent period for which we had 

common data for all variables. 

 

We considered data of CO2 emissions from fossil origin, in 103 tons. To obtain fossil 

fuels consumption, we added INE data of natural gas, coal and lignite, petroleum coke, 

fuel oil, diesel oil, motor gasoline, LPG and other petroleum products, in GJ. We used 

consumption of energy data (emissions relevant), in GJ, and Gross Domestic Product 

from the production side at market and constant prices, in 106 Euros. 

 

3.2.1 Convergence 

 

The convergence analysis intends to see if stochastic differences in the long-term, 

between industrial sectors, means that accumulated random differences in the short-

term constitute an explanation to see if the shocks on those series persist over time. 
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The convergence was calculated for five ratios, in the two groups of industries in Portugal. 

The ratios are: (i) CO2 emissions/GDP (emissions intensity) (ii) CO2 emissions/fossil 

fuels consumption (denoted by CI), (iii) fossil fuels consumption/total energy 

consumption (denoted by CE), (iv) energy/GDP (denoted by energy intensity or EI) and 

(v) sector GDP/ GDP (denoted by economic structure or ES). 

 

Two measures of convergence where calculated (following Boyle and McCarthy [30]): 

sigma convergence and gamma convergence. Sigma convergence tracks the inter-

temporal change. For instance for the ratio CE it is calculated as: 

 

𝜎 =  (
var (𝐶𝐸𝑡𝑖)/mean(𝐶𝐸𝑡𝑖 )

var (𝐶𝐸𝑡0)/mean(𝐶𝐸𝑡0) 
) 

 

Where ti is the current year and t0 is the first year (1996). If we observe a fall in this 

measure it means that there is sigma convergence. 

 

Gamma convergence is useful to analyse if the most polluting sectors occupy the same 

position at the beginning and at the end of the considered period, and if the importance 

of the emissions intensity drivers remains the same throughout this period. For instance 

for the ratio CE it is calculated as: 

 

𝛾 =  (
 var (𝑅𝐶𝐸𝑡𝑖 + 𝑅𝐶𝐸𝑡0)

var (𝑅𝐶𝐸𝑡0 ∗ 2)
) 

 

Gamma ranges from zero to unity. If it is close to zero it means that there was mobility 

in the position of the sectors. RCE is the rank of the sector in current year ti or in the 

first year t0, for the ratio CE. 
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3.2.2 Econometric approach  

 

With this methodology we intend to analyse the influence on CO2 emissions (dependent 

variable) of variables such as the consumption of fossil fuels, energy consumption and 

production. On the other hand, taking as dependent variable the intensity of CO2 

emissions, we analyse the influence of the ratios previously defined as CI, CE, EI and ES. 

The study is made for the two groups of Portuguese industries. 

 

The econometric methodology follows Marques and Fuinhas [31]. We employed the 

following steps: (i) analysis of the presence of heteroskedasticity, panel autocorrelation 

and contemporaneous correlation, (ii) the PCSE estimator is applied (iii) we confirm  the 

robustness of results applying the Random effect estimator (REE), and the Fixed effect 

estimator (FEE). 

 

For group wise heteroskedasticity, following Baum [32, 33], and as reported in Marques 

and Fuinhas [31], a modified Wald statistic was provided in the residuals of a fixed 

effect regression model. For analyzing the presence of serial correlation, we employed 

the Wooldridge test for autocorrelation in panel data. The null hypothesis of no first-

order autocorrelation is rejected. The existence of cross section independence was 

tested by applying the parametric test proposed by Pesaran [34] and the semi-

parametric test proposed by Frees [35, 36], either to Fixed effect estimator or Random 

effect estimator.  

 

We proposed two models, based on a panel regression analysis of drives of energy 

related CO2 emissions, and CO2 emissions intensity, in Portuguese industrial sectors.  

The first regression model with two versions (linear and no linear regression) is 

developed as follows: 

 

Model 1: 2 1 1 2 3 1 1.          it t i it i ct i it i t itLnCO LnF Fuel LnECons LnGDP d d
 

 

where the dependent variable, CO2 refers to CO2 emissions, and the explanatory 
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variables are, FFuel that refers to Fossil Fuel consumption, ECons that refers to Energy 

consumption and GDP that refers to the sector production. We expect all variables to 

have positive impact on the dependent variable. i refers to the industry sector and t to 

the year. The error term is 1    it it it it  , where it  is serially uncorrelated, but 

correlated over sectors.  

 

In the second regression model we studied the influence on CO2 emissions intensity 

(dependent variable) of the factors in which it can be decomposed (explanatory 

variables). The equation developed as follows: 

 

Model 2: 

ln ( 𝐶𝑂2

𝐺𝐷𝑃𝑖𝑡

) = 𝛼𝑖𝑡

+ 𝛽1𝑖 ln ( 𝐶𝑂2

𝐹𝐹𝑢𝑒𝑙𝑖𝑡

)

+ 𝛽2𝑖 ln (𝐹𝐹𝑢𝑒𝑙𝑖𝑡

𝐸𝐶𝑜𝑛𝑠𝑖𝑡

) + 𝛽3𝑖 ln (𝐸𝐶𝑜𝑛𝑠𝑖𝑡

𝐺𝐷𝑃𝑖𝑡

) + 𝛽4𝑖 ln (𝐺𝐷𝑃𝑖𝑡

𝐺𝐷𝑃
) + 𝑑2𝑖 + 𝑑2𝑡 + 𝜇𝑖𝑡

 

 

Each factor or driver in this regression can be interpreted as follows: the dependent 

variable 2 / itCO GDP , namely emissions intensity can be influenced by the explanatory 

variables as the ratio 2 / . itCO F Fuel  namely the CO2 emissions by unit of fossil fuel, the 

ratio . / itF Fuel ECons  namely the fossil fuel-intensity effect,  indicates the proportion of 

total energy consumption from fossil sources, the ratio /it itECons GDP , namely energy-

intensity effect of economic output, reflecting efficiency of energy use in the industrial 

sector and the ratio 𝐺𝐷𝑃𝑖𝑡/𝐺𝐷𝑃 that reflects the relevance of the sector on the whole 

industry, that is, the economic structure of industry. 
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3.3 Results   

 

3.3.1 Convergence 

 

Observing the sigma convergence of CO2 emissions intensity for the 2 groups of 

industries (figure 3.1), we can see that there is convergence, which was most marked 

between 1996 and 1999 and between 2003 and 2006. The convergence is more 

evident for group B. 

Figure 3.1 - Sigma Convergence of CO2 emissions intensity

 

Analyzing sigma convergence for the various factors on which intensity of emissions 

decomposes (figure 3.2), we can see that in group A, the highest degree of 

convergence is presented by EI factor, which means, in what concerns energy intensity, 

those sectors tend to have a similar behaviour. The value for this factor in 2009 is very 

close to zero (0.062). 
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Figure 3.2 - Sigma Convergence for group A 

 
 

ES factor also presents convergence for group A, although not as pronounced. On the 

other hand, CE and CI factors are irregular in their pattern of convergence. CE tends to 

converge until 2002, but thereafter diverge and CI offers a wide divergence in 2001 and 

is back to converge in 2002. This shows that in terms of the mix of fossil fuels used and 

in terms of the share of fossil fuels in total energy consumption, industrial sectors are 

not yet harmonized. 

As for sigma convergence in group B (figure 3.3), we can see that CI and ES have 

among themselves a similar trajectory, until 2004. CI has two periods of convergence 

(2000-02 and 2005-09) and two periods of divergence (1996-99 and 2002-05). ES 

shows a slight trend of convergence in the period studied. The ratios EI and CE have an 

irregular route although similar until 2005 and from then CE clearly diverges and EI 

converges, approaching this indicator to zero. This last ratio is the one with a greater 

tendency of convergence. 
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Figure 3.3 - Sigma Convergence for group B 

 

 
 

Regarding gamma convergence, for the intensity of CO2 emissions (figure 3.4), there 

was a clear convergence of industries in group A until 2002 and from then there was a 

slight tendency to diverge. There is a strong convergence in industries group B between 

1996-99 and in 2006, and in other years there is a slight divergence. In the overall 

period the trend in the two groups is for convergence, which is more pronounced in 

group A. 

Figure 3.4 - Gamma Convergence of CO2 emissions intensity 

 

 

For group A all ratios have a tendency to converge (figure 3.5). EI appears more 

unstable with divergence in 2002-03 and 2004-09. CE introduces a period of divergence 
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from 2004. In figure 3.6 it can be seen that for group B the ratios ES and EI have a 

slight downward trend (convergence) and in some years have values very close to zero 

(1999 to EI and 2006 to ES). CE and CI present instability with a growing trend 

(divergence), especially CI. Nevertheless, in some years this indicator is close to zero 

(1998 and 2000 for CE and 2004 for CI). 

 

Figure 3.5 - Gamma Convergence for group A 

 
 

Figure 3.6 - Gamma Convergence for group B 
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Comparing the gamma convergence for the two groups we can see that the trajectory of 

ES and EI is very similar. The CE ratio between the period 1997-2001 is much lower in 

group B due to a sudden drop of this indicator from 1997 to 1998. After 2001 the 

trajectory of convergence is very similar for the two groups of industries. The CI ratio in 

group A has a more stable trajectory of convergence than in group B, in which there are 

periods of great divergence. 

 

3.3.2 Econometric approach  

 

Initial results of specifications tests are reported in table 3.1. The existence of serial 

correlation was tested and the Wooldridge test for autocorrelation was performed; the 

results rejected, at the 1% level, the null hypothesis of no first-order autocorrelation for 

group A and group B. Analysing for possible heteroskedasticity, a modified Wald statistic 

for group wise heteroskedasticity was used for two industrial group sectors and the result 

is significant at the 1% level. 

 
Table 3.1 - Specification tests 

Model 1 – Group A : 16 Industries      

  Pooled 
Random 

effects 
Fixed  

Effects 

Modified Wald test (χ2)   57372*** 

Pesaran's test  8.940*** 
    

4.040*** 

Frees' test   2,518*** 2,624*** 

Wooldridge test F(N(0,1)) 409.10***  

Model 2 – Group A : 16  Industries      

  Pooled 
Random 

effects 
Fixed 

 Effects 

Modified Wald test (χ2)   
1.3e+08**

* 

Pesaran's test  -1.538 3.254*** 

Frees' test  2,834*** 3,462*** 

Wooldridge test F(N(0,1)) 
725.58**

*  
 

 
 
Model 1 – Group B : 5 Industries      

  Pooled 
Random 

effects 
Fixed  

Effects 

Modified Wald test (χ2)   608*** 

Pesaran's test  3.556***     1.311 

Frees' test   0.239 -0.224 
Wooldridge test F(N(0,1))                                                                              

43.28***   
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Model 2 – Group B : 5  Industries      

  Pooled 
Random 

effects 
Fixed 

 Effects 

Modified Wald test (χ2)   
4.2e+05**

* 

Pesaran's test  0.287 -2.088 

Frees' test  0.074 0.538*** 

Wooldridge test F(N(0,1)) 49.55***   

Notes: The Wooldridge test is normally distributed N(0,1) and tests the null hypothesis of no serial correlation; ***, ** and *, 
denote 1,5 and 10% significance level, respectively;  The Modified Wald Test has x2 distribution and tests the null hypothesis;  
Pesaran test the null hypothesis of cross section,  independence. 

 
 
 
The existence of cross section independence was tested applying the Pesaran [34] and 

Frees [36] procedure either to the fixed effect or the random effect models. We reject 

the null hypothesis of no cross-sectional dependence, for the 2 groups of industries and 

for the two models. Globally, the results suggest the evidence of contemporaneous 

correlation across all the industrial sectors and reveal (through fixed and random effect 

model), at 1% significance level, the rejection of the null hypothesis of cross sectional 

independence.  

 

For each model 1 and 2, we estimated four submodels using PCSE estimator, to 

evaluate the robustness of the estimations. While presenting the results of the four 

submodels (in tables 3.2 and 3.3), we only analyse the submodel (III) by considering the 

most appropriate given the specification test results. 

Model 1 reveals for group A and for group B that explanatory variables have, jointly, a 

great significance explaining CO2 emissions. From table 3.2 we can see that a 1% 

increase on fossil fuel consumption (natural gas, coal and lignite, petroleum, coke, fuel 

oil, diesel oil, motor gasoline, LPG and other petroleum products) induces an increase 

around 92% on CO2 emissions for all panel group A (16 industries), while a 1% 

increase in energy consumption induces an increase on CO2 emissions, around 12%, 

ceteris paribus. For group B, these impacts are of 58% and 60% respectively.  
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Table 3.2 - Results of Parsimonious 

Model 1 – Group A    

Dependent variable  
LnCO2i,t             

      
 P

CSE       

Independent variables 
(I) 

Corr(AR1)  
(II) 

Corr(psAR1)  
(III) Corr(AR1) 

hetonly  
(Iv) 

Corr(linear) 

Ln F.Fuel  
0.91924 

(0,000)*** 
 

0.96330 
(0,000)*** 

 
0.91924 

(0,000)*** 
 

0.97954 
(0,000)*** 

Ln ECons  
0.12099 

(0,000)*** 
 

0.12998 
(0,000)*** 

 
0.12099 

(0,000)*** 
 

0.13650 
(0,000)*** 

Ln GDPi  
0,03567 

(0,187) 
 

- 0,01411 
(0,630) 

 
0,03567 

(0,182) 
 

- 0,10854 
(0,000)*** 

Constant 
- 

10,2873 
(0,000)*** 

 
- 10,709 

(0,000)*** 
 

- 10,287 
(0,000)*** 

 
- 10,429 

(0,000)*** 

Observations 240  240  240  240 

R
2 
/ Pseudo R

2
 0,9568  0,9806  0,9568  0,9844 

Wald (χ2) 
2523 

(0,000)*** 
 

9619 
(0,000)*** 

 
2745 

(0,000)*** 
 

588757 
(0,000)*** 

Model 1 – Group B    

Dependent variable  
LnCO2i,t             

      
 P

CSE       

 Independent variables 
(I) 

Corr(AR1)  
(II) 

Corr(psAR1)  
(III) Corr(AR1) 

hetonly  
(Iv) 

Corr(linear) 

Ln F.Fuel  
0.58188

5 
(0,000)*** 

 
0.579763 

(0,000)*** 
 

0.581885 
(0,000)*** 

 
0.468375 

(0,000)*** 

Ln ECons  
0.60065

4 
(0,000)*** 

 
0.481002 

(0,000)*** 
 

0.600654 
(0,000)*** 

 
0.82296 

(0,000)*** 

Ln GDPi  
0,01263

0 
(0,436) 

 
 0,01366 

(0,249) 
 

0,012630 
(0,506) 

 
- 0,01585 

(0,848) 

Constant 
- 

12.4141 
(0,000)*** 

 
- 10,235 

(0,000)*** 
 

- 12.4141 
(0,000)*** 

 
- 14,241 

(0,000)*** 

Observations 75  75  75  75 

R
2 
/ Pseudo R

2
 0,989  0,998  0,989  0,990 

Wald (χ2) 
1694 

(0,000)*** 
 

3386 
(0,000)*** 

 
1360 

(0,000)*** 
 

8121 
(0,000)*** 

Notes: The   Wald   test   has χ2   distribution   and   tests   the   null   hypothesis   of   non- significance   of   all   coefficients of 

explanatory variables; panel corrected standard errors are reported in brackets. ***, **, *, denote significance at 1, 5 and 10% 

significance levels, respectively; Corr (AR1) - first-order autoregressive error, Corr (psAR1) – correlation over sectors and 

autocorrelation sector; Corr (AR1) hetonly – heteroskedastic over sectors and common first order autoregressive error AR(1); Corr 

(linear) – correlation over sectors and no autocorrelation. 
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Table 3.3 - Results of Parsimonious 

Model 2 –Group A      

Dependent variable 
CO2/GDPi,t               

Independent variables     

   
  
PCSE       

  
(I) 

Corr(AR1)  
(II) 

Corr(psAR1)  
(III) Corr(AR1) 

hetonly  
(Iv) 

Corr(linear) 

Ln CO2 /F.Fuel  
1.12524 

(0,000)*** 
 

1.11370 
(0,000)*** 

 
1.12524 

(0,000)*** 
 

1.2881 
(0,000)*** 

Ln F.Fuell/EC  
0.97062

4     
(0,000)*** 

 
0,984384 

(0,000)*** 
 

0.970624     
(0,000)*** 

 
0.98232 

(0,000)*** 

Ln EC/GDPi  
0.95827

6 
(0,000)*** 

 
0.962707 

(0,000)*** 
 

0.958276 
(0,000)*** 

 
0.95807 

(0,000)*** 

Ln GDPi/GDP 
0.98444

9 
(0,000)*** 

 
0.962261 

(0,000)*** 
 

0.984449 
(0,000)*** 

 
0.88676 

(0,000)*** 

Constant 
1.36185

5 
(0,028)** 

 
1.187062 

(0,000)*** 
 

1.361855 
(0,022)** 

 
2.5969 

(0,000)*** 

Observations 240  240  240  240 

R
2 
/ Pseudo R

2
 0,9237  0,9801  0,9237  0,9764 

Wald (χ2) 
27370 

(0,000)*** 
 

33856 
(0,000)*** 

 
28951 

(0,000)*** 
 

1.01e+06 
(0,000)*** 

Model 2 – Group B      

Dependent variable 
CO2/GDPi,t               

Independent variables     

   
  
PCSE       

  
(I) 

Corr(AR1)  
(II) 

Corr(psAR1)  
(III) Corr(AR1) 

hetonly  
(Iv) 

Corr(linear) 

Ln CO2 /F.Fuel  
1.22921 

(0,000)*** 
 

1.17247 
(0,000)*** 

 
1.22921 

(0,000)*** 
 

1.7279 
(0,000)*** 

Ln F.Fuell/EC  
1.05798     

(0,000)*** 
 

1,04377 
(0,000)*** 

 
1.05798     

(0,000)*** 
 

1.07328 
(0,000)*** 

Ln EC/GDPi  
1.03328 

(0,000)*** 
 

0.997317 
(0,000)*** 

 
1.03328 

(0,000)*** 
 

1.00882 
(0,000)*** 

Ln GDPi/GDP  
1.0442 

(0,000)*** 
 

1.03893 
(0,000)*** 

 
1.0442 

(0,000)*** 
 

1.0026 
(0,000)*** 

Constant 
1.85526 

(0,183) 
 

1.70022 
(0,071)* 

 
1.85526 

(0,176) 
 

1.46921 
(0,082)* 

Observations 75  75  75  75 

R
2 
/ Pseudo R

2
 0,881  0,979  0,881  0,972 

Wald (χ2) 
15372 

(0,000)*** 
 

33856 
(0,000)*** 

 
9361 

(0,000)*** 
 

154287 
(0,000)*** 

Notes: The   Wald   test   has χ2   distribution   and   tests   the   null   hypothesis   of   non- 
significance   of   all   coefficients of explanatory variables; panel corrected standard errors are reported in brackets. ***, 
**, *, denote significance at 1, 5 and 10% significance levels, respectively; Corr (AR1) - first-order autoregressive error, 
Corr (psAR1) – correlation over sectors and autocorrelation sector; Corr (AR1) hetonly – heteroskedastic over sectors and 
common first order autoregressive error AR(1); Corr (linear) – correlation over sectors and no autocorrelation. 

 

 

 

In the PCSE model 2 (table 3.3.) we have a good jointly significance of explanatory 

variables towards CO2 emissions intensity. The model for group A shows that a 1% 
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increase of the ratio CO2 emissions by fossil fuel consumption induces an increase of 

113% on CO2 emissions intensity, a 1% increase in the ratio fossil fuel consumption by 

energy consumption induces an increase of 97% on CO2 emissions intensity, a 1% 

increase in the energy intensity ratio induces an increase of 96% on CO2 emissions 

intensity and the impact of a 1% change in the economic structure (given by the ratio 

sectorial GDP/GDP) induces a change of 98% on the dependent variable, ceteris 

paribus. For group B the magnitude of the impacts is bigger. The values are of 123%, 

106%, 103% and 104% for the impacts of explanatory variables mentioned above.  

 

To check the robustness of the results, confirming a possible inefficiency in the 

estimation of coefficients and bias in the estimation of errors, one should compare the 

similarity with the estimators obtained through the panel with random effects and fixed 

effects. If the results are different from the PCSE estimators, the PCSE results are more 

robust (minimum variance). The results of the estimates for both FEE and REE lead to 

the erroneous rejection of the power to explain some explanatory variables, such as the 

ratio Fossil Fuel / Energy Consumption and the ratio CO2 / Fossil Fuel. The comparison 

of both FEE and REE is made regarding the inefficiency in coefficients estimation in 

three options: Conventional Standard Errors (CSE), Robust Standard Errors (RSE) and 

First-order Autoregressive Errors (AR (1)). 

 

In fact, those estimators are not well suited to dealing simultaneously with both serial 

and contemporaneous correlations, for which we found statistical evidence with the 

PCSE estimator. Therefore, with both results of FEE and REE presented in next table 

3.4, we can see the parameters revealing similar significances into both estimators, and 

the results of the Wald tests revealing statistical significance at 1% level, rejecting the 

null hypothesis of non-significance, as a whole of the parameters of the ratio 

explanatory variables. On the other hand, LM test statistically and strongly reject the null 

hypothesis of the existence of industrial sectors specific effects. In fact, the results do 

not invalidate the poor quality and inefficiency for both estimators FEE and REE, while 

the PCSE estimator is highly efficient; in general the variance of the PCSE estimators is 

smaller than FEE or REE.     



