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Abstract

The book contains an account of results obtained by the author and his collaborators on
billiards in the complement of bounded domains and their applications in aerodynamics
and geometrical optics.

We consider several problems related to aerodynamics of bodies in highly rarefied
media. It is assumed that the medium particles do not interact with each other and are
elastically reflected when colliding with the body boundary; these assumptions drastically
simplify the aerodynamics and allow to reduce it to a number of purely mathematical
problems.

First we examine problems of minimal resistance in the case of translational motion of
bodies. These problems generalize the Newton problem of least resistance; the difference
is that the bodies are generally nonconvex in our case and therefore the particles can
make multiple reflections from the body surface. It is proved that typically the infimum
of resistance equals zero; thus, there exist ’almost perfectly streamlined” bodies.

Next we consider the generalization of Newton’s problem on minimal resistance of
convex axisymmetric bodies to the case of media with thermal motion of particles. Two
kinds of solutions are found: first, Newton-like bodies and second, shapes obtained by
gluing together two Newton-like bodies along their rear ends.

Further, we state results on characterization of billiard scattering by nonconvex and
rough bodies; next we solve some special problems of optimal mass transportation. These
two groups of results are applied to problems of minimal and maximal resistance for
bodies that move forward and at the same time slowly rotate. It is found, in particular,
that the resistance of a three-dimensional convex body can be increased at most twice
and decreased at most by 3.05% by roughening its surface.

Next, we consider a rapidly rotating rough disc moving in a rarefied medium on the
plane. It is shown that the force acting on the disc is not generally parallel to the direc-
tion of the disc motion, that is, has a nonzero transversal component. This phenomenon
is called Magnus effect (proper or inverse, depending on the direction of the transver-
sal component). We show that the kind of Magnus effect depends on the kind of disc
roughness, and study this dependence. The problem of finding all admissible values of
the force acting on the disc is formulated in terms of a vector-valued problem of optimal
mass transportation.

Finally, we describe bodies that have zero resistance when translating through a
medium, and state results on existence or non-existence of bodies with mirror surface
invisible in one or several directions. We also consider the problem of constructing retrore-
flectors: bodies with specular surface that reverse the direction of any incident beam of
light.
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Preface

Imagine that we are going to design a spaceship for a long voyage in open space.
During the voyage the ship will cross huge rarefied clouds of interstellar gas. Our goal is
to make its shape as streamlining as possible, so that the velocity loss when moving in
the clouds is minimal.

In order to specify this task, we need to make a number of assumptions concerning
the state of the cloud, its interaction with the spaceship surface, the kind of the ship
motion, as well as description of admissible shapes the ship can take (in what follows the
spaceship will be called the body, and the cloud, the medium). It is always assumed in
this book that the medium is homogeneous and consists of point particles, besides the
following conditions are fulfilled:

1) the particles of the medium do not interact with each other;

2) when hitting the body surface, the particles are reflected in the perfectly
elastic manner.

The condition 1 is ensured by the fact that the space cloud is highly rarefied, so that mu-
tual interaction of particles can be neglected. The condition 2 means that the interaction
of particles with the body is billiard-like.

Different settings of the problem correspond to the cases where the medium temper-
ature equals zero and where it is positive. The zero-temperature assumption is justified
in the case where the velocity of thermal motion of the particles is much smaller than
the spaceship velocity, and usually significantly simplifies the task. Further, the problem
settings and methods of study are completely different in the case of translational motion
and in the case where the body performs both translational and rotational motion. Fi-
nally, the kind of the problem and approaches to its solution vary greatly depending on
the class of admissible bodies.

In particular, in the case of translational motion of conver bodies the drag force
(usually called the resistance) can be represented analytically as a functional of the body
shape, and variational methods can be used to solve the minimum resistance problem.
This kind of problem has a long history originating from the publication by I. Newton in
his Principia of the famous problem on minimal resistance of convex axisymmetric bodies
and continuing nowadays in a series of paper in 1990s and 2000s related to minimal
resistance of convex (not necessarily symmetric) bodies [14, 13, 9, 35, 34]. If we consider
nonconver bodies, an explicit analytical expression for the resistance becomes impossible
and one needs to use billiard techniques to minimize the resistance. If, additionally, the
body rotates in the course of forward motion, one has to appeal to methods of optimal
mass transportation.
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In the book a review of these problems is given and methods of their solution are
described. The main part of the book is dedicated to results obtained by the author and
his collaborators. The most attention is given to the case where the body is nonconvex
and therefore reflections of the particles from its surface are generally multiple. The
chapter 3 related to the motion of convex bodies in media with nonzero temperature is
an exception.

These problems originating from classical mechanics also allow a natural interpretation
from the viewpoint of geometrical optics where the particles incident on the body are
replaced with light rays falling on the specular surface of the body and reflecting according
to the rule 'the angle of incidence equals the angle of reflection’. In some cases the optical
setting is in better agreement with the empirical reality than the mechanical one. Indeed,
light rays practically do not mutually interact, and the elastic reflection law approximation
is usually much more precise for them than for gas particles.

The optical problems on light scattering by a reflecting surface have their own specific
character. We consider, in particular, problems on invisible bodies and retroreflectors.

Invisibility in a certain direction means that any light ray falling on the body in this
direction and its extension behind the point of last reflection lie on the same straight
line. A retroreflector is a body that changes the direction of any incident light ray to
the opposite. A well known example of 'partial’ retroreflector is the inner part of a cube
corner: a portion of incident light rays make 3 successive reflections from its faces and
then move in the direction opposite to the direction of incidence. From the mechanical
point of view, an invisible body has zero resistance when moving through a medium in
a fized direction, and a retroreflector has the greatest possible resistance when moving in
any direction.

The next important problem is related to description of elastic scattering of particles
by a rough surface. We consider a surface that looks smooth for a 'naked eye’, but
contains 'microscopic’ unevenness invisible for the eye: dimples, grooves, cracks, etc. A
point particle falling on the body and going into a dimple or groove makes one or several
reflections there and eventually escapes in a direction that does not obey the law "the angle
of incidence equals the angle of reflection’. Moreover, one cannot predict the direction
of escape; instead, the statistical distribution for this direction can be determined. That
is, the billiard scattering law at a given point of the surface and for a given velocity of
incidence should describe the probability distribution over the velocities of escape. We will
see below that it is natural to define the scattering law at a point as a joint distribution of
the pair of vectors (velocity of incidence, velocity of reflection), and the law of scattering
by a whole rough surface is naturally defined as a joint distribution of the triple of vectors
(velocity of incidence, velocity of reflection, normal to the surface at the point of impact).

There is vast literature in natural sciences dedicated to rough surfaces. A variety of
models of real rough surfaces utilizing periodic, fractal, random functions, etc. have been
developed. On the contrary, we provide a unique description of all geometrically possible
rough surfaces (where the molecular structure of real bodies is ignored).
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There is a huge variety of shapes of roughness, and it seems probable that the variety
of the corresponding scattering laws is also very large. A chapter of the book is dedicated
to characterization of scattering laws. In very general terms the solution is the following;:
a joint distribution of two or three vectors is a law of scattering by a rough surface if,
first, it is symmetric with respect to a certain vector exchange, and second, two natural
projections of this distribution coincide with some predetermined measures.

We believe that studying billiard scattering by rough surfaces is of potential interest
for space aerodynamics. Consider again an illustrative example of a spaceship moving
through an interstellar cloud. Imagine that as a result of movement of astronauts in
inner compartments the ship very slowly turns around its center of mass in a random
uncontrollable fashion, that is, somersaults. Originally the ship is a convex body. Our
goal is to apply a roughening on its surface so that the (time averaged) resulting resistance
force is minimal. This problem reduces to minimizing a certain functional defined on the
set of scattering laws and can be reformulated in terms of optimal mass transportation,
where the initial and final mass distributions are concentrated on the unit sphere and
correspond to the distributions over velocities of the incident and reflected particle flows.
The mass transfer is identified with the scattering law, and the cost of the transfer with
the resistance force. A separate chapter is devoted to solving special problems of mass
transportation related to the problems of minimal resistance we are interested in.

We will see that the force of resistance of a slowly somersaulting body can be decreased
by means of roughening by 3.05% at most. The very fact that the resistance can be
decreased by roughening is quite surprising and contradicts the intuition; on the other
hand, insignificance of the decrease is disappointing. (Notice that a 'wrong’ roughening
can result in an (at most twofold) increase of the resistance — this fact does not look
strange at all.) In the case of fast rotation the relation between the roughness and the
body dynamics is much more complicated and diverse; we study here the simplest example
of a spinning rough two-dimensional disc.

