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 resumo 

 

 

Com a ameaça imposta às operadoras por aplicações OTT como WhatsApp 

ou Skype, diversas iniciativas coordenadas pela GSMA foram criadas para 

tentar responder a este fenómeno. Paralelamente, com a evolução de 

tecnologias como HTML5 e WebRTC, novos serviços como o Twilio têm 

surgido, oferecendo APIs para o desenvolvimento de novas aplicações Web. 

No entanto, a integração destas tecnologias em tradicionais redes de 

telecomunicações não faz parte das actuais especificações. Sendo assim, o 

objectivo desta dissertação consiste na especificação e implementação de um 

protótipo baseado nestas tecnologias emergentes, integrado com uma rede 

IMS. Primeiramente, foi feito um estudo do estado de arte, definindo requisitos 

e casos de uso a serem explorados. De seguida, o desenho da solução foi 

feito e implementado, tendo sido criado uma plataforma que alia WebRTC e a 

OneAPI da GSMA (que define funcionalidades básicas para operadores), 

oferecendo interoperabilidade entre ambos os mundos. A solução é composta 

por um servidor aplicacional que expõe a API e gateway WebRTC, tendo sido 

testada e considerada adaptada às necessidades estabelecidas. 
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abstract 

 

With the threat to operators by OTT applications such as Skype or WhatsApp, 

several initiatives coordinated by GSMA were created in an effort to respond to 

this phenomenon. In parallel, with the evolution of technologies such as HTML5 

and WebRTC, new services such as Twilio are now available, offering APIs for 

web application development. However, the integration of these technologies 

and traditional telecommunication networks is not a part of the current 

standards. As such, the objective of this dissertation is the specification and 

implementation of a prototype based on these emerging technologies, 

integrated in an IMS network. First, a state-of-the-art analysis was made, 

defining requirements and use-cases to be explored. Secondly, the design and 

implementation of the solution was done, creating a platform that unites 

WebRTC and GSMA’s OneAPI (which exposes basic operator features), 

offering interoperability between both worlds. The solution is composed by an 

application server that exposes the API and a WebRTC gateway, having been 

successfully tested and adapted to the established needs. 
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Glossary 

 

API Application Programming Interface, defines specific means of interaction between 

software components. 

AS Application Server, servers that host and execute services made available to network’s 

subscribers. 

B2BUA Back-to-Back User Agent, a type of application server architecture, designed to enable 

manipulation of individual communication legs. 

CDR Call Detail Record, the name of the logs generated to describe a given call, using details 

such as participants, duration, error messages, among others. 

Codec Short for COmpressor/DECompressor, a mechanism of encoding or decoding data 

streams for faster media exchange. 

CPS Calls Per Second, an aggregate metric of performance used to indicate the number of new 

calls per second that a telephony server is able to handle. 

CSCF Call Session Control Function, nodes that manage the signalling from users to services 

and from one network to another, composing the main components of an IMS core. 

DTMF Dual-Tone Multi-Frequency signalling, the tones generated by pressing a key in a 

telephone’s keypad. The capture of these signals is crucial to automated systems in call 

centers, for example. 

EPC Evolved Packet Core, the core of an LTE network, introduced by 3GPP. 

GSMA Groupe Speciale Mobile Association, a group of mobile operators motivating the 

standardization of GSM networks. 

HSS Home Subscriber Server, the centralized database for an IMS network containing user-

related information and exposing methods for authentication and authorization. 

HTTP Hypertext Transfer Protocol, a communications protocol widely used in the Internet. 

IMS IP Multimedia Subsystem. A novel network architecture designed for communication 

convergence and easing the creation and deployment of multimedia services - one could 

see it as Service Oriented Architecture (SOA) for telecommunication usage. 

IP Internet Protocol, one of the main protocols used for establishing Internet 

communications. 

IP PBX Internet Protocol Private Branch eXchange, a system that connects private extensions to 

public networks, over an internet protocol stack. 

KPI Key Performance Indicators, metrics used to measure performance across a system. 

LTE Long Term Evolution. A novel standard of high-speed, wireless communications destined 

for mobile terminals. 

MMS Multimedia Messaging Service. Enables the sharing of multimedia content via what 

would otherwise be a simple text message. 
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MSRP Message Session Relay Protocol, a protocol responsible for exchanging the content of a 

messaging session between participants. 

OMA Open Mobile Alliance, responsible for delivering technical application and service 

framework specifications. 

PoC Proof of Concept, a demonstration of the feasibility of a project through, in this case, the 

development of an example application. 

PSTN Public Switched Telephone Network, the aggregate of circuit-switched, public telephone 

networks. 

QoS Quality of Service, general service quality evaluation, mainly focused on its user’s 

perspective. 

RCS Rich Communication Services, a service designed to offer enhanced communication with 

features such as presence tracking (as one would see in a chat service) and easy file-

sharing. 

RTC Real-Time Communication, the concept referring to communications done in a near 

instant manner. 

RTP Real-Time Transfer Protocol is a network protocol used in real-time applications. 

SBC Session Border Controller, an IMS component responsible for security measures and 

signalling control, among other functionalities. 

SDP Session Description Protocol, the protocol that describes the media initialization 

parameters, used for session management and parameter negotiation (what the clients will 

be using for communication purposes). 

SIP Session Initiation Protocol, a protocol responsible for signalling and managing 

communications between all the participants of a certain session, used wieldy in VoIP 

services and one of the most used protocols in IMS networks. 

SMS Short Message Service, a text message service best known for its mobile usage. 

TAS Telephony Application Server, a B2BUA server designed to expose call-related services 

(from call setup to call forwarding features). 

VoIP Voice over Internet Protocol. The concept describing the technologies designed to enable 

audio communication via the Internet. 

VoLTE Voice over LTE. A concept similar to VoIP but adapted to LTE-supporting mobile 

networks. 

WebRTC Web Real-Time Communication, an API for voice/video communication and data transfer 

between browsers. 

3GPP 3rd Generation Partnership Project, a project formed by the collaboration between major 

standard defining organizations in the telecommunications realm, focusing on the 

definition of standards that will be used in emerging technologies. 
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Chapter 1 

 

Introduction 

 

From landline phones and legacy networks to softphones and telephony over the Internet, 

telecommunications have come a long way over these past years, changing the way people interact 

with each other. High-speed Internet access has only recently become available over mobile 

networks, with users becoming more frequent consumers of mobile data plans. The evolution of 

smartphones, with more processing power and more user-focused features, as brought an ever-

increasing interest in mobile applications, with the creation of marketplaces designed to facilitate 

their discovery. With the merging of these worlds, both mobile and web, a multitude of telephony 

applications have become available, seen by users as cheaper alternatives to communicate across 

the world. Applications such as Skype, Line or WhatsApp give the users the power to call each 

other in real-time over the internet, lowering the costs these calls would mean to the parties 

involved. These so called Over-the-Top (OTT) applications, conveying only financial gain to the 

companies behind them, are turning operators into mere bit pipes: in this scenario, they only assure 

the connectivity to the Internet and charge the traffic used, but gain nothing over the multimedia 

communication established. This constitutes a major threat to operators, who see their profits 

decrease with the increase in usage of these types of applications. With the evolution of standards 

and with associations such as GSMA (Groupe Speciale Mobile Association, formed by several 

major telecom operators) motivating and empowering the searches for innovation, solutions are 

being proposed to attract consumers to the operator’s world. From network architectures such as 

IMS (IP Multimedia Subsystem), designed to create a bridge between traditional telecom and the 

Internet, operators are considering new ideas to maintain profits and consumers, solutions such as 

the Rich Communication Services (RCS) program. Not only multimedia calls, the objective of 

these solutions is to give consumers the features they are already used to and most appreciate in the 

OTT world, features such as instant messaging, multimedia content sharing (either within a call or 

by messaging services) – enhanced experiences designed to offer rich, although simple means of 

communication through the operator’s realm. 

Parallel to telecoms, Internet communication is also in turmoil, with standards being 

proposed to enable new Real-Time Communication (RTC) experiences. Having started with Voice 

over Internet Protocol (VoIP) and Flash technologies (Flash being a multimedia platform that 

allows multimedia content exchange in real-time), advances are now being made on RTC to allow 

for grander experiences in this field, enabling communication without the need of specific 
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applications or browser plugins (something obligatory in Flash). This standard, known as 

WebRTC, aims to allow not only multimedia calls but the means to exchange data over secure 

connections and at the same easing the hassle of installing other components. Although still open, 

this standard as seen much adoption on the market, gaining operators attention as new solutions to 

create interoperability between traditional networking and this technology are investigated. 

However, connecting a mobile caller to an Internet one can be challenging, even with the 

technology available. With this in mind, this dissertation has as objective the specification, design 

and implementation of a prototype that will enable third-party developers, without 

telecommunications background, to integrate advanced communication functionalities into their 

web applications, providing value-added features integrated with telecommunication operators. 

1.1. Motivation 

 

With architectural advances such as the 3rd Generation Partnership Project (3GPP) defined 

IMS architecture, along with recent and emerging technologies such as WebRTC, the Internet and 

telecommunication worlds are experiencing a convergence, with the added strength over the search 

for interoperability – an objective otherwise inexistent in the standards created. WebRTC itself, a 

still open-standard that is growing in popularity, has brought new life to IMS, motivating the 

creation of a diversity of novelty web-oriented multimedia services. These services are sustained by 

brand new use-cases such as rich collaboration and RCS clients, services growing in popularity that 

offer telecom users features that they are used to in other web applications.  

Such advances, technologies and use-cases are the main drive for this dissertation, where 

the research made will direct the work towards a platform which is able to unite network users to 

developers with no background in communication. Although the search for interoperability 

between both Internet and telecom users has been fomented by these latest developments, the task 

of connecting both worlds is daunting and complex. This highly motives the creation of the 

platform and this dissertation, aiming to provide a solution for this problem, creating a bridge 

between users and the means to enable communication between traditional clients and WebRTC-

supported ones. 

1.2. Objectives 

 

This dissertation has as objective the design and development of a platform that foments 

interoperability between endpoints placed in traditional telecommunication networks and web-

oriented clients, enabling their communication through calling and messaging. The solution’s 
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development will require several details, from implementation of the component exposing a 

standardized API to the addition of support for WebRTC. A complete platform will be created, 

featuring a user-centered approach towards service discovery, enabled by the creation of a portal 

that features a marketplace where network services will be published. Featuring an analysis on 

market state, this document may also be seen as a technical options research, exposing current 

trends and alternatives, such as IMS cores, RTC technologies, telephony APIs and alternative for 

the creation of the solution. 

1.3. Contributions 

 

This dissertation was developed in an enterprise environment, working with a 

telecommunications-geared company called WIT Software. A company renowned for its products 

in the telecommunication market, WIT offers a multitude of novel technological solutions from 

mobile applications to RCS clients and works with major operators worldwide. From this 

dissertation resulted several contributions to the business. 

 Firstly, the solution made is now part of WIT Software’s offerings, having the developed 

proof-of-concept already been shown to a major client and considered an interesting solution to the 

problem at hand. Secondly, the work made on the WebRTC client that is used in this platform 

augmented the product itself, implementing features that had been planned previously but not yet 

developed. Thirdly, with the knowledge gained with this dissertation the author was able to help in 

a company-provided IMS/VoIP course, teaching WIT collaborators, with no knowledge in this 

field, technical insight into how these technologies behave when dealing with tasks from peer-to-

peer calls to call forwarding and application server deployment. 

1.4. Document structure 

 

This dissertation will be divided in six chapters, with the first and last containing 

introduction and final conclusions, respectively: 

 

 Chapter 2 – this chapter will present the state of the art for this dissertation, describing the 

research made in terms of IMS, RTC technologies, existing integration solutions and 

telephony APIs; 

 

 Chapter 3 – this chapter will describe proposed requirements for an IMS and RTC 

integration, with considered use-cases being presented along with system requirements; 
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 Chapter 4 – in this chapter, development results of the proposed solution will be analyzed, 

covering what was implemented and how it was done, obstacles that arouse from the 

design decisions and limitations that have emerged; 

 

 Chapter 5 – this chapter will feature solution evaluation, presenting testing results and 

discussing them, providing in-depth knowledge on the solution’s behavior. 

 

At the end of each, a summary will be made, resuming and emphasizing the most relevant 

topics and ideas. After the dissertation’s conclusions, an annex section will be featured, composed 

of topics that provide further information on certain overviewed subjects. 
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Chapter 2 

 

IMS centric communication 

 

In order to pave the way towards a proper solution planning and to gain context on the 

fields and markets involved, where they are headed and what is being done, an investigation of the 

current state of the market regarding telephony API’s, IMS cores and existing telephony over the 

web solutions was made.  

As such, throughout this chapter, an introduction and proper historical view on the IMS 

network and RTC enablers (such as WebRTC or Flash) will be highlighted, in order to better 

understand the changes that these technologies have gone through these past few years. 

Furthermore, a research on the main components of such a solution must be made, as well as 

available products for web communication. Although not intended to provide a comprehensive list 

and description of the mentioned topics, an effort was made to obtain and present the most relevant 

solutions and concepts in the scope of this dissertation. 

2.1. IP Multimedia Subsystem 

 

From circuit switched networks (where an operator would route the call to its destination) 

to packet switched networks (where the Internet’s own packet switching capabilities and IP usage 

enable communication between parties) and the concept of VoIP, innovation on the underlying 

means that enable people to connect and communicate with each other around the world is 

staggering and ever-evolving. Additionally, as communication drifted from fixed to mobile, came 

the cellular telephony expansion, where evolving standards from 3GPP and OMA (Open Mobile 

Alliance) brought a diversification of the services provided, from voice and multimedia messaging 

to e-mail and mobile Internet access, along with speed and reliability.  

With the exploration of both wired and wireless telephony capabilities came the desire for a 

convergence of these technologies, where subscribers would be able to access Internet multimedia 

services from a diversity of devices (either fixed, home telephones or mobile smartphones). With 

this in mind, IMS was developed, leveraging these services with the existing networks and 

providing all functionalities needed for a “complete service delivery”[1] (from client registration to 

billing).  

 



IMS centric communication | 2 

 

6 

Not itself a technology but more precisely an architecture, IMS was first pushed in 2003, 

released by 3GPP for mobile usage, and has since seen its widespread use on mobile and fixed/IT 

networks[2]. With the increase of its popularity, especially among key players in the 

telecommunications market, IMS has become the industry standard for multimedia services, 

providing security, reliability and efficiency. From a market perspective, IMS lets telco companies 

drift from previous silo’ed services (i.e. services incapable of connection and operation with each 

other) and create advanced client-oriented services. This way, operators are able to roll-out their 

own applications in an easier manner[3], reducing operating costs and time-to-market. This makes 

them able to provide appealing new services, seizing new clients. By using these means, these 

telecommunication companies are also able to compete with popular Over-The-Top (OTT) 

communication applications (Skype, WhatsApp, among others)[4] which only convey financial 

benefit to the company that offers the application itself, not the one supporting the communication 

from a user’s phone. IMS’s architecture is composed of three main layers (disregarding the device 

layer), each with its own purpose and commonly implemented components – as seen in Figure 

1[5]. 

 

 

Figure 1 - IMS architecture 

 

These layers will be covered in the next sections, an overview which is required for a better 

understanding of concepts presented throughout this dissertation, leaving aside low-level details 

such as their inner workings or implementation. 
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2.1.1. Transport layer 

 

From softphones to computers, IMS enables users to connect to the network with a variety 

of devices. Landlines are also supported: the transport layer has the means for a Public Switched 

Telephone Network device (PSTN) to interact with IP based ones, giving the analog data a proper 

conversion to IP packets (in the PSTN gateway previously shown on Figure 1).  

This layer is where these devices are able to interact with the network, using different 

connection types such as wireless internet, mobile networks or LTE and exchanging a signalling 

protocol known as SIP. SIP itself is a crucial protocol used within the network and indeed in the 

VoIP world. Specified in RFC 3261[6], it is one of the several protocols seen on the Service or 

Application layer of an IMS network, used for signalling and session management, enabling the 

control of call sessions, for example. It allows for three main session-related actions: call 

management, creation of calls between two or more participants and termination of those calls. 

From the exchange of SIP requests, one can negotiate what features will be available during the 

call session, the changing of these features amidst the session, user location and participant 

management.  

In order to interact with the IMS network, User Agents (or UA, the names given to 

interacting entities) first need to go through a registration procedure, sending a SIP request called 

REGISTER to the network, with a certain expiration date which they must refresh, in order to keep 

themselves registered. After this action, and among the SIP commands available, one can find the 

commands to invite a peer to a call or terminate it (INVITE and BYE), cancel a sent invitation 

request or acknowledge a received invitation (CANCEL and ACK). SIP MESSAGE is also 

available, used when sending textual messages to other users, and, although there are many other 

commands, these six will be the most referred through this dissertation. 

Similar to Hypertext Transfer Protocol (HTTP), a SIP request is composed by message 

headers and body – where one can find SDP. Whereas SIP is only used for signalling, to define and 

exchange session features the Session Description Protocol (SDP) is used. First published in 1998 

on RFC 2327[7], SDP provides the means for a party to exchange specific session details and will 

normally be contained in the SIP message body. For instance, in SDP one can find the codecs that 

will be used and their priority, session owner and name and the time a session is active, where in 

SIP one finds contact identifiers and parties involved in a session (the “to” and “from” fields). An 

example of a SIP request for a call invite can be seen in Snippet 1. 
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Snippet 1 – SIP message format 

 

Depicted in Snippet 1 is an INVITE which contains information regarding from whom the 

call invite has been sent and to whom it was addressed (“From” and “To” field). Network-related 

information can also be seen, such as the IP in the contact address (“Contact” field) that locates the 

user or routing information such as the “Route” and “Via” fields, which show where the request 

will flow through. The SDP information shows that the only audio codec negotiated is G711 

(defined by the acronym PCMA in the “a” field, which relates to session attributes) and that the 

RTP audio stream can be accessed in port 15004, with IP 172.22.0.60 (fields “m” and “c”, 

respectively). 

2.1.2. Control or IMS layer 

 

Represented in Figure 2[8], this layer is where SIP sessions are managed, being responsible 

for providing service/device communication, user authentication and more. As mentioned in the 

transport layer, SIP is used for signalling/session management. In order for the protocol to make its 

way through the network, different elements are required, such as the Call Session Control 

Functions (CSCF): 

 

 



IMS centric communication | 2 

 

 9 

 

Figure 2 - Closer view on control layer components 

 

 Proxy-CSCF - “(…) the first point of contact (…) to the user terminals”[9], it is the bridge 

between the converged networks and the IMS core, routing packets to the desired servers. 

It is also able to provide security functionalities (signal inspection, for example); 

 Serving-CSCF - among other functions, performs session control/registration, maintains 

session states and routes traffic as needed to other network components or services[9]; 

 Interrogating-CSCF - acts as the “point of contact for peer IMS networks”, facilitating the 

connections between the users and contacting the Home Subscriber Server (HSS) to 

determine user identification[9]. 