91 
 

 
Table 3.4 - Results from usual panel data estimators 

 

Model 1- Group A 

Dependent variable Ln 
CO2i,t                

  
Random 

effects 
Fixed 

effects  
Random 

effects 
Fixed 

effects  
Random 

effects Fixed effects 

Independent variables CSE   RSE   AR(1)  

Ln F.Fuel  
0.84454 

(0,000)*** 
0.61941 

(0,000)*** 
 

0.84454 
(0,000)*** 

0.69412 
(0,044)** 

 
0.92291 

(0,000)*** 
0.81502 

(0,000)*** 

Ln ECons  
0.24544 

(0,000)*** 
0,29538 

(0,000)*** 
 

0,24544 
(0,159) 

0,29538 
(0,195) 

 
0.12664 

(0,001)*** 
0.12240 

(0,002)*** 

Ln GDPi  
-0.073898 

(0,060)* 
-0.04977 

(0,227) 
 

-0.07389 
(0,327) 

-0,04977 
(0,506) 

 
0.023200 

(0.499) 
0.06852 

(0.085)* 

Constant 
-10.387 

(0,000)*** 
-7,96367 

(0,000)*** 
 

-10.387 
(0,000)*** 

-7.9636 
(0,020)** 

 
-10.3424 

(0,000)*** 
-9.02897 

(0.000)*** 

Observations 240 240  240 240  240 240 

Ftest   
88.50 

(0,000)*** 
  

10.15 
(0,000)*** 

  
147.81 

(0,000)*** 

Wald (χ2) 
1164.20 

(0,000)*** 
  

469.40 
(0,000)*** 

  
1699.09 

(0,000)*** 
 

Hausman (χ2)  
14.70 

(0,002)*** 
      

Model 1- Group B 

Dependent variable Ln 
CO2i,t                

  
Random 

effects 
Fixed 

effects  
Random 

effects 
Fixed 

effects  
Random 

effects Fixed effects 

Independent variables CSE   RSE   AR(1)  

Ln F.Fuel  
0.4637 

(0,000)*** 
0.65898 

(0,000)*** 
 

0.4637 
(0,000)*** 

0.65898 
(0,007)*** 

 
0.92291 

(0,000)*** 
0.81502 

(0,000)*** 

Ln ECons  
0,82296 

(0,000)*** 
0,16469 

(0,055)* 
 

0,82296 
(0,000)*** 

0,16469 
(0,280) 

 
0.12664 

(0,001)*** 
0.12240 

(0,002)*** 

Ln GDPi  
-0.00158 

(0,937) 
0.00045 

(0,983) 
 

-0.00158 
(0,918) 

0.00045 
(0,954) 

 
0.023200 

(0.499) 
0.06852 

(0.085)* 

Constant 
-14.241 

(0,000)*** 
-6.0433 

(0,000)*** 
 

-14.241 
(0,000)*** 

-6.0433 
(0,000)*** 

 
-10.3424 

(0,000)*** 
-9.02897 

(0.000)*** 

Observations 75 75  75 75  240 240 

Ftest   
65.42 

(0,000)*** 
  

39.91 
(0,002)*** 

  
147.81 

(0,000)*** 

Wald (χ2) 
7193 

(0,000)*** 
  

12371 
(0,000)*** 

0.65898 
(0,007)*** 

 
1699.09 

(0,000)*** 
 

Hausman (χ2)  
51.83 

(0,000)*** 
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Model 2  -Group A               

Dependent variable CO2 / 
GDPi,t                

  
Random 

effects 
Fixed 

effects  
Random 

effects 
Fixed 

effects  
Random 

effects 
Fixed 

effects 

Independent variables CSE   RSE   AR(1)  

Ln CO2 /F.Fuel  
1.03767 

(0,000)*** 
1.02676 

(0,000)*** 
 

1.03767 
(0,000)*** 

1.02676 
(0,000)*** 

 
1.07412 

(0,000)*** 
0.98498 

(0,000)*** 

Ln F.Fuel / EC  
1.00231 

(0,000)*** 
1.05227 

(0,000)*** 
 

1.00231 
(0,000)*** 

1.05227 
(0,000)*** 

 
0.98608 

(0,000)*** 
0.971396 

(0,000)*** 

Ln EC / GDPi  
0.99476 

(0,000)*** 
1.04636 

(0,000)*** 
 

0,99476 
(0,000)*** 

1.04637 
(0,000)*** 

 
0.96809 

(0,000)*** 
0.938048 

(0,000)*** 

Ln GDPi/ GDP  
0.96688 

(0,000)*** 
1.02978 

(0,000)*** 
 

0,96688 
(0,000)*** 

1.02978 
(0,000)*** 

 
0.965222 

(0,000)*** 
1.05280 

(0,000)*** 

Constant 
0.19731 

(0.809) 
-0.13274 

(0,878) 
 

0,1973 
(0,557) 

-0.13274 
(0,680) 

 
0.75658 

(0.493) 
0.42663 

(0.405) 

Observations 240 240  240 240  240 240 

Ftest   
116.51 

(0,000)*** 
  

798.84 
(0,000)*** 

  
55.90 

(0,000)*** 

Wald (χ2) 
1025 

(0,000)*** 
  

18856 
(0,000)*** 

  
1098 

(0,000)*** 
 

Hausman (χ2)  
1.99 

(0,737) 
      

Model 2  -Group B               

Dependent variable CO2 / 
GDPi,t                

  
Random 

effects 
Fixed 

effects  
Random 

effects 
Fixed 

effects  
Random 

effects 
Fixed 

effects 

Independent variables CSE   RSE   AR(1)  

Ln CO2 /F.Fuel  
1.17279 

(0,000)*** 
1.05519 

(0,009)*** 
 

1.17279 
(0,000)*** 

1.05519 
(0,000)*** 

 
1.20824 

(0,000)*** 
0.92992 

(0,055)* 

Ln F.Fuel / EC  
1.07328 

(0,000)*** 
1.24416 

(0,002)*** 
 

1.07328 
(0,000)*** 

1.24416 
(0,006)*** 

 
1.06474 

(0,000)*** 
0.80196 

(0,085)* 

Ln EC / GDPi  
1,00882 

(0,000)*** 
1.084523 

(0,000)*** 
 

1,00882 
(0,000)*** 

1.084523 
(0,000)*** 

 
1.0767 

(0,000)*** 
0.87071 

(0,004)*** 

Ln GDPi/ GDP  
1,00262 

(0,000)*** 
1.12903 

(0,000)*** 
 

1,00262 
(0,000)*** 

1.12903 
(0,000)*** 

 
1.0346 

(0,000)*** 
0.98885 

(0,004)*** 

Constant 
1,46921 

(0,563) 
0.04450 

(0,991) 
 

1,46921 
(0,259) 

0.04450 
(0,951) 

 
1.67607 

(0.526) 
0.62248 

(0.796) 

Observations 75 75  75 75  75 75 

Ftest   
8.43 

(0,000)*** 
  

159.45 
(0,000)*** 

  
3.65 

(0,009)*** 

Wald (χ2) 
2513 

(0,000)*** 
  

265897 
(0,000)*** 

  
819 

(0,000)*** 
 

Hausman (χ2)  
0.88 

(0,927) 
      

Notes:   The   F-test tests the null hypothesis of non-significance as a whole of the estimated parameters; The Wald test has χ2 distribution 
and tests  the null hypothesis of non-significance of all coefficients of explanatory variables; P>l z l and  P>l t l are reported in brackets. ***, **, *, 
denote significance at 1, 5 and 10% significance levels, respectively;  CSE - Conventional Standard Errors; RSE - Robust Standard Errors; 
Corr(AR1) - first-order autoregressive error; the regressions were performed in Stata 12. 
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3.4 Conclusions and policy implications 

 

The purpose of this paper is to study: (i) the existence of convergence of some relevant 

ratios as CO2 emissions intensity, CO2 emissions by fossil fuel consumption, fossil fuel 

intensity, energy intensity and economic structure, between manufacturing sectors in 

Portugal, and (ii) the influence that the consumption of fossil fuels, the consumption of 

aggregate energy and GDP have on CO2 emissions, and the influence that the ratios in 

which CO2 emissions intensity decomposes can affect that variable, using an 

econometric approach. We conducted the analysis for aggregated manufacturing of 16 

sectors (Group A) and for the group of 5 most polluting manufacturing sectors 

(concerning emissions intensity), composed mainly by energy sectors (Group B). 

 

From this analysis we can highlight two set of conclusions. The first one is related with 

convergence. In what concerns sigma convergence, emissions and energy intensity, 

sectors tend to have similar behaviour, even these similarities are bigger for industries 

in group B. There is also convergence in the economic structure, higher for group A. In 

fact, in 1999 there were more discrepancies between sectoral GDP than in 2009. 

Sectors with much importance in 1999, as CB, CC and CG decreased its importance 

significantly (see graph in appendix). Particularly in group B, the sectors CG, EC and D 

lost relative importance in consideration of the CD sector. In terms of the mix of fossil 

fuels used, industrial sectors are not yet harmonized, that is, there is not a common 

behaviour between sectors. CI factor is also irregular in its pattern of convergence for 

the two groups but the trend is to converge, more evident for group A. Therefore, for the 

intensity of emissions and for energy intensity, there is a trend towards harmonization of 

sectors for the whole period, most evident in group B. For emissions by fossil fuel and 

the structure of the economy there is more harmonization in group A. 

 

Regarding gamma convergence, in the overall period the trend in the two groups is for 

convergence for all ratios, which means that the sectors decreased their discrepancies 

in terms of its rank position, that is, the most polluting sectors decreased their 

importance in relation to the various ratios studied. An exception is the ratio CI and CE 
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for group B, where sectors did not change their rank position. This reveals difficulties in 

the change of fossil fuel mix, and in the substitution of fossil fuels by renewable energy, 

in the most polluting sectors, which does not happen for all industries included in group 

A. 

 

In the Portuguese manufacturing industry, the CO2 emissions intensity and their 

energy-related drivers were converging towards two distinct industrial groups: one of 

relatively high CO2 emissions intensity and the whole group of manufacturing 

industries. Indeed, when the manufacturing industry is disaggregated this way, the 

convergence is more evident in emissions intensity, energy intensity and the percentage 

of fossil fuels in the total energy consumption, for group B. It means this group of high 

emissions intensity has similar energy intensity and energy consumption mix, and that it 

is well connected in the energy trade and technology transfer systems in the 

manufacturing industry and other sectors, and that it has common Government 

commitment for reducing the CO2 emissions intensity and improving efficiency in the 

use of energy or shifting toward less fossil fuel consumption.  

 

In the convergence analysis stochastic differences, in the long-term, between industrial 

sectors, means that accumulated random differences in the short-term constitute an 

explanation to see if the shocks on those series persist over time. This same evidence 

is of interest to energy policy makers because, evidence of a random shock can reverse 

the direction wanted to those variables, among others, those that promote productive 

efficiency in these sectors with the use of new cleaner technologies. This is important to 

understand, specifically for Portugal, concerning the progressive increase of regulatory 

incentives in the industrial sectors of energy, particularly in terms of incentives and 

public policies that promote such investments to producers operating in those 

industries. On the other hand if there is evidence for differences in the long term of 

being deterministic, this means that the deterministic random components of the series, 

over time, are diluted. In this case, policy makers do not need to intervene in certain 

moment of time, since the same series follows the desired evolution. 
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The second set of conclusions is related with the econometric approach. For Model 1 

we saw that the variables have a significant importance in explaining CO2 emissions, 

including the use of fossil fuels and energy consumption. Group B presents a smaller 

impact in the case of fossil fuels, but larger compared with total energy consumption. 

For model 2 we have a good jointly significance of explanatory variables towards CO2 

emissions intensity.  The ratio CO2 emissions by fossil fuel consumption, the ratio fossil 

fuel consumption by energy consumption, the energy intensity and the economic 

structure, present elasticities of 113%, 97%, 96% and 98% respectively on the 

dependent variable, ceteris paribus. For group B the magnitude of the impacts is 

greater. The values are of 123%, 106%, 103% and 104%. This can reinforce the idea 

that these five sectors included in group B contributed more to the variations on CO2 

emissions intensity in the considered period.  

 

These results show that these ratios are crucial to reducing the CO2 intensity of 

Portuguese sectors, especially in the industries listed in Group B, particularly in what 

concerns increasing energy efficiency and the use of renewable energy, both points 

focused on European policy (2009/28/CE directive) [37]. European policies are focused 

on market-based instruments (mainly taxes, subsidies and the CO2 emissions market), 

but also in the development of energy technologies (especially technologies dedicated 

to energy efficiency and renewable energy, or technologies for low-carbon) and the EU 

financial instruments supporting the achievement of political goals. If the European CO2 

emissions market gives a different treatment for the different sectors, at the level of 

licenses assigned, in other policies there is little or no discrimination between sectors, 

and what this study shows is that for some variables or particular set of sectors, 

observed behaviour and the effects obtained are not homogeneous. 
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Appendix 
 

Figure A3.1 - Evolution of CO2 emissions in Portugal by sectors in 1995-2009 

 

 
Source: Own elaboration using data from INE. Statistics Portugal. National Accounts 

 
 

 

Figure A3.2 - Evolution of Portuguese emissions intensity 1996-2009 

 
Source: Own elaboration using data from INE. Statistics Portugal. National Accounts 
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Figure A3.3 - Evolution of Portuguese energy intensity 1996-2009 

 

 
Source: Own elaboration using data from INE. Statistics Portugal. National Accounts 

 

 

Figure A3.4 - Weight of fossil fuels in total energy consumption 1995-2009 

 
Source: Own elaboration using data from INE. Statistics Portugal. National Accounts 
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Table A3.1 - National Accounts Classification by Industry 
 

  Group A 

A10 A38 Description 

2 B Mining and quarrying  

2 CA Manufacture of food products, beverages and tobacco products 

2 CB Manufacture of textiles, wearing apparel and leather products 

2 CC Manufacture of wood and paper products, and printing 

2 CD Manufacture of coke, and refined petroleum products  

2 CE Manufacture of chemicals and chemical products  

2 CF Manufacture of basic pharmaceutical products and pharmaceutical preparations 

2 CG Manufacture of rubber and plastics products, and other non-metallic mineral products 

2 CH Manufacture of basic metals and fabricated metal products, except machinery and equipment 

2 CI Manufacture of computer, electronic  and optical products 

2 CJ Manufacture of electrical equipment 

2 CK Manufacture of machinery and equipment n.e.c. 

2 CL Manufacture of transport equipment 

2 CM Manufacture of furniture; other manufacturing; repair and installation of machinery and equipment 

2 D Electricity, gas, steam and air-conditioning supply 

2 E Water, sewerage, waste management and remediation activities 

  

 
Group B 

 

A10 A38 Description 

2 B Mining and quarrying  

2 CD Manufacture of coke, and refined petroleum products  

2 CE Manufacture of chemicals and chemical products  

2 CG Manufacture of rubber and plastics products, and other non-metallic mineral products 

2 D Electricity, gas, steam and air-conditioning supply 
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Chapter 4 

 

Is there convergence and causality between the drivers of 

energy-related carbon dioxide emissions among the 

Portuguese Tourism Industry?  

 

4.1 Introduction 

 

The reduction of Carbon Dioxide (CO2) emissions and other atmospheric pollutants 

constitutes a foremost objective at a global scale. The tourism industry, linked with 

several sectors like trade, transport, accommodation, dining and attractions, 

contributes to climate change namely by producing greenhouse gases (GHG) 

emissions. The rapid growth of tourism activities has caused a rise in tourism-related 

emissions, posing a great challenge to this industry (Scott et al, [1]). 

 

Several studies suggest that it is possible to make significant reductions in pollution 

provoked by these sectors. Specifically for the travel industry, the Inter-governmental 

Panel on Climate Change (IPCC) estimates that about 15% to 20% of emissions can 

be reduced cost-effectively by 2020 and an additional 10% emissions reduction 

(around 6 MtCO2) would require around $430 million investment (at an average 

abatement cost of $75 per ton of CO2). For the accommodation sector, Chiesa and 

Gautam [2] say that it’s possible to reduce carbon emissions specially by using 

existing mature technologies in lighting, heating and cooling that significantly improve 

hotel energy efficiency.  

 

Portugal is a country with a high potential for tourism, rich in landscapes, culture and 

history, with very favourable natural and climatic conditions. The Portuguese strategic 

plan for tourism for 2007-2015 has proposed to increase the tourism contribution to 

the Portuguese economy. One of the challenges is the reduction of the tourism 

energy consumption and CO2 emissions. On the other hand, Portugal has integrated 

European Union (EU) Directives and Decisions related to mitigation (2008/101/EC 

and 406/2009/EC) into national law. Furthermore, there is national financial support 
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and incentive systems for investments in energy efficiency and renewable energies, 

and more sustainable tourism practices are expected, to face the emerging tourist 

demand (OECD [3]).  

 

The various sub-sectors related to tourism have different impacts on the level of 

emissions but also different factors that contribute to these emissions. Most of these 

emissions are produced by the transport of tourists and, in particular, air travel. 

However, energy consumption is largely related to road transport and it increased in 

the 90s due to steady growth of vehicle fleets and road travel volumes, reflecting 

GDP (Gross Domestic Product) growth, higher family incomes and strong 

investments in road infrastructure (Chiesa and Gautam [2]). Accommodation is 

pointed as the second most polluting tourism subsector accounting for about one 

quarter of emissions (Scott et al. [1]).  It is not expected that this importance will 

decline, since the accommodation capacity is likely to increase, and in addition, there 

is an increasing substitution of private homes and guesthouses for luxury hotels and 

resorts which are more energy intensive.  

 

Other sub-sectors related to tourism, such as trade, telecommunications and 

recreational services have a more indirect impact on emissions. For instance, 

emissions from electricity usage in travel agency offices, amusement parks, shops or 

museums. 

 

This study has two main objectives. The first is to analyse whether the various 

subsectors of tourism behaved similarly in the period 1996-2009 in relation to the 

intensity of CO2 emissions and for their determinant ratios, such as the carbon 

intensity, the share of fossil fuels on the total energy consumption, energy intensity 

and the importance of the sector in the economy in terms of GDP. This question is 

studied through the convergence analysis, dividing tourism subsectors between their 

direct and indirect impact on tourism industry.  

 

If the sectors or groups of sectors behave differently in view of these ratios they 

should be subject to different energy or environmental policies, or at least these 

differences should be taken into consideration when formulating those policies. 
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The second objective has to do with the prediction of the interaction between the 

intensity of emissions and its determinant ratios in the future. Their relationships and 

mutual influences must be included and considered in environmental and energy 

policies and strategies to be implemented in the tourism sector. This prediction is 

useful, given the lack of data on the second phase of the Kyoto Protocol and on the 

post Kyoto period. This question is studied through a forecast error variance 

decomposition and impulse response function among the variation of CO2 emissions 

intensity, and their drivers or effects. 

 

The article is designed as follows: the introductory section 1 describes the research 

context, objectives and study motivation. In section 2, we researched important 

literature that examines the energy-related CO2 emissions, in the tourism industry. 

Section 3 introduces the investigation methodology. The results about convergence 

and forecast causality from 1996-2009 are presented in section 4. Finally, section 5 

presents the conclusions drawn from the research findings. 

 

4.2 Literature review 

 

The existence of studies in the revised literature applied to the tourism industry is 

scarce and it is important to identify factors that influence global changes in CO2 

emissions intensity.   

 

In the tourism literature reviewed, there are some studies about energy consumption 

in tourism activities and its implications on CO2 emissions and global warming, for 

instance, Bode et al. [4], Ceron and Dubois [5] and [6], Stern [7], Scott et al [1], Scott 

[8], Weaver [9] and Gossling et al. [10], among others. In specific sectors associated 

to tourism industry, there are studies with significant policy contribution and practice 

changes in air travel and transport emissions reductions, and about sustainability of 

tourism in what concerns climate change, for example, Hoyer [11], Becken et al. [12], 

Gossling [13], Black [14], Lee et al. [15], Bows et al. [16],  Martin-Cejas and Sanchez 

[17], Liu et al. [18], Wang et al. [19], Pu and Peihua [20], Lee and  Brahmasrene [21], 

Dwyer et al. [22], Andreoni and Galmarini [23], O’Mahony et al. [24], among others. 

Other studies focus on accommodation and food services, with respect to the sources 

of energy used as well as the amount of energy consumed in those sectors, such as 
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Deng and Burnett [25] and [26], Bohdanowicz [27], Bohdanowicz et al. [28], Kasim 

[29] and [30], Mihalič et al. [31], Gossling et al. [10] and Kasim and Ismail [32]. 

 

Some recent literature reports that tourism makes a significant contribution to 

environmental degradation with negative social and cultural impacts and habitat 

fragmentation, for example: Tovar and Lockwood [33], Peeters and Dubois [34], 

Dolnicar [35], Dolnicar and Leisch [36], Dolnicar et al. [37], Bramwell [38], Bramwell 

and Lane [39]; while other link of literature explain that climate change and 

environmental perceptions are likely to alter destination choice and influence tourism 

demand, for instance, Becken and Hay [40], Gossling et al. [41], [10] and Gossling 

[42] and [43]). 

 

From our knowledge there are no studies for energy related CO2 emissions in 

Tourism industry, which use the Converge analysis or decomposition variance and 

generalized impulse response techniques to examine this environmental problem.  

 

In this context, it is important to mention some recent studies, which applied the 

convergence analysis. Liddle [44] analysed the aggregated and sectoral convergence 

in the electricity intensity and energy intensity in IEA/OECD countries, Camarero et 

al. [45] studied the convergence of CO2 emissions intensity and their determinants 

among OECD countries over the period 1960-2008. More recently, Robaina-Alves 

and Moutinho [46] joined the decomposition analysis and Innovative Accounting 

Approach (IAA), that is, variance decomposition and impulse function response, to 

examine CO2 emissions intensity and its effects for 36 economic sectors. 

 

4.3 Data and Methodology 

 

4.3.1 Data 

 

All data was collected from INE (National Accounts). The most important economic 

activities for the tourism industry were considered, identified into six categories: 

Wholesale and retail trade, repair of motor vehicles and motorcycles (category G), 

transportation and storage (category H), Accommodation and food service activities 

(category I), telecommunications (category JB), arts, entertainment and recreation 
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(category R) and others services (categories S+T), over  1996 – 2009 period. This 

was the most recent period for which we had common data for all variables 

considered in this study. 

  

These activities were chosen because Statistics of Portugal in National Accounts 

classifies them as tourism characteristic industries. Furthermore, studies that focus 

on tourism activities such as Lui et al. [18] and Scott et al. [1] regard these sectors as 

comprising directly or indirectly to tourism. Sectors which include hotels, restaurants 

and transports, or trade in general, affect the tourism activity directly, whereas 

activities that provide goods and services to tourism enterprises such as 

telecommunications, arts, entertainment, handicraft, certain local and domestic 

activities, affect tourism indirectly. Therefore, apart from the inclusion of these 

sectors, we also opted to apply the methodology used by dividing the subsectors of 

tourism in two groups (B and C), one considering the activities with direct influence 

(G, H and I) and another considering the activities with a more indirect influence on 

tourism (R, JB, S + T). 

 

Considered 

Groups 

A38 

Classification by Statistics 

Portugal 

Description 

Group 

A 

Group 

B 

G 
Wholesale and retail trade, repair of motor vehicles and 

motorcycles 

H Transportation and storage 

I Accommodation and food service activities 

Group 

C 

JB Telecommunications 

R Arts, entertainment and recreation 

S + T 

Other services activities + Activities of households as employers 

of domestic personnel and undifferentiated goods and services 

production of households for own use 

 

We considered the driving forces (effects) resulting from the decomposition analysis 

developed by Robaina-Alves and Moutinho [46]. The authors decomposed the 

variation of CO2 emissions intensity in the following effects: (i) the changes in the 

CO2 emissions compared to the fossil fuels consumption (denoted by CI effect), (ii) 

the changes in the fossil fuels consumption compared to total energy consumption 

(denoted by CE effect), (iii) the change in energy intensity effect (denoted by EI 

effect) and (iv) changes in the economic structure effect (denoted by ES effect). 
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These effects can be used to evaluate various points related to energy consumption 

and the impact of tourism sectors on the environment, through the level of CO2 

emissions. For example, we can evaluate the quality of fossil fuels and the 

replacement that can be done between them (through the effect CI), the ability to 

adopt abatement technologies and replace fossil fuels with renewable energy 

(through the effect CE), the energy intensity (through the effect EI) and the relative 

position of each tourism subsector in the overall economic activity (ES effect). 

 

4.3.1.1 Data about energy-related CO2 emissions in the Portuguese Tourism 

Industry  

 

Looking at CO2 emissions in absolute terms (figure 4.1) we see that the subsector in 

which they increased the most were sectors H (3 million tons), G (1.4 million tons) 

and I (448,000 tons), with relative increases of 227%, 115% and 83% respectively. 

 

Considering the variables in relative terms, i.e. the emissions due to production and 

their respective determinants we can make the following analysis. 