In chapter 1 the basic mathematical notions which are then used throughout the
book are defined, and a brief review of the main results is given. Our intention is that
the reader who reads only this chapter should get a clear idea on the main results of
the book (but not on their proofs). In chapter 2 problems of minimal resistance as
applied to translational motion of bodies in a medium are considered. In chapter 3 a
generalization of Newton’s problem to convex axisymmetric bodies moving in media with
positive temperature is studied. Auxiliary results on billiard scattering by nonconvex and
rough bodies are stated in chapter 4. In chapter 5 some special problems on optimal mass
transportation are solved explicitly. We believe they are of independent interest, since
they extend the (quite short at present) list of explicitly solvable optimal transportation
problems. The results of chapters 4 and 5 are used in the next chapter 6, where the
problems of minimum and maximum resistance for translating and at the same time
slowly rotating (somersaulting) bodies are considered. In chapter 7 the Magnus effect is
studied. This effect means that there exists a nonzero transversal component of the force
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acting on a spinning body in a flow of particles. In chapters 8 and 9 billiards possessing
extremal properties of best and worst streamlining are studied. Namely, we design bodies
of zero resistance and bodies invisible in one and two directions, on one hand, and bodies
reversing the direction of particle flows, on the other hand.

I am grateful to G. Buttazzo, A. Stepin and E. Lakshtanov for fruitful discussions
on the subject. It was G. Buttazzo who persistently persuaded me to write this book.
The work originated from reading the book by V. Tikhomirov "Stories about maxima and
minima’ when preparing my classes for undergraduate students. Many results of the book
are co-authored with P. Bachurin, P. Gouveia, K. Khanin, J. Marklof, G. Mishuris, V.
Roshchina, T. Tchemisova and D. Torres. Some results are based on personal communi-
cations by V. Protasov and J. Zilinskas. I am very grateful to all of them. Last but not
least, I want to thank my wife Alla for her patience and continued support of my work.

The work has been partly supported by FEDER funds through COMPETE-
Operational Programme Factors of Competitiveness and by Portuguese funds through
the Center for Research and Development in Mathematics and Applications (CIDMA)
and the Portuguese Foundation for Science and Technology (FCT), within project PEst-
C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690; by the
FCT research projects PTDC/MAT/72840/2006 and PTDC/MAT /113470,/2009; and by
the Grants of President of Russia for Leading Scientific Schools NSh-8508.2010.1 and
NSh-5998.2012.1.
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Chapter 1

Notation and synopsis of main
results

In this chapter we introduce the main mathematical notation that will be used throughout
the book and state the main results of the book. The proofs of these results are given in
the next chapters 2 — 9.

1.1 Definition of resistance

Consider Euclidean space RY, d > 2.

Definition 1.1. A bounded subset of R? with piecewise smooth boundary is called a body
and is denoted by B. As usual, a conver body is a convex set with non-empty interior.
Throughout what follows, convex bodies are assumed to be bounded and are denoted by

C.

Remark 1.1. According to this definition, but contrary to physical intuition, a body is
not necessarily connected. This is because we do not require this in most of the results
presented in the book. When we nevertheless need the condition, we speak of a ’connected
body’.

Remark 1.2. In sections 2.5 and 9.1.1 we consider unbounded sets with piecewise smooth
boundary; in this case we use the term unbounded body.

Note that a convex body does not necessarily have a piecewise smooth boundary, so
a convex body is not necessarily a 'body’.

For a regular point £ € dC we denote the unit outward normal to dC' at £ by n(§) and
supply 0C x S9! with the measure u = usc by the formula du(€,v) = bgn(€) - v| d€ dv,
where dot means the inner product and d¢ and dv are the (d — 1)-dimensional Lebesgue
measures on 0C and S% !, respectively. The quantity by = F(%)W(kd)/ 2 is a normalizing

13
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coefficient chosen so that p (9C x S41) = 2|0C|. It is the reciprocal of the volume of
the unit (d — 1)-dimensional ball; in particular, by = 1/2 and b3 = 1/7. We consider the
measurable spaces

(0C x S¥1) 4 == {(&,v) € 0C x S¥1: £n(€) - v > 0}

with induced measure p. Informally speaking, (0C x S%~1)_ and (9C x S?71), are sets of
particles coming into C' and going out of C| respectively, and p measures the (normalized)
number of incoming or outgoing particles. We have p ((9C x S%1).) = |0C]|, so that the
number of particles incoming across 0C', as well as the number of outgoing particles, is
equal to the surface area of C.

In the sequel we will also use the notation

(0C x A)y :={(&,v) € 0C x A: £n(§) -v > 0},

where A is a subset of R%.

The involutive map Z = Z¢ : (€,v) — (€, —v) is defined on 9C x S9! and it maps
(0C x S%=1)_ one-to-one onto (OC x S¥71), (and vice versa).

Consider a body B C C and the billiard in R?\ B. We define a map Tp ¢ : (£,v) —
(&5.c(&,v),v5 o (€,v)) between the subspaces (9C x S 1)_ and (OC x S, as follows.

Let (&,v) € (OC x S471)_. A billiard particle starts its motion from the point & with
velocity v, moves in C'\ B for some time, possibly reflecting from the boundary of B (this
may not happen), and finally crosses 0C' again, at a point 5"50(5 ,v) and with velocity
vgvc(f, v), and leaves C' (see Fig. 1.1). In particular, if £ happens to be a regular point of
0B, then the period of time when the particle stays in C' reduces to a point, in this case

we set €, (&,0) = € and v}, o (€,0) = v — 2(n(€) - v) n(€).

€+ @

Figure 1.1: Billiard in R?\ B.

The map T thus defined establishes a one-to-one correspondence between full-
measure subsets of the spaces (9C' x S 1)_ and (0C x S?71),. In addition, it preserves



1.1. DEFINITION OF RESISTANCE 15

1 and satisfies the equality Tg}c = ITpcZ. In fact, this map determines the billiard
scattering in R?\ B.

Notice that v} . can be extended to a function v} on a full-measure subset of R?x S9!
which specifies the velocity of the reflected particle whose position and velocity at an
arbitrary moment ¢ before being reflected are equal to £ 4+ vt and v, respectively. We
point out that the function v} is translation invariant: v} (€ +v7,v) = v (€, v) for real 7.

We shall consider functionals of the form

m%d:/ (0, v5(€,v)) - [n(€) - o] d€ dx(v),
(0CxSd=1)_

where  is a Borel probability measure on S9! and
c: 8Tt x 8L LRI g>1
is a (generally vector-valued) continuous function satisfying the condition
c(v,v) = 0. (1.1)
Thus, the functional R[Tp | also takes values in R?.
Proposition 1.1. If B C C, and B C Cy, then R, [Tpc,]| = Ry [T,

Proof. Let (0C x S¥ 1P be the set of values (£,v) € (OC x S 1)_ such that the corre-
sponding billiard particle reflects from 9B at least once, and let T3¢, be the restriction of
the map T to (OC x ST 1)B. The restriction of this map to the complementary subset
preserves the second component v, that is, v5(£,v) = v.

For each (&,v) € (C; x S¥ 1B the line £ + vt, ¢ € R has a non-empty intersection
(namely, one or two points) with 0Cy. Let £ be a point in this intersection such that
(& v) € (0Cy x STY)_, and let Te, ¢y 5(€,v) = (€/,v). The map

Tevcap : (0C) x STHE = (9Cy x 8712

thus defined is one-to-one and leaves invariant the second component v. Moreover, it
satisfies the relation 7', 5 = Tey.c1,p and preserves the measure |n(£) - v] d€ dy(v) for
any such y. Finally,

ngéﬁ = I%Q,CLB ITETE& 761,0273' (1'2)
Since c¢(v,v) = 0, it follows that
RiTeg) = [ (v, vB(E0)) ) - vl dg (o).
(8C) x S4-1)B

We make the change of variables (€,v) — (£,v) = T, 0,.5(&, v) in this integral. By (1.2),

Tgfé’l (ga U) = 1.762701,31' Efég (éa U))
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and we have v5(€,v) = v}(€,v) since the second component v is unchanged under
Z7¢,,cy,8Z. Furthermore,

In(€) - v| dé dx(v) = [n(€) - v| d€ dx(v).
Thus,
Ry[Tp.c,] = / (0, v4(E, ) n(€) - v] dE dx (v),

(0Cy x Sd—1)B

so that R, [Tsc,| = Ry [Is,c,]. The proof of Proposition 1.1 is complete. O

This proposition shows that the value of R, [T ] depends only on B and not on the
choice of the ambient convex body C. Hence we may write R, (B) in place of R, [T ],

Ry(B) == / (0, v (€, 0)) [n(€) - o] d€ dx(v). (1.3)
(0C'x Sd=1)_

The functional R is interpreted as the force of resistance of the medium acting on
the body, where the distribution of the particles over velocities (in a reference system
connected with the body) is given by x. The concrete value of the integrand ¢ is defined by
the concrete mechanical model serving as a prototype for the problem under consideration.
So, the function ¢(v,v") = v —v* corresponds to the case where a flow of particles falls on
a resting body, besides the distribution of velocities in the flow is given by . In this case
R, in (1.3) is the force of resistance of the body to the flow. The integrand v — v} (€, v)
is proportional to the momentum transmitted to the body by an individual particle.