 

Alongside the CSCFs come other elements, such as the Home Subscriber Server (HSS), 

Media Resource Function (MRF) and Policy Control and Charging Rules Function (PCRF): 

 

 HSS – the HSS is essentially a centralized database, storing the identities of all network 

users. Not only for session management, this element is very important for user 

authentication and authorization, in addition to maintaining control over interactions that 

certain users may have with application servers; 
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 MRF – this optional component is divided in two parts, one providing media controls – the 

Media Resource Function Controller (MRFC) – and the other providing processing 

functions - the Media Resource Function Processor (MRFP). These elements enable, for 

example, the playback of announcements and tones[9]; 

 PCRF – according to its standard definition, this is an “element that encompasses policy 

control decision and flow based charging control functionalities”[10]. Again, an optional 

element depending on required use-cases, this node acquires certain network 

responsibilities on billing and security policy up-keeping. 

 

With this analysis, one can see how this layer encapsulates every detail regarding SIP 

signalling, from security issues to request forwarding. However, services that the network exposes 

are not included here, being left for the service layer. 

2.1.3. Service or Application layer 

 

In this top layer, one can find all Application Servers (AS) that have been deployed on the 

network. It is common to find multiple AS’s, each with its own desired purpose and able to execute 

different multimedia services, such as: 

 

 Presence Server – this server, through the management and tracking of the availability on 

subscribed users, allows a user to disclose his status (if online, busy, away or offline, for 

example) and to be notified of other user’s status changes;  

 Telephony Application Server (TAS) – this server provides call services, from call routing 

to conference bridging. It is also able to interact with the previously mentioned MRF to 

provide tones and announcements; 

 

As mentioned, services are exposed by AS’s deployed on the network. As such, one could 

use these capabilities to provide a custom AS, exposing an API for developer use and a portal for 

facilitating the creation of new applications. This scenario is directly related to the objective of this 

dissertation and one can see how this layer is one where some of the focus will possibly be 

targeted. 
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2.1.4. Example IMS flows 

 

In order to better understand how network components work with each other, one could 

consider a simple scenario where a user registers in the network, with Figure 3[11] representing the 

flows generated in the IMS core. Although a high-level view on the procedure itself, not intending 

to give a full description on it, this scenario is useful for creating the proper context around IMS 

components and their responsibilities. The main concepts to take are that upon receiving a 

REGISTER request from a user’s device, the request is forwarded by the P-CSCF (the first point of 

contact to the network) to the I-CSCF. This component queries the HSS for an available S-CSCF 

for user appending, a contact done by calling an HSS exposed interface called Cx and exchanging 

the Diameter protocol, which is intended for AAA (Authentication, Authorization and Accounting). 

 

 

Figure 3 - User registration flow within an IMS core 

 

After this, the given S-CSCF is contacted, this time interacting with the HSS to create an 

authorization vector which will be sent to the user in a 401 Unauthorized response. The user’s 

device sends a REGISTER request again, this time with the response for the original authorization 

vector. Essentially, this request goes through the steps above a second time, reaching the given S-

CSCF. Now, the HSS is notified of the registration and accesses the user’s profile, seeing which 

application serves it has access to, among other actions. The final response is a 200 OK sent to the 

user, showing all information regarding said registration. 
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At this point the user is registered and allocated to an S-CSCF. Posteriorly, and choosing to 

place a call, a flow similar to the one in Figure 4 will be generated. 

 

 

Figure 4 - Call invitation flow within an IMS core 

 

Since both call parties are registered, their location is known and no authorization 

mechanisms must be made. As such, I-CSCF and HSS are not contacted at this point - considering 

a scenario where both devices are registered in the same network and allocated to the same S-

CSCF. As an invitation comes from the caller’s device to the network, it is forwarded by the P-

CSCF to the S-CSCF and then to the callee’s device. It responds to the invitation with a 180 

Ringing, signalling that the device is indeed ringing. Upon user acceptance, it sends a 200 OK to 

the network, forwarded to the caller and indicating that the call is in progress. 

2.1.5. Voice over LTE 

 

With IMS only handling signalling and exposing web-oriented services through application 

servers deployed on the network, proper transportation still as to be ensured, enabling the exchange 

of SIP request with the network. One recent technological advance in this field, dedicated to the 

evolution of Internet access and its speed in mobile endpoints, is LTE.  
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Deployed worldwide as the means of increased capacity and wireless network speed, 

3GPP’s defined Long-Term Evolution (LTE) is more than just efficiency, but completely redefines 

a traditional telecommunications network with packet-switching over an IP environment – through 

a novel core network called Evolved Packet Core (EPC), as depicted in Figure 5. 

 

 

Figure 5- EPC, LTE and IMS relation 

 

From a user stand-point, this will mean that more speed will be available to its endpoint via 

the cellular network, easing data access. However, more than just a high-speed pipeline for data 

transfer, LTE is seen as a future possibility for convergence into an all-IP world with VoLTE as a 

novel effort to exact that purpose. VoLTE, short for Voice over Long-Term Evolution, is an 

initiative made by GSMA to motivate the standardization of voice and messaging delivery over 

LTE networks. Although an in-depth analysis on LTE and VoLTE is out of scope, it is important to 

realize how such advances affect the technologies involved. Analyzing both Figure 5 and Figure 6, 

one can see how IMS and LTE are related. Essentially the same interactions are done, with a 

caller’s INVITE request reaching the IMS network’s P-CSCF and forwarded to the S-CSCF, 

locating the callee and sending the invitation. However, as depicted in Figure 6, two other 

components are now featured, certain core elements of the EPC – the S-GW and P-GW (ignoring 

the PCRF): 
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Figure 6 - Call invitation flow within an LTE/IMS network 

 

 S-GW (Serving-Gateway) - responsible for the forwarding and general routing of data 

packets exchanged by the user’s device, it also handles the handover between the LTE 

realm and other traditional mobile network, 3GPP technologies; 

 P-GW or PDN-GW (Packet Data Network Gateway) - enables the exchange between the 

user’s device and the packet network itself, enforcement of security policies and data 

inspection, by acting as the point of contact for incoming traffic.  

 

Maintaining its purpose of bridging multimedia services and bringing them into an 

operator’s network, LTE is no more than just another transport mechanism (like those seen in topic 

2.1.1). Although certain elements such as the EPC and its components have to co-exist, remaining 

in the middle of the signalling path, these components are dedicated to the interaction between the 

user’s device and its supported mobile network. The network modifications it imposes come to 

affect the operator’s core, but the added signalling in this architecture does not affect IMS in any 

way[12], since the same SIP and SDP still reaches the core (even though it suffers a few 

modifications mainly relating to quality of service features[13]). In short, the advances made by 

3GPP and GSMA, pushing the speed of cellular networks and augmenting user experience, will not 

impair this solution of its objectives in the future, being it prepared to handle the core’s evolution. 
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2.2. IMS core implementations 

 

There are several IMS cores available in the market, from companies such as Huawei and 

Oracle’s Acme Packet, providing all-in-one or custom-made solutions to fit the clients’ needs, 

solutions that are matured and have been market-tested extensively. The core itself should be 

“plug-and-play” (i.e. after developing an application server using a core, it should work on a 

different one due to the standards enforced), so after development one can adapt the solution to any 

already deployed core. Over the next few sections, known and publicly available IMS cores will be 

analyzed. 

2.2.1. Clearwater 

 

Clearwater is a project made available open-source by Metaswitch Networks[14]. Being an 

“IMS in the cloud” solution, this core (with its architecture featured in Figure 7[15]) contains some 

components that would be very useful to this dissertation, such as Bono, its WebRTC gateway. 

 

 

Figure 7 - Clearwater's architecture (with Bono) 

 

From Clearwater’s own website[14]: “(Clearwater) natively supports interworking between 

WebRTC clients and standard SIP-based clients, using SIP over WebSocket signalling” and “you 

can use Clearwater as the IMS core to support 3GPP standard services such as Voice over LTE 

(VoLTE) with a suitable TAS and SCC-AS (Service Centralization and Continuity Application 

Server)”.  
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Even so, this open-source project does not feature certain functionalities that would be of 

great importance to an operator or to a user - call-transfers are not supported, for example. Its core 

does not contain an HSS (only an HSS mirror for internal usage) and supports several IMS related 

interfaces for integration with other components. Although it provides Sprout (a node 

encapsulating the services of an I-CSCF, S-CSCF and TAS), the telephony services exposed are 

not suitable for call-transfer for example. 

 

 

Figure 8 - Blind call transfer example 

 

Figure 8[16] represents a “blind call transfer” where, during an ongoing call between user 

UA1 and user UA2, user UA2 transfers the call to user UA3, without announcing the transfer 

beforehand. This operation use of a SIP request called REFER and requires the manipulation of 

call-legs (for the call transfer), which makes the operation far more complex than simple request 

forwarding. Since the built-in components and TAS are not capable of handling such scenarios, this 

mechanism would either have to be implemented or an external, more feature-rich TAS would need 

to be integrated. 
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2.2.2. OSIMS – OpenIMS Core 

 

An initiative from Fraunhofer FOKUS launched in the end of 2006, the OSIMS (an 

abbreviation for Open-Source IMS Core) is an open-source product that is being used worldwide as 

a test-bed for IMS technology testing and application prototyping, providing an IMS core reference 

implementation[17]. 

 

 

Figure 9 - OpenIMS's architecture 

 

With its creation motivated by the lack of open-source IMS cores at the time, as 

represented by Figure 9[17], its architecture is composed of all the standard elements discussed 

above – P-CSCF, S-CSCF, I-CSCF, a HSS called FHoSS (FOKUS Home Subscriber Server), 

gateways for legacy networks and support for media proxies. Also crucial is the implementation of 

the ISC (IMS Service Control) interface, allowing the development of applications servers by 

enabling IMS routing features. However, this core is not fit for production environments, being 

only suitable as a testbed for development purposes. 

OpenIMS has served as the basis for other projects, such as Kamailio IMS, which will be 

discussed next. Additionally, application development frameworks such as Mobicents provide 

several examples of communication with this core and tutorials for integrating the FHoSS with 

Clearwater’s core are also available. 
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2.2.3. Kamailio  

 

Kamailio[18] started as a SIP Server. However, over the past few years, with the evolution 

of the OpenIMS Core, there was a need from the Kamailio project to keep up with the advances 

made – thus a port was created, featuring IMS functionalities on the Kamailio core[19]. 

 

 

Figure 10 - Kamailio's IMS capabilities 

 

With its architecture depicted in Figure 10, this port has its basis on OpenIMS’s 

components (Proxy, Serving and Infrastructure-CSCFs). However, all other remaining components 

are not featured. For example, the use of an external HSS is required, components such as SMS 

gateways or PCRFs are also not present – alike the HSS, external components must be integrated in 

order to expose their functionalities. Kamailio already implements all the authentication 

mechanisms needed for HSS exposed interfaces and all the capabilities needed to handle session 

signalling through the CSCFs. The advantage of this project is the added stability when comparing 

it to OpenIMS (an unmaintained project, despite community support). Moreover, Kamailio itself is 

capable of a number of communication features and could be used as an AS in the network to bring 

other specific features to the network. It exposes a plug-and-play module interface for extension 

install, featuring a Presence Server and Web Management Interface, among many others. Although 

not having its own media server, Kamailio works with FreeSWITCH[20], an “open source (…) 

telephony platform designed to route and interconnect popular communication protocols using 

audio, video, text (…)”, i.e., FreeSWITCH could be used as a Media Server, featuring support for 

multiple codecs (from G.722 to H.264).  



IMS centric communication | 2 

 

 19 

2.2.4. Core comparison 

 

Although retaining common core elements and being already available solutions, there are 

significant differences between the cores. Comparing OpenIMS’s architecture and Clearwater’s for 

example: taking a look at both, on Figure 7 and Figure 9, one can see that both have their own 

advantages - Clearwater has a WebRTC gateway, a strong point towards this dissertation goal, but 

OpenIMS features a proper HSS. To enable such functionality in Clearwater, one could either 

purchase available solutions from the company or implement them (Clearwater has the capability 

to interact with OpenIMS’s HSS, for example).  

However, since OpenIMS already features this node, development effort on integration of 

external components is diminished, avoiding possible obstacles by taking advantage of its native 

support. When studying Kamailio, one sees a similar scenario: it’s a SIP Server with Rich 

Communication Services (RCS) features, gateways for legacy networks and WebSocket support 

(which could be used for WebRTC handling, analyzed in the next topics). However, it does not 

include other important elements, meaning that there would still be a need to implement other 

components in order to correspond to IMS standards. 

 With this comparison made, the core that will be used for as a testbed will be OpenIMS, 

because of its features, tutorials, community and influence on other projects. 

2.3. Web oriented RTC technologies 

 

A telecommunication concept, Real-Time Communications (RTC) refers to the exchange 

of information in a near-instantly manner. RTC can be seen in various scenarios, from normal 

telephony calls to Instant Messaging (IM) to videoconference. In the following sections, web 

oriented frameworks that provide such communication will be described. 

2.3.1. WebRTC 

 

WebRTC is an open framework for the web that enables RTC in the browser[21], 

embedding audio/video into it and allowing the communication between two users to be made 

without third-party applications or plugins, unlike previous VoIP solutions. Moreover, this 

technology was thought as a way of facilitating the development of RTC solutions over the web, 

using just one’s browser and a simple JavaScript API, depicted in Figure 11, exposing audio/video 

processing for developers to create their own applications. 
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Figure 11 - WebRTC's architecture 

 

With WebRTC, access to computer devices such as microphone, camera and screen is 

granted, allowing the capture of a person’s voice and transmission of the audio during a real-time 

call, for example (handled by components Audio Capture/Render and Video Capture, in Figure 11). 

Moreover, these same calls can be established in a peer-to-peer manner, using Javascript-based 

methods. For audio and video calls, WebRTC’s Audio and Video Engine support G.711 and VP8 

(among others), although the standard is still open at this time, meaning that the codecs supported 

may change in the future. The calls themselves are secured using SRTP (Secure Real-time 

Transport Protocol[22]), an added security layer designed to protect its content by encrypting the 

RTP exchanged.  

More than just audio or video calls, WebRTC features a channel solely aimed at 

exchanging data, called RTCDataChannel. Essentially, a stream established using a protocol called 

SCTP (Stream Control Transport Protocol[23]), this channel allows for low-latency data exchange, 

with configurable aspects such as delivery assurance. As a means of media negotiation and session 

description, WebRTC also uses SDP as a standard protocol - although this framework still needs a 

protocol for signalling which the standard deems as undefined. This signalling can be established 

using custom solutions or, to increase interoperability with IMS networks, using SIP to server 

signalling. Here, taking advantages of a specification first released in 2014, one could use SIP over 

WebSockets[24], which “enables two-way real-time communication between clients and servers”. 
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In terms of media exchange, a recurring problem with SIP was the overlook of the Network 

Address Translation (NAT) process. This process enables the “masquerading” or modification of 

IP addresses, from non-unique addresses that exist in a local network to unique IP’s used for 

Internet access[25]. Not being able to contact users located behind these translations, NAT 

traversal techniques were developed, such as ICE or STUN (Interactive Connectivity 

Establishment[26] and Session Traversal Utilities for NAT[27], respectively), to allow 

communication – techniques which are supported natively by WebRTC.  

In an effort to study what is being done with this emerging technology, how companies 

have reacted to it and the use-cases implemented, several applications were analyzed, among 

which: 

 

 Anymeeting - a web application designed for small business users, to power them with 

video/audio communication, screen sharing and social/chat capabilities[28]; 

 Talky[29] – a web application focused on anonymous video chat and screen sharing, 

person-to-person or groups. Using WebRTC, the user doesn’t need to download plugins – 

just create a room (or conversation) and share the link with friends; 

 LiveCom[30] – another product, with video conference capabilities, differs from the 

previous two by enabling the placement of call to PSTN numbers ranging from Argentina 

to the United Kingdom.  

2.3.2. Other approaches 

 

There are other approaches available enabling RTC over the web, one of them being a 

competing standard to WebRTC. Customizable, Ubiquitous Real Time Communication over the 

Web (CU-RTC-WEB) is a Microsoft competing standard to WebRTC, motivating a discussion 

over the latter’s adopted design decisions. Encountering possible obstacles in interoperability with 

the usage of SDP, Microsoft has argued that, with CU-RTC-WEB[31], cross-application 

development will be easier, “proposing a low-level API that is interoperable and flexible” in 

contrary to WebRTC’s API which “is a higher level API  that is less interoperable (…) and 

supports fewer scenarios”. Additionally, CU-RTC-WEB supports a wider array of codecs, 

reinforcing its position on a more flexible solution to web communications[32]. This proposal was 

submitted to WebRTC’s working group in late 2012 and as seen some of the proposed 

modifications accepted.  
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However, in terms of market adoption, CU-RTC-WEB as been left aside, with developers 

focusing on WebRTC, showcased by the growing number of WebRTC based solutions. Another 

RTC enabler is Flash, a multimedia platform first seen in the late 2000’s (then called Macromedia 

Flash). Flash saw wide acceptance over the years, with cross-platform plugins (Flash Player) made 

available to all users by Adobe and possible incompatibilities being resolved by the company.  

Even with its strong presence, Flash has seen its popularity decrease, especially regarding 

mobile phones – it’s now deprecated and Adobe AIR/HTML5 are being used more commonly. 

Despite these “set-backs”, Flash and IMS interacting is possible, due to the existence of several 

Flash solutions that can communicate with SIP instances. Among these, one can find Flash2VoIP, a 

“conventional SIP based video telephone written in Adobe Flash”[33] which can be used to make 

audio/video calls with support for the H.264 video codec. One can also find Flash2IMS[34], an 

open-source gateway from Doubango Telecom that can be deployed on an IMS network to provide 

Flash interoperability. 

2.3.3. Technology comparison 

 

RTC technologies have been evolving over the past years, with WebRTC and CU-RTC-

WEB still standards being defined. Even so, there are presently several differences that can be 

concluded when comparing one technology to another. 

Even though Flash is still a major presence in this field, the rise of other RTC frameworks 

have seen its popularity decrease - WebRTC is an open-source solution that has been gaining 

followers since its release[35], although still not as used as Flash[36]. Moreover, being Flash such a 

matured solution, there are several development tools available to ease application development, 

whereas in WebRTC’s case, there are several frameworks (such as easyRTC[37]) that aim to help 

development, but are still in very early stages – just like WebRTC itself. 

As for WebRTC/CU-RTC-WEB, WebRTC as seen much more adoption than the latter and 

with Google involved with WebRTC’s standardization, Android has been the mobile platform that 

has supported this framework the most[38]. Market differences aside, WebRTC has a fixed 

supported codec (VP8[39]) while Microsoft’s solution supports a wider number of codecs, which 

may ease the development of new applications. However, with SDP part of WebRTC’s standard, 

this may ease the connection with SIP networks/equipment. 

In summary, due to its growing popularity and the current state of competing technologies, 

WebRTC is the main objective of this dissertation. It is still being defined (for instance, mandatory 

media codecs have been in discussion recently) and is very new to the market, which may bring 

some additional obstacles in terms of implementation and product lifecycle. 
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2.4. Web-oriented RTC on IMS 

 

There are already several components in IMS that play a significant part in allowing web 

RTC technologies to fully interact with these types of networks. Even so, most of the  products  

encountered are gateways designed to bring SIP to the browser, as a means of media controlling 

and translation[40]. One of these components is the Session Border Control (SBC). Not seen in the 

IMS cores analyzed, SBC’s provide security and complex network functionalities, able to support 

mechanisms for transcoding and protocol translation in WebRTC-enabled scenarios (for instance, 

supporting SIP over WebSockets). Obstacles such as NAT transversal, referred in section 2.3.1, can 

also be mitigated by an SBC, providing important functionalities for SIP exchanges. Figure 12 

represents an architecture that could be implemented for such a scenario, with the WebRTC caller 

representing a WebRTC endpoint connecting to the SBC. 