 

Regarding the intensity of CO2 emissions (figure 4.2) we can see that in G, H, R and 

S + T, this variable decreased, with the most significant reductions in these last two 

sectors, with the variation of - 32% and -67% respectively. 
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Figure 4.1 – Variation of CO2 emissions 
Tourism subsectors 1996-2009 

 

 
Source: own elaboration based on data from INE 

(National Accounts) 

 

Figure 4.2 – Variation (%) of emissions 
intensity in Tourism subsectors

 
Source: own elaboration based on data from INE 

(National Accounts) 

 

The sectors I and JB showed a significant increase of 29% and 76% respectively. 

Note that these sectors represent accommodation and food services, and 

telecommunications, the first one being a very important activity with direct impact on 

the tourism industry. 

 

One effect that may influence the change in emission intensity has been the carbon 

intensity, that is, emissions per unit of fossil fuels, which can be an indicator of the 

type of fossil fuel used (more or less clean). In this aspect, tourist activities, except 

subsector R (Arts, entertainment and recreation), have decreased this carbon 

intensity, which may indicate that they have replaced more polluting fuels such as 

coal with less polluting ones, such as natural gas (figure 4.3). Note that the sector JB 

has the greatest positive variation in the intensity of emissions and has the biggest 

reduction on carbon intensity, therefore the increase in emissions will have to be 

justified on other effects. 

 

Most sectors (with the exception of G and S + T), show an increase in the ratio of 

fossil fuels per total energy consumption (figure 4.4), which means that with the 

exception of trade and other services, the remaining sectors are not, in a general 

way, replacing fossil fuels with renewable energy. The accommodation and food 

sectors, telecommunication and arts, entertainment and recreation show increases of 

81%, 77% and 66% respectively in the importance of fossil fuels in total energy 

consumption. 
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Figure 4.3 - Variation (%) of carbon 
intensity (CO2 Emissions/Fossil fuels 
consumption) in Tourism subsectors

 
Source: own elaboration based on data from INE 

(National Accounts) 

Figure 4.4 - Variation (%) of fossil fuels 
consumption by total energy consumption in 

Tourism subsectors

 
Source: own elaboration based on data from INE 

(National Accounts) 
 

 

Energy intensity shows better results, since only G and JB show slight increases. The 

sectors H, JB and S + T show significant reductions of 25%, 41% and 83% 

respectively, in the amount of energy used per unit of value produced (figure 4.5). 

 

The contribution of these sectors to the country's total emissions can also be 

changed if the current importance of these in national production varies. Analysing 

the variation of the ratio of the sector GDP on total GDP (figure 4.6), we can see that, 

with the exception of sector G, all other sub-sectors of tourism gained importance in 

the Portuguese economy, specially the sectors R, S +T and I, with increases of 44 %, 

40% and 33% respectively. The increasing importance of these sectors in the 

Portuguese economy reinforces the significance of the analysis of the respective 

emissions and their contribution to the total emissions of the country, in particular 

what is behind (the drivers of) the emissions in these subsectors of tourism. 

 

Figure 4.5 - Variation (%) of energy 
intensity in Tourism subsectors       

   

 
Source: own elaboration based on data from INE 

(National Accounts) 

Figure 4.6 - Variation (%) of economic 
structure (sector GDP/total GDP) in Tourism 

subsectors

 
Source: own elaboration based on data from INE 

(National Accounts) 
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4.3.2 Convergence analysis 

 

The convergence analysis aims to see if there are stochastic differences in the long-

term between driving forces related to CO2 emissions intensity in Tourism Industry (6 

subsectors). The convergence was calculated for the variation of the emissions 

intensity and for the four effects referred above. 

 

As in Boyle and McCarthy [47] we calculated two measures of convergence: sigma 

convergence and gamma convergence. Sigma convergence tracks the inter-temporal 

change. For each variable X it is calculated as: 

 

𝜎 =  (
var (𝑋𝑡𝑖)/mean(𝑋𝑡𝑖 )

var (𝑋𝑡0)/mean(𝑋𝑡0) 
) 

 

Where ti is the current year and t0 is the first year (1996). If we observe a fall in this 

measure it means that there is sigma convergence, that is, the dispersion was 

reduced. 

 

Gamma convergence has to do with the rank of the effect. For each variable X it is 

calculated as: 

𝛾 =  (
 var (𝑅𝑋𝑡𝑖 + 𝑅𝑋𝑡0)

var (𝑅𝑋𝑡0 ∗ 2)
) 

 

If the value is equal to one it means that the variance is the same. If the value is far 

from 1, there is evidence of sector mobility and reduced dispersion for the analysed 

effect. In this case, the importance of the emissions intensity drivers is not the same 

throughout the studied period. RX is the rank of the sector in the current year ti or in 

the first year t0, for the variable X. 

 

4.3.3 Innovative Accounting Approach for Granger Causality 
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We employ the IAA to investigate the dynamic causality relationship among the 

variation of CO2 emissions intensity, and their drivers or effects. This approach 

includes a forecast error variance decomposition and impulse response function1.  

 

The forecast error variance decomposition explains the proportion of movements in 

the data series due to its own shocks as well as to shocks stemming in other 

variables in the study and uses a Vector Autoregressive Regression (VAR) system to 

test the strength of causal relationships between the variables. 

 

For instance, if CI effect explains more of the forecast error variance of CO2 

emissions intensity variation, then we deduce that there is unidirectional causality 

from CI effect to emissions intensity variation. The bidirectional causality exists if 

shocks in CO2 emissions intensity variation also affect CI effect in a significant way. If 

shocks occurring in both series do not have any impact on the changes in CO2 

emissions intensity variation and in CI effect then there is no causality between the 

variables. 

 

Impulse Response Functions (IRFs) helps us to trace the time path of shock impacts 

on variables in the Vector Autoregressive Regression (VAR). One can determine how 

much the CI, CE, EI and ES effects vary due to its shocks or to a shock in CO2 

emissions intensity variation. For example we support the hypothesis that CI effect 

causes CO2 emissions intensity variation if the impulse response function indicates a 

significant response of CO2 emissions intensity variation to shocks in CI effect.  

 

4.4 Results 

 

4.4.1 Convergence analysis 

 

For variation of the intensity of CO2 emissions (figure 4.7), there is a general sigma 

convergence. However there is a period of divergence between 2003 and 2006 when 

                                            
1
 See Robaina-Alves and Moutinho (2013) to a similar methodology applied to Portuguese industrial sectors, using the CO2 

emissions intensity and its determinant ratios. 
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sectors of group B clearly contributed, while group C sectors continued their process 

of convergence during this period. 

The gamma convergence analysis for the variation of intensity of emissions shows 

that for groups A and C there is some mobility of sectors, over the ranking they had at 

the beginning of the period. For Group B there is instability in the path of 

convergence, and this indicator has a value very close to 1 in 2009, which means that 

these sectors continue to have the same relative importance in the intensity of 

emissions. 

For all subsectors of Tourism (group A), according figures 4.8a and 4.8b, there is 

some sigma convergence between the conditioning effects of the intensity of 

emissions, although the path of convergence has a lot of instability. The effect in 

which there is the greatest convergence in the total period is the CI effect, although 

this presents a period of divergence between 1998 and 2002, thereafter it converged 

significantly. This group of industries has some homogeneity in the behaviour of the 

effects in this period as a whole (with some periods of divergence), particularly in the 

replacement of fossil fuels with each other, which changes the ratio of emissions from 

consumption of fossil fuels. 

But if we analyse the sigma convergence for the other two groups (group B a and C), 

the evolution of this indicator is different. For group B (figures 4.8c and 4.8d) the 

trajectory of convergence of the effects is much more stable, being rare the years in 

which the variables diverge. The exception to this is the CI effect, which has large 

periods of divergence, although in the total period it converges. For this group, CE 

effect presents a very significant degree of convergence, as this value in 2009 is 

close to zero (0.152), which means that these sectors have had a similar behaviour in 

respect to the weight of fossil fuels in the total energy used. 

For group C (figures 4.8e and 4.8f) there is some convergence between effects, but 

EI and CI are those with greater convergence, despite having a period of divergence 

in 2003-2007 and 1996-1998 respectively. 

Regarding gamma convergence, we can see that in group A all ratios have a 

tendency to converge in the period as a whole. However, in certain periods 

divergence occurs, particularly for CI in 1997-1998, for EI in 2004-2006 and for CE in 
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2004-2008. The convergence is quite pronounced for ES and CI, the value being very 

close to zero in 2009. This means that for this group there was mobility and reduction 

of dispersion for these effects. 

In group B there is a big divergence in the CI effect with a peak in 2003 with a value 

of 15.25. The CE effect also diverges in the period as a whole and in 2009 the value 

is of 2.78. ES and EI effects follow a marked pattern of convergence in this period. 

For group C, the convergence is relevant for all effects, and only CI effect diverged 

significantly between 1996 and 1998, thereafter converging sharply. 

 

 

Figure 4.7- Sigma and Gamma Convergence of CO2 emissions intensity 

  

    Figure 4.8a -Sigma convergence for group A     Figure 4.8b -Gamma Convergence for group A 
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  Figure 4.8c- Sigma convergence for group B         Figure 4.8d- Sigma Convergence for group C 

  

  

  Figure 4.8e- Gamma convergence for group B    Figure 4.8f- Gamma Convergence for group C 

  

  

 

Table 4.1 presents the results for the generalized variance decomposition over a ten-

year period for group B and group C. 

 

 

Table 4.1 - Variance decomposition of group B and group C of Tourism activities 

  CO2 emissions intensity CI CE EI ES 

Period GroupB GroupC GroupB GroupC GroupB  GroupC GroupB GroupC GroupB GroupC 

Variance Decomposition of CO2 emissions intensity 

1 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 88.33 92.92 0.11 0.00 2.03 0.33 9.52 5.69 0.00 1.05 

3 78.64 75.29 1.83 10.47 5.29 1.09 14.24 4.20 0.00 8.95 

4 75.82 65.15 2.83 16.70 6.98 0.96 14.33 5.17 0.00 12.02 

5 74.94 50.92 3.41 19.34 7.24 1.07 14.37 5.39 0.04 14.27 

10 71.87 48.61 7.20 14.33 5.14 3.86 15.58 12.14 0.21 21.06 
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Variance Decomposition of CI 

1 29.75 9.49 70.25 90.51 0.00 0.00 0.00 0.00 0.00 0.00 

2 36.33 5.62 57.93 89.57 0.029 0.00 0.01 2.57 5.69 2.23 

3 39.17 6.67 54.62 80.35 0.18 0.06 0.51 2.51 5.51 10.40 

4 42.54 8.67 51.52 72.79 0.20 0.31 0.83 2.44 4.92 15.80 

5 45.90 9.12 48.31 67.97 0.17 2.68 1.33 2.33 4.28 17.89 

10 55.35 7.73 38.19 56.12 0.31 12.33 3.63 3.36 2.52 20.46 

Variance Decomposition of CE 

1 1.01 16.44 53.73 20.47 45.26 63.07 0.00 0.00 0.00 0.00 

2 1.53 14.34 35.47 21.64 47.48 58.93 0.18 0.97 15.53 4.38 

3 1.78 15.63 29.78 17.84 45.18 50.25 1.87 1.78 21.38 14.30 

4 2.43 15.86 24.89 16.82 42.15 42.29 7.32 3.54 23.19 21.48 

5 2.87 16.59 22.36 16.32 39.39 36.88 11.94 4.70 23.43 25.52 

10 5.54 24.34 19.29 9.85 32.43 23.61 16.44 12.55 26.29 29.65 

Variance Decomposition of EI 

1 98.76 40.16 0.00 5.14 0.19 41.52 1.05 13.18 0.00 0.00 

2 91.10 34.10 0.00 6.21 1.40 47.55 7.42 11.18 0.06 0.95 

3 81.35 25.68 1.56 15.60 4.73 42.49 12.23 15.19 0.13 1.04 

4 78.09 23.05 2.53 20.30 6.76 40.49 12.31 15.22 0.31 0.94 

5 77.08 22.01 3.03 22.91 7.22 38.36 12.28 15.80 0.38 0.92 

10 73.20 24.93 6.75 24.93 5.14 31.27 14.06 13.55 0.85 4.17 

Variance Decomposition of ES 

1 7.57 6.06 1.24 27.99 3.24 0.97 20.37 1.83 67.59 63.16 

2 5.12 15.26 1.98 22.64 1.87 0.59 12.83 7.15 78.19 54.35 

3 3.63 20.11 1.71 17.97 1.29 3.63 10.18 8.89 83.18 49.40 

4 2.85 23.19 1.79 13.89 1.01 6.54 9.34 11.27 85.00 45.11 

5 2.50 25.35 2.02 11.17 0.93 8.28 8.56 13.05 85.99 42.14 

10 2.35 28.59 2.75 638 1.08 10.47 5.96 19.05 87.86 35.50 

 

The empirical evidence indicates that 71.87 and 48.61 per cent of CO2 emissions 

intensity are due to their own innovative shocks respectively for group B and C. The 

standard deviation shock in EI and CI are the two effects that better explain CO2 

emissions intensity in group B, with a percentage of 15.58 and 7.2 respectively. For 

group C the most important effects are ES (21.06%) and CI (14.33%). 

 

In group B, a 38.2 per cent of CI is explained by its own innovative shocks and 55.4 

percent is explained by one standard deviation shock in emissions intensity, while in 

group C, the most important influences on CI come from their own variations 

(56.12%), from the variations in ES (20.46%) and variations in CE (12.33%). 

 



117 
 

Variations of CE in group B are mainly justified by changes in the variable itself 

(32.4%), by variations in ES (26.3%), in CI (19.3%) and in EI (16.4%). In group C, CE 

changes are mainly explained by variations in ES (29.7%), in emissions intensity 

(24.3%), in CE (23.6%), and in EI (12.3%). 

 

Changes in EI are strongly determined by variations in the intensity of emissions 

(73.2%) and in EI (14.1%) in group B. In group C the influence on EI is distributed 

primarily by CE (31.3%), by the intensity of emissions (24.3%) and by CI (24.3%). 

 

Finally ES is influenced primarily by its own variations in group B (87.9%) and in 

group C (35.5%). In the latter, variations in emissions intensity (28.6%) and in EI 

(19.1%) are shown to be significant. 

From this analysis we can identify some patterns of causality between variables. 

These patterns appear to be different for the two groups. For example in group B we 

found bidirectional causality between the intensity of emissions and EI and between 

the intensity of emissions and CI. In group C the bidirectional causality exists 

between the intensity of emissions and ES and between EI and CE. 

 

Regarding unidirectional causality, it exists in group B from ES, CI and EI to EC. In 

group C we found stronger relationships of causality between variables, namely from 

CI to the emissions intensity, from ES and CE to CI, from ES and emissions intensity 

to CE, from emissions intensity to EI and from EI to ES. 

 

4.4.2 Impulse Response Functions  

 

For group B we have the IRFs presented in figure 4.5. We can see that emissions 

intensity reacts positively to shocks in CI and CE, and negatively to shocks in EI. The 

response to a shock in CE increases until the third time horizon, then becoming linear 

and decreasing. The reaction to ES is linear and constant. 

 

CI effect reacts positively to shocks in emissions intensity (A) and negatively to 

shocks in EI. Concerning shocks in ES, the short run reaction is negative but after the 

second period it dissipates until the seventh time horizon becoming constant and 

approximately zero. 
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The reaction of CE to a shock in emissions intensity is negative and turns positive 

after the sixth period. When a shock in CI occurs, CE has a slightly negative reaction 

in the short run, turning into positive in the fifth period. CE reacts negatively to EI and 

positively to ES. 

 

EI reacts positively to shocks in the intensity of emissions, in EI and in CE, but in the 

latter case the reaction dissipates in the long run. EI has a negative but very soft 

reaction to shocks in ES. 

 

Figure 4.9a - IRFs functions of Group B in Tourism Industry 

 

 

Note : Y2 is equivalent  to ratio A, z1 to ratio CI,  z2 to ratio CE , z3 to ratio EI and z4 to ratio ES  

 

ES reacts very discreetly to shocks in the other variables. Its reaction is negative with 

respect to EI and to intensity of emissions, and positive with CI and CE. 
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The results in figure 4.6 show the reactions of the considered variables for the group 

B tourism activities.  

 

We confirm a positive response of emissions intensity due to one standard deviation 

shock in CI. The response to CE, changes from increase to decrease after the 

second time horizon, and maintains its level in the long run. The reaction to shocks in 

EI and ES is negative. 

 

Figure 4.9b - IRFs functions of Group C in Tourism Industry 

 

Note : Y2 is equivalent  to ratio A, z1 to ratio CI,  z2 to ratio CE , z3 to ratio EI and z4 to ratio ES 

 

CI reacts negatively to shocks in the intensity of emissions in the short term. In the 

second period it becomes positive, and then negative in 7th period. CI almost does 
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not react in the short-term to variations in CE, but after the 3rd period the effect is 

negative. The reaction of CI to shocks in EI and in ES is positive. 

 

The response of CE to shocks in emissions intensity is positive and to shocks in EI 

and ES is negative. CE reacts negatively to shocks in CI but the effect becomes 

positive in the second period.  

 

The reaction of EI to a shock in CE is negative but becomes positive at the seventh 

time horizon. For a shock in CI, in emissions intensity and in ES, the reaction is 

positive, but for the latter the effect becomes negative after the third period. ES reacts 

negatively to all other variables except to EI. 

 

4.5 Conclusions and policy recommendations  

 

The purpose of this paper is to study: (i) whether the various subsectors of tourism in 

Portugal behaved similarly in the period 1996-2009 in relation to the intensity of CO2 

emissions and to their determinant ratios. This question is studied through the 

convergence analysis, dividing tourism subsectors between their direct and indirect 

impact on tourism industry; and (ii) the prediction of the interaction between the 

intensity of emissions and its determinant ratios in the future. This question is studied 

through a forecast error variance decomposition and impulse response function 

among the variation of CO2 emissions intensity, and their drivers or effects. 

 

Therefore, two sets of conclusions can be drawn: (i) on the convergence sigma and 

gamma; (ii) on the generalized variance decomposition and the IRFs. 

 

In general it can be said that there was convergence between the sectors regarding 

the emission intensity. This reflects a slowdown or reduction in the most polluting 

sectors and an increase in the less polluting ones. However for group B (sectors with 

more direct influence on tourism) there was some divergence between 2003 and 

2006. We also saw that in groups A and C there was mobility between sectors, that 

is, the most polluting sectors decreased their rank on the intensity of emissions, and 

less polluting sectors rose in rank. In group B we didn’t find this mobility, or rather, 
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sectors occupy substantially the same relative importance they had in the beginning 

of the period. 

 

Concerning the effects of the determinants of emissions intensity in group A, although 

there appears to be a general convergence of all effects, the carbon intensity 

(emissions/consumption of fossil fuels) is the effect that converges more. This means 

that sectors became more similar in terms of the mix of fossil fuels used. In group B 

the convergence effect is even more stable, which means that in these sectors that 

directly affect tourism, the evolution of the determinants of emissions are very similar 

across sectors. This may require more specific and targeted policies for these 

subsectors included in group B (trade, transportation, accommodation and food 

service activities). The exception is on carbon intensity, which contrary to what 

happened in the group A, group B presents periods of great divergence (despite 

checking the global convergence in the period). This means that the sectors in this 

group have a different behaviour in relation to the mix of fossil fuels used, which is 

related to the most appropriate fuel type in the different economic activities. 

 

 In group C (activities affecting tourism in a more indirect way) there is convergence 

in general for all the effects, but most clearly in energy intensity and carbon intensity.  

 

Regarding the rank of sectors on the effects of emissions, there is convergence in 

group A, that is, there was mobility between sectors. The convergence is quite 

pronounced for economic structure and carbon intensity. This means that for this 

group there was reduction of mobility and dispersion for these effects. In group B 

there is a great divergence in the carbon intensity effect and in the effect of fossil 

fuels by energy consumed. This means that differences between sectors persist in 

relation to the fossil fuels used and to the percentage of fossil fuels and renewable 

energy used. For group C, the convergence is relevant for all effects, and only CI 

effect diverged significantly between 1996 and 1998, thereafter converging sharply. 

 

To summarize, sectors tend to have similar behaviour, even these similarities are 

greater for Tourism Industry in trade, transportation, accommodation and food 

services activities. The lower divergences in tourism activities would facilitate the 

implementation of measures on how to mitigate CO2 emissions at tourism industry 
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and as a result commit to Kyoto protocol targets in the first phase. 

 

When linking the conclusions about the generalized variance decomposition and the 

IRFs, one can notice for the group, B that there is bidirectional causality between the 

intensity of emissions and energy intensity. The effect of intensity of emissions is 

positive on energy intensity, and the effect of energy intensity on emissions intensity 

is negative.  This may show that the sectors are using more energy per unit of output, 

but are replacing fossil fuels by renewable energy. 

 

In group C energy intensity causes a negative effect on the percentage of fossil fuels 

in total energy consumption, which reflects that sectors that consume more energy 

became aware of change to renewable energy in the future. The percentage of fossil 

fuels in total energy consumption also has a negative effect on energy intensity, that 

is, sectors in where the percentage of fossil fuels increase, try to reduce the 

consumption of energy by unit produced. But in the long run this effect becomes 

positive with a negligible value. Intensity of emissions and economic structure have a 

negative relation of causality. This means that the most polluting sectors tend to 

reduce its economic importance and that sectors that improve their economic 

importance can reduce their intensity of emissions. 

 

It was also found that in the group B sectors, the percentage of fossil fuels used, 

reacts positively to the economic structure and to carbon intensity, in other words, 

when a sector gains economic importance, it tends to use more fossil fuels, and when 

it raises its carbon intensity, in the future the use of fossil fuels may rise. On the other 

hand, a positive shock on energy intensity tends to reduce the percentage of fossil 

fuels used. 

 

In group C, if carbon intensity raises it leads to an increment of emissions intensity. In 

addition, carbon intensity rises when sectors improve their economic importance. In 

these sectors, a positive shock in economic structure diminishes the use of fossil 

fuels, but the increase of emissions intensity leads to an increase in the use of fossil 

fuels. Emissions intensity causes a positive effect on energy intensity, and this effect 

in turn causes a reduction on the economic structure. 
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The similarity of behaviour between tourism subsectors towards emissions intensity 

and their determinant effects (particularly between sectors including hotels, 

restaurants and transports, or trade in general, that affect the tourism activity directly), 

could imply equal treatment, although specific to each activity, in relation to energy 

and environmental policies. Recapitulating section 3.1.1, although in trade and 

transportation sectors emissions intensity has decreased, in accommodation and 

food services this variable increased in the studied period. 

 

Of all the tourism activities, only recently was the aviation sector included in the 

European Union Emissions Trade System (EU ETS). All other activities were 

excluded from this market. The aviation sector was brought into the EU ETS on 1 

January 2012 through Directive 2008/101/EC. For 2012 the cap on aviation 

allowances was set at a level equivalent to 97% of aviation emissions in the 2004-

2006 reference period and 85% of allowances were given to aircraft operators for 

free. 

The European Commission is taking the first steps to reduce the GHG emissions 

from the maritime transport industry. The proposed legislation (only for 2018) will 

oblige owners of large ships using EU ports to monitor and report the ships' annual 

CO2 emissions, as well as to provide information about the ships' energy efficiency. 

An agreement between the European Parliament, Council and European Commission 

on a further reduction in CO2 emissions from cars  is expected to reduce average 

CO2 emissions from new cars to 95g per kilometre from 2020 (European 

Commission, 2012). This represents a 40% reduction from the mandatory 2015 target 

of 130g/km. The target is an average for each manufacturer's new car fleet; some 

models will emit less than the average and some will emit more. 