The function ¢(v,v") = (v—v")-v corresponds to the case of a parallel flow of particles
impinging on the resting body, with the direction of the flow being a random variable on
S971 with distribution x. In this case the value R, is the expectation (mean value) of the
component of pressure force of the flow along the direction of the flow. The integrand
(v —v}(&,v)) - v is proportional to the projection of the momentum transmitted to the
body by an individual particle on the direction of the flow.

In some other settings of mechanical problems one has to take other functions ¢ (both
scalar and vector-valued). Some of these functions are considered in chapter 7 dedicated
to problems of resistance optimization for rapidly rotating rough bodies.

1.2 Newton’s aerodynamic problem

Here we describe Newton’s aerodynamic problem (or problem of minimal resistance) and
its generalizations and state some new results obtained in this area in 1990s and 2000s.
We consider the three-dimensional case, d = 3. Let c¢(v,v") = (v —vT) - v and let 4,
be the probability measure on S? concentrated at a point vy € S2. The functional Rs,,
determines the longitudinal component of the resistance of the medium to the translational
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motion of a body with velocity —uvg (or, which is the same, the longitudinal component of
the pressure force of a parallel flow of particles at the velocity vy impinging on the resting
body).

Consider a right circular cylinder C', of height h and unit radius and a unit vector vy
parallel to the axis of the cylinder. The problem is to find the minimum value of R;, (B)
in the class of convex bodies B lying in C}, and tangent to all its elements.

We can represent R, in a convenient analytic form. Take an orthonormal system of
coordinates x1, =3, 3 such that the cylinder has the form C}, = {(x1, 29, 3) : 2% + 23 <
1, =h < 23 < 0}, and vy = (0,0, —1). The upper half of the surface of B is the graph
of a function — fp, where the opposite function fp : Ball;(0) — [0, h] is convex and
Ball;(0) C R* is the unit ball 7 + 23 < 1. In view of (1.3), the functional Rs, takes the
form

Ry, (B) = / (v0 — w5 (€. ) - vo d, (1.4)
Ball; (0)x {0}

where & = (1, 22,0) and d¢ is two-dimensional Lebesgue measure. Considering that each
particle impinging on the body hits it precisely once, so that

vg (&, v0) = vo + 2(1 + IV fB(z1,22)]*) 7" (‘ (21, 22), =5 —
we see that Rs, (B) = 2R(fs), where

. dl‘l dl‘g
i) = //Ba111(0) L+ |V f(zy,m0)? (15)

Thus, the problem of minimum resistance takes the following form.

Problem 1. Find inf R(f) in the class of convex functions f : Ball;(0) — [0, h].

Initially, the problem of minimum resistance was considered by Newton [45] for a
narrower class of convex bodies B, which do not merely lie in the cylinder C}, and touch
its lateral surface, but also are symmetric relative to the vertical axis Ox3. In that case
the function fp describing the upper half of the surface of B is radial: fp(x1,22) = ¢p(r),
where r = /x? 4+ 23, and the problem takes the following form.

1
iﬁ/)—lﬂ;— (1.6)
0

1+¢"2(r)

in the class of convex non-decreasing functions ¢ : [0, 1] — [0, h].

Problem 2. Find

The solution of Problem 2 (which Newton presented in geometric form and without
proof) has the following form in the modern notation:

e(r)y=0 for 0<r <r,
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and for ryp < r <1 the function ¢ is described parametrically by

{T:%(UB—I—QU—I—%)

er)=20CBu'+u*—lnu—1) ~

1<u< Ug.
Here g = r9(h) and ug = ug(h) can be found from the system of equations

7%40 (ug—l—Quo—l—uiO) =1, %(Zué—ku%—lmuo— E) =h, uy>1
A brief exposition and an elementary (accessible to high-school children) solution of New-
ton’s problem can be found in Tikhomirov’s paper [76], as well as in his book [77].

The solution of Newton’s problem is a body bounded from above and from below by
flat discs and reminds a truncated cone with slightly inflated lateral surface. Figure 1.3(a)
gives a good idea of its shape for h = 2. Notice that the lateral surface forms the angle
135° with the front surface (upper disc) along the disc boundary.

Problem 1 has been intensively studied since the early 1990s (see [9, 10, 13, 14],[18]-
[20],[34]-[36]). It is known to be soluble, and the solution does not coincide with Newton’s
radial solution. It was found numerically in [34], however the properties of the solution
are not well understood until now. In addition, the solution of the problem inf ;cp ) R(f)
in a narrower class D (h) was found analytically in [35]. Functions ¢ in this class have the
form g = fp(x), where — fp(k) describes the upper half of the surface of the set

B(K) = Conv[(Ball,(0) x {~h}) U (K x {0})].

and K C Ball;(0) is an arbitrary two-dimensional convex set. Here and in what follows,
Conv denotes the convex hull. Thus, B(K) is the convex hull of the union of the circular
base Ball; (0) x {—h} and the convex set K x {0} contained in the horizontal plane Oz .
Notice that ©(h) contains the class of convex radially symmetric functions from Ball, (0)
to [—h, 0].

We depict the solution of this problem for A = 2 in Fig. 1.2, where the set K is a
horizontal interval with midpoint at the origin.

Some results in the problem of least resistance have also been obtained for nonconvex
bodies under the condition that each particle hits the body at most once (this assumption
about the shape of the body is called the single impact assumption); see [14],[18]-[20].

Further in this book we consider problems on optimization of resistance in various
classes of bodies, mostly nonconvex. In general, particles collide with a nonconvex body
several times, so one cannot use simple analytic formulae like (1.5) or (1.6) to calculate
the resistance. Instead of this we have to study billiards in the exterior of the body;
besides, in several cases the optimization problems are reduced to special problems of
optimal mass transfer.

In the next sections 1.3-1.9 synopsis of the main results of the book is given; to each
chapter corresponds a separate section.
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——

Figure 1.2: A convex non-axisymmetric body in the class ©(h), h = 2 having minimum
resistance.

1.3 Problems of least resistance to translational
motion of nonconvex bodies

If x = d,,, we have a parallel flow of particles at the velocity v, falling on a resting body.
The value of the corresponding functional Rs, (B) in an appropriate reference frame has
the form

Roy (B) = [ el v ). (1.7)

We choose a reference frame such that vy = (0,0, —1) and the body B lies in the half-
space 23 < 0. In fact, the body lies in a sufficiently large cylinder Ball,.(0) x [—H, 0], and
in (1.7) we integrate over the top base of the cylinder Ball.(0) x {0}, while outside the
base we have v} (€, v9) = vp, so the integrand vanishes.

The function ¢ is continuous and non-negative and satisfies ¢(v,v) = 0. In the special
case of ¢(v,v") = (v—v™)-v the integral (1.7) has a straightforward physical interpretation:
this is the resistance produced by the medium to the translational motion of a body with
velocity —ug.

Note that although the function v}, is measurable on a full-measure subset of R3 x 52,
its restriction to the subspace v = vy of measure zero is not necessarily defined. So we
assume in addition that the restriction of v}; to the subspace v = vg is a function defined
almost everywhere and measurable with respect to Lebesgue measure in R x {v}. In
effect this means that the scattering of particles falling in the direction of vy is regular.
We assume that this condition holds for all bodies considered throughout this section.

In chapter 2 we consider a generalized Newton problem of the body of least resistance;
generalized because we are looking for the minimum in wider classes P(h) and S(h) of
nonconver bodies inscribed in a fixed cylinder.
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Let P(h) be the class of connected (nonconvex in general) sets B lying in the cylinder
Cy = Ball;(0) x [—h, 0] and such that the orthogonal projection of B on the plane Ox;xo
is the disc Ball;(0). This is a broader class than the ones discussed in section 1.2 above.
The problem of minimum resistance in this class has an unexpected answer:

inf R, (B)=0. 1.8

st 520 (B) (1.8)

That is, the resistance of bodies inscribed in a fixed cylinder can be made arbitrarily
small.

We also consider the class S(h) of connected sets lying in the cylinder C), and con-
taining at least one section Ball;(0) x {c}, —h < ¢ < 0 of it. This is a subclass of the
previous class, S(h) C P(h), but nevertheless it is broader than the classes considered
before. The answer in this class is the same:

inf R (B)=0. 1.9
piaf, Fou, (B) (1.9)

Next we consider a cylinder with arbitrary (not necessarily circular) base and show
that the infimum of resistance of bodies inscribed in this cylinder is also equal to zero.