 

 

Figure 12 - SBC RTC on IMS solution 

 

SBCs have certain disadvantages that cannot be overlooked: not only is such a solution 

located between the user and the network, meaning that it will “break the end-to-end signaling 

path”[41] and media path (adding delay and performance issues to the calls), it also creates a 

dependency on the network, eliminating the possibility of a “plug-and-play” core, as referred 

previously on section 2.2. Due to an SBC’s complexity and network footprint, there are cases 

where one would choose not to use one - for instance, for simpler scenarios like click-to-talk 

functions. In this case, a WebRTC gateway could be used to provide the needed interaction 

capabilities from the web to the network, with possible transcoding/translation arranged, alongside 

support for security measures. One may consider Figure 13 as a representation of such architecture. 

 

P-CSCF

WebRTC support
SBC

I-CSCF S-CSCF

HSS

WebRTC CallerSIP endpoint

WTE API



IMS centric communication | 2 

 

24 

 

Figure 13 - Gateway architecture for RTC on IMS 

 

With communications passing through the gateway and, after proper treatment, being 

forwarded to the other endpoints, performance issues can be predicted due to the increased 

processing demands. On the other hand, this strategy would diminish the footprint on the network 

that a SBC would bring and provide higher scalability[42] when optimizing the solution.  

An alternative would be to create an AS, exposing an API that would provide all the 

functionality needed to place a call from a WebRTC client to a PSTN phone, being responsible for 

receiving notifications for new calls and handling them, for example. Figure 14 gives a high-level 

overview on the exchanges that would be seen in such a scenario when creating a click-to-call use-

case. 

 

 

Figure 14 - Click-to-Call flow diagram (initial invite exchange) 
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In a normal Click-to-Call scenario, a user would click a button on his browser, triggering a 

call to the desired service. As can be seen in Figure 14, upon the exchange of SIP INVITE 

messages from the AS to the SIP endpoint, and having the callee acknowledged the INVITE, 

another INVITE from the AS would be sent to the caller’s phone. After that, with both parties 

accepting the call, a call session would be established. As one can see, with the API located in an 

AS solution, third-party call controls are possible, with the server maintaining call states. However, 

as traffic increases due to the service’s usage, scalability and performance could become a problem, 

reducing Quality of Service (QoS) and affecting how other calls are placed. 

Implementing an AS requires the analysis of non-trivial technical issues, as it would 

require the use of a SIP and HTTP container and complex frameworks. A SIP Container is a 

component responsible for the processing of SIP requests, managing the network’s ports for 

incoming traffic[43]. Upon the arrival of a SIP message, actions are triggered to deal with the 

request accordingly, answering or redirecting it, for example. The container interacts with SIP 

servlets, which are managed by a HTTP container, a separate component responsible for servlet 

life-cycle management. For instance, Mobicents on Tomcat[44] provides an environment for the 

development of multimedia services, in case an AS side solution was followed in this dissertation. 

In order to create a telephony API enabling web-oriented RTC calls, Mobicents itself features 

functionalities that would be of great use to such objective, featuring an HTML5 WebRTC Client 

and its own Media Server, complementing the network.  

An alternative to the previous solution would be Sailfin on Glasshfish[45], which had 

contributions by Ericsson throughout the project’s development. By using Glassfish and 

augmenting it to provide SIP enabled communication and multimedia services, Sailfin is able to 

provide multiple tools that would fit this dissertation’s needs. However, after acquisition by Oracle, 

this project was left behind; although still being used, Mobicents has since been used more actively 

and has gained a strong community as a result. 

Either using gateways, SBCs or creating a custom AS, there are pros and cons that 

developers and operators must be aware of, conditions that affect many network and usage 

parameters, from call quality, session signalling and security (the methods used to ensure privacy 

along the call sessions, for example) to drawbacks such as NAT Transversal. There are already 

several solutions, each falling in one of the categories analyzed in this section, that will be analyzed 

in the next topic. 
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2.4.1. Existing solutions 

 

Among the solutions researched, those encountered could bring a beneficial insight to the 

market reaction towards IMS components supporting RTC technologies. Several vendors provide 

SBC solutions with RTC-enabling functionalities. Among these, Oracle has launched a product 

called Oracle Communications WebRTC Session Controlled Solution, a combination between 

Oracle’s OCCAS (Oracle Communications Converged Application Server[46]) and Acme’s 

SBC[47], providing the capabilities to enrich WebRTC applications with “carrier-grade signaling, 

policy and charging”[48]. 

Focusing on gateways, major vendor’s solutions can be found, but open-source alternatives 

as well, projects such as those from Doubango Telecom, like the flash2IMS gateway and 

webrtc2sip[49]. The latter is also a gateway that enables WebRTC to SIP network communication, 

allowing a “web browser to make and receive calls from/to any SIP-legacy network or PSTN”[50]. 

Using webrtc2sip and sipml5[51], an “HTML5 SIP client” also from Doubango, a user can connect 

to a SIP network from their browser. With a media stack relying on WebRTC and a SIP/SDP stack 

implemented with JavaScript, this project comes with several important features, such as screen 

sharing and call-transfer, all according to 3GPP IMS Standards. 

Among the gateway vendors, one can also find WIT Software and their WCAS (WIT 

Communications Application Server). This is an IMS ready, server platform able to expose 

converged telephony services across networks and devices, capable of mediating different 

protocols and integrating different telecom operator sub-systems like billing services (among 

several others), to provide a more feature-rich solution. The WCAS is able to act as a SIP registrar, 

for example, enabling the registration of users in the solution. In parallel to the WCAS is another 

product called WebRTC-to-SIP gateway, enabling (when deployed on the network) the registering 

of WebRTC clients as endpoints and the translation of all incoming HTTP requests into SIP 

requests, empowering them with all the signaling and communication needs. Having this in mind, 

and with the advantages of being an in-house product that has been tested and trialed in this field, 

with a strong knowledge base available, it will be used to provide the ability for this platform to 

support WebRTC communication. 
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2.5. Telephony APIs 

 

With the rising adoption of WebRTC[52], the market as seen the launch of several web 

telephony, WebRTC-supporting solutions, enabling developers to create new applications that 

would use the companies telecommunication functionalities. In an effort to better understand the 

market direction (most commonly seen services made available, for example) and competition in 

this area, a market research has been conducted, with an overview of the competition encountered 

being featured in this section.  

2.5.1. Twilio 

 

Twilio offers a REST API to developers so they can empower their applications with 

communication capabilities. From voice to text/multimedia messages, this service recently started 

supporting SIP, making it possible to integrate a Twilio powered web application (using WebRTC) 

with an IMS network.  

After experimenting with the service, there are several functionalities (portal and API wise) 

that stand-out. From dashboard to documentation, this solution’s developer portal offers several 

useful features:  

 

 A developer’s dashboard features several analytics graphs (Voice and SMS analytics, 

showing the usage of both) and quick access to other functionalities with a top-menu. 

Access to Twilio’s numbers bought and billing overview is also available, with information 

regarding recent payments and usage summary; 

 A developer has access to full activity logs, ranging from daily to monthly, featuring the 

durations of calls, errors that might have occurred and also a “Status” graph, which shows 

calls that have ended in different scenarios (busy, no answer or failed, for example); 

 Triggers can be created to, for example, send an email to the developer whenever a call 

exceeds a certain amount of time. One can create their own triggers with TwiML - Twilio’s 

Markup Language. When a developer’s number receives a call or a text, Twilio is able to 

execute a previously set script, recording the call, for example. 

  

Drifting from the portal, Twilio features a REST API exposing a rich set of functionalities. 

From this API, a developer can make SIP calls, arrange conferences, manage already ongoing call 

sessions, have a caller queued as it waits for its call to be put through or record a call (and have the 

transcript of the recording made).  
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In terms of messaging, one can send SMSs (and more recently MMSs), store media objects 

that have been sent/received or use short codes (numbers that are purposed for high messaging 

usage) to send several messages. A developer is also able to access his account via the API, verify 

its numbers and incoming/outgoing calls, receive notifications for events (useful for debugging 

purposes) and manage a connected application‘s authorization. 

2.5.2. Plivo 

 

With an API similar to Twilio (a REST API that exposes the inner telephony system) 

comes Plivo, a San-Francisco based start-up company with an open-source framework for similar 

telephony objectives - to bring voice and messaging to applications, capable of interacting with an 

existing telecommunications network. 

 

Figure 15 - Plivo's high-level architecture 

 

Featuring voice calling and SMS, support for SIP and public networks, Plivo has some 

similarities to Twilio, in both API and developer portal. More than just the API, it has on its 

roadmap the development of a private cloud (i.e., one will be able to deploy a personal Plivo 

Cloud, as seen in Figure 15[53], for more privacy or redundancy) and Plivo can also connect to a 

network, although it requires a FreeSWITCH gateway implemented, which can be a problem in 

some architectures. Additionally, Plivo has recently launched an SDK to enable WebRTC to SIP 

interaction[54] 

In terms of portal functionalities, Plivo also features a dashboard with analytics for 

voice/SMS (logging of the last 24 hours) and account credentials, having a menu with billing, 

pricing, logging and numbers bought options for quick access. Also presented in this menu is an 

option to view documentation, where a developer can find tutorials and SDK/API references. 

However, the ability to generate notifications over events or to trigger actions when certain 

scenarios are caught is not available. 
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On the API side, Plivo implements much of the same functionalities that Twilio does, with 

other functions included such as DTMF processing (Dual-Tone Multi-Frequency, the ability to 

send digits over a call), “Play” and “Speak” features which let a developer play sounds or text-to-

speech during a call. A developer may also send a recording over a message and is able to manage 

his endpoints, applications, (sub)accounts, incoming/outgoing carriers or rent new numbers, all 

through the API. More importantly, Plivo can be viewed as a technological enabler. This company 

provides an open-source framework[55] for “telephony application prototyping” such as Billing 

and Voicemail, to be used in conjunction with SIP networks (using the aforementioned 

FreeSWITCH gateway). 

2.5.3. OneAPI 

 

This emerging communications market as seen the rise on novelty solutions, such as the 

ones already analyzed. In an effort to define an API that would provide standardized access to 

communication services such as call control or billing, the GSMA’s OneAPI[56] initiative has 

emerged, with the support from several major operators – among which Vodafone, AT&T and 

Deutsche Telekom. Created in 2008, this initiative has the objective to provide a reference API 

design for third party call control, payments, location, messaging, device capabilities and data 

connection description. With its designs residing on an older OMA’s specification known as Parlay 

X[57], OneAPI offers a subset API based on REST principles, relying on the JSON format for 

requests and responses, facilitating inclusion in web developments. In its first iteration, GSMA 

published specifications on textual messaging and multimedia messaging, while in its second one 

relating to call control. These three are the most relevant API specifications for this dissertation and 

feature a multitude of methods such as call triggering, add to call, ending of a particular call session 

and retrieval of its descriptions, among many others in the third party call control part. Focusing on 

messaging, specifications are available for the sending of text messages and multimedia messages, 

as well as reception of these in the server and delivery checking. 

By using these initiatives and applying them to form the basis of this solution’s API design, 

one can already mitigate possible problems arising from design choices: these initiatives have 

already influenced the development of several other products, they have been market-tested and 

have the influences of major players. Additionally, by using an already known and market-tested 

standard interface, overall attractiveness of the API is augmented and development is facilitated, 

mitigating possible shortcomings. 
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2.5.4. Summary 

 

As a reference point for the API’s explored, a brief comparison can be seen in Table 1. As 

one can see, Twilio and Plivo are very similar, differentiating in a few features such as rich 

messaging and DTMF processing. GSMA’s OneAPI does not expose many of the features 

provided by the others, among which call modifications like call hold or transfer.  

 

 Twilio Plivo OneAPI 

Call placement 
      

Call modification 
      

Conference calls 
      

Call recording 
      

DTMF processing 
      

Messaging (text) 
      

Messaging (multimedia) 
      

Account management 
      

Application management 
      

Table 1 - Feature comparison 

 

Having these insights on available solutions will be very useful when designing this 

dissertation’s API and portal, realizing which functionalities seem most popular and are already 

available, how developers will view the solution and defining planned features. One detail that 

stands-out among the services researched is the ease of use, providing multiple examples and 

developer focused information on the dashboards (analytics, logging, billing summaries, among 

others). Twilio, for example, provides extensive documentation and implementation examples for 

multiple programming languages.  

Going from a user-centered overview to a technological overview, all the solutions 

analyzed employ REST APIs. The reasons behind this decision can be somewhat narrowed down 

to the role REST assumes in communication, privileging point-to-point communication which 

greatly adapts to the telephony use-cases here assumed versus a service model better adapted to 

intermediated services (SOAP). Requests/responses are also “lighter” than those exchanged in 

SOAP due to the latter’s encapsulation, providing easier parsing of the content and reduced 

bandwidth consumption, for example.  



IMS centric communication | 2 

 

 31 

On the topic of request/responses, Plivo and OneAPI send responses using the JSON 

format, something also possible with Twilio, although using XML by default. Twilio also follows 

this approach to requests, allowing these to be made using either XML or JSON. The choice 

between these data formats can be difficult when deploying a new service: 

 

 XML is more verbose when compared to JSON, which increases its size[58] and, 

consequently, affects bandwidth; 

 Depending on the type of information, XML can have an advantage since it supports a 

wider range of data type than JSON (which only supports text and numbers). However, 

JSON does have native support for arrays; 

 Querying-wise, JSON has an advantage, since the data is stored not in a tree structure, like 

XML, but in arrays and records[59]. 

 

As seen, from the type of service architecture to the data formats used, certain design 

decisions must be carefully considered, lest performance and scalability be affected as the solution 

is developed and used. More than what functionalities the API’s are able to deliver and the 

architectural decisions made, the way the API is organized - how it appears to developers and how 

they are able to use the underlying services - is an important detail that should not be overlooked. 

For example, if the API is designed in a similar fashion to Twilio’s, developers that have used it 

will adapt better to the solution provided, decreasing its learning curve and development effort. 

2.6. Chapter summary 

 

Throughout this topic, several concepts were addressed, necessary to a better understanding 

and proper planning of a solution for this dissertation’s objective - to develop and deploy a 

telephony API that would allow developers to create their own application and empower them with 

other, already available services such as billing and logging, among others. Moreover, this research 

is especially useful to understanding how the market reacted to both IMS and RTC technologies, 

with the first being used as the cornerstone for multimedia services integration in a 

telecommunications network and the latter being seen as a powerful technology for the future.  

After covering and comparing several fundamental aspects of the technologies, 

components and frameworks related to the context of this dissertation, different conclusions were 

presented, shaping the next steps of its planning. The next steps will involve requirements 

definition and system design, from a high-level perspective: the solution’s architecture, API design, 

identification of possible constraints, among many other details. 
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This overview on the available tools serves not only the purpose of a state-of-the-art 

overview but additionally as a technical options investigation, providing proper knowledge base for 

the decisions that will be made during this solution’s development. Thinking of a solution where 

the API would be exposed via an AS, one can see how the OpenIMS core and the Mobicents 

framework would make an acceptable alternative for test-bed and development. The API itself 

could be designed following a similar approach to Twilio and applying OneAPI/OMA’s 

definitions, pleasing third party developers that are already familiar with these entities. Moreover, 

RTC-wise, one can see how Flash was deprecated and is losing popularity, whereas WebRTC is 

being seen as the go-to technology for RTC. Due to the growing popularity and the possibility of 

not having to use third-party plugins to place calls, WebRTC could be the web-oriented RTC 

enabler used in such a solution. Although posing its difficulties, since it still is a working draft, the 

market has reacted quite favorably to this technology, with new use-cases and applications being 

implemented every day. 
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Chapter 3 

 

Requirements for a WebRTC integration on IMS 

 

The research made in the previous chapter was crucial, providing an overview on market 

status and current trends, such as the exposure of REST APIs by the telephony solutions covered. 

The solution proposed in this dissertation will now be described in terms of objectives and feature 

use-cases, how and where the API will be exposed, which features to include, among other details. 

With this in mind, a high-level view of the solution will now be addressed, analyzing several 

aspects such as insight into which functionalities will be focused on and possible constraints 

affecting the implementation.  

Following the AS approach for API exposure, Figure 16 represents a proposal of an 

implementation of such a solution, with each of the components being analyzed over the next 

sections. 

 

 

Figure 16 - Logical view of the system 

 

The API will facilitate the creation of applications that allow the placement of calls, 

conferences or rich messaging to other network endpoints, abstracting internal mechanisms and 

complexity and keeping the interfaces simple enough to help developers in its usage. Applications 

will use IMS capabilities (via the API) and will have to be registered in a purpose built platform, 

the portal.  
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The portal will enable the control of registered applications by administrators, maintaining 

policies and managing possible network abuses. In a similar fashion to Twilio, the portal has been 

designed to leverage the access of different user groups to their dashboards and group functions. In 

it, applications will be published and featured on an administration managed centralized listing, 

available to platform users. This listing, the portal’s marketplace, will be inspired by mobile 

marketplaces such as Google Play, enabling the easy discovery of available services by network 

users. 

Support for RTC will come by the form of an integration of WIT Software’s WebRTC-to-

SIP gateway in the solution. By using this gateway, WebRTC clients such as WIT’s Web 

Communicator (WWC) are able to register as SIP endpoints in the IMS network, enabling them to 

receive calls from other network registered devices, for example. 

To provide all the functionalities needed to create a feature-rich proof-of-concept, the 

portal and API will offer several services for developers to use in order to enrich their applications. 

A list of these functionalities was made in annex A) and then prioritized, choosing which features 

must be present for user trial. Consequently, even though not all features will be available, an 

overview will be made and will be left planned for future improvements, fomenting a richer 

solution.   

3.1. Example use-cases 

 

Before addressing specific requirements or constraints, certain use-cases that the solution 

must enable will now be presented and analyzed. These will give a more contextualized 

introduction to the system’s high-level functions, the added value it conveys when compared to 

other already researched solutions and, ultimately, example third-party applications for the 

solution. 

CRM, short for Customer Relationship Management, is a business model designed to help 

manage costumers and everyday tasks involving costumer service or technical support. This model 

is commonly implemented in companies by dedicated applications, which help keep track of the 

appointments made by a sales representative – a small example of its innumerous feature. One 

could consider a scenario such as the one in Figure 17. 
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Figure 17 – Calling a client from a CRM application 

 

Bob is a sales representative on his way to a meeting with Rachel. Since Bob wishes to 

consult the meeting’s agenda, in order to get some context beforehand, and call Rachel to confirm 

its schedule, Bob accesses his company’s CRM application, through his smartphone, and checks all 

the desired information. Since the CRM application uses this dissertation’s solution via a 

previously implemented plugin, Bob is able to trigger a call to Rachel, connecting both devices 

through an operator’s network. After the call, Bob is able to include any notes he may have taken 

from the conversation on the web application and store them for later use. 

In addition to the previous example, first party communications should be also 

implemented, such as the ability to place a call through the application and answer it in the same 

webpage. This example can be seen depicted in Figure 18.  