 

As already mencioned, in accommodation and food services CO2 emissions intensity 

rose between 1996-2009. Since 2009-2010, implemented measures have been 

adopted under the Ecodesign and Energy Labelling Directives on energy related 

products. These measures reduce the energy demand of industrial and household 

products, and have been adopted for a number of electronic appliances, including 

domestic dishwashers, refrigerators, washing machines, televisions and well as tyres 

http://ec.europa.eu/clima/policies/transport/aviation/index_en.htm
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and industrial products such as motors, fans and pumps. The estimated impact of the 

adopted ecodesign and labelling measures are energy savings in the range of 90 

Mtoe in 2020 (European Commission [48]). 

 

On the other hand, dealing with the energy consumed in the building field, in 

particular for heating and cooling purposes, the EU adopted a revised Energy 

Performance of Buildings Directive (EPBD) in 2010. The Member States have to 

apply minimum energy performance requirements for new and existing buildings, and 

to ensure that by 2021 all new buildings are "nearly zero-energy buildings." 

(European Commission [48]). 

 

At the national level, green taxation has shown as an important instrument in the 

Portuguese tax system. The government implemented in 2010 a set of green tax 

measures, including the strengthening of environmental aspects in automobile tax, a 

tax on energy efficient light bulbs, and tax deductions for the use of renewable 

instruments. The Stability and Growth Programme foresees strengthening 

environmentally related fiscal measures from 2010 onwards. Proposed measures 

include tax rebates for electric vehicles and higher energy taxes (European Union, 

[49]). All these instruments affect tourism activities directly and can be justified by the 

causal relations and future predictions pointed above, particularly for transport and 

accommodation activities. 

 

Future research could be to apply the study of Robaina Alves and Moutinho [46] to 

the tourism sector in Portugal and / or in other countries. The objective would be to 

complement and confront the results of the present study with another methodology, 

which identifies the effects in which the intensity of CO2 emissions in tourism can be 

broken down and analysed, as well as their evolution and which of them has more 

importance in determining the intensity of emissions. This future study, through the 

calculation of these effects over time, could also allow us to evaluate aspects such as 

the substitution between fossil fuels, the substitution of fossil fuels for renewable 

energy sources, the energy efficiency of tourism activities as well as technology 

choices, investments for energy saving, and also give us signals about the 

diversification of tourist products among the various subsectors analysed and the 

preferences of the consumer. 
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Chapter 5 

 

Decomposition of energy-related GHG emissions in 

Agriculture over 1995-2008 for European Countries 

 

5.1 Introduction 

 

It is widely accepted that the role of agriculture cannot be underestimated in the context 

of climate change. According to the EEA, agriculture has been responsible, in the last 

two decades, for about 10% of the total annual emissions of greenhouse gases emitted 

in Europe. The EU Trading Scheme does not consider the agricultural sector as part of 

the negotiations of carbon credits1, nevertheless countries are concerned about 

adopting other environmental policies that aim at reducing GHG emissions in the 

agricultural sector, thereby contributing to the achievement of Kyoto Protocol goals2. For 

the design of a policy of this kind, it is important to understand how the intensity of 

Greenhouse Gases (GHG) emissions (GHG emissions/ agricultural value added) has 

evolved and what factors contribute to the variation of that intensity. 

 

The objective of this work is to identify the effects in which the intensity of GHG 

emissions in agriculture can be broken down and analysed, as well as their evolution 

and which of them has more importance in determining the intensity of emissions in 

agriculture. 

 

The use of fossil fuels in agricultural machinery and power generation in greenhouses 

and farms leads to GHG emissions (through CO2 emissions). We observed that, in 

general, the GHG emissions in the agricultural sector has suffered a negative change, 

while the consumption of fossil fuels in agriculture has greatly increased in some 

countries (such as Belgium and Germany) and significantly decreased in others (such 

as Sweden and Finland) (see figure A5.1 in appendix). 
                                                           
1
 See European Commission for information about the sectors included in EU Trading Scheme [1] 

2
 See OECD [2] 
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However, Nitrogen, an essential nutrient for agricultural productivity, is the cause of 

most emissions in this sector. Furthermore, it is noteworthy that the intensity of N2O is 

298 times stronger than CO2 in the greenhouse effect. The use of this nutrient per 

acreage has been declining for most countries (see figure A5.2 in appendix), with some 

exceptions such as Spain, Austria and Slovakia. Belgium and the Netherlands are 

countries where this ratio was reduced quite significantly. 

 

Therefore we hold that emissions in the agricultural sector are caused primarily by two 

sources: the use of fossil fuels and the use of Nitrogen. Observing the relationship 

between these two variables we can see (figure A5.3 in appendix) this has increased for 

most countries except for Spain, France, Finland and Sweden. This increase holds up 

with the decrease in the use of Nitrogen and increased use of fossil fuels, which 

highlights the bigger importance of fossil fuel pollution caused by the agricultural sector. 

 

The utilized agricultural area also becomes an important variable when studying the 

emission intensity of agriculture, as countries that face shortage of land tend to increase 

the use of agrochemicals such as Nitrogen, to augment land productivity. Land 

abundant countries will tend to increase the cultivated land area by farmer, by using 

labor-saving inputs, like more machinery. We observed (see figure A5.4 in appendix) 

that the countries that increase the ratio area/labour more are Denmark and Sweden 

and the ones that increase less are Portugal, Spain, Greece, Italy and the Netherlands. 

 

With the exception of Finland and Greece, agricultural labor productivity has increased 

in many countries (see figure A5.5 in appendix)). This highlights, on the one hand, the 

increase in total production, and also a reduction in the number of workers in favor of a 

more mechanized production. This variable (agricultural labor productivity) should be 

considered as a decomposing factor of agricultural emissions intensity, since the 

described behavior may lead to a higher consumption of fossil fuels, by the increase in 

machinery and by the increase in production, and also to a more intensive use of 

Nitrogen. 
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Considering the previous analysis, we decided to use the 'complete decomposition' 

technique developed by Sun [3] and applied by Zhang et al. [4] to examine agriculture 

GHG emissions intensity and to decompose it in several effects or components, based 

on the variables presented above. We considered agriculture emissions intensity for 15 

countries as well as its reflecting changes over the 1995-2008 period. 

 

Although there are studies that do this kind of decomposition of CO2 emissions intensity 

or of GHG emissions intensity, they focus on the economy as a whole or in particular 

industries. To our knowledge, there is no literature that applies this decomposition 

technique specifically to the agriculture sector. In addition, we detected a gap in the 

literature dealing with the decomposition of the agriculture emission intensity, 

addressing it in the same way as the intensity of emissions in other sectors, while the 

agricultural sector has certain specific characteristics. Thus, this study introduces in the 

decomposition of the intensity of emissions, variables such as the agricultural area, 

labor productivity and the use of nitrogen as a fertilizer. 

 

The study is divided into five sections including this introduction. In Section 2 we make a 

brief literature review, in Section 3 we present the data and methodology, in Section 4 

the main results and in Section 5 the conclusions. 

 

5.2 Literature Review on decomposition methods 

 

A number of studies in energy economics have examined and used some methods of 

decomposition of energy consumption, energy intensity (energy/GDP) and /or emissions 

intensity (emissions/GDP). It is useful to understand the methods of decomposition 

used to explore the relative contribution of the different factors affecting the changes in 

these variables. For example, among others, Reither et al. [5], Sun and Malaska [6] and 

Liaskas et al. [7], considered factors like the level of production, the energy intensity, the 

fuel mix and the structural effect, the last two being identified as most relevant. 
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In the particular case of the European Union (EU) and subsets of industrialized 

countries including EU countries, several studies have investigated the factors behind 

changes in industrial energy consumption (e.g. Howarth et al. [8]; Greening et al. [9]; 

Unander et al. [10]) or industrial carbon emissions (e.g. Torvanger [11]; Greening et al. 

[12]; Liaskas et al. [7]; Schipper et al. [13]).  

 

Recently, Bhattacharyya and Matsumura [14] analysed the reduction in greenhouse gas 

emissions in 15 countries of the European Union between 1990 and 2007 to find out the 

contribution of different countries. Using the log-mean Divisia, index decomposition 

approach, it identifies the driving factors of emissions related to energy and other 

industrial activities. This important study shows that the emission intensity reduced 

significantly in both energy-related activities and other processes at the aggregate level, 

while the performance varied significantly at the individual country level. Changes in the 

energy mix as well as a reduction in energy intensity and a reduction in the emission 

intensity from other process related emissions were mainly responsible for the success 

in the EU-15. 

 

Also, when looking at the sectoral subject, many studies in relevant literature have 

examined energy intensity and/or emission intensity of the manufacturing sector. We 

consider the link of studies of industry sectors and sub-sectors relevant. Zhang [15], 

Zhao et al. [16], Akbostanci et al [17] and Sheinbaum-Pardo et al [18], represented 

earlier studies of energy intensity or CO2 emissions intensity in industrial sectors or  

sub-sectors. Between energy intensity, the economic activity, the carbon index 

(emissions per energy), the fuel mix and the structural effect, the energy intensity and 

the economic activity are the most relevant factors in the decomposition. 

 

To put our study in context, it is important to focus on other studies in literature that 

study the impacts of structural change on trends in energy use in the agricultural sector. 

For example, Shyamal and Bhattacharya [19] suggest that, in the Indian agricultural 

sector, the fuel substitution and abatement technologies for reducing pollution were not 

present, and shows that the strength of the pollution coefficient component (the ratio of 
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CO2 emissions and energy use)  is relatively low in the sub-periods analysed: 1985–90 

and 1990–96.; the energy intensity component (positive) is also an important factor for 

increasing CO2 in the agricultural sector. This positive intensity component indicates 

that the agricultural sector in India failed to use energy efficiently and that the supply of 

energy to agricultural sector is highly subsidised.  

 

Zhang et al [4], found through decomposition analysis, that the economic activity is the 

biggest factor to influence CO2 emission in the agricultural sector. During the first two 

sub-periods (1991–1996, 1996–2001), CO2 intensities are positive. However in the third 

sub-period and in the entire period, CO2 intensities are negative, which lead to CO2 

emission reduction. In the sub-period of 2001–2006, the positive energy intensity 

indicates that there has been a mechanization transition in the agricultural sector.  

 

Ilyoung Oh et al [20] analysed the specific trends and influencing factors that have 

caused changes in emissions patterns in South Korea over a 15-year period (1990-

2005). For this effect, they employed the Log Mean Divisia index method with five 

energy consumption sectors and seven sub-sectors in terms of fuel mix (FM), energy 

intensity (EI), structural change (SC) and economic growth (EG). In agriculture, energy 

intensity seems to be determined primarily by oil prices. Oil is likely to be substituted 

with gas and electricity to avoid the less stable oil prices. A slight shift from heavy oil to 

natural gas and electricity explains the low levels of CO2 reduction. The reduction 

effects in change of structure share (SC) are the result of lower growth rate (i.e., 1.4% 

per year) than that of the GDP (8.3% per year). 

 

The existing literature has elucidated us about the most important factors affecting the 

intensity of emissions in economic activities. But even in the articles that addressed the 

agricultural sector, this was approached in the same way as other economic sectors. 

Deeming that the agricultural sector has certain features which differentiate towards 

other sectors, in relation to the intensity of their emissions, we felt there was a gap in 

the literature, not considering the specific effects on the decomposition of the intensity 
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of emissions from the agricultural sector. Therefore in this study we include variables 

such as the agricultural area, labour productivity and the use of nitrogen as a fertilizer. 

 

5.3 Data and Methodology 

 

This paper includes data for the time span 1995-2008, for a set of countries: Belgium, 

Denmark, Germany, Ireland, Greece, Spain France, Italy, Luxembourg, Netherlands, 

Austria, Portugal, Slovakia, Finland and Sweden. We considered the period 1995 – 

2008, because it was the most recent period for which we had common data for all 

countries. The countries were chosen because they were the European countries that 

had a greater period of availability of the variables under study.  

 

All data were collected from Eurostat web page and is related to the agriculture sector. 

We considered data about emissions of greenhouse gases (CO2 equivalent) in Millions 

of tonnes, denoted by “E”. This variable was available in Agri-environmental indicators, 

in pressure and risk folder.  Fossil Energy Consumption (Lubricants) was considered in 

Millions of Euros at constant prices of 2005 and is denoted by “F”. This variable was 

available in Economic accounts for agriculture. Nitrogen in tonnes is denoted by “N”, 

and was available in the Gross Nutrient Balance, included in Agri-environmental 

indicators, in pressure and risk folder. Utilized agricultural area in 1000 ha is denoted by 

“A” and was available in Regional Agriculture Statistics, Land use by NUTS 2 regions 

folder. Total labour force input in 1 000 annual work units, is denoted by “L” and was 

available in Economic Accounts for Agriculture, Agricultural Labour Input Statistics 

(absolute figures) folder.  Net Value Added at basic prices and at constant prices of 

2005, in Millions of Euros, is denoted by “VA” and was available in Economic Accounts 

for Agriculture.  

 

This study uses a decomposition technique similar to the one used by Sun [3] and 

Zhang et al. [4]. The GHG emissions intensity (EI) of the agriculture sector can be 

decomposed as follows:  
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The change of GHG emissions intensity between a base year 0 and a target year t, 

denoted by ∆EI, can be decomposed into five effects: (i) the changes in GHG emissions 

compared to the fossil fuels consumption (denoted by EF effect), (ii) the changes in the 

fossil fuels consumption compared to the use of Nitrogen in agriculture  (denoted by FN 

effect), (iii) the change in use of Nitrogen in agriculture per ha of utilized agricultural 

area (denoted by NA effect), (iv) the change in utilized agricultural area per worker 

(denoted by AL effect) and the inverse of average labour productivity in agriculture 

(denoted by LVA effect), as follows: 

 

∆𝐸𝐼 = 𝐸𝐼𝑡 − 𝐸𝐼0 = 𝐸𝐹𝑒𝑓𝑓𝑒𝑐𝑡 + 𝐹𝑁𝑒𝑓𝑓𝑒𝑐𝑡 + 𝑁𝐴𝑒𝑓𝑓𝑒𝑐𝑡 + 𝐴𝐿𝑒𝑓𝑓𝑒𝑐𝑡 + +𝐿𝑉𝐴𝑒𝑓𝑓𝑒𝑐𝑡            [2] 

 

For the calculation of the effects we only exemplify for EF effect. The other effects are 

calculated in a similar way: 
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0 +  ∆𝐹𝑁𝑖𝑁𝐴𝑖
0𝐴𝐿𝑖

0∆𝐿𝑉𝐴𝑖

+  𝐹𝑁𝑖
0∆𝑁𝐴𝑖∆𝐴𝐿𝑖𝐿𝑉𝐴𝑖

0 +  𝐹𝑁𝑖
0∆𝑁𝐴𝑖𝐴𝐿𝑖

0∆𝐿𝑉𝐴𝑖 +  𝐹𝑁𝑖
0𝑁𝐴𝑖

0∆𝐴𝐿𝑖∆𝐿𝑉𝐴𝑖)

+
1

4
∑ ∆𝐸𝐹𝑖

𝑖

(∆𝐹𝑁𝑖∆𝑁𝐴𝑖∆𝐴𝐿𝑖𝐿𝑉𝐴𝑖
0 +  ∆𝐹𝑁𝑖∆𝑁𝐴𝑖𝐴𝐿𝑖

0∆𝐿𝑉𝐴𝑖 +  ∆𝐹𝑁𝑖𝑁𝐴𝑖
0∆𝐴𝐿𝑖∆𝐿𝑉𝐴𝑖

+  𝐹𝑁𝑖
0∆𝑁𝐴𝑖∆𝐴𝐿𝑖∆𝐿𝑉𝐴𝑖) +

1

5
∑ ∆𝐹𝑁𝑖∆𝑁𝐴𝑖∆𝐴𝐿𝑖∆𝐿𝑉𝐴𝑖

𝑖

 

           [3] 

 

EF effect can be used to evaluate the fossil fuel quality and the substitution between 

fossil fuels; through FN effect it is possible to see which source of pollution (fossil fuel 

consumption or use of Nitrogen) has gained more importance in agriculture. We found a 

negative relationship (although weak) between the two variables. That is, countries that 



 

 

136 

 

diminished the use of nitrogen, raised fossil fuels, and countries that raised nitrogen, 

diminished fossil fuels. There are only 5 countries that don’t show this relation. Despite 

this relationship, which does not guarantee the existence of substitutability/competition 

between the two sources of pollution, we can make the following interpretation of FN 

effect. If for example this effect is important and it is positive, it means that if we raise 

this ratio, GHG emissions will rise. That is, if the use of fossil fuels gains importance 

compared to the application of Nitrogen, then GHG will rise. If the opposite happens, 

i.e., if the effect is negative, it means that if we lower this ratio, GHG emissions will rise. 

That is, if the use of fossil fuels loses importance compared to the application of 

Nitrogen, then GHG will rise. In short, this effect allows us to see, in relative terms, the 

impact of each source of pollution on the verified GHG emissions from agriculture. 

 

NA effect shows the evolution of the use of Nitrogen per hectare of utilized area, 

highlighting the need to increase land productivity compared to its increasing availability 

or scarcity. AL effect shows the evolution of cultivated land area by farmer, and can be 

interpreted as an indicator of the use of a more mechanized agriculture. LVA effect 

gives us information about the growth of the inverse of labour productivity in agriculture, 

which influences the use of machinery and the final production, though affecting 

consumption of fossil fuels, and the use of Nitrogen. 

 

The effects are calculated for all previous referred countries, for every year in the period 

1996-2008, and between the last and the first year.  

 

One drawback of this methodology is that the decomposition of CO2 emissions intensity 

is a multiplicative identity, hereby assuming that the effects of different ratios are 

proportional, ceteris paribus. On the one hand, these ratios may be correlated, that is, 

factors may affect each other, and this methodology ignores these mutual effects. This 

limitation could be surpassed with a future research work that through econometric 

analysis assesses the relationship between these variables and their impact on the 

dependent variable EI. 
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On the other hand, the methodology of decomposition presents several alternative 

methods and in this paper we seek to adapt the method of Log Mean Divisia index 

method as it is the most commonly used in the literature, and also seek to expand the 

mathematical expression according to the effects theoretically sustained and that 

contribute to the temporal change in the emissions. 

 

5.4 Results and Discussion 

 

In most countries studied, there was an increase in agriculture emissions intensity, and 

in only five countries this variable declined. The greatest decrease was seen in Italy. On 

the other hand, the highest raises were found in the Netherlands, Belgium and 

Luxembourg (see table 5.1a). NA effect and LVA effect were the ones that had a 

greater contribution to the variation of emissions intensity for the period studied (see 

table 5.1b). NA contributes positively to the variation of EI.  

 

The average growth rate of the value added of agriculture, for countries and period 

considered has declined gradually, according to Eurostat data. The weight of this 

activity in the economy of the countries has also decreased, but this is a natural 

tendency of the industrialized countries. The recent economic crisis has further 

contributed to this decrease of activity, associated with reduced income and global 

demand, and also to the fall in food industry activity, which has also caused a decrease 

in employment in the agriculture sector. In this study, we focus on the intensity of 

emissions, which increased in most countries studied meaning that the reduction of the 

economic activity was not followed by a proportional reduction in emissions. 

 

 Regarding the policy adopted in Europe for this period, we noted that the CAP 

(Common Agricultural Policy), until 2004, promoted a large expansion of agricultural 

production, allowing less ecological practices to enhance production, such as the 

indiscriminate use of fertilizers and pesticides [21]. Therefore we see that one of the 

main factors determining the emissions intensity in this study was the NA effect. In the 

countries in which the variation of EI is positive, the effect of NA is the main one 
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responsible for this increase, which means that the use of Nitrogen per cultivated area 

is an important factor of emissions. 

 

Since 2004, as a result of agricultural surpluses generated and the growing concerns 

and targets related with the environmental pollution, there has been a refocusing of 

agricultural support, valuing the environment, as they bind payments to farmers to strict 

environmental standards, the so called cross compliance scheme [21]. 

 

We concluded that the effect LVA proves to be the most important, specifically in the 

countries where the change in EI is negative, with the exception of Ireland. This means 

that in countries where labour productivity increases (LVA decreases) emissions 

intensity tends to decrease.  The CAP in recent years has helped farmers to be more 

productive and improve their technical skills. The research and development have also 

been important to help farmers to produce more with less. 

 

In addition, emissions by fossil fuels appear as the main determinant in some years for 

some countries, which means that substitution between fossil fuels in these countries 

could lead to relevant changes in emissions intensities of agriculture. Accordingly, 

reducing emissions is also going through measures that help modernize farms, through 

more energy efficient buildings and equipment. Supports to the use of biogas and 

compensations given to farmers who voluntarily help to protect the environment (agri-

environmental schemes) have also contributed to the overall decrease in the intensity of 

emissions in the sector.  

 

In this study, the analysis by country was also made for each year of the period 

considered (see table A5.1 in appendix). In the case of Belgium, although during the 

whole period EI increased, there are more years with a decrease in emission intensity, 

and LVA effect is the determining factor. This means that a decrease of LVA or an 

increased labour productivity has reduced emissions per unit of output in agriculture. 

However, there are some years where EI increases, as in 2001, 2003, 2005, 2006, 

2007 and 2008. These increases are given to the effects FN, NA and EF. 
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For Denmark, there are seven years where EI decreases and six years where EI 

increases. In almost every year, the most relevant factor is LVA effect. Nevertheless, in 

some years when EI rises, the most important factor is NA effect. 

 

In the case of Germany, the years in which EI increases are predominant. Besides LVA 

effect, FN effect shows up the main factor of influence in several years in which EI 

increases, that is, the intensive use of fossil fuels face to the use of Nitrogen increases 

the emissions intensity of the sector. 

 

 

Table 5.1a - Effects of decomposition of emissions intensity change (1995-2008) by country 

 EF effect FN effect NA effect AL effect LVA effect Var EI 

Belgium -0,02851 0,038165 0,328416 0,012402 -0,07368 0,2768 

Denmark -0,00278 0,0035 0,157328 0,005875 -0,00876 0,155164 

Germany -0,0072 0,007307 2,97E-05 0,005145 -0,00984 -0,00456 

Ireland -0,00786 0,011017 0,041798 0,020314 -0,05425 0,011022 

Greece -0,0002 0,000447 0,009325 0,000362 6,15E-05 0,009999 

Spain 0,000387 -0,00044 0,00104 0,000125 -0,00171 -0,0006 

France 0,000149 -9E-05 0,027875 0,002152 -0,00198 0,028103 

Italy -0,00088 0,001234 -6,2E-05 0,001098 -0,01141 -0,01002 

Luxembourg -0,0017 0,004244 0,210856 0,007617 -0,01828 0,202732 

Netherlands -0,00119 0,001765 0,394236 0,000659 -0,00116 0,394309 

Austria -0,00257 0,001904 0,000187 0,003162 -0,01078 -0,0081 

Portugal -0,00074 0,001014 0,000328 0,000571 -0,00066 0,000514 

Slovakia -0,00263 0,000941 0,002368 0,007111 -0,0062 0,001595 

Finland 0,000709 -0,00033 0,028078 0,003062 -0,01402 0,017498 

Sweden 0,009664 -0,00958 0,010302 0,009387 -0,02455 -0,00477 
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Table 5.1b - Effects of decomposition of emissions intensity change (1995-2008) by country in % 

of emissions intensity variation 

% EF effect FN effect NA effect AL effect LVA effect Var EI 

Belgium -10,3 13,8 118,6 4,5 -26,6 100 

Denmark -1,8 2,3 101,4 3,8 -5,6 100 

Germany 157,9 -160,4 -0,7 -112,9 216,0 100 

Ireland -71,3 100,0 379,2 184,3 -492,2 100 

Greece -2,0 4,5 93,3 3,6 0,6 100 

Spain -64,6 74,0 -173,8 -20,9 285,3 100 

France 0,5 -0,3 99,2 7,7 -7,1 100 

Italy 8,7 -12,3 0,6 -11,0 113,9 100 

Luxembourg -0,8 2,1 104,0 3,8 -9,0 100 

Netherlands -0,3 0,4 100,0 0,2 -0,3 100 

Austria 31,7 -23,5 -2,3 -39,0 133,1 100 

Portugal -143,1 197,3 63,8 111,0 -129,1 100 

Slovakia -164,8 59,0 148,4 445,8 -388,5 100 

Finland 4,1 -1,9 160,5 17,5 -80,2 100 

Sweden -202,5 200,7 -215,9 -196,7 514,3 100 

 

 

 

LVA effect is also the most crucial for Ireland, where predominantly EI decreases. Only 

NA effect and EF effect are shown as predominant in two years where EI increases. 