Further, we consider the class of connected bodies B such that C; € B C (5, where C}
and C5 are fixed bounded connected bodies in R? such that C; € Cy and 9C, N OC, = (.
Again,

inf Rs, (B)=0. (1.10)

C1CBCCs

The relation (1.10) can be interpreted as follows. Any convex body can be transformed
within the e-neighborhood of its boundary so that when the resulting body moves in the
prescribed direction in a medium of resting particles, it encounters a resistance smaller
than an arbitrarily prescribed quantity ¢ > 0.

Then we consider the minimization problem for analogues of these classes in the two-
dimensional case, d = 2. In this case the least resistance is always positive. We find it
explicitly for c(v,v") = (v —ov™) - .

Finally, we consider the problem of least specific resistance for unbounded bodies.
This problem was first stated by M. Comte and T. Lachand-Robert in [20] under the
single impact assumption. We do not impose this assumption; so, in our setting a particle
may collide several times with the body surface. We find, in particular, that the infimum
of the specific resistance of bodies containing a fixed half-space in a flow perpendicular to
the boundary of the half-space equals one half of the resistance of the half-space itself.

1.4 Generalized Newton’s problem in media with
positive temperature

In chapter 3 we address the problem of minimum resistance to translational motion of
bodies in a medium with thermal motion of particles. This problem, like the classical
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Newton problem, is considered in the class of convex axisymmetric bodies with fixed
length and width.

While the solution of this problem is conventional, the solutions are more diverse.
Unlike in the original Newton problem, one has to take into account the composition of
the medium: the solution for a homogeneous (and therefore, containing molecules of the
same mass) gas is not the same as for a gas consisting of several homogeneous components
(and so, containing molecules of different masses).

In the three-dimensional case there are two distinct kinds of solutions. A solution of
the first kind is similar to the solution of the classical Newton problem, that is, its surface
can be described in the same way as the surface of Newton’s solution. Notice that, unlike
in the Newton solution, the angle between the lateral surface and the front disc at the
points of disc boundary is not generally 135°.

A solution of the second kind is a union of two bodies similar to Newton’s solution
"glued together’” along the rear parts of their surfaces. The length (along the direction of
the motion) of the front body is always larger than that of the rear 'reversed’ body.

Letting h and the velocity distribution of the particles fixed and changing the velocity
V' of the body, we find that a solution of the first kind is realized for V' > V., and of
the second kind for V' < V., where V. = V,(h) is a certain critical value depending on h.
We present examples of solutions of the first and second kinds in Fig. 1.3(a) and in Fig.
1.3(b), respectively. In these figures and in what follows the body is assumed to move
upwards.

In the two-dimensional case, d = 2, the classification of solutions is somewhat more
complicated. There exist 5 kinds of solutions (see Fig. 1.4(a) — 1.4(e)):

) a trapezium;

a
b) an isosceles triangle;

¢) the union of a triangle and a trapezium;
d

) the union of two isosceles triangles;

(
(
(
(
(e) the union of two triangles and a trapezium.

Solutions (a) — (d) are realized for arbitrary velocity distributions of the particles and
for arbitrary V'; solution (e) is realized only for some of them. The optimal shapes (a)
— (d) appear in the simplest case of homogeneous monatomic gas, while shape (e) can
appear in the case where the gas is a mixture of at least two homogeneous components.
The numerical computation of the solution (e) is a hard task, which is as yet unsolved.
We note that in the two-dimensional analogue of Newton’s problem (that is, with zero
temperature) there are only two optimal shapes corresponding to the cases (a) and (b).

In the limit cases, when the speed of the body is large or small in comparison with
the mean speed of the particles, the shape of the body of least resistance is universal:
it depends only on the length h but does not depend on the velocity distribution of the
particles. In the first limit case (V' — 400) the optimal body coincides with the solution
of the classical Newton problem. In the second limit case (V' — 0), for d = 3, the optimal



22 CHAPTER 1. NOTATION AND SYNOPSIS OF MAIN RESULTS

IR,
IR

/Ii';iiii_‘-‘éi\\ é'é'l""'.‘ili“;“‘;;\‘\
(AR
Yoam ‘l‘\k\\\ é""..gil““;‘\

(a) V=1h=2 (b) V=1 h=3

Figure 1.3: Solutions of the three-dimensional problem in the class of convex bodies of
revolution of height A whose maximal cross section is a unit circle. The motion proceeds
in a rarefied homogeneous monatomic ideal gas; the velocity of the body is V. The mean
square velocity of the gas molecules is 1.

body is a second-kind solution symmetric with respect to a plane perpendicular to the
direction of motion, and the angle between this plane and the lateral surface at its upper
and lower points is always 51.8"; while for d = 2 the optimal body is one of the four
figures:

(a) a trapezium if 0 < h < 1.272;
(b)
(c) the union of an isosceles triangle and a trapezium if 1.272 < h < 2.544;
(d) a rhombus if h > 2.544.

In cases (a) — (c) the inclination of the lateral sides of these figures to the base is 51.8°,
and in case (d) it is larger.

an isosceles triangle if h = 1.272;

In a homogeneous monatomic ideal gas the velocities of the molecules are distributed in
accordance with the Gaussian law. Assume that the mean square velocity of the molecules
is 1; then the type of the solution is determined by two parameters: the velocity V of
the body and its length h. We define numerically the regions in the parameter plane
corresponding to different kinds of solutions; in addition, for some values of the parameters
we determine the shape of the optimal body and calculate the corresponding resistance.
We carry out this work separately in the two- and three-dimensional cases.
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(a) h=0.7 (c) h=6
(b) h=3
()
d h =
7.83

Figure 1.4: The two-dimensional problem. The solu-
tions in cases (a)—(d) are numerically calculated for a
motion with velocity V = 1 in a gas; the gas parame-
ters are as in Fig. 1.3.
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1.5 Scattering in billiards

In the next chapters 4 and 5 we do a preparatory work before passing (in chapters 6 and
7) to the case where bodies perform both translational and rotational motion.

Chapter 4 is devoted to billiard scattering by nonconvex and rough obstacles. First
we consider the billiard in the exterior of a two-dimensional connected body B. The
law of billiard scattering on B is the probability measure ng describing the distribution
of the pair (¢, "), where ¢ is the incidence angle and ¢* is the angle of going away
of a randomly chosen particle incident on the body (Fig. 4.1). The angles are counted
counterclockwise from the normal to d(Conv B) and belong to [—m/2, 7/2].

The law of scattering on a body admits a convenient representation as follows. We
define a sequence of hollows on the boundary of the body (there are 3 hollows in Fig.
4.1); the law of billiard scattering in a hollow is a probability measure defining the joint
distribution of (¢, ¢™) for a randomly chosen particle going into the hollow. Further, the
scattering law on the convex part of the boundary of the body is determined by the rule
‘the angle of incidence is equal to the angle of reflection’ and is a measure concentrated
on the diagonal o+ = —p. The scattering law 7p is a weighted sum of the scattering laws
in all the hollows of the body and on the convex part of its boundary.

In an arbitrary dimension we define a rough convexr body. The law of scattering
on such a body is the joint distribution of a triple of vectors (v,v",n): the initial and
final velocities and the outer normal at the point of collision, for a randomly chosen
particle hitting the body. Thus, a scattering law on a rough body B is a (not necessarily
probability) measure vz on ng}l X S?;f} X ng}l. It is also convenient to consider the
scattering law at a point on the surface of a rough body; it is the conditional measure
VB | n=n, defined on ng_}l X S?U_f}, where ng is the outer normal to the body surface at that
point.

In informal terms we can describe a rough body as follows: the surface of a convex
body is pocked with microscopic hollows (grooves, cracks, etc), so that macroscopically the
resulting (rough) body with hollows looks precisely convex, but billiard scattering on it can
be utterly different. The mathematical definition is as follows: a rough body is associated
with a sequence of bodies with hollows of size approaching zero. In addition, a sequence
of such bodies must satisfy the condition of convergence of the sequence of corresponding
scattering laws. Furthermore, an equivalence relation between such sequences is defined,
and the convention is that equivalent sequences of bodies represent the same rough body.

Otherwise we can say that a rough body is obtained by grooving a fixed convex body.
Clearly, a convex body can be grooved in infinitely many ways, differing (informally
speaking) by the shape of hollows.

In Theorems 4.1 — 4.5 we give a complete characterization of scattering laws. Each
statement has roughly the same form: we assert that a measure is a scattering law if and
only if it has fixed marginals and possesses a certain symmetry property.
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As examples we give two such statements (Theorem 4.3 and Corollary 4.2).