 

 

Figure 18 – Adding a friend to an on-going call 

 

As such, a user (Bob), accessing a third party application (that uses this dissertation’s 

solution) on his tablet, may be able to use such application to trigger a call to Rachel, who is using 
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a SIP phone. Upon answering the call, communication would be enabled between both Bob and 

Rachel: Rachel would talk on her phone and Bob on his tablet, in the same webpage where he 

started the call. However, during the call, Bob wishes to add Alice to the conversation, accessing 

the application using her laptop. Again, with the application integrating this solution, such 

conference calls would be possible, with these functionalities being abstracted by the API. 

3.2. API features 

 

The telecommunications API, exposed by the AS, will be structured in accordance to 

GSMA specifications - voice control[60], text messaging[61] and rich messaging[62] will be 

modeled after the OneAPI initiative. Making it a REST API means that its stateless characteristics 

ease resource consumption and impose less processing strain, since handling and maintaining 

session states is not necessary. On the other hand, this will put additional strain on interpreting all 

requests and authenticating them. Nonetheless, by ensuring the usage of tokens and notification 

mechanisms, the API will provide proper session processing/handling, something which was 

commonly seen in the API’s researched. To developers, this abstraction facilitates the development 

of new applications and reduces the time spent on, otherwise, creating the means to communicate 

with every single component needed. By simply calling API methods, the developer is able to 

deliver new functionalities in a fraction of the time.  

The following features will be provided, allowing a developer to create rich, 

telecommunication capable, web applications: 

 

 Authentication - application and user authentication, allowing these groups to use the 

desired services/resources; 

 Third Party Call Control – implemented according to OneAPI guidelines, developers will 

be able to use call triggering and ending capabilities, along with call modifications such as 

hold/resume. Mechanisms for call transfering will also be exposed; 

 Messaging – users are able to send text and multimedia messages to other registered users, 

with the methods based on OneAPI specifications; 

 Notifications - the forwarding of notifications from the network to the application is 

available, notifying it of call states (for example, if the call is in progress) and providing all 

the signaling needed to communicate with the network. 
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The API will also be able to support rich messaging, i.e., the ability to send multimedia 

content like vCards (a file format designed for the sharing of contact details from phone numbers to 

addresses and personal websites) and JPEG images (Joint Photographic Experts Group, a popular 

image format), in addition to textual messages. As referred, through the features provided by the 

API, several example use-cases can be idealized like the integration with available content 

managers or CRM’s (Customer Relationship Manager). With this integration, a caller would be 

able to view its information on a customer upon the triggering of a call. This way, the caller would 

have access to the background of a costumer, providing better assistance on a service, for example.  

The API will focus on third party call controls, with first party being left to SIP endpoints 

or WebRTC clients. The differences between first-party and third-party calls are significant. Figure 

19, an example taken from IETF’s RFC 3725[63], will provide the basis for an analysis on what a 

typical third-party call between (already registered) SIP endpoints would trigger in the network. 

 

 

Figure 19 – Third-party call example 

 

One can see how an invite is sent from the AS (represented by “Controller”) to endpoint A. 

After receiving an OK from this party, an invite is sent to endpoint B, something that would not 

happen in a first party call scenario. If this user accepts the call, an acknowledge response is sent to 

A and a new call session will be started between both parties, exchanging media. Network-wise, 

one would see a flow of messages forwarded to the S-CSCF, P-CSCF and then back, with the 

callee located and informing his decision (if he has accepted or rejected the call, for example). 

Since the AS plays a central role on call signaling in these third-party calls, it may manipulate the 

call as necessary – it may, in fact, invite other users to the call, creating a conference. One can 

consequently say that the AS is acting as a B2BUA (Back-to-Back User Agent), where it remains 

in the signalling path and calls are actually established between the clients and the server, not 

directly with each other. This would be done by simply forwarding invite requests to the desired 

users, establishing the communications exchanges. 



Requirements for a WebRTC integration on IMS | 3 

38 

3.2.1. Notification mechanism 

 

The exchange of notifications between the AS and third party applications is crucial in 

order to establish the proper means of communication, providing information on incoming calls or 

call states, for example. To provide such support, different approaches may be taken, from pull to 

push notifications. This comparison and discussion has been placed as annex E) in this document, 

with the chosen solutions presented next. 

If the client were to announce to the server a URI where he wishes to receive notifications, 

the server would push the information to the client, instead of receiving multiple connections like 

planned before. This is called a Webhook-based approach[64], depicted in Figure 20. 

 

Figure 20 – Webhook notification mechanism 

 

The mechanics behind a Webhook, a recent concept, are straight-forward: upon requesting 

the creation of a new call, for example, the applications will subscribe to the call notifications by 

sending an URI to where these events may be pushed by the server. This is merely a REST 

interface, from the client’s side, that receives a specified JSON payload informing of all changes, 

call statuses or other relevant information. 

Nevertheless, this is not a perfect solution. The default Webhook mechanism is ideal when 

in a scenario of server-to-server communication where IP’s are public, but if one was to create a 

desktop application, for example, and wanted to use this API, the user might suffer of NAT 

transversal problems if proper care wasn’t taken to ensure communication between server and 

client. As such, a fallback long-polling mechanism will also be implemented in this solution. In 

long-polling, a client’s request is only responded by the server upon receiving new data, timing out 

after a certain period of time otherwise. This is completely different from the Webhook mechanic 

explained above, drifting from a “push” to a “pull” scenario. 
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3.2.2. API analytics 

 

Statistics reporting such as API and application usage, as well as analytics per user, may be 

implemented via Apigee[65] integration. Apigee is a company that provides services for API 

managing, through an online platform, which acts as a proxy for deployed API’s, as depicted in 

Figure 21. 

 

 

Figure 21 - Apigee as a proxy 

 

With this proxy in place, Apigee is able to provide several features over the incoming 

requests – features such as analytics of used API resources, filtering through IP, session 

management allocation of quotas for a given application, among many others. From this product, 

the solution’s developers and administration will also be able to receive analytics on the product 

itself. Apigee’s integration would decrease development effort on features that would, otherwise, 

have to be implemented from scratch in the solution. 

3.2.3. Integration features 

 

Deployed on an IMS network, a telephony application server would need to interact with 

different AS’s in order to achieve features such as presence, chat, billing and conference calls. This 

means that several different servers would be deployed on the IMS network: 

 

 Media server - during announcement playback or conferencing, a media server would be 

consulted in order to reserve resources and play the desired media or initiate a conference 

room.  This would be done by following a call flow similar to the one shown in RFC 

4240[66], where the user would participate in a call with the media server; 
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 Chat server - a messaging server would be used to provide the messaging needs of the 

system, with support for rich exchanges, instant messaging and offline message handling 

(storing the message if the user is offline and delivering it when the user comes online 

again); 

 Billing server - although the AS could generate its own CDR’s, a billing server integration 

might also be required for additional billing features, being consulted via the diameter 

protocol, for example; 

 Presence server - in order to provide presence capabilities and subscription to “friend” lists, 

a presence server should be deployed on the network. 

 

In this solution, messaging, conference calls and media playback features will be integrated 

into the AS. Billing, presence and chat features were considered and are intended for future 

implementation but are of low priority at this stage due to the added complexity and development 

effort required, having other features been prioritized to provide an interesting proof of concept. 

3.3. Portal features 

 

A portal is required to provide a back-office similar to those featured by Twilio or Plivo, 

dealing with different user groups, functionalities and registered applications. These will be 

available through the marketplace, upon administrative approval and publishing, to all network 

users. Different user groups will have access to different features: 

 

 Users – these are network registered users, able to use the portal after being provisioned by 

an operator through a user provisioning API, fully analyzed in annex C). These will be the 

main consumers of the application marketplace. Features such as access to billing records 

and activity logs are also considered, placed on their dashboard; 

 Developers – having registered for developer accounts, these users will be able to create 

new applications and submit them for publishing. After submission, developers are able to 

consult the publishing status on their dashboards. The assigning of new developers to an 

application is also contemplated; 

 Administrators – solely responsible for maintaining the solution (e.g., responding to 

publishing requests and requests for new developer accounts, disabling applications or 

banning developers if they infringe terms of service). On their dashboards, administrators 

will have access to notification-handling sections and will be able to create administrative 
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applications. These will have access to the user provisioning API and can only be seen 

when accessing the marketplace via an administrator’s dashboard. 

 

With this in mind, the portal must be able to adapt to the different user groups, exposing 

functionalities only fit to their permissions. For instance, developers must not be able to execute 

administrative actions and users must not be able to access publishing features or alter application 

configurations.  

Application and user provisioning mechanisms will also be required. Upon the publishing 

of a new application or registration of a new user, certain provisioning procedures must be 

engaged, such as proper authorization. Quota definition might also be implemented, meaning that 

both users and applications would be limited to an X amount of actions per second (call control 

events, for example). This is a security measure that, defined by the administration, may be 

implemented in order to prevent network abuse.  

Moreover, the usage of an application by a user must be provisioned. Different approaches 

may be taken in this case, such as manual or auto provisioning. In the first case, a user would have 

to register in an application, whereas in the later case, an already solution-registered user would be 

able to use the application immediately. Due to the simplicity this conveys to the user, the auto-

provisioning approach will be chosen. However, how the applications and users are registered 

compose completely different scenarios: whereas in the first case developers or administrators 

register the applications through the portal, in the latter, a user provisioning API exposed by the 

portal will be used. This API will be of exclusive use by administrative applications and will allow 

the provisioning of users within the solution. 

3.3.1. User provisioning API 

 

User provisioning is a process where the solution will prepare the usage of its services by a 

new user. In this process, the user will be registered within the solution, will perhaps have its 

quotas established and will be given authorization to use network related services. This process can 

also be done in multiple ways - which have been described in annex D).  

However, the aim in this is to facilitate user experience and enable the usage of only one 

set of credentials by the user – the same credentials used to register the device in the network 

should be the ones used to access the platform. The solution that is proposed is a user provisioning 

API, exposed by the portal and depicted on Figure 22, which will allow the creation/update and 

deletion of a network user. 
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Figure 22 - User provisioning API 

 

This IT abstraction layer will be used exclusively an operator - when registering a new user 

in the HSS, an operator will also be able to access this API and use it to register a new user in the 

solution’s database. This will allow synchronization between both databases and maintain updated 

user records. Consequently, when logging in a third party application, the user would use the same 

credentials used in the network. Unfortunately, this is not without its drawbacks, since the 

implementation of such a mechanism would mean that user credentials would have to be stored in 

an external database (with all the security demands that arise), with the operator having to ensure 

the consistency of the data.  

3.4. WebRTC features 

 

As referred above, WebRTC support must be enabled in the solution. A WebRTC client 

will be able to register in the IMS network, with all interactions being translated to SIP requests. 

Consequently, the client will be able to receive and make calls to other SIP endpoints. To provide 

the support necessary to establish calls between parties using WebRTC and parties with SIP 

softphones, a media transcoding service may need to be implemented due to the difference in 

codecs supported.  

Transcoding is basically the direct conversion of one codec format to another, a mechanism 

that requires a substantial amount of processing power and consequently involves sacrificing either 

quality or speed. With this mechanism, call placement between parties with otherwise incompatible 

codec formats is possible. However, not just media transcoding that is necessary, but basic network 

protocols must be handled as well:  
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 SIP/SDP are protocols used for signaling and media negotiation and, as such, must be fully 

supported to provide a robust and functional solution; 

 MSRP is the protocol used in messaging - it is of crucial importance when it comes to 

message exchange, providing the support for instance messaging or multimedia content; 

 RTP handling must also be implemented, in order to enable the transfer of multimedia 

streams between the communicating parties. 

 

All of the above details will be supported via the integration of WIT’s WebRTC-to-SIP 

gateway. Together with WIT’s Web Communicator and its SDK, supporting all of the clients’ 

features, first party call control via a WebRTC-enabled endpoint will be possible. Additionally, a 

multitude of features such as audiovisual calls, file transferring, image sharing, geo-location 

sharing, DTMF support and call handling (call hold and transferring, for example) are available 

between WebRTC clients. 

3.5. Network interfaces 

 

There are two areas of focus when discussing this solution’s most relevant interfaces. 

These include the APIs that the system will expose and the IMS interfaces used, allowing 

communication between the AS/gateway and the network. Focusing on the IMS interfaces, two 

will be used, both using SIP as the protocol exchanged and both crucial to the implementation and 

integration of this solution in this type of IP-based networks: 

 

 The Gm interface that connects user equipments to the P-CSCF server. This interface will 

be essential to the gateway, enabling users to register as a common device, being able to 

receive calls and establish communication with other network registered users; 

 The ISC interface (IMS Service Control interface) that will connect the application server 

to the S-CSCF server, notifying the AS’s of incoming SIP messages, among other usages. 

Without the use of this interface, the existence of an AS, able to analyze incoming SIP 

signalling messages and create new SIP requests on demand, would not be possible.  

 

Drifting from the IMS interfaces to the APIs exposed, two will be exposed to third party 

usage: the layer for telecommunication capabilities and the user provisioning layer for user 

registration in the solution. Although not part of the solution itself, a different API will also have to 

be exposed, in this case from the client side, due to the notification method that has been proposed 

in section 3.2.1. 
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3.6. Non-functional features 

 

When dealing with a telecommunications solution, like any other system, one must analyze 

possible constraints that should be contemplated in its implementation. System constraints such as 

availability, scalability and performance must not be overlooked or an unreliable solution may be 

created, pushing away users. 

3.6.1. Availability and scalability 

 

Availability refers to the uptime of the service, demanding the services to be running at all 

times or suffering the least downtime possible. This constraint is of extreme importance in this 

context, as downtime in a telecommunications service translates in lost calls and, consequently, lost 

revenue. Not only available, the service must be able to handle variations in its usage, providing 

stable and correct responses in a high-load scenario or with an increasing amount of concurrent 

events - this is referred to as scalability, the ability the service as of handling growing amounts of 

workload, while maintain its capabilities and stability. Services must be able to accompany the 

usage required of it, at software and hardware level. At a hardware-level, this could be done by 

deploying the service in other machines, increasing the amount of machines available to respond to 

the requests (i.e. horizontal scaling). With more than one server responsible for a single task, load-

balancing could be implemented, dividing the load between the nodes. This would also help 

availability, since if one node was to suffer a crash, the other would take its place.  

Software-wise, several implementation nuances must be considered and addressed. Details 

such as the API being stateless, for example, would mean that less complexity would be demanded 

from a server design perspective, simplifying it by not having to maintain and clean up past kept 

states. This would affect needed resources, lowering them since the storing of states and processing 

of new requests is delegated to other components - a principle called Service Statelessness[67]. As 

servers discard the responsibility of transitioning states however, processing requirements are 

increased, since each request contains all the necessary information and the server must interpret all 

the given information; 

The support for concurrent calls to the database is also an issue, necessary to establishing a 

scalable environment, especially since both API and portal use the database in their actions. 

Connection pools or cache-like methods will be deployed in order to mitigate the risk of database 

access becoming a bottleneck. When ensuring security measures, scalability of these servers must 

also be taken into account, as validating requests, for example, is easier than the rest of the service 

logic. 
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3.6.2. Availability strategy 

 

Several solutions could be designed to help create a reliable, available and scalable 

solution. One of these might be to maintain two or more machines responsible for the same 

function, installing the application server in two different machines, for example – a method called 

“network redundancy”[68], depicted on Figure 23. This way, in case the AS or WebRTC gateway 

failed, communication could be forwarded to the other machine, diminishing call loss – a relevant 

advantage.  

 

Figure 23 - Network load-balancing 

 

In this strategy, each component will be horizontally replicated, i.e., each node will be 

executed alongside a backup node, placed under an active/active configuration. With the database 

being the only common link between both AS and portal, this shall provide three significant 

additions to the system: 

 

 Workload may be distributed among the available nodes, with the deployment of a load-

balancer such as Nginx[69], responsible for forwarding of requests; 

 A heartbeat/monitoring mechanism could be implemented, with the load balancer either 

receiving information from a node stating that it’s in fact “alive” or interacting with a node 

to see its current load, respectively. For instance, if two nodes aren’t capable of handling 

the requests, more may be dynamically deployed to compensate, in a “cold start” fashion. 

As such, scalability is ensured, with multiple nodes responding to the incoming events; 

 

Load balancer

Network 
connection

WTE AS 1 WTE AS 2



Requirements for a WebRTC integration on IMS | 3 

46 

 Since the nodes would be actively in use, in case of failure of one of them, the system 

would failover to the other. This way there would always be at least one node capable of 

handling the network events, resulting in higher availability. 

 

This solution has its drawbacks, trade-offs for a simple yet reliable system. Increased 

server costs aside, requests being processed by a failing node would be lost, even though incoming 

requests would be processed normally, with clients being forwarded to the available servers. For 

instance, ongoing calls which were stuck to the downed server will be lost, with clients obliged to 

repeat the call – a detail acceptable for a consumer-grade product, but which may prove 

challenging in an enterprise environment, where the demand for reliability is higher. 

3.6.3. Performance 

 

System performance will affect how the solution responds to incoming requests, with any 

bottleneck dictating the amount of calls processed or call setup time. If a system can’t handle 

incoming calls, users won’t be able to communicate in peak hours; if call setup times are high, 

users will become frustrated and confuse it for errors. Availability and scalability measures should 

be implemented, for scenarios with increased workloads. Certain baselines must be ensured: 

 

 Call setup time must be minimal – from the time a user starts the call to the time he hears 

the ringing tone on the line, no more than two seconds should pass; 

 The system must be able to handle multiple concurrent calls. This value, Calls per Second, 

must be maximized, with a baseline of 100 CpS being established. 

 

Although testing the solution is required to give more realistic values to these metrics, 

these established baseline for performance offer insight into how the system is expected to behave. 

3.6.4. Interoperability 

 

In this solution, SIP and WebRTC powered clients must be able to communicate with each 

other, increasing interoperability. The support for this RTC technology and for other third-party 

application must be provided by the solution, empowering these applications with network 

available resources. More complex scenarios are considered in future iterations of the solution, 

such as communication between different networks, increasing overall interoperability - providing 

call support from a caller on the home IMS network to another visiting network. 
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3.6.5. Security 

 

More than just authentication and authorization mechanisms, quotas could be given to both 

users and applications, limiting the number of requests they are able to make per second. These 

types of mechanisms are put into place in order to prevent denial of service attacks, where a great 

number of requests per second are made with the purpose of overloading the system and blocking it 

from functioning. Additionally, calls between parties should remain private. Using protocols such 

as SIPS (secure SIP) one can encrypt calls between parties, adding a secure layer to the exchange. 

3.7. Chapter summary 

 

With the dissertation’s goal set on creating a platform exposing a telecommunications API 

to third party applications and a marketplace showcasing them to network users, one must quickly 

define all the features intended for implementation. Along this definition, certain questions arise, 

such as which features will be developed and how the platform will be structured, decisions that 

come to affect it both in outcome and roadmap. 

In this chapter, these aspects are addressed and one can now see how the solution is 

expected to be shaped and the features it will expose. For instance, the decision to use OneAPI 

specifications will bring several advantages. These API guidelines have served as the basis of 

multiple projects and, as such, lower the learning curve for developers that have already used 

similar solutions. Additionally, these are API guidelines that already been thought for use in 

different scenarios, lowering the development effort necessary to establish a similar approach. 