 

Greece has only one year in which EI decreases. In almost every year there is an 

increase and over four years Greece keeps the emission intensity stable. But despite 

the fact LVA effect is predominant in some years, there are other important effects for 

this country, as AL in 1996, EF and FN in 2000, 2002 and 2004, and NA in 2005. In 

particular, emissions from fossil fuels have a strong negative effect in two years, which 

means Greece is using less polluting fossil fuels that means that there could have been 

a change in the mix of fossil fuels in favour of “cleaner” ones, for example, changing 

from coal to natural gas. 

 

The relationship between fossil fuels and Nitrogen presents positive in two years, 

offsetting the negative effect of EF, which means that the consumption of fossil fuels in 

relation to Nitrogen increased, leading to an increase in emissions intensity. 
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Although Spain is a country where there is a decrease of EI in the period considered, 

there are two years in which this variable increases and three years in which it keeps 

constant. Here LVA effect is not always predominant. NA and AL effects are shown as 

the most important once, FN effect twice and EF effect four times in the period 

considered. The latter effect may prove that to Spain the mix of fossil fuels used may 

have had an important influence in some years, in the variation of emissions intensity. 

 

France is a case in which there are more years when the intensity of agricultural 

emissions increases than years in which it maintains or decreases. LVA effect proves to 

be important in these variations but there are also other important effects in some years, 

such as NA, AL and EF effects. 

 

In Italy, the years in which EI decreases are dominant, and LVA effect is the most 

decisive effect in more than half of the variations in the intensity of emissions. In the 

remaining years there are other factors that are shown as the most important, such as 

FN, NA, EF and AL effects. 

 

In Luxembourg despite having more years in which EI decreases, the net effect is 

positive. LVA is the most decisive effect, but in two years NA effect is the most 

important, as AL, EF and FN effect are in three other years. 

 

Netherlands has many years in which EI increases and this is also the result for the 

whole period. This country presents a difference compared to other countries, which is 

the great importance of NA effect in determining the intensity of emissions. This means 

that emissions from agriculture are mainly influenced by the use of Nitrogen per unit 

area cultivated. 

 

For Austria, the influence of LVA effect is dominant, and only in three years EF effect is 

the most important in order to decrease the emissions intensity. This may show a 

substitution between the mix of fossil fuels in favour of cleaner ones. 
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Portugal has the same number of years in which EI increases in comparison with the 

years in which EI decreases. In any one of them the dominant effect is LVA. 

Furthermore, in three years EI remains constant, where the dominant effects are EF 

and FN. 

 

In Slovakia the dominant effects are LVA, EF and AL effects. In Finland we have a 

predominance of years in which EI rises and where the LVA effect dominates. However 

in three years, EF, FN and NA effects are also shown to be very important in 

determining EI. 

 

In Sweden we only have three years in which EI rises. In almost all years the most 

important effect is LVA, but we have three years in which this does not happen, and the 

relevance is given to the effects EF, AL and NA. These last two effects are important in 

two years in which EI increases (2004 and 2005). This means that the increase in 

cultivated area per worker and the increased use of Nitrogen by area contributed greatly 

to the increase of emissions in those years. 

 

The results in this paper are not directly comparable with the existing literature, since 

the effects that decompose the intensity of emissions are distinct, particularly because 

in this study new variables are introduced, such as the use of Nitrogen, the utilized area 

and labour. But somehow we can liaise, for instance, with Shyamal and Battacharya 

[17], who state that energy intensity has a strong impact on the determination of 

emissions intensity. In our case, despite using fossil fuel consumption, the most 

important factors were the inverse of labor productivity (LVA) and the use of Nitrogen 

per cultivated area (NA). But EF effect (that could be an indicator of trends in the use of 

fossil fuels or in the changing mix of fossil fuels), appears as the main determinant in 

some years for some countries, such as Ireland, Greece, Spain, France, Italy, Austria, 

Portugal, Slovakia and Sweden, which means that the substitution between fossil fuels 

in these countries could lead to relevant changes in emissions intensity of agriculture. 
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5.5 Conclusions 

 

Is this paper, we used the 'complete decomposition' technique to examine GHG 

emissions intensity and its components, for the agriculture sector in the 1995-2008 

period, for a set of European countries.  

 

It is shown that NA effect and LVA effect were the ones that had a greater contribution 

to the variation of EI. This means that the use of Nitrogen per cultivated area is an 

important factor of emissions and that in those countries where labour productivity 

increases, emissions intensity tends to decrease. 

 

These results imply that the way to reduce emissions in agriculture could pass for a 

better training of agricultural workers to increase their productivity, which would lead to 

a less need for energy and use of Nitrogen. On the other hand, there may be an 

exaggerated focus on the use of fossil fuels as a source of emissions, while this paper 

shows that the use of Nitrogen represents a more important role in determining 

emissions than the use of fossil energy. 

 
Apart from its relation to GHG emissions, nitrates are also a major source of water 

pollution, so it is important to establish a European strategy for the effective adoption of 

sustainable agricultural practices, namely by reducing the use of nitrates and other 

fertilizers or their application in divided doses. 

 

European legal framework already exists through Nitrates Directive (1991/676/CEE) 

and initiatives such NEV2013, Workshop on 'Nitrogen, Environment and Vegetables', 

but it is necessary to obtain further information and monitoring of the agricultural sector 

in this field. 

 

In addition, emissions by fossil fuels appear as the main determinant in some years for 

some countries, which means that substitution between fossil fuels in these countries 

could lead to relevant changes in emissions intensities of agriculture. 
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Future research could be to study econometrically the relationship between the effects 

studied here, to see if there might be some kind of causality between them. For 

example, a higher labour productivity may cause a lower ratio of emissions by fossil 

energy, or the lower use of Nitrogen per cultivated area. Another factor to include could 

be related to the use of renewable energy in agriculture. 
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Appendix 
 

Table A5.1 - Effects of decomposition of emissions intensity change by year and by country 
 

 

Belgium 

 
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

EF effect -0,00794 -0,00127 -0,00081 0,00101 -0,00126 -0,00111 -0,00013 -0,00042 -0,00028 -0,00117 -0,00034 -0,00062 0,00071 

FN effect 0,00882 0,00122 0,00107 -0,00085 0,00099 0,00142 0,00000 0,00054 0,00028 0,00123 0,00034 0,00087 -0,00072 

NA effect -0,00087 -0,00028 -0,00021 -0,00010 -0,00005 -0,00060 -0,00008 0,00101 -0,00003 0,00015 0,00009 0,00014 -0,00006 

AL effect 0,00330 0,00043 0,00098 0,00034 0,00014 -0,00007 0,00006 0,00019 0,00010 0,00017 0,00008 0,00023 0,00016 

LVA effect -0,02629 -0,01661 -0,01254 -0,00770 -0,00218 0,00158 -0,00334 -0,00075 -0,00073 -0,00017 0,00058 0,00071 0,00061 

var EI -0,02299 -0,01651 -0,01150 -0,00729 -0,00237 0,00122 -0,00348 0,00058 -0,00066 0,00022 0,00075 0,00134 0,00071 

Denmark 

 
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

EF effect -0,00263 -0,00007 0,00051 -0,00077 -0,00022 -0,00048 0,00038 -0,00065 0,00043 -0,00023 0,00029 0,00000 0,00042 

FN effect 0,00244 -0,00006 -0,00018 0,00102 0,00014 0,00067 -0,00005 0,00039 -0,00041 0,00028 -0,00019 0,00023 -0,00070 

NA effect 0,01831 0,00021 -0,00005 0,00155 -0,00009 -0,00413 0,00012 -0,00006 0,00004 0,00070 0,00000 0,00017 0,00050 

AL effect 0,00172 0,00019 0,00074 0,00077 0,00025 -0,00116 0,00047 0,00018 0,00048 0,00071 0,00032 0,00034 0,00009 

LVA effect -0,00019 -0,00063 -0,00186 -0,00089 -0,00081 -0,00125 -0,00054 -0,00138 -0,00103 0,00012 0,00155 0,00134 -0,00225 

var EI 0,01966 -0,00037 -0,00084 0,00169 -0,00073 -0,00635 0,00037 -0,00152 -0,00050 0,00158 0,00197 0,00208 -0,00194 

Germany 

 
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

EF effect 0,00028 -0,00101 -0,00094 -0,00076 -0,00083 -0,00210 -0,00076 -0,00074 -0,00048 -0,00047 -0,00027 -0,00018 0,00145 

FN effect -0,00013 0,00099 0,00094 0,00075 0,00043 0,00247 0,00058 0,00081 0,00031 0,00057 0,00008 0,00066 -0,00166 

NA effect -0,00006 -0,00011 0,00000 0,00037 0,00093 -0,00010 -0,00016 -0,00018 0,00064 -0,00016 0,00004 -0,00019 0,00125 

AL effect 0,00057 0,00040 0,00027 0,00006 0,00048 0,00051 0,00055 0,00057 0,00038 0,00017 0,00022 0,00030 0,00027 

LVA effect -0,00218 -0,00119 0,00046 -0,00241 0,00039 0,00128 0,00043 -0,00033 -0,00643 0,00284 0,00058 0,00072 -0,00334 

var EI -0,00152 -0,00091 0,00072 -0,00199 0,00139 0,00207 0,00064 0,00013 -0,00558 0,00294 0,00066 0,00131 -0,00204 
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Ireland 

 
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

EF effect -0,00367 0,00111 0,00056 0,00035 0,00031 -0,00297 0,00140 0,00045 0,00029 -0,00118 -0,00076 -0,00128 0,00059 

FN effect 0,00479 0,00025 -0,00161 -0,00097 -0,00013 0,00351 -0,00139 -0,00068 -0,00013 0,00104 0,00088 0,00188 -0,00029 

NA effect 0,00072 -0,00071 0,00304 -0,00013 0,00702 -0,00093 -0,00004 0,00009 -0,00010 -0,00004 -0,00007 -0,00088 -0,00002 

AL effect -0,00075 0,00473 0,00082 0,00279 0,00616 -0,00026 -0,00066 -0,00045 0,00010 0,00081 -0,00081 0,00058 -0,00007 

LVA effect -0,01249 -0,01573 -0,00803 -0,00762 -0,01176 -0,00354 -0,00298 -0,00410 -0,00214 0,00579 0,01403 -0,00130 0,00046 

var EI -0,01142 -0,01035 -0,00522 -0,00559 0,00160 -0,00418 -0,00368 -0,00469 -0,00198 0,00642 0,01327 -0,00101 0,00068 

Greece 

 
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

EF effect -0,00002 -0,00003 -0,00003 -0,00001 -0,00007 -0,00002 -0,00010 -0,00012 0,00024 -0,00008 -0,00006 0,00018 -0,00004 

FN effect 0,00002 0,00005 0,00003 0,00001 0,00010 0,00002 0,00012 0,00013 -0,00024 0,00012 0,00009 -0,00024 0,00019 

NA effect 0,00003 -0,00002 0,00000 -0,00001 -0,00004 -0,00002 -0,00003 -0,00002 0,00004 -0,00003 -0,00003 0,00016 0,00137 

AL effect 0,00005 0,00004 0,00001 0,00000 0,00000 0,00002 0,00003 -0,00014 -0,00001 0,00003 0,00004 0,00005 0,00025 

LVA effect 0,00001 -0,00006 -0,00006 -0,00001 0,00001 0,00005 0,00003 0,00033 -0,00024 -0,00002 0,00014 0,00017 -0,00032 

var EI 0,00008 -0,00001 -0,00004 -0,00001 -0,00001 0,00005 0,00006 0,00017 -0,00021 0,00003 0,00017 0,00032 0,00146 

Spain 

 
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

EF effect 0,00023 -0,00006 0,00007 0,00007 0,00003 0,00006 -0,00007 0,00010 -0,00006 -0,00008 0,00007 0,00015 -0,00011 

FN effect -0,00020 -0,00008 -0,00001 -0,00008 0,00003 -0,00006 0,00004 0,00002 -0,00008 0,00013 0,00002 -0,00011 -0,00004 

NA effect 0,00017 0,00007 0,00002 0,00014 0,00002 -0,00003 0,00000 -0,00001 0,00003 -0,00012 0,00001 -0,00002 0,00001 

AL effect -0,00002 -0,00001 -0,00007 0,00007 0,00000 0,00000 0,00004 0,00007 0,00004 0,00000 -0,00006 0,00007 -0,00003 

LVA effect -0,00092 -0,00024 -0,00004 0,00001 -0,00015 -0,00005 -0,00015 -0,00015 -0,00001 0,00035 -0,00007 -0,00036 0,00003 

var EI -0,00074 -0,00032 -0,00004 0,00020 -0,00006 -0,00007 -0,00014 0,00003 -0,00008 0,00027 -0,00003 -0,00027 -0,00015 

France 

 
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

EF effect -0,00010 -0,00002 -0,00003 0,00002 0,00015 -0,00019 0,00007 -0,00018 0,00009 -0,00001 0,00001 0,00013 0,00018 

FN effect 0,00006 -0,00001 0,00002 -0,00004 -0,00017 0,00030 -0,00006 0,00017 -0,00008 0,00001 0,00001 -0,00003 -0,00024 

NA effect 0,00015 0,00017 0,00000 -0,00001 0,00011 0,00004 0,00002 -0,00004 -0,00068 -0,00002 -0,00004 -0,00004 0,02321 
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AL effect 0,00013 0,00012 0,00009 0,00008 0,00006 0,00013 0,00011 0,00012 -0,00021 0,00011 0,00011 0,00010 0,00105 

LVA effect -0,00057 -0,00022 -0,00021 -0,00032 0,00011 0,00027 -0,00064 0,00108 -0,00151 0,00030 0,00004 0,00009 -0,00027 

var EI -0,00033 0,00004 -0,00013 -0,00026 0,00026 0,00055 -0,00049 0,00115 -0,00238 0,00039 0,00012 0,00025 0,02392 

Italy 

 
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

EF effect -0,00016 0,00033 -0,00008 0,00006 -0,00011 -0,00013 0,00000 -0,00009 0,00002 -0,00009 -0,00004 0,00008 -0,00004 

FN effect 0,00015 -0,00014 -0,00001 -0,00002 0,00019 0,00004 0,00001 0,00012 0,00005 0,00014 0,00011 -0,00016 -0,00006 

NA effect 0,00001 0,00001 -0,00002 -0,00003 -0,00008 0,00004 -0,00004 0,00009 0,00003 -0,00031 -0,00004 0,00025 -0,00002 

AL effect 0,00024 0,00008 0,00018 0,00022 0,00004 -0,00005 0,00008 -0,00001 0,00010 -0,00019 -0,00011 0,00006 0,00010 

LVA effect -0,00421 -0,00281 -0,00205 -0,00160 0,00013 0,00005 0,00002 0,00012 -0,00054 0,00007 0,00010 -0,00005 -0,00016 

var EI -0,00397 -0,00252 -0,00197 -0,00136 0,00017 -0,00005 0,00007 0,00023 -0,00033 -0,00038 0,00002 0,00017 -0,00018 

Luxembourg 

 
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

EF effect -0,00190 -0,00035 -0,00178 0,00001 0,00315 -0,00392 0,00270 -0,00138 0,00049 -0,00139 0,00047 0,00104 -0,00020 

FN effect 0,00236 0,00039 0,00189 -0,00014 -0,00296 0,00506 -0,00309 0,00251 -0,00218 0,00209 -0,00038 -0,00075 0,00039 

NA effect 0,00006 0,00238 0,00050 0,00056 0,00554 -0,00113 0,00016 -0,00056 0,00762 -0,00270 -0,00020 -0,00012 -0,00008 

AL effect 0,00106 0,00188 -0,00043 0,00055 0,00204 -0,00071 0,00061 0,00051 0,00082 -0,00034 0,00041 0,00031 0,00060 

LVA effect -0,00422 -0,00020 -0,00474 0,00194 0,00076 0,00035 -0,00332 0,00936 -0,01558 0,00342 -0,00781 -0,00180 0,00421 

var EI -0,00264 0,00409 -0,00456 0,00292 0,00854 -0,00036 -0,00295 0,01043 -0,00882 0,00107 -0,00750 -0,00131 0,00492 

Netherlands 

 
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

EF effect -0,00059 0,00026 -0,00026 -0,00004 -0,00022 -0,00003 -0,00019 -0,00014 -0,00005 0,00003 -0,00004 0,00017 -0,00014 

FN effect 0,00058 -0,00031 0,00024 0,00011 0,00031 0,00018 0,00018 0,00013 0,00008 -0,00002 0,00007 -0,00006 0,00020 

NA effect -0,00041 0,00001 0,00069 -0,00006 0,00035 0,00055 0,00101 -0,00002 0,00004 -0,00003 -0,01491 0,02700 0,00166 

AL effect -0,00011 -0,00005 0,00010 0,00001 0,00002 0,00009 0,00009 0,00003 0,00015 0,00001 -0,00031 0,00035 0,00017 

LVA effect 0,00024 0,00033 -0,00053 -0,00035 -0,00008 0,00049 0,00001 -0,00032 -0,00041 -0,00001 -0,00003 -0,00018 -0,00014 

var EI -0,00029 0,00024 0,00024 -0,00033 0,00037 0,00128 0,00110 -0,00032 -0,00018 -0,00002 -0,01521 0,02728 0,00175 
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Austria 

 
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

EF effect -0,00203 -0,00058 0,00061 -0,00019 -0,00036 -0,00064 -0,00014 -0,00017 -0,00021 0,00015 0,00001 0,00046 -0,00001 

FN effect 0,00107 0,00063 -0,00044 0,00043 0,00039 0,00059 0,00016 0,00059 -0,00003 -0,00027 -0,00002 -0,00040 -0,00031 

NA effect 0,00015 -0,00001 -0,00015 -0,00030 -0,00024 -0,00001 -0,00015 -0,00032 0,00039 0,00006 0,00014 0,00003 0,00077 

AL effect 0,00072 0,00012 0,00039 0,00004 0,00013 0,00012 0,00012 0,00057 -0,00013 0,00032 0,00036 0,00021 0,00008 

LVA effect -0,00063 -0,00036 -0,00300 -0,00150 0,00052 -0,00008 0,00049 0,00005 -0,00252 0,00054 -0,00013 -0,00228 -0,00140 

var EI -0,00073 -0,00020 -0,00260 -0,00152 0,00044 -0,00001 0,00048 0,00071 -0,00249 0,00080 0,00037 -0,00199 -0,00086 

Portugal 

 
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

EF effect 0,0005 0,0001 0,0003 -0,0003 -0,0001 -0,0006 -0,0003 -0,0007 -0,0003 0,0002 0,0003 0,0002 -0,0001 

FN effect -0,0006 -0,0001 -0,0002 0,0002 0,0000 0,0006 0,0002 0,0010 0,0002 0,0000 -0,0001 -0,0004 0,0002 

NA effect 0,0002 0,0000 0,0000 0,0000 0,0001 -0,0001 0,0000 -0,0007 0,0003 -0,0002 -0,0001 0,0002 -0,0002 

AL effect -0,0001 0,0000 0,0000 0,0003 -0,0002 -0,0001 0,0003 0,0000 0,0002 0,0000 0,0002 -0,0001 0,0001 

LVA effect -0,0001 0,0004 0,0003 -0,0011 0,0005 0,0002 -0,0007 0,0004 -0,0007 0,0007 -0,0004 0,0001 -0,0003 

var EI 0,0000 0,0003 0,0004 -0,0008 0,0004 0,0000 -0,0005 0,0000 -0,0002 0,0007 -0,0002 0,0000 -0,0002 

Slovakia 

 
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

EF effect -0,00116 -0,00087 -0,00127 -0,00098 0,00073 0,00283 -0,00108 0,00149 -0,00057 0,00092 -0,00090 0,00046 -0,00019 

FN effect 0,00081 0,00014 0,00096 0,00113 -0,00089 -0,00252 0,00051 -0,00139 0,00081 -0,00105 0,00097 -0,00055 0,00008 

NA effect -0,00005 0,00036 -0,00036 -0,00025 0,00032 0,00122 0,00113 -0,00070 0,00105 0,00007 -0,00021 0,00064 -0,00043 

AL effect 0,00029 0,00045 0,00112 0,00107 0,00095 0,00017 -0,00007 0,00208 -0,00042 0,00076 0,00095 -0,00007 0,00020 

LVA effect -0,00091 -0,00005 0,00020 -0,00343 0,01302 -0,00424 -0,00112 0,00076 -0,01155 0,00097 -0,00029 0,00497 -0,00622 

var EI -0,00102 0,00002 0,00067 -0,00246 0,01413 -0,00254 -0,00062 0,00223 -0,01068 0,00165 0,00052 0,00546 -0,00657 

Finland 

 
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

EF effect -0,00047 0,00120 -0,00131 0,00086 0,00150 -0,00161 0,00029 -0,00027 0,00137 0,00059 -0,00031 -0,00019 -0,00006 

FN effect 0,00080 -0,00091 0,00085 -0,00046 -0,00157 0,00155 0,00004 0,00036 -0,00134 -0,00032 0,00036 0,00021 0,00011 

NA effect -0,00036 -0,00027 -0,00015 -0,00053 0,00024 -0,00014 -0,00026 -0,00012 -0,00021 -0,00022 -0,00015 0,00000 0,00009 
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AL effect 0,00017 0,00033 0,00123 0,00142 0,00107 0,00031 0,00036 0,00008 0,00047 0,00106 0,00049 0,00010 -0,00003 

LVA effect 0,00165 -0,00119 0,01018 -0,00577 -0,00396 -0,00063 -0,00123 0,00121 0,00012 -0,00381 -0,00143 -0,01199 -0,00004 

var EI 0,00180 -0,00084 0,01080 -0,00448 -0,00271 -0,00053 -0,00080 0,00126 0,00041 -0,00271 -0,00104 -0,01187 0,00007 

Sweden 

 
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

EF effect 0,00497 -0,00017 -0,00232 -0,00011 0,00203 -0,00018 0,00212 -0,00011 0,00060 0,00044 0,00118 -0,00017 0,00024 

FN effect -0,00467 -0,00025 0,00200 0,00178 -0,00260 -0,00043 -0,00150 0,00000 -0,00041 -0,00011 -0,00104 -0,00020 -0,00078 

NA effect -0,00082 0,00085 -0,00008 -0,00150 0,00057 0,00084 -0,00082 -0,00009 -0,00024 -0,00047 -0,00023 0,00035 0,00141 

AL effect 0,00183 0,00087 0,00135 0,00151 -0,00004 -0,00021 0,00080 0,00019 0,00039 0,00015 0,00026 0,00113 0,00025 

LVA effect -0,00537 -0,00310 0,01056 -0,00560 -0,00360 -0,00362 -0,00416 -0,00041 -0,00290 -0,00243 -0,00179 -0,00065 0,00018 

var EI -0,00407 -0,00180 0,01151 -0,00392 -0,00364 -0,00360 -0,00356 -0,00041 -0,00256 -0,00242 -0,00162 0,00046 0,00130 
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Figure A5.1 – Variation (%) of Greenhouse Gas Emissions and fossil energy consumption in 
agriculture, in 1995-2008 

 
Source: Own elaboration using data from Eurostat 

 

 

 

 

 

Figure A5.2 - Variation of Nitrogen (tonnes) per utilised agricultural area (1000 ha) in 1995-2008 

 
Source: Own elaboration using data from Eurostat 
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Figure A5.3 - Variation of Consumption of fossil energy (Million euros at constant prices) by 
tonnes of Nitrogen in agriculture, 1995-2008 

 

Source: Own elaboration using data from Eurostat 

 

 

 

 

 

Figure A5.4 - Variation of Utilized Agricultural Area (1000ha) per labour force (1 000 annual work 
units), 1995-2008 

 

 

Source: Own elaboration using data from Eurostat 
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Figure A5.5 - Variation of Average Agricultural Labour Productivity (net value added in millions of 
euro by total labour force input in 1000 annual work units) in 1995-2008 

 

 
Source: Own elaboration using data from Eurostat 
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Chapter 6 

 

Is the share of renewable energy sources determining 

the CO2 kWh and Income relation in electricity 

generation? 