First, a measure on [—7/2, 7/2]? can be weakly approximated by scattering laws np if
and only if it is invariant relative to the exchange of variables (¢, 1) — (¢T, ) and both
its natural projections on [—7/2, w/2] (that is, its marginals) coincide with the measure
A given by d\(p) = 3 cos @ dep.

Second, a measure on S?U’}l X S?vjl} is a scattering law at a point of a rough body, if and
only if it is invariant relative to the transformation (v,v") — (—v™, —v) and its natural
projections on S?v_}l and S?U_f} are probability measures A_, and )\, with the densities
ba(v-n)_ and by(vt -n),, respectively. The normalizing coefficient b, is defined in section
1.1, and n is the outward normal to the body surface at the given point. Notice that
the measures A_, and )\, define the distributions of the incident and reflected flows of
particles over velocities.

1.6 Problems of optimal mass transportation

We will see in chapter 6 that some problems of resistance optimization for rough surfaces,
with the use of the aforementioned theorems 4.1 — 4.5, can be reduced to a problem of
finding the measure with fixed marginals (that is, the scattering law) on [—7/2, 7/2]* or
(8912 minimizing a certain linear functional. This problem in general is as follows.

Consider measurable spaces (X, A1) and (Y, \y) such that A;(X) = A2(Y) and a con-
tinuous function ¢ : X X Y — R (usually called cost function). Let I'(A1, A2) be the set
of measures ¥ on X X Y whose marginals (projections on X and Y') are, respectively,
A1 and Ap. (This means that for any two measurable sets A; C X and A C Y holds
V(A xY) = A (A4)) and v(X X Az) = A2(A2).) The problem of minimization

inf c(z,y)dv(x, 1.11
Lt //X ) dvtay) (1.11)

is called the problem of optimal mass transportation, or the Monge-Kantorovich problem.

This problem can be interpreted as follows. We have two mass distributions given
by the measures A; and Ay on X and Y, respectively, and a function ¢(z,y) defining the
cost of transfer of a unit mass from z € X to y € Y. A plan of mass transfer from the
initial position A; to the final position Ay (or just a transport plan) is given by a measure
v with marginals \; and )y, and the total cost of the transfer with this plan is equal to
the integral in (1.11). One needs to find the optimal transfer plan, that is, the measure
v, minimizing the transfer cost.

In general it seems impossible to provide exact solution for an optimal transportation
problem. The known cases of exactly soluble problems are quite rare; they are rather
exceptions to the general rule. The case of the one-dimensional transport, where X and
Y CR, ¢(z,y) = f(r £ y), and f is strictly convex or concave, is the simplest one; then
the optimal plan is monotone, that is, is given by a measure supported on the graph
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of a monotone function (see, e.g., [42]). We note a very interesting case considered by
McCann [42] where c¢(z,y) = f(|z — y|) and f is a positive strictly concave function.
Note also the case where the measures A; and Ay coincide and are uniform on the segment
X =Y =10, 1], with ¢(z,y) = h(z+y) or h(x—y), where h has 3 intervals of monotonicity
79].

Below we cite some explicitly soluble cases of the two-dimensional mass transportation
problem, where \; and )\, are Lebesgue measures on compact sets X and Y in R?, and
the cost function is the Euclidean distance, ¢(x,y) = |z — y|. The following examples are
taken from the papers by Levin [38, 40, 39].

1. The set Y is obtained by shifting X by a vector b € R?, that is, Y = X + b. This
shift actually produces an optimal transportation; in other words, the measure supported
on{(z,y): € X, y=x+ b} CR*is an optimal transport plan.

2. X is a rectangle of size 1 x 2 and Y is the rectangle obtained by rotating X by 90°
about its center.

3. X is an equilateral triangle and Y is the triangle obtained by rotating X by 60°
about its center.

4. X is an equilateral triangle and Y is a triangle obtained by reflecting X relative to
one of its sides.

5. X is a square and Y is the square obtained by rotating X by 45° about its center.

In all these cases the optimal transfer is generated by piecewise isometrical transfor-
mations.

In chapter 5 some special optimal transfer problems are explicitly solved. First we
consider a problem of mass transport from R to R with a cost function of the form
c(xz,y) = f(x 4+ y), where f is an odd function strictly concave on R, = {z < 0} (and
therefore strictly convex on R_ = {z < 0}), in the case where the initial mass distribution
coincides with the final one, Ay = A3. We impose some additional technical conditions on
/\1.

We show that the optimal measure is uniquely defined by its support, which belongs
to the union of two lines on the plane: the ray z = y > 0 and a curve symmetric relative
to this ray (see Fig. 5.1). The curve belongs to a finite- or countable-parameter family of
curves, which does not depend on f and is defined merely by Ay, while the choice of the
optimal curve from this family is defined by f.

In an important particular case the family is one-parameter, and therefore the problem
reduces to minimization of a function of a real variable.

Further we consider a special problem of mass transport on the unit sphere in R¢.
The initial and final spaces are complementary hemispheres, X = S := {x € S¢ ' :
r-n<0)and Y =S¢ .= {x € S¢!:x-n > 0}, and the measures \; and \, are
defined by the following condition: the orthogonal projection of each measure on the
plane z - n = 0 coincides with the Lebesgue (d — 1)-dimensional measure on the circle
{r:2-n=0, |z] <1}. The cost function is the squared distance, c¢(z,y) = % |z — y|*.
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This problem can be naturally interpreted in terms of billiard scattering by rough
surfaces. Fix a point on a rough surface and let n be the outward normal to the surface at
this point. The flows of incident and reflected particles are identified with the hemispheres
X and Y, respectively. With this identification, to any incident or reflected particle we
assign its velocity v or v (we have v-n < 0 and v* - n > 0). The measures \; and
Ao describe the densities of the incident and reflected flows. Each admissible measure
n € T'(A1, A2) defines a billiard scattering at that point (more precisely, the symmetrized
measure Nsymm = %(77 + an) is a scattering law at a point; here mq exchanges the ar-

guments, m4(z,y) = (y,2), and 77 is the induced map of measures). The cost function
% v —v"|?is the (normalized) momentum transmitted to the body by a particle with the
corresponding velocities of incidence and reflection, and the total cost of the transfer is
the specific resistance at the point.

Since this problem possesses the axial symmetry relative to n, one can show that
the optimal transfer is performed along the meridians (we take the sphere poles to be n
and —n) and is axially symmetric. As a result one comes to a one-dimensional problem
identical to the one considered earlier in chapter.

Two schemes of mass transfer along the meridians are depicted in Figures 1.5 (a) and
1.5(b). The transfer shown in Fig. 1.5 (a) is induced by the law ¢ = ¢ (’the angle of
incidence = the angle of reflection’) and corresponds to reflection from a smooth surface.
It is instructive to consider an argument showing that it is not optimal. Consider two
small arcs I; and I, adjoining the equator and reverse the monotonicity of the transfer
from I to I, that is, replace monotone increasing with monotone decreasing. Since these
arcs are "almost’ rectilinear and the cost function equals the squared distance, the transfer
cost will decrease under this reversal.

In Fig. 1.5(b) the optimal transfer scheme is depicted in the case d = 2. Both upper
and lower halves of the meridian are divided into pairs of arcs, the left and the right
ones. The transfer between the left arcs is monotone increasing, o = ¢, and the transfer
between the right arcs is monotone decreasing. Notice that the left and right arcs partly
overlap; this means that the mass at each point of the ’overlapping zone’ splits in two
parts, which are then transported to two different points. In terms of optimal transfer
this means that the transfer solves the Monge-Kantorovich problem, but not the Monge
one.

In higher dimensions, d > 3, the scheme of optimal transfer is roughly the same; the
most significant difference is that the overlapping of the two arcs disappears (or, more
precisely, reduces to a point).

1.7 Optimizing the mean resistance

The value of the functional R, (B) in (1.3) with the cost function c(v,v") = (v —ov™) v
and the uniform probability measure v on S?~! is interpreted as follows. A body B starts
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Figure 1.5: The mass transfer along the meridian (from the lower part of the meridian to
the upper one) is marked by arrows. The transfer induced by shift along n is shown in
figure (a), and the optimal transfer is shown in figure (b).

a translational motion in R? in a medium of resting particles, with velocity v randomly

chosen from a uniform distribution in S%~!. The resistance Rs,(B) to this motion (more

precisely, the projection of the resistance force on the direction of motion) is a random

variable, and its mathematical expectation equals R, (B). Note that the cost function can
1

be written as c¢(v,v") = § [v — vT[2

We can propose another interpretation of this functional: the body B moves trans-
lationally with fixed velocity and at the same time slowly rotates. The rate of rotation
is small enough that we can neglect it in interactions of the body with individual parti-
cles. In a reference system attached to the body the velocity vector draws a curve on the
sphere S9! thus inducing a (singular) probability measure on the sphere: the measure of
a subset of S9! is the (normalized) total time when the vector lies in this subset within a
certain period of observation. We assume that as the period of observation extends, this
measure weakly converges to u. Then the mean resistance over this period approaches

Ru(B).