Moreover, with support for RTC via WebRTC integration, the ability to communicate via ones’ 

browser brings great potential, bridging the solution with a novel technology. Nevertheless, key 

aspects were left out - technical details such as how the features will be implemented were not 

discussed nor will be covered. 
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Chapter 4 

 

Solution proposed 

 

With the functionalities that the solution will provide defined, this chapter will focus on 

discussing the results that were achieved during its development, from the structure of the system 

to the objectives accomplished – a high-level view on its architecture and what components it will 

interact with in the network. Obstacles encountered will also be presented and their influence on 

the solution will be explained, as well as the steps followed to mitigate such drawbacks. 

In order to establish a baseline reference design of the solution, Figure 24 is presented, 

representing the solution’s architecture and showing the several components that it encapsulates. 

Each of these components is responsible for specific features and each will be analyzed in depth in 

this chapter.  

 

 

Figure 24 – WTE reference architecture 

 

Firstly, the discussion will fall on how the telephony AS was built and what was used to 

develop it – from details like the framework in use to the multiple application layers and 

communication flows. All features implemented in this component are shown, according to the 

requirements defined in section 3.2.  
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Secondly, portal results are discussed, showing the technologies used and the application 

flows implemented. And finally, a view on how WebRTC support was integrated into the solution 

is presented, with some minor adjustments made to the IMS core in use. Finally, an analysis on 

which objectives were accomplished and which were not developed at the time is done, comparing 

the initially planned feature-set to the features implemented. Also, changes to the initial design are 

shown and deviations from the plan are discussed, showing how the solution was affected during 

the development phase. 

4.1. Application server 

 

In order to develop the AS, and due to the time restrictions imposed, features to include 

where prioritized, aiming to achieve the goal of implementing an interesting proof-of-concept. To 

ease development effort, a WIT proof-of-concept called Voice as a Service (VaaS) was available to 

serve as a baseline for the solution, providing many features useful for the dissertation. An 

introduction to VaaS will now be made, discussing the advantages of extending it and modifying it 

to fit this dissertation’s needs over creating a new platform entirely. 

Much alike this solution’s vision, VaaS is an application server with several third-party call 

control features, exposed through a proprietary REST API. It allows the triggering and ending of 

call sessions, call holding/resume, call transfer, alongside call information and status retrieval, 

through the use of Webhook mechanics. Additionally, it is designed for media bridging, allowing 

conference calls and media playback, being able to play a tune for calls on hold. These features 

would be of great use to this dissertation, since they align perfectly with the objectives and 

requirements proposed. However, the way VaaS works is significantly different than the way the 

OneAPI is specified.  

Influenced by Twilio’s own workflow, VaaS exposes a REST API, responsible for 

translating HTTP requests to SIP actions, leveraging intended call actions through the use of 

VaaSML (a TwiML-like markup language defining call session handling). The triggering of a call 

with VaaS takes the steps seen in Figure 25 and, as one can see, the workflow generated (and the 

parameters it expects to receive) are significantly different than those expected in the OneAPI. One 

of the most significant differences falls in the flow expected to exist between client and server – 

VaaS must receive a VaaSML stating the way it should handle the call, whereas the OneAPI 

expects only one request to be made to the API, containing all the necessary information to connect 

the calls. 
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Figure 25 - VaaS' call triggering workflow 

 

From call management to SIP handling, the server already features some useful 

capabilities. The size and complexity of this solution also reflects the features it exposes. 

Implemented in Java 1.6, using Sailfin and SIP Servlets (v1.1, abiding by JSR 289 standards[70]), 

the AS was built in a very modular, layered manner, as one can see in the Figure 26. 

 

 

Figure 26 – VaaS’ modules 
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The modules themselves are mostly self-explanatory, with the most relevant being: 

 

 API - a module that refers to the exposed REST API, implemented using the Jersey 

framework[71], featuring the definition of all resources available; 

 Notification Manager – where requests coming from the API get translated into call-

specific requests and call notifications are sent to the specified URL’s; 

 Call Manager – responsible for call session management, which conference to join, 

invite/re-invite handling and media delegation/session triggering; 

 Media Delegation – responsible for maintaining media sessions and SDP analysis; 

 Media Session – handling of network actions such as port allocation, with help from the 

Netty framework[72], for media playback and the media bridging implementation; 

 SIP Servlet – where the translated HTTP requests results in SIP exchanges to the network. 

 

Among the most significant advantages and limitations of VaaS, one can emphasize three 

main details, the first being its call appending as the server allocates calls in media rooms, bridges 

maintained in the server. Consequently, efficiency and scalability are affected, a crucial detail for 

any solution designed for multiple, concurrent events. This also creates an obstacle for the 

implementation of billing features for example – this is commonly done by call leg in an IMS 

network and, since the calls are anchored in the server, billing mechanisms would grow in 

complexity. On the other hand, with the session organization that is enforced and call tracking, one 

gains a certain security layer for handling error events and logging. Additionally, the server only 

supports the G711 audio codec, with video not being contemplated (other codecs may be supported 

with some modifications to the media layer). 

With VaaS’s details in mind, with its advantages and obstacles contemplated, one was able 

to make a decision on whether to use it as a baseline or create a new solution. Several aspects were 

taken into account when thinking of a new solution: the development effort necessary, high-level to 

finer-grain details such as call session management and network administration. Although not a 

perfect solution, VaaS already had many of these details addressed and dealt with. The discussion 

fell on whether it would be feasible, in the time-frame expected, to implement such an advanced 

solution with a stable SIP handling layer. After careful consideration, VaaS was chosen, having 

identified the areas in which the need for modification existed and how to proceed with such 

implementations. Taking VaaS and extending it to fit OneAPI’s demands involved many 

modifications to the existing implementation, as well as the creation of two OneAPI related 

modules. Figure 27 shows the impact it had on the solution, with the round components 

representing those that are new or were most significantly modified. 
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Figure 27 – WTE’s AS new and modified modules 

 

When going from VaaS to the WTE’s AS (or WTEAS), the first modification to make was 

the changing of the Sailfin to Mobicents framework. As already stated, this framework has several 

advantages, development and community wise. This change meant several libraries had to be 

replaced. After replacing and executing regression tests, VaaS was deployed on an Apache Tomcat 

1.6 server, working correctly.  

The decision to replace the Java version in use was also made, going from 1.6 to 1.7, a 

more current version. However, this modification brought unexpected results in the media playback 

functionality used in call holding, which heavily relied on methods that were deprecated between 

versions. Consequently, this change was reverted, since modifying the media layer would take 

significant development effort, which might compromise the implementation of other more 

important features.  

With these changes made, development started on the OneAPI modules, analyzing the 

current implementation and deciding how the current features may be used.  

4.1.1. OneAPI layer 

 

Similar to the existing API module, this module was created to reflect OneAPI’s resources 

and methods. Figure 28 represents its multitude of new methods, from call triggering to notification 

retrieval and user authentication. 

The documentation for this layer can be seen in annex B), with all methods exposed and 

design decisions described. Although the methods’ functionality may be inferred by their name and 

expected OneAPI features, there are 3 methods that are outside GSMA’s specification: 
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Figure 28 - OneAPI layer methods 

 

 authenticateUser – this method will be used to verify if the given user credentials are 

correct, enabling user validation to third party applications; 

 modifyCallSession – used when applications request the API to place a call on hold or 

resume it, which was not contemplated in the OneAPI; 

 notificationRetrieval – when notifications reach the AS, they are stored in a message queue 

for a limited amount of time. The API contemplates a resource where applications may 

request the notifications received for a given call session, using this method. This creates 

the alternative notification retrieval mechanism, the long-polling method, a fallback for the 

default Webhook one. 

 

Additional methods and resources may be easily created, following the same patterns and 

structures used for this implementation. Here, future iterations may take place and other OneAPI 

features such as billing or location services may be integrated, enhancing the solution. 

4.1.2. OneAPI notification manager 

 

Whereas in VaaS the solution dealt with call legs and conference rooms, in the OneAPI 

specification these are mapped to participants and call sessions, respectively. Although these 

concepts may be similar in purpose (call legs/participants and conference rooms/call sessions), this 

means that certain changes must be made to the original logic, with new features requiring support 

from this layer. As such, a new module was created to reflect these changes and demands, with the 

new modules visible in Figure 29. 

 



Solution proposed | 4 

 55 

 

Figure 29 - OneAPI Notification Manager methods 

 

With this decision and with the new OneAPI model alongside the existing VaaSML one, 

both APIs may work concurrently, without compromise to performance or solution stability. As 

referred above, although the original logic may have suffered some modifications to fit the present 

needs, it was mostly adapted and re-used. Across the other modules, certain changes were made, 

supporting the new features. The media layer, worker pool and original API modules were left 

untouched – in fact, as referred before, the server is able to expose both APIs concurrently, serving 

VaaSML and OneAPI clients if need be. Nonetheless, changes to the interfaces specifying the call 

and notification manager modules, necessary to enable the new features, meant that minor 

modifications had to be made to these layers. For instance, in the module management layer, the 

only necessary modification was the registration of the new modules, which had to be loaded 

alongside the existing ones.  

4.1.3. Database Manager 

 

VaaS did not interact with any database originally. However, a database module was 

implemented using a WIT library that serves as a helper for database connections, with connection 

keep-alive and caching methods. This module was developed as an example for future iterations of 

the solution, easing development effort. In this AS, the server needs to properly authenticate users 

and applications, through their tokens. Due to this demand, new methods were made to interact 

with the portals database and extract the necessary information, with Figure 30 representing them. 
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Figure 30 - Database manager methods 

 

Among these, one can find methods “getApplicationStatusByToken” and 

“getUserByCredentials” (used to authorize applications and authenticate users, respectively) and 

methods “load” and “unload” (used for module management, loading and unloading of modules). 

The first two methods are used to support the implemented authorization mechanisms: 

 

 The “getApplicationStatusByToken” method is used upon the receiving of a new 

API request, checking the application status and authorizing or forbidding the 

request to be processed; 

 Method “getUserByCredentials” is the one called when the API’s “authenticate 

user” resource receives a request, comparing the given user credentials to those 

stored in the database. 

4.1.4. SIP Servlet 

 

New features such as rich-messaging made it necessary for the SIP servlet module to 

handle new exchanges and request types. As such, modifications were made to this layer to reflect 

such demands: 

 

 

Figure 31 - SIP Servlet methods 
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Not all methods in this class are represented in Figure 31. Here, the only methods done 

specifically for this solution are “sendMessage” and “sendRichMessage”, used for sending textual 

and multimedia messages, respectively, through a SIP MESSAGE request. For instance, a rich 

messaging request coming to the API goes through the notifications manager, call manager and SIP 

servlet handler. Here, the correct content-type is established and the message is sent to the IMS 

core, being delivered to its destination afterwards.  

In order to better understand the stance the solution takes in the network and the way the 

different actions will shape system interaction, certain use-cases will now be shown – use-cases 

that mirror basic functionalities that are the foundation to user communication. 

4.1.5. Authentication flow 

 

Authentication mechanisms are crucial to properly securing the solution from exploits and 

to uniquely identify all platform users and applications. For both users and applications, the 

authentication procedure follows a flow similar to the represented in Figure 32. 
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processes it

Third Party
Application

REST

1. Request

If the AS verifies the request with success
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2a. Request
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3b. Error notice
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Figure 32 - User/Application authentication flow 
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There are subtle differences, however, that define both scenarios. As users log-in through 

third party applications, these are responsible for requesting the AS to verify the given credentials. 

The AS, in turn, returns a simple true or false, verifying that the credentials match those stored in 

the database. On the other hand, now focusing on the applications themselves, their tokens are sent 

in the requests made to the API, leaving the AS to authorize and execute the requests, if the tokens 

sent have the right privileges (or even match the existing database records). 

4.1.6. Call transfer flow 

 

In terms of call transferring, this is made in a blind manner where, upon starting the call 

transfer, the current session will always be terminated even if the transfer destination is busy or 

unavailable. Unlike a consultative call transfer, this one is done unannounced. A flow similar to 

Figure 33 is triggered when transferring an on-going call between client A and B to a client C – 

media renegotiation may be necessary. 

 

 

Figure 33 - Call transfer flow 

 

Along the flow, as the calls are set-up or broken down, the solution notifies the client of the 

actions, creating HTTP POST to the URL that has been defined for callback or saving the messages 

for long-polling retrieval. 

4.1.7. Call hold/resume flow 

 

In this scenario, and abiding by to RFC 5359[73], during an on-going call session, the call 

will be put on hold by renegotiating the call characteristics using SDP, as seen in Figure 34. 
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Figure 34 - Call Hold flow 

 

1. The third party application sends an HTTP POST to the solution, wishing to put the on-

going call on hold; 

2. This results in the sending of a SIP request, by the solution, to both parties, renegotiating 

the call for both to only receive media (“recvonly”, enabling the endpoints to receive call 

hold music); 

3. After this successful transaction, the solution notifies the application of the event 

occurrence. 

 

To resume the call, another renegotiation procedure takes place, but enabling two-way 

media streaming once again[73]. 

4.1.8. Messaging flow 

 

Since chat relies heavily on presence, chat functionalities have been disregarded at this 

stage, having been left to a future iteration of the solution. Nevertheless, just like a call flow, a chat 

session flow follows a very similar path. These sessions intended for messaging, a mode called 

Session-Based Messaging[74], are just alike call sessions, but use different media exchanges – 

instead of RTP, MSRP (Media Session Relay Protocol) would be exchanged. In case of a SIP 

MESSAGE request (or Pager-mode messaging[75]), the flow would suffer some differences. 
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Figure 35 – Pager-mode message flow example 

 

In this case, a chat session wouldn’t be created: only the message sent by the sender would 

be delivered - Figure 35. A web client would send his message via the API, being forwarded 

accordingly until reaching its destiny. Upon successful arrival, the endpoint would respond with a 

200 OK, forwarded to the sender, notifying of its delivery. This is the approach taken in this 

solution to exchange both textual and rich messages. 

4.1.9. Notification flow 

 

The default notification mechanism is based on a Webhook[64] approach, where the client 

specifies an URL where he wishes to receive information For instance, a messaging application 

triggers the flow in Figure 36 upon sending a new message. 

 

 

Figure 36 - Webhook notification flow 

 

An HTTP POST, from the third party application to the API, is sent (1) specifying the 

message body, address, among others, and the notification URL. The solution then responds with 

an HTTP 201 (2), stating that it has created the message. Upon sending the message, the solution 

responds with an HTTP POST to the given URL with information stating that the message has 

indeed been sent to the desired party (3) and the application responds with a 200 Ok, for example, 

stating that the message has been received. The user can also choose to use the long-polling 

notification handler instead, retrieving queue messages and generating the flow in Figure 37. 
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Figure 37 - Long-polling notification flow 

4.2. Portal 

 

Made using Java and the Struts 2 framework for web application development, the Portal, 

depicted on Figure 38, was implemented from scratch to fit the needs of this dissertation for a 

backoffice supporting user, developer and application management, through administrative control. 

Several features are exposed, among the user groups supported. Developers are able to register in 

the platform, publishing applications and consulting their statuses. Both requests (developer and 

application registration) must be approved posteriorly by administration, grating authorization to 

use the solution. Administrators may also register applications (referred to as “administrative 

applications”, which are not seen by developers or users in the marketplace) – a concept created for 

those applications that wish to use the user provisioning API.  

 

 

Figure 38 - Portal's screenshot 



Solution proposed | 4 

 

62 

Similarly to VaaS’ modules, the portal is composed of 4 main ones (depicted on Figure 39) 

that enable all the features discussed, each responsible for its own set of functionalities: 

 

 

Figure 39 - WTE Portal's components 

 

 Models – this is a component where all the classes used are established. Here one can see 

what a user or application object is composed of, among other details; 

 REST – the component where the User Provisioning API logic can be seen, exposing all 

the methods available and the logic through which the received data goes; 

 Struts – all the logic that forms the web application itself, such as button actions or page 

routing, is established in this package; 

 Utils – certain global functions are needed by the application, such as login validation and 

database access. These functions can be consulted in this component. 

 

Although almost all of the portal’s features have been successfully implemented, there are 

still some functionalities missing, considered of lower priority – mostly user-centered features. For 

instance, user accounts have been left simplified, with no place for personal information such as 

names or dates of birth - as a result, mechanisms for account detail edition are also missing. 

Developer opt-out (enabling a developer to delete the account) and work groups, where many 

developers share responsibility for the same application, have not been implemented and neither as 

activity logging. Thus, dashboards are kept very simple, with room for improvement.  

Some features that were not in the initial plan were implemented, such as the 

administrative applications and application registration by an administrator. This was done due to a 

growing need to separate applications using the above API and applications from third party 

developers, which should not use this API in their actions. The API itself is a crucial part of the 

solution, enabling an operator to register a new user in the solution. 
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4.2.1. User Provisioning API 

 

The user provisioning API exposes CRUD operations regarding network users, enabling 

their provisioning in order to use the services provided by the solution. Similarly to the OneAPI 

layer referred above, the documentation for this API can be seen in annex C). An example on user 

creation can be seen in Snippet 2, where a user may be created by sending a request to the API with 

the depicted parameters, in either JSON or XML. 

 

 

Snippet 2 - Example user creation body 

 

In this case, the “impu” parameter refers to the users’ email and the “msisdn” to its token. 

The MSISDN (Mobile Subscriber Integrated Services Digital Network-Number) is a random 

number, operator generated, which identifies a subscription in a network and, since this API is 

directed towards operators, was considered for replacement, predicting posterior compatibility 

issues.  

The API was kept simplified, much alike the portal, with the focus being on delivering 

voice and messaging features, with less attention on portal functionalities. As such, more attention 

was given to its workflows (developer and application management, analyzed over the next 

sections) and basic storage needs, than complex user interactions. 

4.2.2. Developer registration 

 

The developer registration procedure is separated into two different flows, depicted in 

Figure 40 and Figure 41. First, a developer lands on the page and request an account in the 

platform. 

 



Solution proposed | 4 

 

64 

 

Figure 40 - Developer registration (user side) 

 

 Afterwards, administration will receive a notification, warning it of pending requests. At 

this point, the decision will be made on whether to accept the developer or deny its registration. 

 

 

Figure 41 - Developer registration (administration side) 

 

Although not an implemented feature, either event would result in the sending of an e-mail, 

welcoming the user and guiding it in its first steps or explaining why the registration request was 

denied. 

4.2.3. Application submission and approval 

 

Application submission and approval follow a procedure similar to any mobile marketplace 

submission like Google Play’s, as seen in Figure 42. 
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Figure 42 - Application publishing request 

 

As developers enter a page of the platform dedicated to application submission, they are 

asked to fill in a form, writing the application’s name, description and URL. After this has been 

properly filled, a notification is sent to administration, warning them of the pending request. After 

this, the administration is responsible for approving or rejecting an application based on its 

description. 

4.2.4. Application suspension 

 

Application suspension can come from failing to abide by terms of service. With 

administration watching for reported issues regarding applications and their usage of the network, 

they may choose to disable an application from using network resources via their dashboard. 

Administration must be able to identify the reported issue and uncover its cause. If it is breaching 

terms of service (and creates any of the behaviors specified in Figure 43), the administration may: 

 

 

Figure 43 - Application suspension flow 
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a) Send a notice to the application’s team, warning them of the reported issue and giving them 

time to correct it. The team may respond to the notice, justifying the problem and/or asking 

for more time, delaying the process – a decision that is left to the administrator; 

b) If the issue is recurrent during the time-frame of the correction process, the user will be 

notified that the process is underway; 

c) If the issue is recurrent then the decision of suspending the application is left to the 

administrator: if the events are scarce, a notice to the team should suffice; if, on the other 

hand, the problem is reported by a number of users, the application should be disabled. 