 

6.1 Introduction 

 

European countries have shown a special concern in reducing emissions of 

greenhouse gases (GHG) that materialized in a practical way with the signing 

of Kyoto Protocol, with the implementation of the European Union Emissions 

Trade System (EUETS) and more recently with the adoption of the "20-20-20" 

targets. In 2020, these targets specifically aim for a 20% cut in GHG emissions 

from 1990 levels; for an increase of renewable energy sources to 20%; and for 

a 20% improvement in the energy efficiency. 

 

The use of fossil fuels is the biggest culprit of anthropogenic air pollution (in 

particular by the emission of Carbon Dioxide (CO2)), being responsible for 

about 90% of total global CO2 emissions. Despite the recent economic crisis, it 

is expected that the use of fossil fuels will continue to increase in the future 

(Olivier et al. [1]). 

 

In the European electricity sector, more than 50% of the primary energy used 

is based on fossil fuels, coal representing approximately 30%. This translated 

into CO2 emissions represents 70% of total emissions in electricity production 

and 24% of the emissions of all European sectors (Commission of European 

Communities [2]). 

 

This makes the European Union (EU) have a growing concern in creating and 

implementing policies to limit CO2 emissions, primarily through the reduction 

of the use of coal in the electricity sector. For instance, through the EUETS, 

EU limited the allowances allocated to installations that produce electricity as 
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well as to energy-intensive industries, in order to cut 21% compared to 2005 

levels (European Commission [3]). 

 

There are several articles that have studied the connection between economic 

growth and emissions, testing the hypothesis of the Environmental Kuznets 

Curve (EKC). This hypothesis suggests that there is an inverse U-shaped 

relationship between income and environmental pollution, which means that 

there is an increase in pollution as the economy grows, but from a certain 

point, the economy can grow decreasing environmental degradation.  

The relation between emissions from electricity production and GDP is not 

focused on literature. Those studies that include electricity are based on the 

amount of energy consumed, which is inherently linked to a volume of 

emissions, but don’t directly include the emissions resulting from its 

production. Studies focus specifically on the relationship between economic 

growth and energy consumption, in particular electricity consumption. The 

study of the latter relationship is important because electricity production is, as 

we have seen, a major source of emissions, but on the other hand it is also an 

important way to reduce them, if there is a replacement of fossil fuels with 

renewable energy in electricity production. It is then important to analyze, how 

the reduction of emissions in this sector may undermine the economic growth 

of European countries. 

Moreover, it is important to analyze how the percentage of renewable energy 

used for electricity production affects the relationship between economic 

growth and emissions from this sector. The study of these relationships is 

important from the point of view of environmental and energy policy as it gives 

us information on the costs in terms of economic growth, on the application of 

restrictive levels of emissions and also on the effects of the policies concerning 

the use of renewable energy in the electricity sector (see for instance 

European Commission Directive 2001/77/EC, [4]). 

 

For that purpose, in this study we use Cointegration Analysis on the set of 

cross-country panel data between CO2 emissions from electricity generation 

(CO2 kWh), economic growth (GDP) and the share of renewable energy for 20 
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European countries. We estimated the long–run equilibrium to validate the 

EKC with a new approach specification.  

 

Additionally, we have implemented the Innovative Accounting Approach (IAA) 

that includes Forecast Error Variance Decomposition and Impulse Response 

Functions (IRFs), applied to those variables. This can allow us, for example, to 

know (i) how CO2 kWh responds to an impulse in GDP and (ii) how CO2 kWh 

responds to an impulse in the share of renewable sources. 

 

By combining these two methodologies, we will not only give an outline of what 

has been a past reality for CO2 kWh emissions and their relation to economic 

growth and to the use of renewable energy in European countries, but also 

how the last two variables can influence CO2 kWh emissions in the future.  

 

This paper is divided into five sections including this introduction. In Section 2 

we make a brief literature review, in Section 3 we present the data and the 

model, in Section 4 the econometric methodology and the main results are 

presented and in Section 5 the conclusions and policy recommendations. 

 

6.2 Literature review 

 

First, we will present some studies that relate emissions to economic growth, 

that is, that study the validity of EKC hypothesis. Some studies validate the 

hypothesis like Hettige et al. [5], Martinez-Zarzoso and Bengochea-Morancho 

[6] for OCDE countries, Acaravci and Ozturk [7] for Europe, Cropper and 

Griffiths [8] for non-OECD countries in Africa, Asia, and Central and South 

America, Pao et al. [9]  for Russia, Apergis and Payne [10] for Central 

America, Iwata et al. [11], for 28 countries (OECD countries, and non-OECD 

countries), Mongelli et al. [12], for Brazil, Ang [13], [14] for France and 

Malaysia, Jalil and Mahmud [15] for China, Halicioglu [16] for Turkey, Alam et 

al. [17] for India, Fodha and Zaghdoud [18] for Tunisia and Nasir and Rehman 

[19] for Pakistan, are some examples. 
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Secondly, as mentioned in the introduction, the relation between emissions 

from electricity production and GDP is not focused on literature. Electricity is 

included in the causality relations through the amount of energy consumed and 

not through the emissions resulting from its production. Representative studies 

are for instance:  Aqeel and Butt [20], Shiu and Lam [21], Lee and Chang [22], 

Altinay and Karagol [23], Yuan et al [24], Halicioglu [25]. They concluded that 

electricity consumption causes economic growth and as a result supports the 

growth hypothesis. The opposite causality is also found running from economic 

growth to electricity consumption, supporting the conservation hypothesis, by 

Narayan and Smith [26], Yuan et al [27], Squalli [28], Mozamder and Marathe 

[29], Hu and Lin [30], Reynolds and Kolodziej [31], Sari et al [32], Halicioglu 

[25]. Akbostanci et al [33], Dhakal [34], Jalil and Mahmud [15], Fodha and 

Zaghdoud [18], Gosh [35], Payne [36].  Other studies like Lean and Smith [37], 

found a unidirectional relationship, and support the growth effect for the period 

1980-2006 in Asian countries. They found a statistically significant positive 

association between electricity consumption and emissions and a non-linear 

relationship between emissions and real output. In the long-run they found a 

unidirectional causality running from electricity consumption and emissions to 

economic growth and in the short-run found unidirectional causality running 

from emissions to electricity consumption. 

 

In a third strand of literature, some studies include renewable energy in the 

relation of causality with GDP. There is a wide variety of research for different 

countries and groups of countries, of which we shall give some examples. The 

following studies obtained positive results in what concerns causal 

relationships between the referred variables. Bidirectional causality between 

GDP and renewable energy consumption was found for Eurasian countries 

(Apergis and Payne [38]), for OECD countries (Apergis and Payne [39]), for 

emerging economies (Sadorsky [40]), for six Central American countries 

(Apergis and Payne [41]), for 80 countries (Apergis and Payne [42]) and for 

Brazil (Pao and Fu [43]). 

 

Al-mulali et al. [44] examined high income, upper middle income and lower 

middle income countries and found a feedback hypothesis in 79% of the 



  159 

countries, with a positive bidirectional long-run between renewable energy 

consumption and real GDP. 19% of the countries represent the neutrality 

hypothesis (no long causality exists), while 2% of the countries confirm the 

conservation hypothesis (a one way long-run relationship between GDP and 

CO2 emissions). Frequently, as in Al-mulali et al [44], and the referred studies 

of Apergis and Payne [42], the electricity consumption from renewable sources 

measured in kilowatt-hour is used as an indicator of renewable energy 

consumption. Silva et al. [45] studied the relation between renewable energy, 

GDP and CO2 emissions, using the share of Renewable Energy Sources on 

Electricity generation. They concluded for a sample of four countries, that an 

increase on the share of renewable energy led to economic costs in terms of 

GDP per capita and to a decrease on CO2 emissions per capita. 

Bowden and Payne [46], employ a Toda-Yamamoto approach to study the 

relationship between real GDP, renewable and non-renewable energy in the 

USA, and found that renewable and non-renewable energy directly and 

indirectly affects the real GDP. Tiwari [47] analyzed the relationship between 

renewable energy, economic growth, and CO2 emissions for India, using a 

SVAR and concluded that an increment on renewable energy increases GDP 

and decreases CO2 emissions, and an increase on GDP has a strong positive 

impact on CO2 emissions.  

Less positive results were obtained for the following studies. Menyah and 

Wolde-Rufael [48], using a modified version of the Granger causality test found 

that in the US there is no causality running from renewable energy to CO2 

emissions, which means the renewable energy consumption has not reached 

a level where it can make a contribution to mitigate the emissions; on the other 

hand, Menegaki [49] used a random effect model to study the relationship 

between growth and renewable energy in 27 European countries and 

suggested empirical evidence of the neutrality hypothesis in  both short and 

long-run. Nevertheless, there is evidence of causality of emissions and 

employment to economic growth and vice versa. Tugcu et al. [50]  employed 

the Autoregressive Distributed Lag Approach (ARDL), and their long-run 

estimates showed evidence of no causal relationship between renewable 
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energy consumption and real GDP in France, Italy, Canada and USA; 

however, the feedback is present for England and Japan and the conservation 

hypothesis is supported for Germany. 

 

6.3 Data and EKC model 

 

This study covers annual data from 2001 to 2010 from 20 OECD European 

countries: Austria, Belgium, Czech Republic, Denmark, Finland, France, 

Germany, Greece, Hungary, Ireland, Italy, Netherlands, Slovenia, Poland, 

Portugal, Slovak Republic, Spain, Sweden, Estonia and United Kingdom. 

Given the interest in analyzing the effects of the European Directive 

2001/77/EC [4], and the fact that there was a lack of data for the share of 

renewable energy before 2000 and after 2011 for certain variables, the period 

considered was 2001 to 2010. 

 

The variables used are CO2 emissions from electricity generation (CO2 kWh), 

economic growth (GDP) and the share of renewable energy sources in 

electricity generation (RES). CO2 per kWh is a ratio that in the numerator 

includes emissions from fossil fuels, industrial waste and non-renewable 

municipal waste that are consumed for electricity generation and in the 

denominator includes electricity generated from fossil fuels, nuclear, hydro 

(excluding pumped storage), geothermal, solar, biofuels, and so on. (IEA [51]). 

GDP, is the growth of real Gross Domestic Product (billions of dollars, 2005), 

based on World Bank World Development indicators [52] and International 

Financial Statistics of the International Monetary Fund.  RES is presented as a 

percentage of gross electricity consumption and is the ratio between the 

electricity produced from renewable energy sources and the gross national 

electricity consumption. Electricity produced from renewable energy sources 

comprises the electricity generation from hydroelectric sources (excluding 

pumping), wind, solar, geothermal, and electricity from biomass/wastes. Gross 

domestic national electricity consumption comprises the total gross national 

electricity of all fuels (including auto production), plus electricity imports, minus 

exports (source: Eurostat). 
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The existence of multicollinearity between variables can cause problems in the 

accuracy of the estimates and the size of the standard errors. To investigate 

whether the variables used had this problem, we estimated the correlation 

coefficients (see Table A6.1 and A6.2 in Appendix) and applied the Variance 

Inflation Factor (VIF) test. Both procedures suggest that there is no collinearity 

between variables. The VIF test presents 4.72 as individual largest value and a 

mean of 4.72, with the critical value being 10. 

We estimated the long–run equilibrium to validate the EKC, which assumes a 

homogeneous pattern for all countries. In this analysis we studied the relation 

between CO2 kWh, GDP and RES, through the equation 1 as follows: 

 

2

2 , 1 , 2 , 3 , ,log log log log        it i t i t i t i t i tCO Kwh GDP GDP RES  ,      (Equation 1) 

 

Where the subscripts i and t refer to country and time respectively, the prefix 

“log” represents the natural logarithm, whereas β1, β2 and β3 are the slope 

parameters to be estimated and Ɛ is the model´s error term.  

 

The EKC hypothesis postulates that as GDP increases, CO2 kWh increase 

until a certain level of GDP is attained, and after that, emissions start to 

decline. The EKC hypothesis is verified if β1 is significantly positive and β2 

significantly negative. The GDP turning point (in natural logarithms) can be 

estimated as . 

 

Accordingly, β3 in equation 1,  is expected to be negative since higher share of 

renewable source use in electricity tends to reduce the CO2 kWh. 

 

However, for examining our central hypothesis where the share of renewable 

energy in electricity output can be a potential determining factor of the 

difference in the emissions-economic growth relation across European 

countries (in particular after European Directive 2001/77/EC), we included the 

share of renewable energy in electricity output connected with GDP and with 

GDP squared, as in equation 2:  
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   

2

2 , 1 , 2 , 3 ,

* * 2

1 2 ,,

log log log log

log log

   

  

    

    

it i t i t i t i t

i ti t

CO Kwh GDP GDP RES

GDP RES GDP RES
            (Equation 2) 

 

Based on that new relation, the EKC is supported when  *

1 1 log *R  GDP ES                          

is positive and  * 2

2 2 log  GDP RES  is negative and the income turning 

point (in natural logarithms) is  
 

 

*

1 1

*

2 22

 

 

  
 
  
 

RES

RES
 

 

The expected signals of β1, β2 and β3 are positive, negative and negative, 

respectively, as explained for equation 1.  

 

The cross between RES and GDP allows us to see if there is any synergy 

between the two variables in explaining emissions. For example if β1
* is 

negative, it means that the higher the percentage of renewable energy, the 

less the positive effect of GDP on emissions, or the higher the GDP, the less 

the negative effect of RES on emissions. In fact, the expected signals for β1
* 

and for β2
* are negative and positive respectively. Specifically, as countries 

invest more in renewable energy, they can grow without compromising the 

environment significantly, or as they become richer, they need not increase the 

share of renewable energy proportionally to reduce emissions.  

 

If β2
* is positive , it means that the higher the percentage of renewable energy, 

the higher the negative effect of GDP squared on emissions, or the higher the 

GDP squared, the less the effect of RES on emissions. If the income level of 

the country is already very high, a higher percentage of renewable energy will 

enhance the ease of economic growth without compromising the environment, 

otherwise we do not need to increase renewable energy too much to reduce 

emissions. 

 

Moreover, from this new model, we can also infer that the share of renewable 

energy in electricity output will have significant influence on the shape of the 
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EKC if β1
* is significantly negative. This means that EKC will shift downward as 

RES increases, suggesting lower (environmental) costs of development. The 

income turning point is lowered with higher level of share of renewable energy 

in electricity output if   is significantly less than 0. However, if  is positive, 

whether share of renewable energy in electricity output lowers or increases the 

turning point depends on the relative size (in absolute term) of   and . 

 

6.4 Econometric Methodology and Results 

 

We will try to answer our goal-research using a methodology that goes through 

five different but complementary types of tests or estimations: (i) Panel Unit 

root tests, (ii) Panel Cointegration tests, (iii) Panel Long run Estimates; (iv) 

Panel Granger Causality and (v) Innovative Accounting Approach (which 

comprises Variance Decomposition Analysis and Impulse Response 

Functions). 

 

6.4.1 Panel Unit root tests  

 

Panel data is generally characterized by unobserved heterogeneity with 

parameters that are cross-section specific, although in some cases it is not 

appropriate to consider independent cross-section units. The test outcomes 

are difficult to interpret because the rejection of the null hypothesis of no unit 

root means that a significant fraction of cross-section units is stationary; 

however, there is no explicit quantification of the size of this fraction. 

 

The unit root test was employed to ascertain whether or not the time series of 

each variable included in the Autoregressive Distributed Lag (ADL) contained 

a stochastic trend and to test whether the set of variables are stationary or not.  

 

The panel unit root test is based on the following autoregressive specification 

(Mahadevan and Asafu-Adjaye [53]): 1it i it i it ity y X      , where 

1,2,...,i N , represents countries observed over periods 1,2,...,t T . itX  are 

exogenous variables in the model including individual deterministic effects, 
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such as constants (fixed effects) and linear time trends, which capture cross-

sectional heterogeneity, and i  are the autoregressive coefficients. If 1i  , iy
 

is said to be weakly trend-stationary. Conversely, if 1i  , then iy  contains a 

unit root; it  are the stationary error terms.  

 

In order to test, under the null hypothesis, that all individual series of the panel 

contain a unit root, Levin, Lin and Chu [54] proposed the following panel-based 

ADF test that restricts parameters by keeping them identical across sectional 

regions: 1

1

k

it i i it j i it j it

j

y c y c y   



        , where 1,2,...,t T  represents 

time periods and 1,2,...,i N  represents members of the panel. The Levin-Lin-

Chu test (LLC) adopts the null hypothesis of 0i  
 
for all i, against the 

alternative 1 2 ... 0       for all i, with the test based on the 

statistics ˆ ˆ/ . .( )t s e   . However, one drawback is that   is restricted by being 

kept identical across regions under both the null and alternative hypotheses.   

 

Im, Pesaran and Shin [55] (hereafter IPS) assume that panels share a 

common autoregressive parameter. However the null hypothesis is only 

rejected if there is sufficient evidence against it (according to classical 

statistical methods). The IPS test uses a null hypothesis of 0i   against the 

alternative 0   for all i, and is based on the mean-group approach which 

uses the average of the t statistics to obtain the z  statistic.  

 

We also perform the Hadri [56] method that tests the null hypothesis that the 

data are stationary against the alternative hypothesis that at least one panel 

contains a unit root. Hadri [56], regardless of the alternative hypothesis used, 

implements heterogeneous and serially correlated errors on account of their 

improved explanatory power. The results of panel tests are difficult to interpret 

if the null hypothesis is rejected. In the LLC and IPS tests, cross-sectional 

means are subtracted to minimize problems arising from cross-section 

dependence.  
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Table 6.1 displays the results of panel unit root tests in level and in the first 

differences for all the variables. We performed a LLC, IPS and Hadri test 

including an intercept and a linear trend. The non-stationarity of the variables 

CO2 kWh, GDP, GDP squared and RES, can be seen, indicating the 

possibility of long-term relationships between those variables. 

 

In general, the remaining statistics provide strong evidence that the variables 

contain a panel unit root. Given that the variables CO2 kWh, GDP and RES are 

integrated of the same order, it is natural that we proceed by testing the 

cointegration in order to establish if a long term equilibrium relationship among 

certain variables exists. 

  
Table 6.1: Panel Unit Root Tests Results- period 2001- 2010 

Levels First differences 

 
LLC 

 
IPS 

 
Hadri 

 
LLC 

 
IPS 

 
Hadri 

 

 
Ln CO2 kWh 
 
 
Ln GDP  

 
-12.459*** 
[0.0000] 

 
-9.8880*** 
[0.0014] 

 

-2.8596*** 
[0.0021] 

 
-1.7146** 
[0.0432] 

11.4042*** 
[0.0000 

] 
9.3851*** 
[0.0000] 

-14.8861*** 
[0.0000 

 
-8.7320*** 
[0.0000] 

-4.4267*** 
[0.0000 

 
-1.34011* 
[0.09806] 

19.3053*** 
[0.0000] 

 
14.9028*** 

[0.0000] 

Ln GDP^2 -9.0567*** 
[0.0000] 

-1.9245** 
[0.0271] 

9.4069*** 
[0.0000] 

-8.7372*** 
[0.0000] 

-1.35270* 
[0.0881] 

15.1796*** 
[0.0000] 

       

Ln RES  
-14.0879*** 

[0.0000] 
-3.8479*** 
[0.0001] 

10.7574*** 
[0.0000] 

-12.7156*** 
[0.0000] 

-3.1782*** 
[0.0000] 

17.9613*** 
[0.0000] 

       

Notes: *, ** and *** represent significance at the 10%, 5% and 1% levels respectively. 

 

 

6.4.2  Panel Cointegration tests  

 

The Engle-Granger methodology (Engle and Granger, [57)] is usually used in 

testing cointegration. It examines the residuals of a regression and contends 

that there is cointegration if ut  I (0). The first contribution, among others, for 

this approach, has been presented by Pedroni [58], [59], [60] and Kao and 

Chiang [61]. 

 

Given the following equation: 1 1 , 2 2 , ,...it i it i i t i i t ki ki t ity x x x                

where i = 1,2,…N, for each country in panel; 1,2,...,t T , refers to the time 

period; parameter α refers to the possibility of country-specific fix effects and 
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the parameter δ refers to the possibility of deterministic trends. It is further 

assumed that variables y and x are integrated of order one, that is, I(1). Thus, 

under the null hypothesis that there is cointegration, the residuals will also be I 

(1). 

 

Pedroni [58], [59], [60] proposes several cointegration tests that allow the 

heterogeneity of the intercepts and coefficients among individuals. Their 

alternative hypothesis can be considered homogeneous or heterogeneous. 

The residuals from the static long-run regression are used to build seven panel 

cointegration test statistics: four of them are based on pooling, which assumes 

homogeneity of the AR term, whilst the remaining are less restrictive, as they 

allow for heterogeneity of the AR term.  

 

The statistics based on the homogeneous alternative hypothesis consist of 

estimates of pooled type, which ([59], [60]) call statistics within-groups. When 

considering the heterogeneous alternative hypothesis, test statistics are 

formed by means of the estimated individual values for each panel unit i, which 

([59], [60]) call between-group estimators. 