The problems of minimizing and maximizing R, (B) are studied in chapter 6 in different
classes of bodies. The mathematical tools necessary for this study are elaborated in the
previous chapters 4 and 5.

In the two-dimensional case the mean resistance of a connected body B can be repre-
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sented in the form

faxfnzz|a<Conv£n|/QQ<1+—cosmo—-¢+>>dn3<w,w+x

where O = [—7/2, /2] x [-7/2, m/2]. We state the following problem.

Problem 3. Find inf R, (B)
(a) in the class of connected (generally speaking, nonconvex) bodies B of fized area;
(b) in the class of convex bodies B of fized area.

Using the results of chapter 4 on characterization of the measures np, we reduce
Problem 3(a) to the following special optimal transportation problem:

iﬁ)/éﬂ+aﬂ¢—¢ﬂmm%wﬂ

neEL(AA

(where A is the measure on [—7/2, m/2] given by d\(p) = % cos@dy), which we then
solve using the results of chapter 5. A minimizing sequence of bodies is constructed that
can be identified with a rough disc of prescribed area. The solution in Problem 3(b) is a
(standard) disc of the same area, and

(the least resistance in the class of nonconvex bodies)

= ~ (0.9878.
(the least resistance in the class of convex bodies) e

Allowing some freedom of speech, one can say that the body of least resistance in the
class of convex bodies is a disc, and in the class of nonconvex bodies it is a rough disc, and
the resistance of the latter body is approximately 1.22% smaller than that of the former
one.

Next we consider the following problem. Let C; and C5 be bounded convex bodies
such that C; € Cy € R? and 9C; N OCy = (). We consider the class of convex bodies B
such that C; ¢ B C (5.

Problem 4. Find (a) info,cpce, Ru(B) and (b) supe, cpce, RBu(B).

The solution of Problem 4(a) essentially repeats that of Problem 3(a).
In cases (a) and (b) minimizing and maximizing sequences can be identified with rough
bodies obtained by grooving C4 and Cjy, respectively, and we have

infB RU(B)
Ru(cl)

sup 1u(B)

= ~ 0.9878 d
Mo an Ru(Co)

= 1.5.

Next we show that the resistance of a body in a medium with thermal motion of
particles is proportional to the resistance in the medium consisting of resting particles,
with a coefficient which is larger than 1 and depends only on the nature of motion of the
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particles: the higher the temperature, the larger the coefficient, the larger the resistance.
Hence in a medium with positive temperature Problems 3 and 4 have the same solution
as before.
In the case of an arbitrary dimension d > 2 we solve problems of optimizing resistance
in the class of rough bodies obtained by grooving a fixed convex body C'.
Problem 5. Find (a) % sup{ R, (B) : B is obtained by grooving C'};
(b) % inf{ R, (B) : B is obtained by grooving C'}.

These ratios appear to depend only on the dimension d, and not on the particular body
C. With the use of the results on characterization of measures generated by rough bodies
Problem 5 reduces to the problem of optimal mass transportation on S%! considered in
chapter 5. One finds that

supg Ry(B)  d+1 o infg R, (B) —m,

R(C) 2 R(O)

where, in particular,

1 1
me ~ 0.9878, m3~0.9694 and lim my= 5(1 +/ VInzIn(1l — z)dz) =~ 0.791.
0

d—00

We illustrate these results by the following example. Consider a spherical artificial
satellite rotating around the Earth and being decelerated by the thin atmosphere. As-
sume that the surface of the satellite is made of materials ensuring that molecules of the
atmosphere reflect from it elastically. The twofold problem consists in (a) reducing or
(b) increasing the resistance to the motion by appropriate grooving the surface of the
satellite. It follows from our results that the resistance can be reduced by at most 3.05%
or can be at most doubled.

1.8 Dynamics of a spinning rough disc

In chapter 7 we study the resistance and dynamics of rotating bodies. As opposed to the
previous chapter, here we consider the case of fast rotation. This means that the product
of the angular velocity and the diameter of the body has the same order of magnitude as
its translational velocity.

We limit ourselves to the simplest case where a rough disc rotates around the center
and at the same time moves through a rarefied medium on the plane. The center of
mass of the disc coincides with its geometric center. In this case a simple scheme of
scattering is realized, where an incident particle interacts with the body at the point of
collision and then goes away forever. Note that any other shape of a convex body (which
is not necessarily rough) and any other location of the center of mass may lead to a more
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complicated scheme, where a particle is reflected from the body several times at two or
more points of the boundary.

On the other hand, dynamics of nonconvez bodies seems to be even more complicated.
The point is that it is natural to consider the interaction of the particle with the body
in a reference system attached to the body, but in such a reference system the motion of
a particle becomes curvilinear between consecutive collisions, and therefore is difficult to
study.

The main feature of dynamics of a rapidly rotating disc is that the force of resistance
is not parallel to the velocity of the body. This phenomenon is well known to the physi-
cists and is called Magnus effect. The transversal component of the resistance force can
be codirectional to the instant velocity of the body’s front point, or can have opposite
directions relative to this point. In these cases one speaks of the proper or inverse Magnus
effect, respectively. It is well known to the physicists that in relatively dense gases proper
effect takes place, while in rarefied media usually the inverse effect is realized.

The Magnus effect in rarefied media is usually derived from nonelastic interaction of
gas particles with the body [8, 31, 82, 83]. On the contrary, in our model this effect is
due to multiple reflections of particles from the body. The magnitude and direction of the
resistance force, as well as the kind of the effect (proper or inverse) depend on the shape
of roughness in a complicated way. In our model both kinds of the effect are realized, but
the inverse effect dominates in a sense. For any fixed value of relative angular velocity
we represent the force acting on the disc and the moment of this force as functionals
depending on the ’shape of roughness’ (Theorem 7.1).

The set of admissible forces is a convex set formed by the resistance forces (R, Rs)
corresponding to all possible roughness shapes. The problem of finding the set of ad-
missible forces reduces to a vector-valued problem of optimal mass transfer and is then
numerically solved for some values of angular velocity (Figures 7.4 and 7.9). Each of
these sets is divided by the vertical line R; = 0 into two unequal parts; the greater part
corresponds to the inverse Magnus effect, and the smaller part, to the proper one.

In some simple cases the disc trajectory is found explicitly (see Figure 7.8). In par-
ticular, as shows numerical simulation, a single disc with roughness formed by equilateral
triangles can demonstrate three different kinds of behavior, depending only on the initial
data. If the initial angular velocity is sufficiently small, the disc trajectory is a curve
approaching a straight line. If it is sufficiently large, the trajectory is a converging spi-
ral, and if it takes an intermediate value, the trajectory coincides with or approaches a
circumference.

The following problem remains unsolved: find all curves which can be drawn by the
center of mass of a spinning rough disc (or, more generally, an arbitrary body) that moves
in a rarefied medium.
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1.9 Billiards possessing extremal aerodynamic prop-
erties

In the last chapters 8 and 9 we study bodies that have the best and the worst acrodynamic
properties.

In chapter 8 we concentrate on invisibility and related problems of perfectly stream-
lined bodies. The interest to invisibility (creation of 'invisibility coats’, etc) has drastically
grown up due to recent developments in metamaterials with unusual optical properties.
On the contrary, we examine the effect of invisibility achieved by using only mirror sur-
faces.

First we define three classes of bodies: bodies having zero resistance when moving
in a fixed direction, bodies leaving no trace when moving in one direction, and bodies
invisible in one direction. We say, in particular, that a body is invisible in one direction,
if a particle falling on it along a certain straight line in this direction, after making several
reflections will eventually move along the same line. We show that these three classes are
nonempty, do not coincide, and are embedded one into another.

The very fact of existence of bodies having zero aerodynamic resistance when moving
in a medium is surprising. We provide explicit constructions of such bodies (they are
depicted in Figures 8.1 —8.7). In Fig. 8.7, for instance, it is shown how to get an invisible
body by making a hole inside a cylinder along its axis.

Notice that a body of zero resistance is supposed to move uniformly in a medium
with zero temperature and constant density. If, say, a spaceship having zero resistance
turns its engines on and makes a maneuver, the medium will produce a force resisting to
maneuvering. Further, when flying into a zone with larger density the ship experiences
a decelerating force, and when going out of this zone it experiences a compensatory
accelerating force.

Next we design a body invisible in two mutually orthogonal directions (Figures 8.12
and 8.13) and a body invisible from one point (Fig. 8.17). It is impossible, however, to
design a body invisible in all directions (Theorem 8.4). There still remain many unsolved
questions, first of all: how many directions and/or points of invisibility can be realized?