 

The disabling of the application will be, effectively, revoking the given token. This will 

prevent the application from authenticating and will force the request of a new token. 

4.3. WebRTC 

 

WebRTC support comes by the integration of two crucial WIT components: the WebRTC-

to-SIP gateway and WebRTC Communicator (WWC) which is composed of client and SDK. Being 

WIT Software products, these were not purpose-built, having modifications been made to fit WTE 

needs. WIT’s WebRTC Communicator is a browser softphone, implemented using HTML5 and 

Javascript, supporting an array of communication features such as audio and video calls (using 

WebRTC) to SIP endpoints or other WWC users, chat messaging with file transferring and image 

sharing support. These are just two of the most relevant examples of the many features the client 

supports. The client itself is compliant with GSMA’s Rich Communication specifications[76] and 

provides an SDK which can be shared among developers wishing to create applications supporting 

these types of telecommunication capabilities. The WWC connects to the WebRTC-to-SIP 

gateway, which itself is made in Java and connects to the network’s P-CSCF to enable all the 

communication features. 

4.3.1. OpenIMS modifications 

 

Certain modifications had to be made to the IMS core in use, in order to support the 

WebRTC-to-SIP gateway and WWC client. Although this behavior is configurable, the gateway 

supports +351<number> contact formats and these number formats are forwarded to break-out 

servers in the OpenIMS core. Since no break-out server was integrated in the solution, the call 

would fail. As such, this call forwarding feature was disabled. Additionally, OpenIMS is very strict 
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on the format of the messages it accepts - if they are not “well-formatted”, at least from a core 

perspective, they are automatically discarded. This happened when using the gateway and client – 

messages featured a port number next to the SIP address (“sip:name@domain:port”), not accepted 

by the server. As such, these addresses had to be cleaned in order to proceed. 

4.3.2. User interface 

 

In order to better understand how the features and modules are used, Figure 44 is shown. 

Here, one can see the clients chat interface, where several elements should be emphasized: 

 

 

 

Figure 44 - WWC chat interface 

 

 

 On the left, the users’ address book is shown, where contacts are stored; 

 Stickers and emoticons can be selected on the right, also being available by shortcuts in the 

chat fields; 

 The chat timeline can be seen in the middle, with two files being represented – an image, 

shown as a thumbnail (may be seen entirely on click) and a file that can be immediately 

downloaded; 

 On the bottom right, one can see a popup, generated when the client received the last 

message. 
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Some messaging features, however, had to be implemented specifically for the WTE 

solution, in order to support its messaging requirements. In order to process a SIP MESSAGE 

request made from the AS to the WWC, certain modifications had to be made to the client and 

SDK, since messaging was only originally available through Session-mode messaging (with a 

MSRP session established). These modifications, made in Javascript and affecting the processing 

of SIP MESSAGE requests, allowed the application to process plain text messages and rich 

messages (containing vCards and base-64 encoded JPEG image files), while maintaining chat 

messaging between clients. 

4.3.2.1. Plain text processing 

 

The SDK implements logic for addressing different SIP requests in a different manner. As 

such, modifications were made to the actions taken, by the system, upon receiving a SIP 

MESSAGE request. Whereas previously the client did not support pager-mode messaging, as 

referred above, these modifications now allow the client to process the textual content of the 

request, showing it in the clients’ chat interface. This allows pager-mode and session-mode 

messaging to work seamlessly, from a users’ perspective, a detail that is crucial when designing a 

clean, simple interface. 

4.3.2.2. Rich content processing 

 

A rich message, coming from the AS, will have a content-type such as “text/vcard” or 

“image/jpeg”, containing the file’s metadata which will either be textual (in the vCard case) or 

encoded (in the JPEG’s case). As such, rich message processing followed a similar route to the 

processing done in the previous topic. In addition for interpreting their content, SIP MESSAGE 

requests are inspected for their content-type. Posterior processing depends on the result: 

 

 If the content-type received is “text/vcard”, the SDK will parse the metadata, retrieving a 

specific set of fields (name, telephone, email, workplace and location). Afterwards, an 

event, that would otherwise be a user action, is triggered – creation of a new contact in the 

clients’ address book (Figure 45); 

 If the request contains an “image/jpeg” content-type, the SDK will decode the content and 

show the image as a thumbnail in the clients’ chat timeline, also making it available for 

zoom-in. 
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Both these actions allow for posterior download of the file sent and were both created 

specifically for this API use-case. 

 

 

Figure 45 - Contact creation event on the WWC 

4.4. Third party application 

 

Again, taking on the reference architecture shown above on Figure 24, one can see several 

components that enable all the desired functionalities and the interactions between the third party 

applications and the network. An application will be typically composed of 2 core elements, as 

depicted in Figure 46 - a component that will handle third party call controls and one that will 

enable WebRTC features. A final, optional component is its own REST API for notification 

retrieval.  

 

Figure 46 - Third party application architecture 
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All components on Figure 46 have their own very distinct responsibilities: 

 

 The 3PCC (Third Party Call Control) component will be responsible for sending requests 

to the solution’s API, triggering all the desired events – from call placement to messaging; 

 For first party call controls, the WWC will be used, communicating with the WebRTC-to-

SIP gateway. This is essentially a client, with a proprietary SDK used to develop the 

application. Again, these components were not developed in this solution, although certain 

features in the SDK and client were implemented in order to create this dissertation’s proof 

of concept (the pager-mode messaging features via SIP MESSAGE); 

 Finally, the application’s API will have the sole responsibility of receiving notifications 

from the AS. If such is not implemented, a mechanism for long-polling is also available for 

applications to retrieve incoming notifications. 

 

This architecture is for an example application nonetheless; if, for example, the developer 

wishes to only focus on a web application that can trigger 3PCC functionalities, the WebRTC 

component would not be used. 

4.5. Chapter summary 

 

Throughout the implementation phase, as features gained form and with the decision of 

using VaaS as the baseline and the OneAPI as reference API model, certain changes to the 

requirements were made to the AS. Almost all of the planned features were implemented, from call 

control to notifications and authorization/authentication (user/application authentication and 

authorization was completed). Conference calling is also implemented at this stage, as well as a 

long-polling mechanism, giving a developer a fallback mechanism for notification retrieval, 

enriching the application and possible use-cases. Developer authentication and the retrieval of 

application descriptions were first planned but posteriorly discarded. API statistics, billing and 

presence services also remain unimplemented at this stage. This is due to their priority, with focus 

being deviated to more important functionalities. 

Additionally, certain limitations should be noted. With VaaS’ media layer relying on 

deprecated methods and with the server only supporting the G711 codec at this time, errors may 

occur if the configured call hold music does not follow very specific conditions – encoded in G711, 

with 16 bits and 8000Hz. Errors take the form of internal errors, with media not being played, or 

reproductions at very low sound levels.  



Solution proposed | 4 

 71 

Signalling wise, there are also some limitations that exist, were if one client disconnects the 

BYE message is not forwarded to the other parties. This decision was made due to the OneAPI 

specification of appending the call to the server, having been decided that the server would only 

maintain a B2BUA stance and not proxy requests.  

 Focusing on the portal, as referred before, most of the features planned were implemented, 

as well as the features for the WWC client. This client is also able to display vCard handling in a 

manner not planned initially, which is seen as a positive decision in terms of user experience 

(presented in 4.3.2.2), contributing to the WWC project.  

In short, the decision of using VaaS, the WebRTC-to-SIP gateway and WWC client for 

bootstrapping the solution is seen as a positive one, resulting in a more advanced, stable and 

feature-rich proof-of-concept, with room for evolution. 
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Chapter 5 

 

Evaluation and results 

 

A software evaluation strategy will detail, from a high-level perspective, how testing will 

be approached during this dissertation’s development, including what types of tests should be done 

and their priorities, alongside the different levels of testing that have been planned. These tests will 

be used to study several system characteristics, such as performance under load, delays, mouth-to-

ear delay, among many others metrics. System performance is crucial and will affect how well the 

solution responds to requests made, affecting overall quality of service (QoS), from call setup times 

to the delivery of messages in due time. As such, the system must be able to handle increasing 

workloads, all the while maintaining a stable environment for user interactions. With this concern 

in mind, the network components in use and the architecture planned (from a high-level view) must 

be analyzed, identifying possible bottlenecks which could eventually limit the amount of calls that 

the system would be able to handle. Its performance will be influenced by different details, such as 

the implementation of the components themselves. 

System monitoring is also a concern that should be addressed. Performance indicators 

(KPI, short for Key Performance Indicators), could be used to monitor the system and make 

scalability decisions – one could implement a mechanism that, upon monitoring an above average 

load on the system, would trigger the deployment of another node, resulting in better load-

balancing of incoming events. Additionally, and from a call perspective, analytics could be made 

available to the clients allowing them to dynamically renegotiate codecs when the quality of a call 

degrades. Parallel to these indicators (events for second, bandwidth, among many others), are 

aggregate metrics such as Calls Per Second (CpS). Due to softphone to WebRTC calls possibly 

needing to go through transcoding, performance and call quality might be affected in these 

scenarios, due to the processing demands required. To analyze this issue, mouth-to-ear delay tests 

were made in addition to load-testing studies to assess the solution’s performance.  

Load-testing will be used to simulate multiple and concurrent access to the solution’s 

features by users. This testing is designed to ensure that the system is able to cope with numerous 

concurrent calls in an efficient manner, consequently testing its scalability and how it behaves 

under load. In this testing scenario, care should be taken into analyzing how delay increases the 

setup of new calls sessions and if requests are lost. Bottlenecks in the system could also be 

identified - for instance, if the API becomes a bottleneck or if the solution’s SIP layer is not able to 

cope with incoming requests. To this end, multiple tools may be used, such as MTS[77] or 
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SIPp[78] which help load-test the platform by generating SIP traffic and The Grinder[79] or 

Vegeta[80], used to load-test the API. These types of test cases are of great importance to this 

dissertation, providing feedback on its quality and possible weaknesses that should be promptly 

mitigated. 

On the other hand, mouth-to-ear tests are designed to assess performance on an audio 

transmissions level, measuring the time it takes for a callee to listen to the words spoken by a caller 

– higher delays lead to client-side difficulties, with callers losing the sense of real-time 

communication as audio gets delayed across the network. To test this scenario, an approach will be 

defined using the Audacity audio tool[81], which enables audio manipulation to fit a number of 

needs. With this test-case, the components which add more delay to communication will be 

identified, measuring how they impact the platform and if the platform itself is efficient enough to 

fit this dissertation’s needs. 

5.1. Testbed description 

 

This topic provides an overview on the hardware components used in the server and client 

machines, as well as software versions in use and possible component configuration. Although a 

full description may be seen in annex F), a few of the main characteristics will now be described. 

The server machine, where IMS core, AS and gateway will be deployed, has an Intel Pentium dual 

core processor with three gigabytes of memory, running an Ubuntu operating system. The client 

machine, where test clients will be deployed, has a more powerful Intel Pentium dual core 

processor with eight gigabytes of memory, running a Windows 7 operating system. Both machines 

have physical connections established to a local network, diminishing external constraints that 

might influence the results.  

Due to restrictions on the hardware currently available, the following components were 

executed in the server machine: 

 

 OpenIMS core (R1186) and Sippy RTPproxy (v1.2.1), along with all the databases; 

 Apache Tomcat (v7.0.29) and Mobicents (v2.0.0), using Sun’s JVM (v1.6.0_45) with no 

default configurations changed; 

 AS (R3603) and WebRTC-to-SIP gateway (v3.7). 

 

Since the test machine had enough physical memory to handle the components, this was 

not regarded as a bottleneck. OpenIMS modifications also had to be made, disabling logging and 

increasing child processes available to the components, to maximize server throughput (annex G) 
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contains such modifications). The reasoning behind this decision lies on logging being a very 

expensive writing operation, which greatly affects performance. 

The SIP testing tool used was MTS (Multi-protocol Test Suite[77]), with the test scripts 

developed following the asynchronous model described in its users’ manual[82]. The software ran 

on Sun’s JVM configured with one gigabyte of memory and several default proprieties were 

modified from their default values (seen in the H) annex). MTS is a very feature rich tool, able to 

simulate SIP requests and RTP flows, providing metrics and graphs relating to the gathered data, 

display request/response delays, transaction duration, among many others. However, it requires a 

substantial amount of processing power and a particular bug was noticed during the tests: in certain 

cases, SIP transactions were not correctly closed, resulting in statistics revealing missing BYE’s. 

To mitigate this issue, a customized Python script was used to parse the logs and confirm the 

results. 

5.2. Call throughput 

 

The objective of these tests was to evaluate the performance of the solution handling 

common operations performed by endpoints, focusing on calls only. Firstly, a strict IMS-only 

signalling test was made, to establish a baseline with a scenario based on call invites. The second 

test was based on the previous scenario, but with media exchange enabled via a media proxy, 

increasing performance requirements to handle all transmissions. In the third test-case, the media 

proxy was discarded and the AS was used, a scenario design to test the AS’s ability to handle 

intensive and concurrent user actions. The fourth and final test-case is based around the WebRTC 

support, testing the impact it has on the platform.  

Across all tests, certain default parameters were established to ensure consistency in the 

results. Before conducting the tests, clients were previously registered in the network and call 

establishment was set to 3 seconds, while call duration was set to 30 seconds. Therefore, the 

maximum number of simultaneous calls (SC) in the tests can be calculated as 𝑆𝐶 = 33 ∗  𝐶𝑃𝑆 

(Calls Per Second, the rate at which the scripts will generate new calls). 

5.2.1. IMS signalling 

 

This test was made with only the IMS core deployed on the server, aiming to understand 

the signalling capacity of the core. Baseline values were established and will be used for comparing 

the results gathered when the other components are involved in the communication. 
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Call parties (both “callers” and “callees”) were simulated using MTS scripts. Two users 

were created on the core’s HSS and registered before each test with an expiration interval larger 

than the test duration. The number of clients connected is not relevant, since having the clients 

registered is virtually inexpensive and call establishment is not impacted by having several calls 

between the same clients. For each test, the scripts executed the steps in Figure 47 continuously. 

 

 

Figure 47 - Default script steps and signalling flow 

 

The test scripts were executed multiple times, with different CPS, revealing how the server 

behaved when faced with theses variations. Figure 48 - Figure 51 reveal how the solution behaved, 

in terms of response delay, to a 165 to 660 simultaneous call variation. These delays (measured 

between the sending of an INVITE and receiving of a 200 OK) are gathered and reported by MTS, 

with each graph corresponding to the results of an individual test (chosen for reflecting an average 

scenario after a certain amount of testing). 
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Figure 48 - Call establishment times at 165 SC (signalling only) 

 

 

Figure 49 - Call establishment times at 330 CS (signalling only) 

 

 

Figure 50 - Call establishment times at 495 SC (signalling only) 
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Figure 51 - Call establishment times at 660 SC (signalling only) 

 

Response times cannot be lower than 3 seconds, since this is the delay introduced between 

‘Ringing’ and ‘Established’ states. As such, the added delay at this call rate is considered 

acceptable. Increasing SC value results in growing response times and, consequently, delay - for 

instance, at 660 SC the increase in average delay is ~15.95 seconds (from 3.05 to 19 seconds).  

Additionally, certain spikes can be seen in the delay, increasing and especially noticeable 

in the end of Figure 49 and beginning of Figure 51. These are attributed to the allocation of more 

memory by MTS, as the software demands more resources in order to process all the information. 

Although delays increase as SC values become higher, as long as the delay remained lower than the 

request timeout time, calls would still be able to be established, even though this is an unacceptable 

scenario for client communication purposes (due to the increasing call setup time). 

At its best, the IMS core was able to handle 330 SC without errors for 2min, for an 

approximated total of 1200 calls made. Response times were overall stable during the entire test 

duration, as were CPU load and memory occupation. Additionally, at this level, the core was able 

to handle all requests in the same approximate delay, as represented by the stronger bar in Figure 

52. 
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Figure 52 - Call establishment time distribution, in seconds (330 SC, signalling only) 

 

One can see a remarkable difference it constitutes when comparing these results to the 

results in Figure 53, with the rate set to 660 SC. 

 

 

Figure 53 - Call establishment time distribution, in seconds (660 SC, signalling only) 

 

Whereas in the first, all requests where responded in the same approximate delay, here 60% 

where answered in an average ~19 seconds and 40% with an average delay of ~25 seconds. This is 

caused by increased MTS processing time and effort to deal with all the transactions, due to the 

amount of messages received server side, making it the bottleneck in this scenario. 
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5.2.2. IMS signalling and RTP exchange 

 

More than just signalling, audio calls involve (among others) RTP exchange and possible 

communication with networks AS’s. Thus, before testing API or WebRTC performance, different 

test sets involving media exchange or AS deployment should also be executed, since both may 

hinder server performance. However, both these tests are not applicable in the current scenario. 

Firstly, the core’s P-CSCF does not relay media, serving merely as a signalling proxy. As such, 

media is exchanged in a peer-to-peer manner, not adding load to the core. Secondly, since the AS 

triggers its own events, initiating the sessions and remaining on the signalling path, the core does 

not interact with it in first-party calls. Simply deploying the AS on the server will only consume 

memory, not interfering with the server’s performance – incoming requests will not be forwarded 

to the AS. In order to properly define a baseline performance value for the first case, a different 

approach must be taken. The AS will act as a media bridge when tested, with parties establishing a 

media stream with the server and exchanging data. As such, a similar scenario will be mapped in 

this case, deploying an RTP proxy (Sippy RTPproxy[83]) which will act as a media bridge for all 

communications. This will generate the flow in Figure 54, testing signalling and media handling 

performance. 

 

 

Figure 54 - RTPproxy signalling flow 
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An error was uncovered in the P-CSCF when deploying the RTPproxy and enabling its 

usage. During calls, the RTP ports exchanged in the SDP would be changed to those allocated by 

the proxy, but the IP would remain the same, breaking communication. The issue uncovered and 

the modification applied can be seen in annex I). Having fixed the issue, the P-CSCF began to 

properly change the SDP to the IP coming from the RTPproxy, enabling media relay. For this test 

case, the MTS tool simulated a G711 stream, with the encoded audio consisting of packets with a 

160 bytes payload sent every 20ms (50 packets/s). As in the scenario above, testing was executed 

multiple times, with Figure 55 - Figure 58 revealing how the solution behaved with different SC 

rates. 

 

 

Figure 55 - Call establishment times at 66 SC (signalling and RTP) 

 

 

Figure 56 - Call establishment times at 99 SC (signalling and RTP) 
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Figure 57 - Call establishment times at 132 SC (signalling and RTP) 

 

 

Figure 58 - Call establishment times at 165 SC (signalling and RTP) 

 

Analyzing Figure 55 - Figure 58, one can see similarities between them, as they show that 

average response delay is maintained at ~3.15 seconds. However, this does not reflect reality since, 

above a rate of 99 SC, the test reveals that calls are lost – 0.33% of the calls at 165 SC, 1.02% at 

198 SC and increasing. Delay may remain similar, but requests are lost. This result is unacceptable 

for a communication system, where reliability is a key factor. The reason for the lower rate and 

calls lost lies on the MTS, which cannot handle all the signalling and media streams, due to 

hardware limitations (as seen in Figure 59 and Figure 60). 
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Figure 59 - MTS response time, in seconds, at 99 SC 

 

 

Figure 60 - MTS response time, in seconds, at 132 SC 

 

As such, 99 SC was established as the baseline rate the server can handle, resulting in 360 

calls made in 2 minutes. Again, at this rate, the server was able to handle all requests in the same 

timeframe, as seen in Figure 61. Even though some delay spikes may be seen in this figure, 

similarly to the previous test case, this was seen as not affecting performance at this CPS rate. 