 

The results of panel cointegration tests are shown in table 6.2. It can be seen 

that four of the seven panel tests indicate that the null hypothesis of no 

cointegration is rejected at the 1% level, more specific, there are two panel 

statistics that reject the null hypothesis of no cointegration and two other 

statistics admit there is no cointegration between the variables. In group 

cointegration tests, two group statistics reject the null hypothesis and one 

admits it. 
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Table 6.2: Results of Panel Cointegration Tests  

 
 Kao Statistics  Pedroni Statistics   

 
-2.3777* 
[0.008]* 

Panel v-Statistic 
-1.253915 

[0.974] 
Group rho-Statistic 

5.47486 

[1.000] 

Equation 1  Panel rho-Statistic 
2.790618 

[0.999] 
Group PP-Statistic 

-14.6521*** 

[0.000] 

  Panel PP-Statistic 
-4.6363*** 

[0.000] 
Group ADF-Statistic 

-2.2542*** 

[0.000] 

  Panel ADF-Statistic 
2.15667* 

[0.081] 
  

Equation 2 

-2.2307** 
  [0.0128] 

    

 Panel v-Statistic 
-2.1416 
[0.9839 

Group rho-Statistic 
6.31205 
[1.000] 

 Panel rho-Statistic 
4.0760 
[1.000] 

Group PP-Statistic 
-7.81559*** 

[0.000] 

 Panel PP-Statistic 
   0.34096*** 

[0.000] 
Group ADF-Statistic 

-2.3145*** 
[0.0100 

 Panel ADF-Statistic 
-0.0960*** 

[0.008] 
  

Notes: Tests results were generated by Eviews. Pedroni’s and Kao Panel statistics as well as all of variables. Values in [ ] are robust p-values 
generated through bootstrapping because of cross-sectional dependence in the residuals. *, **, and *** indicates significance at 10%, 5% and 
1% respectively. 

 

We decided it may be reasonable to accept the existence of cointegration 

relationship if we consider the fact that rho-statistics have lower power than the 

PP-statistics. 

 

6.4.3  Panel Long run Estimates 

 

Based on error correction models, we used the Full Modified Ordinary Least 

Squares (FMOLS) and Dynamic Ordinary Least Squares (DOLS) methods. 

This procedure follows Pedroni’s [58] recommendations, in which FMOLS and 

DOLS estimators are more advantageous in other group-means versions, due 

to the greater flexibility under the presence of heterogeneity in the 

cointegration vectors and to the lower size distortion, than the estimators within 

groups. This allows to correct both the endogeneity bias and serial correlation, 

and to achieve consistent and efficient estimators of the long-run relationship.    

 

The results from the estimation of the model proposed are given in table 6.3, 

and confirm our expectations that CO2 kWh tend to decrease with the share of 

renewable energy sources used. In Model 1, the FMOLS estimates indicate for 

the long-run relationship, that GDP has a positive statistically significant impact 

on CO2Kwh and GDP squared has a negative statistically significant impact on 

CO2 Kwh at 10% level significance. Moreover, the share of renewable energy 
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sources has a negative statistically significant impact on CO2 Kwh at 10% level 

significance. The results suggest that a 1% increase in the share of renewable 

energy is related to the decrease in expected CO2Kwh by 0.05%. 

 

Table 6.3: Panel Cointegration Estimation Results 
                

         Model 1 

        

Model 2 

 

2001 – 2010 FMOLS     DOLS FMOLS DOLS 
Dependent variable: CO2 kWh  CO2 kWh  CO2 kWh  CO2 kWh  

Ln GDP   
 

7.2381* 
(0.094) 

 
5.9678 
(0.206) 

 
5.7280* 
(0.089) 

 
4.5422 
(0.128) 

Ln GDP^2   
 

-3.6745* 
(0.091) 

 
-2.9256 
(0.138) 

 
-2.9427* 
(0.088) 

 
-2.4138 
(0.119) 

     

Ln RES -0.05012* 
(0.098) 

-0.0501* 
(0.0101) 

-0.0605* 
(0.071) 

-0.0102* 
(0.092) 

     

Share of RES* Ln GDP     -0.29312** 
(0.033) 

-0.2391* 
(0.102) 

Share of RES*Ln GDP^2     0.14551** 
(0.034) 

0.101* 
(0.103) 

     
R-squared (r

2
) 0.981 0.984 0.983 0.985 

No. of  Countries 20 20  20   20 
No. of Observations 200 200  200   200 
Notes: Values in [ ] are robust p-values ; the   *, **, and *** indicate significance at 10%, 5%  and 1%  
respectively. 

    

 

According to our central hypothesis, from FMOLS estimation, we obtain 

empirical support for the presence of the EKC, as indicated by the significantly 

positive effect of GDP and significantly negative coefficient of GDP squared in 

both equations 1 and 2. However, the results are more statistically significant in 

equation 2. They suggest that 1% increase in the share of renewable energy 

decreases CO2 kWh by 0.06%; while 1% increase in the interactive effect 

between the share of renewable energy and GDP decreases CO2 kWh by 

0.29%. On the other hand, the validity of EKC is confirmed by the positive 

coefficient of GDP, that is 5.7280 - (0.29312 x RES), and by the negative 

coefficient of GDP squared, that is -2.942 + (0.1455 x RES).  

 

These results suggest several noteworthy points. First, they do not overturn the 

validity of the traditional EKC, in fact, the coefficient of GDP remains positive 

while that of GDP squared remains negative, regardless of the level of 

proportion of renewable energy sources in electricity generation.  

 

Secondly, as reflected by the statistical significance of the two interactive effects 

at 5% level of significance, the results suggest the importance of the proportion 
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of renewable energy sources in electricity generation in influencing the EKC. If a 

country uses more renewable energy, it can grow economically without many 

environmental costs, because the share of renewable energy will make the EKC 

drop.  

 

Thirdly, the significant negative coefficient of the interaction between the share 

of renewable energy and GDP suggest that the environmental costs of 

European economic development are lower for a European country with a 

higher level of share of renewable energy sources used in electricity 

generation. That means the EKC shifts downward as the share of renewable 

energy sources increases. Finally, the positive coefficient of the interaction 

between GDP squared and the share of renewable energy sources in electricity 

generation suggests that the threshold point can be lower or higher for a 

European country with higher level of share of renewable energy depending on 

the relative reduction in the coefficient of GDP in relation to the reduction in the 

coefficient of GDP squared. 

 

6.4.4  Panel Granger Causality 

 

An implication of co-integration is that there must be causality in at least one 

direction. For this we estimated the following VECM (Vector Error Correction 

Model). The VECM is the short-run model and it gives the adjustment 

mechanism when CO2 kWh, GDP, RES and the cross product between RES 

and GDP and GDP squared deviate, in the short-run, from the long-run 

equilibrium. We estimated that the simple VECM for the long-run relationship 

and the short-run equations are as follows for cointegration model: 
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 The errors for period t-1 are estimated from the long-run equation. The 

inclusion of the lagged dependent variable as an instrument variable estimator is 

necessary to account for correlation between the lagged dependent variables 

and the error term. The coefficients are adjustment parameters, showing the 

degree with which the respective left hand side variables adjust in period t to 

disequilibrium shocks in period t-1.  

 
Table 6.4: Panel Granger Causality Results 

Model 2 
EKC approach                                      Eq.3.1            Eq.3.2                Eq.3.3             Eq.3.4                    Eq.3.5              Eq.3.6 

  ect (-1) 
∆ LCO2 

kWh  
∆ LGDP ∆ LGDP^2 ∆ Renewable 

∆  Renewable 
x L GDP 

∆  Renewable 
x L GDP^2 

Constant   
-0.01161 

 (0.0385)** 
0.0174 

   (0.000) *** 
-0.0350 

    (0.000) *** 
 -5.4908 

(0.000)*** 
 -0.4807 

(0.000)*** 
0.9600 

(0.000)*** 

∆ LCO2 kWh  
0.0427 

(0.0427)** 
 

0.0026 
(0.1039) 

-0.0055 
 (0.1031) 

-0.8535 
 (0.1023)  

-0.0650 
  (0.1216)  

0.1298 
(0.1362) 

∆ L GDP 
  -0.139 
 ( 0000)*** 

7.9444  
(0.1013)*  

 
2.0214 

    (0.000)*** 
289.322 

(0.000)***  
23.8249 

(0.000)***  
-47.5750 
(0.000)*** 

∆ L GDP^2  
 00386 
(0.000)*** 

- 3.9904        
(0.1003*) 

0.4940 
  (0.000) *** 

 
-143.292   
(0.000)***  

-11.7549   
(0.000)***  

23.4721 
(0.000)*** 

∆ RES  
  -0.0587 
( 0.000)*** 

- 0.1152 
(0.096)* 

-0.0142 
 (0.000) *** 

0.0287 
(0.000)*** 

 
0.5007 

 (0.000)***  
     1.9988 
     (0.000)*** 

∆ RES  x L GDP 
    00531 
 (0.000)*** 

- 0.2303 
(0.068)* 

0.0284 
 (0.000) *** 

-0.0574 
(0.000)*** 

-6.4040 
 (0.000)***  

 
1.9969 

(0.000)***  

∆ RES X L GDP^2 
  -0.1061 
( 0.000)*** 

0.1152 
(0.076)* 

-0.0142 
 (0.000) *** 

0.0287 
(0.000)*** 

3.2052 
 (0.000)***  

0.5007 
 (0.000)***  

  

Notes: *, ** and *** represent significance at the 10%, 5% and 1% levels respectively. 

 

In Equation 3.1, the error correction term indicates the speed of adjustment 

towards long-run equilibrium and has a statistical significance at the 5% level 

with a speed of adjustment to long-run equilibrium of 23.42 years.  All variables 

have a statistically significant impact at 10% level of significance on carbon 

dioxide emissions from electricity generation in the short run.  
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With respect to Equation 3.2, the GDP squared and the interactive effect 

between GDP and RES, have a positive and statistically significant impact on 

GDP while RES and the effect between GDP squared and RES have a negative 

and statistically significant impact on GDP in the short run. However, carbon 

dioxide emissions from electricity generation have a statistically insignificant 

impact on GDP in the short run. The error correction term is statistically 

significant at 1% level with a speed of adjustment to long-run equilibrium of 7.20 

years. 

 

In terms of Equation 3.4, RES is positively affected by GDP and by the 

interactive effect between GDP squared and the share of renewable energy, 

and negatively affected by GDP squared and by the effect between GDP and 

the share of renewable energy sources.  Carbon emissions per kWh have a 

statistically insignificant impact on the share of renewable energy sources in 

electricity generation output in the short run. On the other hand, the statistical 

significance of the error correction term suggests that the share of renewable 

energy sources responds to deviations from long-run equilibrium with an 

adjustment of roughly 17.04 years.  

 

In Equation 3.5, GDP, RES and RES interactively with GDP squared, have a 

positive and statistically significant impact on RES interactively with GDP in the 

short-run, while GDP squared affects it negatively. Carbon emissions per kWh 

have a statistically insignificant impact on RES interactively with GDP. The error 

correction term indicates that the speed of adjustment towards long-run 

equilibrium is approximately 18.82 years.  

 

With regard to Equation 3.6, GDP squared, RES and RES interactively with 

GDP have a positive and statistically significant impact on RES interactively 

with GDP squared in the short-run, while GDP has a negative impact and 

carbon emissions per kWh is statistically insignificant. The correction term is 

statistically significant with the slowest adjustment equilibrium of 9.43 years.  

 

In summary, the Granger causality tests reveal that there is unidirectional 

causality from RES interactively with GDP (negative) and from RES 
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interactively with GDP squared (positive), both towards CO2 kWh, which 

confirms the ideas exposed in section 3. There is also bidirectional positive 

causality between GDP and RES interactively with GDP, between RES and 

RES interactively with GDP squared and between RES interactively with GDP 

and RES interactively with GDP squared. There is bidirectional negative 

causality between GDP and RES interactively with GDP squared. Finally, there 

is bidirectional causality between GDP and RES (positive from GDP to RES 

and negative from RES to GDP) and between RES and RES interactively with 

GDP squared (positive from RES to RES interactively with GDP squared and 

negative from RES interactively with GDP squared to GDP). 

 

6.4.5  The Innovative Accounting Approach  

 

6.4.5.1Generalized forecast variance decomposition 

 

The generalized forecast variance decomposition approach estimates the 

simultaneous shock effects using a VAR system to test the strength of causal 

relationship between CO2 kWh, GDP and RES of European countries. 

 

The variance decomposition approach indicates the magnitude of the 

predicted error variance for a panel series accounted by innovations from each 

of the independent variables over different time horizons (2001-2010). 

Furthermore, the generalized forecast error variance decomposition approach 

estimates the simultaneous shocks stemming in other variables. 

 

For instance, if the share of renewable energy sources explains more of the 

forecast error variance of CO2 kWh, then we deduce that there is 

unidirectional causality from renewable energy sources to CO2 emissions in 

electricity generation. The bidirectional causality exists if shocks in CO2 kWh 

emissions also affect the share of renewable energy sources in a significant 

way. If shocks occurring in both series do not have any impact on the changes 

in CO2 kWh emissions and in the share of renewable energy sources then 

there is no causality between the variables. 
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Table 6.5 presents the results of the generalized variance decomposition over 

a ten-year period for 20 European countries. The variance decomposition 

explains how much of the predicted error variance of a variable is described by 

innovations generated from each independent variable in a system, over 

various time horizons.  

 

Hereafter, we will point out the most important shocks that can change each 

variable. The empirical evidence indicates that 93.5 per cent of CO2 kWh 

emissions is due to its own innovative shocks. The standard deviation shock in 

coefficient of the interaction between GDP and the share of renewable energy 

sources in electricity generation is the variable that better explains electricity 

pollutants, although with a low percentage (2.13%).  A 7.3 per cent of GDP is 

explained by one standard deviation shock in CO2 kWh emissions and 91.2 

per cent is due to its own innovative shocks. GDP squared is affected mainly 

by GDP (91.125%) and by CO2 kWh (7.3%). A significant portion of RES is 

explained by its own shocks (60.3%), by shocks in CO2 kWh (27.3%) and in 

GDP (10.9%). 

 

The contribution of CO2 kWh and RES to the interactive effect between the 

share of renewable energy and GDP is 31.6% and 23.7% respectively, while 

42.1% per cent is due to its own innovative shocks. The interactive effect 

between the share of renewable energy and GDP squared is mainly affected 

by the interactive effect between the share of renewable energy and GDP 

(42.1%), by CO2 kWh (31.6%) and by RES (23.7%). 

 

 

 

Table 6.5: Generalized variance decomposition results 
       
       

Variance Decomposition of CO2 kWh     

 Period CO2 kWh GDP GDP^2 RES RES x GDP RES x GDP ^2 
       

       
 1  100.0000  0.000000  0.000000  0.000000  0.000000  0.000000 

 2  95.70979  0.358865  0.002397  0.339409  3.393501  0.196041 

 3  94.91419  0.691613  0.387879  0.283483  3.383464  0.339370 

 4  94.58039  0.753891  0.608483  0.219638  3.051695  0.785905 

 5  94.21208  0.852751  0.739070  0.182729  2.941178  1.072196 

 10  93.54845  1.006484  1.263403  0.149724  2.133950  1.897989 
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Variance Decomposition of GDP:     

Period CO2Kwh GDP GDP^2 RES RES x GDP RES x GDP ^2 

       

       
 1  3.730948  96.26905  0.000000  0.000000  0.000000  0.000000 

 2  6.454976  92.76140  0.433054  0.062536  0.132503  0.155535 

 3  6.963128  91.97080  0.773274  0.092796  0.090252  0.109754 

 4  7.041224  91.80773  0.920940  0.077054  0.076331  0.076723 

 5  7.240532  91.54068  1.024609  0.061533  0.065428  0.067215 

 10  7.296354  91.18002  1.371585  0.054998  0.032187  0.064852 

       

       
Variance Decomposition of GDP^2:     

Period CO2Kwh GDP GDP^2 RES Period CO2Kwh 
       

       
 1  3.377360  95.64327  0.979370  0.000000  0.000000  0.000000 

 2  6.189603  92.52312  0.905826  0.050729  0.168586  0.162138 

 3  6.900450  91.75080  1.042793  0.091057  0.113498  0.101402 

 4  6.987130  91.66213  1.106393  0.077659  0.095516  0.071172 

 5  7.197560  91.41858  1.175315  0.062290  0.081849  0.064408 

 10  7.274337  91.12557  1.440077  0.055482  0.040299  0.064235 
       

       
Variance Decomposition of RES:     

 Period CO2Kwh GDP GDP^2 RES RES x GDP RES x GDP ^2 
       

       
 1  4.260251  0.471332  0.080418  95.18800  0.000000  0.000000 

 2  24.69815  3.241228  0.953793  70.69848  0.218404  0.189937 

 3  25.41025  6.013492  0.733833  67.14475  0.466479  0.231194 

 4  25.28372  7.779919  0.899354  65.38899  0.385814  0.262203 

 5  26.09383  8.879068  0.866784  63.59838  0.330153  0.231786 

 10  27.32478  10.90364  0.775544  60.34912  0.484046  0.162862 
       

Variance Decomposition of %RES x GDP :     

Period CO2Kwh GDP GDP^2 RES RES x GDP RES x GDP ^2 
       

       
 1  0.522200  0.030992  0.005008  36.06358  63.37822  0.000000 

 2  30.41284  0.847496  0.553905  21.59948  45.01988  1.566395 

 3  30.57755  0.978598  0.678492  21.47143  45.03736  1.256565 

 4  29.99322  1.112133  0.542212  22.20978  45.11503  1.027636 

 5  30.82390  1.254742  0.496109  22.24054  44.29788  0.886831 

 10  31.55757  1.684093  0.375858  23.71961  42.10195  0.560924 

       

Variance Decomposition of : %RES x GDP ^2     

 Period CO2Kh GDP GDP^2 RES RES x GDP RES x GDP ^2 

       

 1  0.522095  0.031450  0.000500  36.09407  63.35042  0.001465 

 2  30.42772  0.855392  0.561585  21.63125  44.97507  1.548979 

 3  30.58164  0.987989  0.689062  21.50553  44.99499  1.240788 

 4  30.00473  1.122238  0.550564  22.23915  45.06900  1.014319 

 5  30.83652  1.264432  0.503496  22.26653  44.25376  0.875265 

 10  31.57363  1.690938  0.379969  23.73604  42.06518  0.554247 

       
 

Taking 5% as a threshold, we can infer that there is unidirectional causality 

from CO2 kWh to all the other variables. On the other hand, GDP causes GDP 

squared and RES. The share of renewable energy causes the interaction 

between GDP with the share of renewable energy sources and the interaction 

between GDP squared with the share of renewable energy sources. Finally, the 
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interaction between GDP with the share of renewable energy sources causes 

the interaction between GDP squared with the share of renewable energy 

sources. 

 

6.4.5.2 Impulse Response Functions 

 

We also provided a rough analysis of how long it takes for the variable to go 

back to the equilibrium after the long run relationship has been shocked. The 

IRFs show the dynamic responses of time series to a one period standard 

deviation shock and indicate the direction of the response to each of the 

shocks.  

One can determine how CO2 kWh responds due to its shock and to shocks in 

the other variables. For instance, we support the hypothesis that the share of 

renewable energy sources causes CO2 kWh if the impulse response function 

indicates significant response of CO2 kWh emissions to shocks in the share of 

renewable energy sources compared to shocks in the other variables. 

 

We have the IRFs represented in figure 6.1. We can see that CO2 kWh reacts 

positively and significantly to shocks in the interaction between GDP squared 

with the share of renewable energy sources in electricity, and reacts negatively 

to shocks in GDP. The GDP reacts positively to shocks in CO2 kWh. 

Concerning the share of renewable energy sources, in the short-run the 

reaction is positive but after the fourth period the reaction is negative. We can 

see that the share of renewable energy sources in electricity generation reacts 

negatively to shocks in CO2 kWh and in GDP. 

 

The reaction of the interaction effect between GDP and the share of renewable 

energy sources in electricity generation is negative to CO2 kWh and positive to 

RES and to the interaction effect between GDP squared and the share of 

renewable energy sources. 
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Figure 6.1: Impulse Response Function (IRF´s results)  
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  Notes:Name of the variables X5- LnCO2 kWh, X9- lnGDP, X10- lnGDP squared*, Z12 -ln share of renewable sources, EZ12- share of 

renewable sources in electricity generation respectively. 

 

 

6.5  Concluding remarks  

This study aims to evaluate in 2001-2010 the renewable resource and 

environment efficiency problem in electricity generation of European countries. 

We specify a new EKC, where the share of renewable energy in electricity 

production is considered as an important driver for determining the difference 

in the emissions–income relations across European countries. Our results 

provide supportive evidence for the validity of EKC, as reflected by the positive 

coefficient of GDP and negative coefficient of its squared value. 
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These results have important implications. Among others, the significant 

evidence that the share of renewable energy in electricity output is a potential 

driver for reducing the carbon emissions in electricity, tends to be large at the 

early stage of European economic development. With the obtained estimates, 

we can see that as countries invest more in renewable energy, they can grow 

without compromising the environment too much, or as they become richer, 

they don’t need to increase proportionally the share of renewable energy to 

reduce emissions. We can illustrate this with countries with lower income on 

average for this period, such as Austria or Sweden that made a strong 

investment in renewable energy and were able to grow without too many 

emissions. Richer countries, such as Germany, United Kingdom and France, 

did not need to significantly increase their share of renewable energy in the 

period 2000-2010, to reduce emissions (see figure A1 in Appendix). If the 

income level of the country is already very high, a higher percentage of 

renewable energy will enhance the ease of economic growth without 

compromising the environment otherwise we do not need to increase 

renewable energy significantly to reduce emissions. 

 

Moreover, from this new model, we can also infer that the share of renewable 

energy in electricity output will have significant influence on the shape of the 

EKC, which will shift downward as RES increases, suggesting lower 

(environmental) costs of development. As  is positive, the share of 

renewable energy in electricity output lowers the turning point because, in 

absolute term,  is greater than .  

 

From Panel Granger Causality tests we can highlight the bidirectional causality 

between GDP and RES (positive from GDP to RES and negative from RES to 

GDP). From Variance Decomposition analysis we confirm the relation of 

causality from GDP to RES. This shows that richer countries will naturally have 

more willingness to invest in renewable energy. The negative causality from 

RES to GDP can somehow support the results of Menegaki [49], who claims 

that the leading countries in renewable energy are less technically efficient than 

renewable energy laggards that are among the most technically efficient 
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countries in Europe. However, it must be pointed out that the period of analysis 

and methodology used in Menegaki [49] is different from the present study. 

 

From IRFs we can see that CO2 kWh reacts positively and significantly to 

shocks in the interaction between GDP squared with the share of renewable 

energy sources in electricity, and reacts negatively to shocks in GDP. These 

results show that the crossing effect between the share of renewable energy in 

electricity output and income is crucial to reduce the CO2 intensity of 

European Countries, particularly in energy supply, in what concerns increasing 

energy efficiency and the use of renewable energy. The GDP reacts positively 

to the share of renewable energy sources in the short-run, but after the fourth 

period the reaction is negative, which may support the conclusions of 

Menegaki. [49] 

 

All these results, in particular the results reported in Model 1B, show a 

common pattern expected of CO2 emissions in electricity generation after the 

European Directive 2001/77/EC, including the first and part of the second 

period of the Kyoto Protocol (2005-2007 and 2008-2012). These results are 

relevant to identify that the share of renewable energy sources can be a 

potential determining driver of the difference in the emissions-income relation 

across European panel country level. Moreover, these results reveal the 

importance of the interactive impact of the share of renewable energy sources 

and of GDP in reducing the CO2KWh in electricity generation.  