In chapter 9 we study bodies with the worst aerodynamics properties: retroreflectors.

A retroreflector is an optical device that reverses the direction of any incident beam
of light. Note that a perfect retroreflector using refraction of light rays is well known in
optics: it is the Eaton lens, a transparent ball with refractive index growing from 1 on
the ball boundary to infinity at its center. It is unknown, however, if there exist perfect
retroreflectors that use only reflection of light rays, that is, billiard retroreflectors. Instead
we construct in two dimensions several asymptotically perfect billiard retroreflectors, that
is, families of bodies whose reflective properties approach the property of retro-reflection.
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The reflective properties of connected two-dimensional bodes are derived from proper-
ties of hollows on their boundary; therefore we concentrate on constructing hollows. Three
families of asymptotically retroreflecting hollows are constructed: Mushroom (Fig. 4.7),
Tube (Fig. 9.6), and Notched Angle (Fig. 9.9). The first of them admits generalization
to higher dimensions. The fourth hollow considered in chapter 9 is called Helmet (Fig.
9.12); it possesses very good properties of retro-reflection, yet it is not perfect.

The four resulting bodies: two-dimensional retroreflectors with the corresponding hol-
lows on their boundary — are depicted in Fig. 9.14.

Each of the proposed shapes has its own drawbacks. The number of reflections in Tube
and Notched Angle is very large and goes to infinity when the reflective properties of the
corresponding shape approach retro-reflection. On the contrary, most particles make only
one reflection in Mushroom; however, there always exist a nonzero difference between the
directions of incidence and reflection. In addition, as noted by V. Protasov!, in practice
it is impossible to produce a good quality retroreflector with mushroom-shaped hollows,
since the size of smallest hollows should be much smaller than the size of atoms (the
corresponding estimates are given in Appendix 9.7.3). Helmet seems to be the best in
practical applications, especially for the purpose of recognition of the body contour.

Personal communication.



34

CHAPTER 1. NOTATION AND SYNOPSIS OF MAIN RESULTS



Chapter 2

Problem of minimum resistance to
translational motion of bodies

Newton’s aerodynamic problem consists in minimizing the resistance to the translational
motion of a three-dimensional body moving in a homogeneous medium of resting particles.
The particles do not interact between themselves and reflect off elastically in collisions
with the body. This problem has been considered for various classes of admissible bod-
ies. In Newton’s initial setting [45] the class of admissible bodies consisted of convex
axisymmetric bodies of fixed length and width, that is, bodies inscribed in a fixed right
circular cylinder. The problem was later considered for various classes of (convex and ax-
isymmetric) bodies, for example, for bodies whose front generator has a fixed length (and
whose width is also fixed) [37, 5], for bodies of fixed volume [6] and so on. A major step
forward was made in the 1990s, when unexpected and striking results were obtained for
some classes of non-azisymmetric bodies, and later for nonconvex bodies [9, 13, 14],[18]-
[20],[34]-[36]). However, the authors kept the initial assumption that the body must have
fixed length and width, that is, can be inscribed in a fixed right circular cylinder.

A further constraint imposed on all classes of bodies was as follows: a particle cannot
hit the body more than once. Here we do not impose this constraint. In section 2.1
we consider two classes of (generally speaking, nonconvex and non-symmetric) bodies
inscribed in a circular cylinder. These classes differ in accordance with the meaning one
puts in the expression ’inscribed in a cylinder’. We show that in each class the infimum
of the resistance is zero, that is, there exist 'almost perfectly streamlined’” bodies. In
section 2.2 this result is generalized to right cylinders with arbitrary (not only circular)
section. In section 2.3 we demonstrate that any convex body can be transformed in a small
neighborhood of its boundary so that the resulting body displays a resistance less than
an arbitrary small € > 0. In fact, any body can be made ’almost perfectly streamlined’
by making microscopic longitudinal 'grooves’ in its surface. In section 2.4 we consider an
analogue of Newton’s problem in the two-dimensional case. Here the minimum resistance
is always positive, but smaller than that of convex bodies. In section 2.5 we consider the

35
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problem of minimum specific resistance for unbounded bodies in a parallel flow of particles.
The most part of results of this chapter were first published in [48, 49, 52, 57, 60].

2.1 Bodies inscribed in a circular cylinder

We consider the problem of minimizing the functional Rs, in (1.7) with vy = (0,0, —1)
and continuous function ¢ satisfying ¢(v,v) = 0, over various classes of bodies. In the
important case c¢(v,v") = (v — vT) - v the integral (1.7) denotes the resistance to the
translational motion of a body with velocity —vg in a medium of resting particles.

Throughout this chapter we assume without further mention that the measurable func-
tion v} (-, vp) is defined almost everywhere on R? (in view of the translational invariance,
this means that it is defined almost everywhere on R? x {0} and is measurable there).
This ensures the existence of the integral Rs, (B) in (1.7). In essence, the condition
means regularity of the scattering of particles falling in the direction of vg. We present
two examples of bodies for which the condition of regularity fails in figures 2.1 and 2.2.

A set B not satisfying the regularity condition is obtained by revolution of a plane set
S through 360° about the vertical axis AB (see Fig. 2.1). The set S is obtained from the
rectangle ABCD by removing a subset part of whose boundary is an arc of a parabola
with vertical axis and with focus at a singular point F' of the boundary of this subset. The
velocity vy of the flow of particles is directed downwards: vy = (0,0, —1). The particles
reflecting from the parabolic part of the boundary go to the singular point F', and after
hitting this point their further motion is not defined. Thus, the function v} (-,vo) is not
defined on a positive-measure subset corresponding to these particles.

s

A D

Figure 2.1: An example of a body with irregular scattering. A positive-measure set of
particles hit a singular point of the boundary of the body.
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Another mechanism of breaking of regularity is due to the fact that a positive-measure
set of particles can remain within a bounded set forever, that is, be trapped, and in that
case the function v} (-, vp) is not defined on the set corresponding to these particles. An
example of a trap made from arcs of ellipse and parabola is given in the book [75] in
section 2.2; a similar construction is reconstructed here in Fig. 2.2.

Figure 2.2: The body ABCDEFGHI is a trap. The curves C'D and GF' are arcs of an
ellipse, and DFE is an arc of the parabola with vertical axis and focus at one of the foci of
the ellipse. The set of particles falling downwards on the arc DE will remain forever in
the hollow formed by the curve CDEFG.

Below we consider the minimization problem in classes of (generally speaking) non-
convex bodies inscribed in a given cylinder. The notion of a body inscribed in a cylinder
can be defined in different ways. We introduce two distinct classes of bodies inscribed in a
right circular cylinder of radius 1 and height h: the class P(h) of bodies whose projection
on the horizontal plane is a disc and the class S(h) of bodies containing at least one hori-
zontal section of the cylinder. Note that the class P(h) is wider than S(h): S(h) C P(h).
The infima over both classes are equal to zero. We first prove this for P(h), and then give
a sketch of the proof for S(h).
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2.1.1 The class of bodies with fixed horizontal projection

Definition 2.1. We denote by P(h) the class of connected bodies B lying in the cylinder
Cy = Bally(0) x [—h, 0] and such that the orthogonal projection of B on the plane Oxixo
is the unit disc Bally(0).

Proposition 2.1. infpcpp) K5, (B) = 0.

Proof. We shall construct a one-parameter family B, € P(h), ¢ > 0 of bodies such that
R, (B:) — 0 as ¢ — 0. First we carry out the construction for h > 1/2, and then for
h <1/2.

(i) For h > 1/2 we fix ¢ and consider in the plane Oz;x3 the two curvilinear triangles
in the rectangle AOCD = [0, 1] x [—1/2, 0] obtained by cutting off the lower left and
upper right corners of the rectangle by arcs of parabolas (see Fig. 2.3). These parabolas
have the common focus F' = (1 — ¢, —¢/2) and the common vertical axis. The arc of the
first parabola has endpoints (1—¢,—1/2) and (0, —¢/2), and it cuts off the larger triangle.
The arc of the second parabola has endpoints G = (1 — ¢,0) and E = (1, —¢/2), and it
cuts off the smaller triangle C EG with size of order ¢.

(1-¢)

A
Figure 2.3: The case h > 1/2: an auxiliary construction with two parabolas.

Let B, = B.(h) = BLUB!, where the set B. is obtained by revolution of both triangles
about the vertical axis Oxs (containing the side AO). We add the set B to make the
resulting ser B. connected. The scattering of particles is determined by the set B, while
B! perturbs the scattering slightly and can be selected in various ways. For instance, we
can take B! to be a cylindrical sector with small opening: the intersection of the cylinder
C), with the set |z1| < g|xa].