Again, the cause of these spikes is MTS, with Java acquiring more resources from the system. 
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Figure 61 - Call establishment time distribution, in seconds (99 SC, signalling and RTP) 

 

5.2.3. AS 

 

This test set was made with the IMS core and AS deployed on the server, with calls being 

triggered by the API to registered users. Similarly to the previous test-case, resulting values will be 

compared with the baseline established in the previous test scenarios, analyzing how server 

performance as been affected. 

Again, test clients (“MTS Responders”, as referred in Figure 62) were simulated using 

MTS scripts, with default values applied (call establishment was set to 3 seconds and call duration 

to 30 seconds). The tool used to stress test the API, represented by “Loader” in the same figure, is 

Vegeta[80]. A very simple tool to use, it provides a number of interesting functionalities, such as 

request rate and test duration parameterization, with methods for retrieval of delay metrics, among 

many others.  

Again, two users were created on the core’s HSS and registered before each test with an 

expiration interval larger than the test duration. For each user, the scripts executed the steps in 

Figure 62 continuously. 
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Figure 62 - API signalling flow 

 

Similar to the previous test-case, upon INVITE acceptance by the MTS script, a G711 

stream is generated, following the same parameters: encoded audio consisting of packets with a 

160 bytes payload sent at a rate of 50 packets/s. The test was executed and again, the results 

gathered indicate that MTS was the bottleneck. When going from 99 SC to 132 SC, the delay 

increase was such that calls were lost, as depicted in Figure 63 and Figure 64. 

 

 

Figure 63 - MTS response time, in seconds, at 99 SC 
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Figure 64 - MTS response time, in seconds, at 132 SC 

 

The MTS approach taken thus far could not be replicated in this scenario, since INVITEs 

were not being made by the MTS tool and responders were not talking directly to each other 

(establishing a connection to the server in this case). Consequently, delay graphs like the ones 

shown before could not be generated.  In order to mitigate this issue, logging was enabled in the AS 

and additional log messages (such as the one depicted in Snippet 3) were implemented when 

sending an invite and receiving a response. The first three sections of the message are not relevant 

for these results, but the rest of the message reveals all necessary information to calculate signalling 

delays, divided by hyphens - the first section (“Invite sent”) reveals the SIP request’s method, the 

second the call identifier associated with the request and the third a timestamp down to the 

microsecond. Logging was then captured, stored in a separate file and a custom python script was 

made to parse the file and calculate minimum, maximum and average delays of the featured calls 

(represented in microseconds).  

 

 

Snippet 3 - Call logging in the AS 

 

At 99 SC, the results were as follows: for a total number of 720 calls, the mean average 

delay was 138 ms (from a minimum of 115 ms to a maximum of 506 ms). The delay cannot be 

inferior to 0.1 seconds (or 100 ms), since this is the waiting period established by the MTS tool to 

respond to an INVITE request with a TRYING response. When comparing this to results seen 

before, in Figure 56, one can see the similarities of the results, as at a similar level of load, the AS 

behaves much like the RTPproxy.  
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API response metrics such as mean and maximum delay were also retrieved from Vegeta 

after the tests, showing an average latency of 28 ms at 99 SC (to a maximum of 740 ms) and an 

average latency of 45 ms at 132 SC (to a maximum of 1.25 seconds). 

In short, although the API may have been slower at times to respond to incoming Vegeta 

requests, signalling behaved correctly. More tests could have been made if more powerful 

hardware was available for the testing machine. 

5.2.4. WebRTC and AS  

 

One final test-case should be made to the WebRTC support, using the gateway and WWC 

client in conjunction with the AS, to see how the different interactions affect platform performance. 

Although the WebRTC components were not developed for this dissertation, an end-to-end stress 

test is relevant due to the interactions made between the WWC client, gateway and IMS network.  

By itself, the WebRTC support will not put extra-strain on the AS, since it would only see 

endpoints - the impact a WebRTC client makes on the AS is no more significant than any other SIP 

endpoint. However, more memory and processing power would be used in the server, since the 

gateway would also be deployed, alongside all the other components. Demands such as transcoding 

are non-existent in this case, lowering processing demands: the AS only supports the G711 codec, 

which is also supported by the browser itself (Chrome supports this codec along with OPUS and 

VP8, among many others)[84]. Load-testing the WebRTC support will take a different approach 

from the one taken thus far, depicted in Figure 65, since several conditions are in place – from 

WebRTC needing browser capabilities for media device usage to user actions needing to be 

mimicked in other to produce automatic tests (client heavily rely on user interactions). 

In order to mimic the user actions needed to answer calls, a purposed built WWC test client 

will be used, registering N different clients in the IMS to answer all incoming calls. This test client 

will run on the client’s machines browser, thus enabling the capture of local media. An obstacle 

may immediately be envisioned, with the browser very likely becoming a bottleneck, will all the 

media connection established and demanded resources. A similar workflow as the one in the 

previous test-scenarios will be recreated: MTS will be responsible for triggering API calls to an 

answering MTS script and to the WWC client, placing N calls. MTS will be used instead of 

Vegeta, due to the need to dynamically change the requests made to the API to call each of the 

registered WWC users. 
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Figure 65 - WebRTC load-test approach 

 

Load-testing the solution in this scenario was made and, at first, the browser became a 

bottleneck at around 20 concurrent calls, with call acceptance being delayed until other ongoing 

calls were terminated. Not an unforeseen obstacle, the chosen approach had to be tweaked due to 

Chrome’s limitations, with clients being executed from two different Chrome browsers to increase 

the number of concurrent calls (due to hardware limitations, more clients were unavailable). The 

same test was done re-done, with only 10 clients being registered in each browser, and the results 

achieved reflect what has been seen thus far. 

 

 

Figure 66 - MTS response times (20 concurrent calls) 
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As shown in Figure 66, even though MTS response times seem low, they are increasing 

rapidly, reflecting what has been seen thus far across the previous test-cases. Although SIP 

exchange delays remain in very satisfying intervals at this level, this increase already gives the 

indication that MTS will most likely become a bottleneck in more intense scenarios. With hardware 

limitations forbidding higher call rates and the analysis made, the SC value considered for this case 

will be 99 SC, similarly to the previous test. 

5.2.5. Test results summary 

 

Due to the restrictions imposed during this test phase, in terms of hardware limitations, 

more intense performance testing was not made – higher simultaneous calls or test durations would 

be factors that might wield more in-depth results. Although not reflecting the components real 

capabilities and not allowing the search for more accurate bottlenecks, the tests made already 

feature a level of insight to the components behaviour under load, abiding by the non-functional 

constraints referred in the beginning of the chapter.  

 

Table 2 resumes the findings of the performance tests, expressed in number of 

simultaneous calls. 

 

Test Results 

IMS signalling 330 

IMS signalling and RTP 99 

AS 99 

WebRTC and AS 99 

Table 2 - Performance test results summary 

 

5.3. Mouth-to-ear delay 

 

In addition to load-testing, inquiring whether performance becomes an issue under 

substantial amounts of user actions, mouth-to-ear delays were also analyzed in the different 

scenarios. This call quality metric reveals voice latency within a call, i.e., the timeframe between a 

word being spoken on one end of the call and being heard on the other. A multitude of factors may 

interfere with this metric, from network quality to server/client implementation and audio 

conversion. 
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Using a tool called Audacity[81], with a configuration inspired by articles where similar 

test-cases were done[85] and its own manual, the default testing approach depicted in Figure 67 

was followed. 

 

 

Figure 67 – Mouth-to-ear test configuration 

 

In this approach, Audacity is executed in the server machine, alongside all other network 

components (OpenIMS, WebRTC-to-SIP gateway and RTPproxy, among others). Two connections 

were established between the server and both caller/callee:  

 

 One where the server’s headphone jack and the caller’s microphone jack (either X-Lite 4 

or, in WebRTC scenarios, WWC) were connected via a male-to-male line; 

 A second one, where the callee’s (Snom 821) sound-out was connected to the server’s line-

in. This was done by taking a normal 4P4C cable, that would otherwise connect a headset 

to the telephone system, and soldering both microphone and sound lines to two separate 

headphone jacks (mono, 3.5 mm). 

 

To start the test, a call would first be established between both parties. Audacity then 

played a pre-recorded media file (containing a total of 31 sound pikes) which would feed the 

caller’s microphone and, in parallel, also record the sound being received by the callee. This would 

enable a direct comparison between the time a sound was made, in the media playback, and the 

time the same sound was received.  
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Following the same analysis featured in the performance testing, the first test made was a 

peer-to-peer call, establishing a baseline for comparison, with posterior tests incrementally adding 

solution components to see on these impacted audio transmissions. 

5.3.1. Peer-to-peer call 

 

This test, made with only the IMS core deployed on the server, serves as a baseline for 

average delay between client calls (Figure 68).  

 

Figure 68 - Peer-to-peer test configuration 

 

After being fully established (both clients have accepted the call), the actions referred 

above were executed – media playback to X-Lite’s microphone, in parallel to Snom microphone 

recording. This test scenario led to the following results: 

 

 

Figure 69 - Peer-to-peer audio comparison 

 

 

X-Lite 4Snom 821

Server

Mic-in Sound-out

Sound-out Mic-in

Media exchange



Evaluation and results | 5 

92 

The top axis in Figure 69 represents time in 5 ms increments, with the original media file 

being the audio track on top and the recording at the bottom. As one can see, the first spike in the 

original track began at approximately 1 second, whereas the first spike in the recording only began 

at 1.25 seconds – a difference of approximately 250 milliseconds. This is a very significant delay 

which, according to ITU’s recommendation on one-way transmission times[86], may result in only 

a satisfactory call experience, falling under a “Users satisfied” level of acceptance – ITU 

recommends a delay of 150 ms and establishes an upper bound at 400 ms. This 250 ms delay may 

be a result of the network configuration or bandwidth, codec delays or sound acquirement by the 

devices, but is unrelated to any of the WTE solution components, since these were not deployed 

nor used in this test. As such, this test result will be used as a baseline in the following tests.  

5.3.2. RTPproxy call 

 

After deploying the RTPproxy in the server, this test will now trigger a significantly 

different flow from the one above, with media being relayed by this proxy to the call participants, 

as represented in Figure 70. 

 

Figure 70 - RTPproxy test configuration 

 

Figure 71 represents the captured media, with the original audio file being again on top and 

the recording below. 
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Figure 71 - RTPproxy audio comparison 

 

As in the scenario above, the first audio spike featured in the original track starts at about 

the 1 second mark but, in this case, the first spike in the recording appears at approximately 1.255 

seconds. A difference of 255 ms, an added 5 ms when comparing to the previous test result, this is 

a possible consequence from the media bridging established or the proxy’s own implementation. 

5.3.3. AS call 

 

In this test, a call was triggered by the API to both parties, with connections being 

established between the clients and the AS, where media is exchanged during the call session – i.e., 

audio relay is made in the AS. The results achieved in this case can be seen in Figure 72. 

 

 

Figure 72 - AS audio comparison 

 

Here, the first spike in the call recording appears at 1.26 seconds, for a total difference of 

260 ms (considering the original track). As one can see, the AS behaves well in this realm, with its 

performance comparable to the RTPproxy’s. 

5.3.4. WebRTC calls 

 

The first part of this test is composed of an end-to-end scenario where a call is established 

between the WWC client and the Snom phone, exposing the gateway’s influence amidst the media 

path. The results can be seen in Figure 73. 
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Figure 73 - WWC audio comparison 

 

As one can see, the first spike now starts at around 1.28 seconds, 20 ms’s more than in the 

previous test case or a total difference of 280 ms from the original audio track. The second part of 

this test features a scenario that involves not only the WWC client, but the AS as well, with Figure 

74 representing its test configuration. 

 

 

Figure 74 - AS/WWC test configuration 

 

When comparing this previous test result to this test, where the AS is involved for media 

relay, one can see that the first spike (in Figure 75) is triggered at around 1.29 seconds, meaning 

that the AS added a 10 ms delay, minimally impacting the solutions performance in terms of audio 

transmission. 

 

WWCSnom 821

Server

Mic-in Sound-out

Sound-out Mic-in

WTEAS GatewayMedia exchange Media exchange

Media 
exchange



Evaluation and results | 5 

 95 

 

Figure 75 - WWC/AS audio comparison 

 

At an average delay of 290 ms, performance is placed near ITU’s “Some users dissatisfied” 

level, which has its lower-bound reference value set to 300 ms. 

5.3.5. GSM calls 

 

This test was done in order to establish a baseline comparison between the normal behavior 

for a traditional GSM (Global System for Mobile) phone call and a call made using the solution 

developed in this dissertation. The approach taken, depicted in Figure 76, was similar to the ones 

seen on the peer-to-peer test-case, with a sound-source playing the original audio, which is 

captured by the caller’s speakers and sent to the callee. The transmitted audio is captured by the 

server’s microphone, coming from the callee’s loud-speakers. Again, no server component such as 

IMS core or WTE solution was used; this test-set was strictly made using smartphones registered to 

operator’s networks. Although this difference resulted in a certain echo on the recording, along 

with some delay from the caller’s speakers when acquiring the sound, this allowed for easy capture 

of the transmitted audio: 

 

Figure 76 - GSM test configuration 
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The first test, depicted in Figure 77, was made between two different smartphones, 

functioning in the same operator and in GSM-mode. In this scenario, results showed that delay is 

situated near the 300 ms level (the difference between the start of the “signal generated” and the 

“signal sent”). As one can see by the difference between the start of the “signal sent” and the start 

of the “signal received”, the device’s speakers had an acquisition delay of about 110 ms.  

 

 

Figure 77 - GSM delay test result (same operator) 

 

300 ms places the communication at the upper bound limit of ITU’s “Some users 

dissatisfied” level of acceptance. Another test was done, although resulting in increasing delay 

times, with a call being made between different smartphones registered to different operators 

(Figure 78). 

 

 

Figure 78 - GSM delay test result (different operators) 

 

Results gathered indicate that delay was set at about 440 ms, going beyond ITU’s upper 

bound limit on call delay recommendations (400 ms) and falling to ITU’s “Many users dissatisfied” 

level of user acceptance.  

Although a test with 4G support wasn’t possible (fourth generation, referring to LTE-

enabled smartphones), one was made with WCDMA (Wideband Code Division Multiple 

Access[87], a third generation technology allowing more speed in data exchange, among other 

improvements). This test can be seen depicted in Figure 79, with delay set at about 280 ms, placing 

at the bottom limit of ITU’s “Users satisfied” level. 
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Figure 79 - WCDMA delay test result (same operator) 

5.3.6. Test results summary 

 

The most significant delay can be noticed when studying the gateway’s impact, which is 

more likely to worsen call experience. The WWC, as explained previously, sends its media to the 

gateway, which only then forwards it to the necessary locations. This action greatly impacts the 

system, but is essential to maintaining control over the media flow and allow for transcoding 

mechanisms to be executed, if required. 

 

The test results gathered are compiled in Table 3, expressed in milliseconds, with a column 

detailing delay difference from a test-case to the default one. 

 

Test Average delay Delay difference 

Peer-to-peer call 250 - 

RTPproxy call 255 5 

AS call 260 10 

WebRTC call 280 30 

WebRTC/AS call 290 40 

Table 3 - Mouth-to-ear test results summary 

 

One can see how comparing these results to the delay in a call between two mobile phones 

this is not fair, as network conditions for those calls were unknown, whereas in the solution’s tests 

they were known and controlled, easing testing itself and creating more consistent results. 

However, they do provide a good reference to the delay that can be expected in this scenario and 

one can see how this solution’s performance remains on par, since the lowest delays recorded for 

the calls were 280 ms (in WCDMA mode) and 300 ms (in GSM mode).  
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5.4. Chapter summary 

 

Several conclusions may be extrapolated from the testing results gathered. Four main test-

cases were executed, performance-wise: a scenario designed to test only IMS signalling 

throughput, another scenario including signalling and media exchange through an RTP proxy, one 

especially devised for the AS and another including WebRTC support. After a significant amount 

of testing and posterior analysis, one was able to find that above all, the reasons for the values fall 

on MTS performance. The tool remained a bottleneck over all the scenarios, not being able to cope 

with the load, signalling and media exchange necessities.  

Focusing on the mouth-to-ear tests, one can see how these were affected by established 

baseline of a 250 ms delay, a test-case where only the IMS core was in use (and peer-to-peer media 

exchange was enforced). This result is considered substantially high, even when comparing it to the 

GSM/WCDMA tests made. If one was to look only at the added delay from the other components 

(AS and/or gateway), the results would be significantly lower - an average of 5 ms gained by the 

AS or 30 ms by the gateway. As such, an assumption is made on the solution’s performance not 

becoming a bottleneck in other network configurations, as well as lower delays on the WebRTC-

enabling components if conditions were bettered. 

Overall, this testing phase was useful for gathering more in-depth information on the 

components behavior, enriching this solution. Moreover, even though the baselines values 

established were those gathered from the limited analysis, the belief on higher performance levels 

remains. 
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Chapter 6 

 

Conclusion 

 

Advances and research are being made to create a higher degree of interoperability 

between traditional telecommunications network and the web-centered world, with WebRTC 

motivating new use-cases around the IMS architecture. This dissertation is such an example, 

providing, at first, a background research on the tools available to create such a solution. Among 

these tools, one can find IMS cores and network components, as well as API designs that come to 

facilitate the modeling of the API exposing third party call controls. From these designs, the one 

chosen was the one delivered by GSMA and its OneAPI initiative. Influenced by major operators 

and influencing several projects around the globe, this initiative provided great groundwork over 

the way the API should be modeled, featuring specifications on different telephony aspects (from 

voice to messaging). The search for network components was also crucial, revealing solutions 

already used to provide WebRTC support over the IMS network and aiding in the search for an 

optimal solution – in this case, the usage of WIT Software’s WebRTC-to-SIP gateway and client 

(WIT WebRTC Communicator). Taking into account the research and the knowledge gathered, it 

was possible to plan several use-cases and define platform requirements that reveal the solution’s 

potential. Providing popular telephony functionalities, with the added value of the API designs in 

use, this solution also empowers users by enhancing service discovery, via a marketplace were 

applications are published.  