 

In addition, these results claim the importance of the points highlighted by the 

European policy (2009/28/CE directive) [62]. European policies are not only 

focused on market-based instruments as energy or environmental 

taxes/subsidies or the European Carbon Market (ECM), but also on the 

improvement of technology that focuses on energy efficiency and renewable 

energy and on the EU financial instruments supporting the achievement of 

political goals. 

 

All these guidelines, especially at a domestic European level, and/or at an 

international one, are linked to the mitigation mechanism, which should be 
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granted exclusively in promotion and development of clean technologies to 

ensure better energy efficiency.  
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Appendix 
 
Figure A6.1 – Relation between GDP and RES (in average for period 2001-2010) for 
European countries 

 

Country Country Code Country Country Code 

Germany DE Greece EL 

Austria AT Hungary HU 

Belgium BE Ireland IE 

Denmark DK Italy IT 

Slovak Republic SK Netherlands NL 

Slovenia SI Poland PL 

Spain ES Portugal PT 

Estonia EE United Kingdom UK 

Finland FI Czech Republic CZ 

France FR Sweden SE 

 
Source: Own elaboration with data from  World Bank World Development indicators, International 

Financial Statistics of the IMF and Eurostat 
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Table A6.1 -Descriptive statistics 

 

 
 
 
Table A6.2 - Correlation matrix and Variance Inflation Factor VIF– Period 2001-2010 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable Period Obs Mean Std. Dev. Minimum 

Maximu

m 

CO2 kWh 
 

Ln CO2 kWh  

2001-2010 200 430,1065 243,2643 17,46512 1085,721 

  5,821444 0,849131 2,86 6,99 

GDP 

 
Ln GDP  

2001-2010 200 684,1233 843,9022 11,02318 2980,958 

  5,733389 1,366776 2,4 9 

GDP ^2 

 

2001-2010 200 1175220 2214589 121,5104 8886111 

      

RES 
 

Ln RES  

2001-2010 200 16,55141 15,89933 0,227638 66,68632 

  2,283056 1,153398 -1,48 4,2 

 Ln CO2 kWh  Ln GDP  
 
 RES 

 

Ln  RES 

Ln CO2 kWh  1    

 
Ln GDP  

 
-0.2187*** 

 
1 

  

 

 RES 
 

-0.6108*** -0.0063 1  

Ln  RES -0.5536*** 0.1826** 0.8431*** 1 

VIF  4,72 - 4,72 

1/VIF  0.2117 - 0.2117 
Mean VIF    4,72 

     

  CO2 kWh   GDP  

 

 RES 

 

 

CO2 kWh  1    
 

 GDP  

 

-0.1362* 

 

1 
  

 
 RES 

 

-0.5834*** -0.157** 1  
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Chapter 7 

 

Final Remarks 

 

7.1 Conclusions and Policy Implications 

 

Portugal managed to meet Kyoto Target for the period 2008-2012. In 2011 it 

showed a level of emissions 16% higher than the 1990 level (its limit was 27%) 

[1]. However, the goals of reducing emissions are not restricted to this period. In 

2009 a new package of environmental measures was adopted at the EU level, 

known as the 20-20-20 targets: by 2020 there should be a 20% reduction of 

Greenhouse Gases (GHG) emissions compared with 1990, 20% share of 

renewable energy in EU energy consumption, and energy improvement by 20%. 

To meet these goals, it is important to realize which variables affect GHG 

emissions, particularly the intensity of emissions (emissions by unit of output). It 

is important to understand the evolution and influence between emissions 

intensity, energy intensity, and the share of fossil fuels in total energy 

consumption. 

 

The contributions of this thesis to the energy-related CO2 emissions at sectoral 

level, are threefold: first, it offers a new econometric approach for the 

decomposition of CO2 emissions intensity, and its progress, that can serve as a 

starting point for future research. Second, it presents a hybrid energy-economy 

mathematic and econometric model for Portugal that is based on economic 

theory. Third, it helps to explain the changes in CO2 emissions in important 

sectors of the Portuguese economy, combining normative considerations 

openly and explicitly with political implications at the European level, 

considering energy and environmental commitments. 
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The following conclusions summarize the findings presented in the core 

chapters of this thesis by answering the objective research posed in the 

Introduction chapter and concluding with suggestions for future research. 

 

In this research, we observed that most of the energy used comes from fossil 

fuels and that this percentage is much higher in the manufacturing and energy 

sectors than that of the average for the Portuguese economy. This explains the 

relative high value of intensity of emissions in these sectors. With the analysis 

developed in chapter 2, we can draw conclusions about the evolution of the 

intensity of CO2 emissions in Portugal and what its main determinants were in 

the past, and also infer about the behaviour of these variables in the future. This 

allows us to make a more complete approach, since implementing any policy, in 

particular an energy or environmental policy, it is important to know not only the 

past context, but also in what direction the future will evolve, because it is in this 

timeframe that the policy will have effects. The sectors that have contributed 

more to reduce the intensity of emissions through the reduction of energy 

intensity are the manufacture of coke, refined petroleum products and 

construction. Yet, there are sectors that contributed to reduce energy intensity 

because of lower production in sectors of the economy such as agriculture, 

forestry and fishing, electricity, gas, steam and air-conditioning supply, the 

manufacturing of chemicals and chemical products, the manufacturing of rubber 

and plastics products, and other non-metallic mineral products, the 

manufacturing of wood and paper products, and printing. 

 

In chapter 3, the convergence analysis stochastic differences, in the long-term, 

between industrial sectors, means that accumulated random differences in the 

short-term constitute an explanation to see if the shocks on those series persist 

over time. This same evidence is of interest to energy policy makers because, 

evidence of a random shock can reverse the direction wanted to those 

variables, among others, those that promote productive efficiency in these 

sectors with the use of new cleaner technologies. In what concerns sigma 

convergence, emissions and energy intensity, sectors tend to have similar 

behaviour, even these similarities are bigger for a sub group of 5 industries of 

the most polluting manufacturing sectors. There is also convergence in the 
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economic structure which is higher for the aggregated group of 16 

manufacturing industries . Therefore, for the intensity of emissions and for 

energy intensity, there is a trend towards harmonization of sectors for the whole 

period, which is most evident in the group of 5 industries of the most polluting 

manufacturing sectors. For emissions by fossil fuel and the structure of the 

economy there is more harmonization in the group of 16 industries 

manufacturing sectors. 

 

This is important to understand, specially for Portugal, concerning the 

progressive increase of regulatory incentives in the industrial sectors of energy, 

particularly in terms of incentives and public policies that promote such 

investments to producers operating in those industries. On the other hand, if 

there is evidence of differences in the long term of being deterministic, this 

means that the deterministic random components of the series, over time, are 

diluted. In this case, policy makers do not need to intervene in a certain moment 

of time, since the same series follows the desired evolution. 

 

Chapter 4 focuses on the effects of the determinants of emissions intensity in 

theTourism Industry, in six tourism activities: Wholesale and retail trade, Repair 

of motor vehicles and motorcycles, Transportation and storage, Accommodation 

and food service activities, Telecommunications, arts, entertainment and 

Recreation and others services. There is a general convergence of all 

decomposed effects; the carbon intensity (emissions/consumption of fossil 

fuels) is the effect that converges more. This means that all sectors became 

more similar in terms of the mix of fossil fuel used. In the group of Wholesale 

and retail trade, Transportation and storage, Accommodation and food service 

activities, the convergence effect is even more stable, which means that in 

these sectors that directly affect tourism, the evolution of the determinants of 

emissions are very similar across sectors. This may require more specific and 

targeted policies for these subsectors included in group activities: 

Transportation, accommodation and food service activities. The exception is on 

carbon intensity, which contrary to what happened in the group, all six activities 

present periods of great divergence (even checking the global convergence in 

the period). This means that the sectors in this group have a different 
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behaviour, bearing in mind the mix of fossil fuels used, which is related to the 

most appropriate fuel type to the different economic activities. 

 

In the group of activities that affect tourism in a more indirect way there is 

convergence in general for all the effects, but most clearly in energy intensity 

and carbon intensity.  

 

The similarity of behaviour between tourism subsectors towards emissions 

intensity and their determinant effects (particularly between sectors including 

hotels, restaurants and transports, or trade in general, that affect the tourism 

activity directly) could imply equal treatment, although specific to each activity, 

in relation to energy and environmental policies. 

 

In chapter 5, we used the 'complete decomposition' technique to examine GHG 

emissions intensity and its components, for the agriculture sector in the 1995-

2008 period, for a set of European countries. It is shown that NA effect and LVA 

effect were the ones that had a greater contribution to the variation of EI. This 

means that the use of Nitrogen per cultivated area is an important factor of CO2 

emissions and that in those countries where labour productivity increases, 

emissions intensity tends to decrease. 

 

These results imply that the way to reduce emissions in agriculture would be to 

provide better training of agricultural workers to increase their productivity, 

which would lead to a less need for energy and use of Nitrogen. On the other 

hand, there may be an exaggerated focus on the use of fossil fuels as a source 

of emissions, while this study shows that the use of Nitrogen represents a more 

important role in determining emissions than the use of fossil energy. 

 

In chapter 6, we examines the long and short-run causality of the share of 

renewable energy sources (RES) in the relation between Carbon Dioxide 

emissions of electricity generation (CO2 kWh) and real income (GDP) for 20 

European countries over the 2001-2010 period. We used Cointegration Analysis 

and the Innovative Accounting Approach that includes Forecast Error Variance 

Decomposition and Impulse Response Functions (IRFs). Our results provide 
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supportive evidence for the validity of the Environmental Kuznets Curve (EKC) 

and suggest that renewable energy can be a potential determining driver of the 

difference in the emissions-income relations across European countries and a 

significant way of reducing CO2 kWh. Moreover, the share of renewable energy 

in electricity output will have significant influence on the shape of the EKC, 

which will shift downward as RES increases, suggesting lower (environmental) 

costs of development. These results have important implications. Among 

others, the significant evidence that the share of renewable energy in electricity 

output is a potential driver for reducing the carbon emissions in electricity, tends 

to be large at the early stage of European economic development. With the 

obtained estimates, we can see that as countries invest more in renewable 

energy, they can grow without compromising the environment too much, or as 

they become richer, they don’t need to increase proportionally the share of 

renewable energy to reduce emissions. We can illustrate this with countries with 

lower income on average for this period, such as Austria or Sweden that made 

a strong investment in renewable energy and were able to grow without too 

many emissions. Richer countries, such as Germany, United Kingdom and 

France, did not need to significantly increase their share of renewable energy in 

the period 2000-2010, to reduce emissions. If the income level of the country is 

already very high, a higher percentage of renewable energy will enhance the 

ease of economic growth without compromising the environment otherwise we 

do not need to increase renewable energy significantly to reduce emissions. 

 

All that results show a common pattern expected of CO2 emissions in electricity 

generation after the European Directive 2001/77/EC, and reveal the importance 

of the interactive impact of renewable energy sources and GDP to reduce the 

CO2 emissions in electricity generation.  

 

7.1.1 Policy Implications  

 

The results specially on decomposition analysis and econometric 

decomposition approach show that these ratios are crucial to reducing the CO2 

intensity of Portuguese sectors, especially in the industries listed in Group B, 

particularly in what concerns increasing energy efficiency and the use of 
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renewable energy. Both points focused on European policy (2009/28/CE 

directive) [2]. European policies are not only focused on market-based 

instruments (mainly taxes, subsidies and the CO2 emissions market), but also 

on the development of energy technologies (especially technologies dedicated 

to energy efficiency and renewable energy, or technologies for low-carbon) and 

on the EU financial instruments supporting the achievement of political goals. 

 

On the other hand, a few European Directives were aimed at improving the 

performance of uncovered sectors by EUETS, for instance, agriculture, 

transports, tourism and other service activities. As examples we can mention 

the European Energy Performance in Buildings Directive (EPBD), the 

Ecodesign Directive, the Biofuels Directive and the Energy Services Directive. 

However, the sectors mentioned in this study as having greater relevance in 

determining the emissions intensity and its components are sectors that are 

already regulated. 

 

In Portugal, the Tourism Industry has made a significant contribution to the 

economy and involves the transportation and hosting of tourism consumers. 

The specific characteristics of the tourism industry point towards many energy 

consumption sources and carbon dioxide emissions channels, such as food 

services and accommodation, travelling and transportation, shopping and 

recreation: all of them consume energy and fossil fuels and produce carbon 

emissions. These tourism activities motivated the research of the relationships 

between the energy consumption, share of fossil fuel consumption and dioxide 

emissions.  

 

Energy mix and Energy intensity effects appear as a secondary influence on 

CO2 emmissions. This can be related once more with the enterprise structure of 

portuguese tourism sector. According Beccali et al. [3], Taylor et al. [4], Teng et 

al. [5], among others, energy use in accommodation and services varies 

according to the differentiation of the type of accommodation, so that the levels 

of power consumption will be linked to that housing structure. This indicates that 

the potential CO2 emissions are higher in the type of accommodation with 

higher levels of energy consumption, which is reinforced by the evidence 
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referred by Gossling [6], Warnken et al. [7] and, more recently, Tsai et al. [8], 

that the energy used per tourist per night is higher in typologies of 

accommodation and services in which dominate the highest levels of quality, 

and consequently higher levels of tourist consumption. 

 

On the other hand, the importance of Energy Mix effect in some years, showing 

the possible substitution between fossil fuels in favor of less polluting ones, can 

reveal the demand for more sustainable solutions in energy, even in these small 

installations. Wang and Huang [9] reinforce the idea that factors such as the 

amount and type of facilities, accommodation services, type of air conditioning 

system and its configuration, the thermostat temperature and cooling are key 

factors for the increase in energy consumption and consequently can be the 

drivers explaining the changes in carbon emissions.  

 

On what concerns policy implication of all the tourism activities, only recently 

the aviation sector was included in the EU ETS. All other activities were 

excluded from this market. The aviation sector was brought into the EU ETS on 

1 January 2012 through Directive 2008/101/EC [10]. For 2012 the cap on 

aviation allowances was set at a level equivalent to 97% of aviation emissions 

in the 2004-2006 reference period and 85% of allowances were given to aircraft 

operators for free. 

The European Commission is taking the first steps to reduce the GHG 

emissions from the maritime transport industry. The proposed legislation (only 

for 2018) will oblige owners of large ships using EU ports to monitor and report 

the ships' annual CO2 emissions, as well as to provide information about the 

ships' energy efficiency. 

An agreement between the European Parliament, Council and European 

Commission on a further reduction in CO2 emissions from cars is expected to 

reduce average CO2 emissions from new cars to 95g per kilometre from 2020 

(European Commission [11] 2012). This represents a 40% reduction from the 

mandatory 2015 target of 130g/km. The target is an average for each 

manufacturer's new car fleet; some models will emit less than the average and 

some will emit more.  
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On the other hand, dealing with the energy consumed in the building stock, in 

particular for heating and cooling purposes, the EU adopted a revised EPBD in 

2010. The Member States have to apply minimum energy performance 

requirements for new and existing buildings, and ensure that by 2021 all new 

buildings are "nearly zero-energy buildings." (European commission [12] 2013). 

All these guidelines, especially at a domestic European level and, or at an 

international one, are linked to the mitigation mechanism, both in the area of 

subsidies, which should be granted exclusively in the promotion and 

development of clean technologies to ensure better energy efficiency, whether 

in the area of licence trading or shares. 

 

James [13] (2009) supported the premise that currently many countries 

subsidize some activities or economic sectors activities that emit GHG through 

the subsidization of fossil fuel prices, which when removed would also work as 

encouragements to the decrease of pollutant gas emissions. For Thomas and 

Callan [14] (2010), the negotiation of the GHG limits should be implemented 

based on the use of the mechanism of tradable emission shares, to ensure the 

minimization of the difference in marginal cost of mitigation between countries, 

since the international trade of emission share alone would only decrease the 

cost of meeting the national emissions limits.   

 

Following these two orientations and taking into account the results found in our 

study by the explanatory determinants of the CO2 variations at the level of 

pollution sectors but not part of mitigation plan of the first and second phase of 

the Kyoto Protocol, namely at the level of tourism industry and agriculture. 

 

All these results, in particular the results reported in Chapter 6, show a common 

pattern expected of CO2 emissions in electricity generation after the European 

Directive 2001/77/EC, including the first and part of the second period of the 

Kyoto Protocol (2005-2007 and 2008-2012). These results are relevant to 

identify that the share of renewable energy sources can be a potential 

determining driver of the difference in the emissions-income relation across 

European panel country level. Other hand, these results claim the importance of 
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the points highlighted by the European policy (2009/28/CE directive) [62]. 

European policies are not only focused on market-based instruments as energy 

or environmental taxes/subsidies or the European Carbon Market (ECM), but 

also on the improvement of technology that focuses on energy efficiency and 

renewable energy and on the EU financial instruments supporting the 

achievement of political goals. 

 

All these guidelines, especially at a domestic European level, and/or at an 

international one, are linked to the mitigation mechanism, which should be 

granted exclusively in promotion and development of clean technologies to 

ensure better energy efficiency. It seems appropriate to suggest that the 

success of national mitigation policies will arguably require the normalization 

between different marginal abatement costs at the level of those very same 

levels of economic activity in the countries enrolled in the agreement, based on 

cost effectiveness which could be achieved through market based instruments, 

a solution found for the activity sectors which are members of the agreement.  

   

If countries agree to adopt the same level of taxation in these polluter sectors 

(sectorial level harmonized fees), the marginal costs of abatement would tend to 

equalize between countries at a sectoral level, in line with the international 

policy instruments of emissions mitigation in force, which would require greater 

commitment and responsibilities among countries.  

 

7.1.2 Limitations 

 

Energy security and environmental challenges are forcing many economic 

sectors to find energy alternatives to fossil fuels. Both renewable and nuclear 

energy sources are believed to provide some solutions to the problems of 

energy security and environmental degradation (Vaillancourt et al.[15] (2008); 

Adamantiades and Kessides, [16] (2009).) 

 

Nuclear energy plays an important role not only in meeting the energy needs of 

many countries, but also in mitigating emissions. The use of non-hydro 

emerging renewable energy sources (wind, solar, geothermal, tidal, wave, and 
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bio-energy) exhibits the fastest rate of increase, with most of the increase in 

power generation, (Tolon-Becerra et al, [17]). 

For this purpose, the access to information of non-hydro emerging renewable 

energy sources at sectoral level in Portugal and in Europe for the period of 

1995-2009 was not available to study the role of energy-related CO2 emissions 

and their policies implications in Europe, and particularly in Portugal. The 

requirements imposed by our methodology (Decomposition analysis, 

Convergence analysis and econometric decomposition approach) which require 

data about energy-related CO2 emissions and their decomposed drivers, could 

not be met. 

 

7.1.3 Suggestions for future research  

 

Based on the findings of this thesis, the following suggestions are avenues for 

future research concentrated on refining the mathematic/econometric methods 

for realizing an assessment of energy-related CO2 emissions.  

 

(1) Examining the energy-related CO2 emissions intensity in Tourism over 

2000-2008 in Portugal: Decomposition Analysis 

 

The objective of this work is to identify the effects in which the intensity of CO2 

(carbon dioxide) emissions (A) in tourism can be broken down and analysed, as 

well as their evolution and which of them has more importance in determining 

the intensity of emissions. For that, we used the 'complete decomposition' 

technique in the 2000-2008 period, for seven tourism categories in Portugal: (i)  

Accommodation services; (ii) Restaurants and similar; (iii) Transport; (iv) Travel 

agencies and similar and (v) Cultural, sports and recreational services. The 

change of CO2 emissions can be decomposed into six effects for each tourism 

subsector i, and for each year t of the studied period: (i) the changes in CO2 

emissions compared to fossil fuels consumption, that is, carbon intensity (CI 

effect), (ii) the changes in fossil fuels consumption towards total energy 

consumption, that is, energy mix (EM effect), (iii) the consumption of energy by 

tourism consumption on the economic territory, that is, energy intensity (EI 

effect), (iv) The tourism consumption by the value added generated by tourism 
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(VA effect), (v) the value added generated by tourism subsectors divided by 

total value added generated by tourism (ES effect), and (vi) Value added 

generated by tourism (TA effect). 

The analysis of the first three effects allows us to evaluate aspects such as: the 

fossil fuel quality, the substitution between fossil fuels, the installation of 

abatement technologies, the substitution of fossil fuel for renewable energy 

sources, the energy efficiency of tourism activities as well as technology 

choices, energy conservation techniques and investments for energy saving. 

The last three effects give us signals about: the influence of relative tourism 

demand face to national tourism supply, on the CO2 emissions; the 

diversification of tourist products among the various subsectors analyzed and 

the preferences of the consumer; the evolution of Portuguese tourism 

production and its impacts on the environment. 

 

 (2) A new frontier approach to model the relationships among Production, 

Carbon Dioxide Emissions, Fossil Fuels Consumption, Capital and Labour in 

European Countries 

 

European economies are presently facing serious environmental problems, 

related in part with the emissions of greenhouse gases (GHG), in particular 

Carbon Dioxide (CO2). This environmental conscience together with the alleged 

commitments to adjust the present course has lead to the implementation of 

policies that change the harmful environmental behaviour, in several European 

countries. The Kyoto Protocol and the 20-20-20 strategy are examples of such 

policies.  

Economic activities use production factors as energy resources, labour and 

capital to produce desirable goods and services, but simultaneously produce 

undesirable outputs, such as CO2 emissions. According to IPCC report (2007), 

the energy consumption of fossil fuels such as coal, oil and natural gas is the 

major contributor towards the increase of GHG emissions including CO2.  Thus, 

if the energy is used inefficiently, this will lead to higher emission levels. 

Therefore, the efficiency in energy use becomes of greater importance, coupled 

with rising prices of fossil energy resources. It becomes necessary to base the 
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economic, energy and environmental policies in the efficient use of resources, 

in particular in energy efficiency. 

Thus, this study aims to evaluate the resource and environment efficiency 

problem of European countries. We specify a new stochastic frontier model 

where Gross Domestic Product (GDP) is considered as the desirable output 

and CO2 emissions as the undesirable output. Fossil fuel consumption, Capital 

and Labour are regarded as inputs. GDP is maximized given the values of the 

other three variables.  The study is divided into two distinct periods: 1995-2004 

and 2004-2011. This division is related to the implementation of Kyoto Protocol 

in 2005, and will allow us to evaluate the difference between the levels of 

efficiency before and after the establishment of environmental targets. In the 

second period we will do a sensitivity analysis by simulating the levels of 

efficiency with the real levels of CO2 and the levels intended by the Protocol for 

each country. 

Since stochastic frontier models are typically ill-posed, many researchers claim 

the urgent need to develop robust estimation techniques. Recently, maximum 

entropy estimators are used in the literature as powerful alternatives to 

traditional estimators, such as the maximum likelihood or the corrected ordinary 

least squares, in the estimation of stochastic frontier models. In this proposed 

study, a parametric stochastic frontier approach using some maximum entropy 

estimators, namely the generalized maximum entropy and the generalized 

cross-entropy, is proposed as an alternative to the Kaya identity. A novel 

maximum entropy approach to assess technical efficiency, which combines 

information from the data envelopment analysis and the structure of composed 

error from the stochastic frontier approach without requiring distributional 

assumptions, is presented in this work. 
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