It is easy to calculate v} (§,vp), where £ = (x1,22,0), 27 + 23 < 1. If |21] < e]xs| or
1—e < y/2? + 23 < 1, then a particle is reflected vertically upwards, so that UEE (&, v0) =
—vp. On the other hand, if |x;| > e|za| and /22 + 23 < 1 — &, then a particle is
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reflected from the larger parabolic arc, passes through the common focus, is reflected
from the smaller parabolic arc, and then moves vertically downwards. Thus, on leaving
the cylinder C' the particle has velocity vgg(f ,v0) = vo. The quantity Rs, (B.) is the
product of ¢(vg, —vg) and the area of the upper cross section of the set B., which is the
union of the annulus 1 — ¢ < /a7 + 23 < 1 and the two sectors |z1| < e|zz|. Hence
Rs, (B:) = O(e).

(ii) For h < 1/2 the construction is slightly more complicated. We take an integer n
such that 1/n < 2h (for instance, n = n(h) = |1/(2h)]+1), and let b = 1/n—3¢/2. Below
we define a set in the plane Ox 23 that is the union of n pairs of curvilinear triangles and
one right isosceles triangle with side ne (see Fig. 2.4). First we consider the sequence of n
rectangles with horizontal side b+ /2 and vertical side b/2+ <. The curvilinear triangles
in each pair are located at the lower left and upper right angles of the corresponding
rectangle. First we define the leftmost rectangle and the corresponding pair of curvilinear
triangles; all the other rectangles and pairs of triangles are obtained from these by several
successive translations by the vector (b + €/2, —¢). Thus, each successive rectangle is
adjacent to the previous one along a vertical side.

The leftmost rectangle is [0, b+¢/2] x [-b/2 —¢, 0]. We cut two triangles off its upper
left and lower right corners by arcs of parabolas. These are parabolas with common focus
at (¢/2,—¢). The left-hand parabola has a horizontal axis and passes through the points
(¢/2,0) and (0, —¢) bounding the corresponding arc (which has length of order €). The
right-hand parabola has a vertical axis and passes through the points (¢/2, —b/2 —¢) and
(b4 /2, —¢) bounding the corresponding (larger) arc. Finally, the right isosceles triangle
has vertices at (1,0), (1 —ne,0), and (1, —ne).

Figure 2.4: The case h < 1/2: an auxiliary construction with many parabolas.

As in the case (i), we set B. = B.(h) = B. U B”. The set B! is obtained by rotating
all these triangles about the vertical axis Ox3 containing the left side O A of the left-hand
rectangle. The set B/ is as in the case (i). Again, it is easy to find the function vy, (£, vo)
for £ = (z1,79,0), 22 + 22 < 1. Denote by N (h,e) the set of & for which |z;| < e|zs| or
Va2 +ai—i(b+e/2) €0, /2] for some i, 0 <i <n—1. We have Area(N(h,e)) — 0



40CHAPTER 2. PROBLEM OF MINIMUM RESISTANCE TO TRANSLATIONAL MOTION OF BC

as € — 0. If ¢ lies in the interior of N'(h,¢), then the corresponding particle reflects off
vertically upwards, so that UEE (&,v9) = —vg. On the other hand, if £ € N'(h,¢), then the
particle is reflected from a large parabolic arc and, passing through the common focus,
is reflected from the corresponding smaller parabolic arc, moves horizontally, and then is
reflected from the hypotenuse of the right triangle and finally moves vertically downwards.
Thus, after all these reflections the velocity of the particle is UEE (&,v9) = vo. Hence

Rs, (B:) = c(vo, —vo) - Area(N (h,e)) = 0 as ¢ — 0.

The proof of Proposition 2.1 is complete. O

2.1.2 The class of sets containing a section of the cylinder

Definition 2.2. We denote by S(h) the class of connected bodies lying in the cylinder
Cy and containing at least one horizontal section, Balli(0) x {c}, —h < ¢ <0, of the
cylinder.

Proposition 2.2.  infpesn) Rs,, (B) = 0.

Proof. As above, we construct a family of bodies B. such that Rs, (B:) — 0 as e — 0.
We obtain this family by a slight modification of the construction used in the proof of
Proposition 2.1. Namely, we add a set containing the bottom base Ball;(0) x {—h} of
the cylinder. In addition, for A > 1/2 we rotate slightly the axis of the upper (smaller)
parabolic arc about the fixed focus, and in the case h < 1/2 we make the slope of the
hypotenuse of the right triangle slightly less than 45°. All these modifications are required
to make a particle reflected from the upper parabolic arc or from the hypotenuse of the
right triangle to move along a slightly inclined (not vertical) line and to go past the lower
base of the cylinder without further collisions.

(i) For h > 1/2 we consider two sets in place of the two curvilinear triangles in the
previous construction (Fig. 2.3). First, the arc of the lower parabola is extended to the
right until it intersects the right lateral side of the rectangle B = [0, 1] x [—h, 0], and we
consider the set M; cut off the rectangle B by this arc and lying under the arc. (Note
that & contains the rectangle OADC and generates the cylinder C', when revolved about
the axis OA.)

Next, the line joining this intersection point with the focus F' is the axis of the upper
parabola. Thus, the upper parabola has the same axis F' = (1 — ¢, —¢/2) and passes
through the same point £ = (1,—¢/2) as in the previous construction (part (i) of the
proof of Proposition 2.1), but now the axis of the parabola will form an angle of order &
with the vertical direction. This parabola intersects the boundary of the smaller rectangle
CEFG =[1—¢, 1] x [—¢/2, 0] at two points: one is the point E and the other lies on the
side F'G. The second set M, is the part of the rectangle CEFG cut off by the parabola
and lying over it.
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The set B! is the result of revolution of these two sets M; U My about the axis Ows
and the set B! is as above. The set B. = B.U B contains the section Ball;(0) x {—1/2}
of the cylinder. A particle reflected from the arc of the lower parabola passes through
the common focus F', is reflected from the arc of the upper parabola, and then moves
freely at an angle of magnitude O(g) with the vertical direction. The contribution of such
particles to the functional is o(1), while the contribution of the particles reflecting back
vertically upwards is O(e) as before. Thus, Rs, (B:) = o(1).

(i) For h < 1/2 we add the rectangle [0, 1] x [—h, —h+¢] to the system of triangles (2n
curvilinear triangles and one right triangle). The right triangle from the system should
now be modified as follows. It should have the same two vertices (1,0) and (1, —ne) as
before, while the third vertex now has coordinates (1 — ne’,0). Here we choose €’ such
that each particle moving horizontally to the right, after reflection from the hypotenuse
of the triangle passes to the right of (1, —h 4 ¢) and so does not hit the indicated (added)
rectangle. For this we can take &’ = ¢/4/1 —2ne/(h —¢) = € + O(e?). Finally, we set
b= 1/n—¢"—¢e/2. Taking account of this modification, we construct n pairs of curvilinear
triangles as before.

A particle falling on one of the larger arcs of parabolas in this construction will be
successfully reflected by a larger and a smaller arc of parabolas, and then it is reflected
from the hypotenuse of the right triangle and moves freely at an angle arctan 5/225_;2 =0(e)
with the vertical direction. Thus, the difference between the initial and final velocities of
the particle is O(g?).

The set B! is obtained by revolution of n pairs of triangles, the right triangle, and the
additional rectangle about the axis AO. The set B! is as above. The set B, = B. U B/
contains the section Ball; (0) x{—h} of the cylinder. As before (see the proof of Proposition
2.1), we define the set N'(h,e) and show that Area(N'(h,e)) — 0 as € — 0. Furthermore,
for ¢ € N'(h, ¢) the particle reflects back vertically upwards, so that vy, (&, v9) = —vp, while
if £ € N'(h,e), then v (§,v0) = vo + o(1). Thus, Rs, (B:) = c(vo, —vo) - Area(N (h,¢)) +
o(1) = o(1) as ¢ — 0. The proof of Proposition 2.2 is complete. O

Remark 2.1. Note that in the case (i) each particle hits the body B, at most twice, and
in the case (ii) at most three times. An open question is: for which h are two hits enough,
that is, what is the minimal hqy such that for h > hg there exists a sequence of sets with
resistance tending to zero such that particles in the flow have only one or two collisions
with them? This question can be posed for the classes of sets P(h) and S(h). It follows
from the proofs of Propositions 2.1 and 2.2 that 0 < hy < 1/2 in both cases.

Remark 2.2. The body in Fig. 2.4 is actually a (disconnected) two-dimensional body of
arbitrarily small resistance. It is contained in the rectangle [0, 1] x [=h, 0] C R2 _ . and
its projection on the z;-axis is [0, 1].

Substituting the segment [0, 1] with a generic set I C R,,, we come to the following
more general statement which will be used in th