The requirements defined came to affect the solution’s roadmap and its development, 

where the implementation of certain features like call session managing, rich messaging 

exchanging and notification mechanisms was prioritized over others such as billing and chat 

functionalities. Re-using existing WIT projects and products, the solution created features an AS 

extended to expose OneAPI functions and a portal, custom-built to enable the management of 

every aspect of the platform. Additionally, WebRTC support was provided with the integration of a 

WebRTC gateway and client, the latter modified to accept messaging from the AS. The 

development effort of implementing and integrating the components meant that the requirements 

were almost entirely implemented. Moreover, throughout its development, additional changes to 

the requirements emerged, with the user provisioning mechanism designed (a custom API for 

network user registration in the platform) requiring the concept of “administrative applications”, 

privileged applications that have exclusive access to that API. The decisions on re-using existing 

projects to fit this dissertation’s needs enabled the exposing of a stable and feature-rich solution, 
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with its performance evaluated and proving to be on par with current expectations on mobile call 

delays, for example. Load-testing the platform revealed its behavior under stress, with the solution 

out-doing the tool in use across the different test-cases With the tool itself unable to handle all the 

call events created, the solution was able to perform efficiently in every test, never exposing 

bottlenecks that would impair communications or bring the system to a halt. 

In short, the proposed objective of developing a proof-of-concept, featuring both telephony 

API and WebRTC support, is considered a success, with the platform succeeding in both features 

exposed and performance constraints. With the design decisions and components architecture, the 

platform has room to grow into a richer, enterprise-driven solution, able to be customized to fit any 

growing needs. 

6.1. Future work 

 

The current application server’s implementation is functional and stable, providing already 

a high-level of error handling through a complex SIP layer and already packing some interesting 

features. Nonetheless, room for evolution exists across several domains.  

The AS could eventually provide mechanisms for DTMF processing, chat messaging, API 

analytics and user handling. Rich messaging could also be enriched by supporting more content-

types, increasing the amount of files that may be exchanged. Development could also be made on 

the SIP layer, with the server acting as a proxy for BYE requests, for example, empowering the 

user. Another layer that could be improved is the media one, providing support for more codecs in 

simultaneous, as well as a more complete announcement playback feature.  

The portal has room to grow, from user experience to the administrator mechanisms. On its 

marketplace, features could be added to show more application details or even enable the rating of 

a published application. Development could be made on this area to reduce demands on 

administration of having to handle all requests.  

Both API’s could grow in terms of functionalities, focusing on other contexts such as 

billing or more complete user provisioning mechanisms. This would allow the creation of more 

enhanced use-cases, which would make the platform more flexible to other usage contexts. 

In terms of the solution itself, further testing could be made to ensure its correct behaviour 

under stress and overall interoperability. With other performance tools and more powerful 

hardware, extended testing could be made to ensure the solution is able to handle higher numbers 

of concurrent calls and test its processing capabilities under intensive stress. Additionally, 

integration tests could be made, deploying the platform in a real operator network and testing its 

support for different clients and smartphones. Although federation between multiple operators was 
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not considered, this would be necessary for widespread deployment of the solution. In terms of the 

use-cases explored and implemented during the course of this dissertation’s development, popular 

CRMs such as SugarCRM and Salesforce could be supported by creating plugins for these tools. 

This would properly show-off the solution’s capabilities and the added value brought. 
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A) Requirements 

 

In this annex, a high-level view of the requirements for the system were given, discarding 

low-level details like internal workflows of the stated operations - how a RTP channel will be 

opened to provide media exchange between a third-party application and a SIP endpoint already 

registered on the network, for example. Although some features were discusses, not all will be 

integrated into the solution at this time. For instance, in order to create an interesting proof-of-

concept, features such as call controls were prioritized over those of presence services.  

A.1) Functional requirements 

 

Functional requirements represent what the solution needs to do and what is available for 

interaction, from a user or developer perspective. For example, being able to add an application to 

the portal or triggering a call via the API are functional requirements, whereas security and 

performance are general requirements – capabilities that need to exist and are not directly used by 

end-users. 

A.2.1) API/WebRTC requirements 

 

Over the course of the market analysis, with the research and analysis made on already 

available telephony API’s, certain functionalities were seen more often exposed than others. An 

example of this is call control versus DTMF processing (Dual-Tone Multi-Frequency, referring to 

the ability to send phone digits over a call). While both API’s support call placement, only Plivo 

processed DTMF and offered mechanisms for developers to capture and answer it  (as one would to 

in a call-service, for example, dialing the numbers necessary to execute the desired operations). 

Furthermore, these APIs already offer support for WebRTC client applications, enabling the 

developers to deploy an application using this technology and, for instance, place calls to PSTN 

numbers. Such features are the main objective of this dissertation and will be addressed 

momentarily. 
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Authentication 

 

A mandatory step in user registration and handling, authentication methods must be present 

in order to address several more sensitive needs, requirements presented in Table 4 - Table 6: 

 

 Application authentication, required to view application details (such as analytics); 

 Developer authentication, allowing this person to access privileged account settings and 

view account details; 

 User registration and status announcement within the network, allowing him to interact 

with other users already registered and available. 

 

Requirement ID Function Description 

MRS_API_AUTH_001 
Application 

authentication 

An application will have to access authentication 

mechanisms and receive authorization in order to 

receive access to networks resources. 

MRS_API_AUTH_002 
Get application 

details 

A developer should be able to access application 

statistics via the API, accessing usage metrics 

(number of users currently logged-in or number 

of calls being made concurrently). 

Table 4 - Application authentication functions 

 

Requirement ID Function Description 

MRS_API_AUTH_003 Developer login 
A developer may login to his account at any time, 

in order to use all  

MRS_API_AUTH_004 
Get developer 

details 

A developer should be able to get his account 

details such as his credentials or checking his 

status (if authorized for operations, for example). 

Table 5 - Developer authentication functions 

 

Requirement ID Function Description 

MRS_API_AUTH_005 User login 
With this function, a user will be able to re-register 

in the network, enabling interaction with other users. 

MRS_API_AUTH_006 User sign-up 
Users can sign-up to use a published application’s 

services. 

Table 6 - User authentication functions 
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Call operations 

 

Whereas with a SIP endpoint one can use the IMS network normally, sending messages to 

other registered users or placing calls without necessarily accessing the API, WebRTC callers 

won’t be able to do the same without proper support – these users wouldn’t have the mechanisms 

for session signalling to connect to other users. Providing these signalling functionalities and call 

operations (presented in Table 7) for third-party applications will be the API’s responsibility. 

 

Requirement ID Function Description 

MRS_API_CALL_001 Place call 

Call may be started from the API, signalling the 

network and sending the request to a SIP endpoint, 

for example, from a WebRTC client in order to 

initiate a call between both. 

MRS_API_CALL_002 Answer call 
A call may be answered by a user upon network 

notification. 

MRS_API_CALL_003 Hang-up call 
In the end of a call session, a user may decide to 

hang-up his call, terminating the session. 

MRS_API_CALL_004 Reject call 
A callee may reject an incoming call immediately 

after being notified.  

MRS_API_CALL_005 Hold call 

A call may be put on hold by any of the call 

participating parties, notifying the different users of 

such an event (something that will be handled by a 

different function) and stopping the conversation 

momentarily. 

MRS_API_CALL_006 Resume call 
After putting a call on hold, the user that made such a 

decision may resume the call. 

MRS_API_CALL_007 Deflect call 
A user may be able to deflect a call to another party 

upon notification of an incoming call. 

MRS_API_CALL_008 Transfer call 

While participating on an on-going call session, such 

call may be transferred by the callee to another party 

(either after warning the party or not, which 

constitutes an unattended/attended call transfer, 

respectively). 

MRS_API_CALL_009 Add to call 
A user may be added to an on-going call session 

between other users. 

MRS_API_CALL_010 Invite to call 
A user may be invited to participate in an on-going 

call session between other users. 

MRS_API_CALL_011 

Play 

announcements 

within a call 

Announcements may be played in a call, an event 

seen normally when on hold, for example. Additional 

features such as the uploading of a song to play 

during the announcement are also considered. 
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MRS_API_CALL_012 Send DTMF 

Discussed previously, the API should provide DTMF 

sending, in order to interact with IVR (call robots), 

for instance. 

MRS_API_CALL_013 Receive DTMF 
With this function, DTMF processing would be 

available for developers to create richer applications. 

MRS_API_CALL_014 Click-to-Call 

Click-to-Call could be made available so developers 

could provide C2C placement mechanisms – alike 

Big Blue Button mechanisms. 

MRS_API_CALL_015 Click-to-Dial 
Click-to-Dial, which defers from the previous in its 

flow, could be made available to developers. 

Table 7 - Call operations overview 

 

Messaging 

 

This messaging feature-set in intended to enable users to send short/multimedia messages 

or create instant messaging sessions with other users. These requirements can be seen in Table 8. 

 

 

Requirement ID Function Description 

MRS_API_MESSAGE_001 Send message 

The user must be able to send text or 

multimedia messages to other users. Although 

the resulting flows for a text or multimedia 

message are different, this distinction should be 

hidden on the API, qualifying both simply as 

“messages” and letting internal mechanisms 

process them in their own proper manners. 

MRS_API_MESSAGE_002 Receive message 

A receiver must be opened to message 

receiving in order to fully interact with users 

wishing to communicate with him. 

MRS_API_MESSAGE_003 

Create 

multimedia 

session 

With the possibility of creating a multimedia 

session, a user would be able to communicate 

via instant messaging with other users, sending 

text or other multimedia contents. 

MRS_API_MESSAGE_004 

Invite users to 

multimedia 

session 

A user may be invited to participate in an on-

going session. 

Table 8 - Messaging functions 
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Notifications 

 

Users need to be notified of API/gateway communications to be able to address such events 

properly and engage other users in the interactions. Without these, normal operations wouldn’t be 

possible – users wouldn’t receive any feedback on call processing, for example. Table 9 represents 

these requirements, along a small description of each. 

 

Requirement ID Function Description 

MRS_API_NOTIFICATION_001 
Incoming 

communication 

Notification of incoming calls, messages 

or others must be forwarded to the 

expected user, warning him of the 

upcoming event. 

MRS_API_NOTIFICATION_002 Call state 

Notifications must be implemented to 

give a caller/callee the knowledge if his 

call is on hold, for example. 

MRS_API_NOTIFICATION_003 Message delivery 

Message delivery states should be 

returned to the sender, enabling him to 

assess whether his message has been 

delivered, is pending or has been rejected 

MRS_API_NOTIFICATION_004 
Authentication 

signalling 

Signalling must be made available for all 

users, in order to control their sessions 

status (if they are authenticated/registered 

in the network, for example) 

Table 9 - Notification functions 

 

These notifications will be received, by the user, using the channels he has opened upon 

registration. These, which are already used for signalling the network for call session 

establishment, for example, will also be used by the network to signal the application of incoming 

calls or messages, call states, among others. 

 

Presence 

 

With the functionalities in Table 10, users will have access to presence services, able to 

announce their status to other users and create “Friend” lists (subscriptions to presence lists). 

 

Requirement ID Function Description 

MRS_API_PRESENCE_001 
Publish presence 

status 

A user may publish its status, informing the 

network of such modification. 
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MRS_API_PRESENCE_002 
Subscribe to 

updates 

A user may subscribe to receive another 

user’s status changes. Examples of this are 

popular chat services, where adding a user 

will automatically subscribe to his 

notifications. 

MRS_API_PRESENCE_003 
Unsubscribe to 

updates 

Just like subscribing, a user may unsubscribe, 

stopping the receiving of notifications from 

other users updates. 

Table 10 - Presence functions 

A.2.2) Portal requirements 

 

As done with the API, several competitors’ dashboards/portals where analyzed in order to 

better design this dissertation’s portal. With certain functionalities that stood out, such as usage 

analytics, logging access and billing summary, several conclusions were draw regarding what 

should be included. This will be a relevant part of the solution: designing a portal with features 

similar to solutions already available will help developers that have used such services to better 

acquaint themselves with the solution here presented. The portal is divided into different sections, 

corresponding to the role of the system’s users (administrators, developers and end-users), the 

reporting functionalities, documentation and application catalog, which will be analyzed in the next 

topics. 

 

Reporting - Analytics/Logging 

 

With the functionalities in Table 11, users are able to view information regarding service 

usage and the latest activities they have conducted in the network, for example. 

 

Requirement ID Function Description 

MRS_PORTAL_ANALYTICS_001 API usage 

With this functionality, metrics regarding 

most used operations, for example, may 

be reviewed. 

MRS_PORTAL_ANALYTICS_002 
Application 

usage 

Using this function, an application usage 

metrics may be accessed. 

MRS_PORTAL_ANALYTICS_003 Activity logs 

Latest actions taken in the system may be 

overviewed with this functionality, a 

functionality used by administration for 

monitoring purposes 

Table 11 - Available analytics functions 
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In this last feature, seen in Table 12, not only are these logs useful for monitoring purposes, 

but could be adapted for users, enabling them to view their latest activity (call and messaging 

registry or a time log of their logins). Along with recent calls, billing features can also be 

implemented, enabling a developer/user to keep financial track of his usage of the network.  

 

Requirement ID Function Description 

MRS_PORTAL_BILLING_001 
Usage 

analytics 

With this functionality, billing summaries 

may be accessed in order to control 

operational costs. 

Table 12 - Billing function 

 

A summary could be shown, showing metrics of calls made or messages sent in line with 

recent activities, showing the costs of the system’s usage. Although not completely focused on at 

this time in the dissertation, one can envision billing related functionalities that the portal would 

provide, such as the creation of CDR’s (Call Detail Record) for later analysis.  

 

Administration 

 

Administration will be responsible for controlling the publishing of applications and 

platform users. Table 13 depicts the requirements for the administrative actions contemplated. 

 

Requirement ID Function Description 

MRS_PORTAL_ADMIN_001 
Application 

approval 

Administration is given the responsibility of 

approving application before these can be 

published and used by other users. 

MRS_PORTAL_ADMIN_002 
Disable 

application 

An application may be disabled in case of miss-

conduct, such as network abuse. 

MRS_PORTAL_ADMIN_003 
Developer 

approval 

Developers may be approved or refused to 

operate under certain conditions, something that 

can be controlled using this function. 

MRS_PORTAL_ADMIN_004 
Delete 

developers 

Developers may be banned from using the 

service, for miss-conduct for example, by the 

administration. 

MRS_PORTAL_ADMIN_005 
Notify pending 

requests 

Administration should be notified of pending 

approvals requests made by developers 

Table 13 - Administrative actions 
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Application catalog (Marketplace) 

 

The catalog or marketplace is where any user will be able to view all published 

applications and their details, a feature commonly seen in mobile environments (and depicted in 

Table 14). 

 

Requirement ID Function Description 

MRS_PORTAL_MARKET_001 List applications 

A full application listing will be 

presented, enabling overview of 

available services. 

MRS_PORTAL_MARKET_002 
Show application 

description 

As an application is selected, an 

overview of its details may be accessed, 

presenting useful information regarding 

the services it provides. 

Table 14 - Marketplace functions 

 

Application management 

 

With the features in Table 15, application management is assured, with the administration 

able to approve and authorize an application usage of the network and with the developers provided 

of a way to add their applications for approval. Quality assurance features are required, with the 

administration also able to block/disable an application of using the network. 

 

Requirement ID Function Description 

MRS_PORTAL_DEV_001 
Send application 

for approval 
An application may be sent in for approval, 

being added to the network if accepted. 

MRS_PORTAL_DEV_002 

Check 

application 

status 

After sending the application for approval, the 

developer may check its status (if pending or 

approved/denied) 

MRS_PORTAL_DEV_003 
Add a developer 

to an application 
A developer may be added to an application 

through this function. 

Table 15 - Application management operations 
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The publishing flow would follow a path similar to other application markets: a developer 

would add an application to the portal, pending its approval by the administration. After conducting 

a review of the application, the administration would be able to approve it, resulting in its 

publishing in the marketplace and authorizing its usage of the network’s resources. At this point, a 

user would simple login, search the marketplace for the application and use immediately. 

 

Developer management 

 

Containing developer-oriented features, the requirements in Table 16 will allow developers 

to manage their accounts, modifying or accessing personal information. 

 

Requirement ID Function Description 

MRS_PORTAL_DEV_004 Create account 
A developer may create his account at any time, 

pending approval by administration. 

MRS_PORTAL_DEV_005 Edit account Personal details may be edited by an individual. 

MRS_PORTAL_DEV_006 Delete account A developer may delete his account at any time. 

Table 16 - Developer management operations 

 

User 

 

The end-user of the system, this is the entity that ultimately uses the applications that are 

published and indeed the network for communication purposes. A user must be provisioned before 

using the services, in the network and the applications, ensuring its access to both. Although its 

registry and deletion are an operator’s responsibility, the user may modify personal information or 

configure/block the services he uses (Table 17). 

 

Requirement ID Function Description 

MRS_PORTAL_USER_001 Edit account Personal details may be edited. 

MRS_PORTAL_USER_002 Block application 
An application may be blocked by a user, 

deleting its data from the system. 

Table 17 - User actions 

 

Not just to ensure the access to all the services, a user is limited in the concurrent actions 

he can take on the system, a security feature (presented in Table 18) that must will prevent abuse or 

attacks on the network. 

 



Annex 

118 

Requirement ID Function Description 

MRS_PORTAL_USER_003 User provisioning 

User provisioning will be available through 

the portal, providing support for user 

creation and network registration. 

MRS_PORTAL_USER_004 

Application/Service 

provisioning per 

user 

In order to protect the solution from 

inappropriate use, limits are imposed as to 

how many calls to the API a single user can 

make at any given time. 

MRS_PORTAL_USER_005 
Device provisioning 

per user 

Multiple devices may be related to a single 

user, using IMS’s mechanisms for device 

handling. 

Table 18 - User management operations 

A.3) General requirements 

 

General requirements are those that are not available for user interaction, but constraints to 

the solution, features that it should strive for. Table 19 defines the identifications for the non-

functional requirements.  

 

Requirement ID Function Description 

MRS_SYSTEM_API_001 
Provide an abstraction 

layer for network features 

The system must provide an 

abstraction layer for underlying 

network features such as call 

control, signalling, among 

others. 

MRS_SYSTEM_PORTAL_001 
Provide a backoffice for 

all users 

A portal must be made 

available to act as a back-office 

for administration, users and 

developers. Using this portal, 

all users can access personal 

information and use the 

system. 

MRS_INTEROP_WEBRTC_001 Support for WebRTC 
WebRTC support must be 

made available by the solution. 

MRS_INTEROP_NETWORK_001 
Support for calls between 

networks 

Calls between the home and 

external networks must be 

ensured. 

MRS_CONC_MULTIUSER_001 Support for multiple users 

WTE must support the 

processing of concurrent 

actions from multiple users, at 

any given time. 
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MRS_PERFORM_SCALE_001 
Provide scalability 

mechanisms 

The solution must scale in 

accordance to increasing load 

and requests. 

MRS_PERFORM_AVAIL_001 
Provide availability 

measures 

The solution must have 

availability measures, 

minimazing possible down-

time. 

MRS_SEC_PROVISION_001 Provisioning methods 

Users, developers and 

applications must be 

provisioned by administration 

in other to use all desired 

services. 

MRS_SEC_PRIVACY_001 Privacy insurance 

All communications must be 

secured and provide encryption 

support. 

Table 19 - General requirements 
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B) OneAPI layer 

 

This API, modeled after the OneAPI specifications, is exposed by the AS, in order to bring 

third party call control capabilities to authorized third party applications. This is one of the main 

focuses in this dissertation, with the OneAPI integration being considered as a feature that truly 

adds value to the solution. Throughout this annex, certain changes to the original OneAPI 

specification will be analyzed, alongside proper explaining as to why this was done and the impact 

it might have to a third-party developer that has previously come across such design. All other 

details are taken “as is” and implemented according to OneAPI’s recommendations on Voice 

(OneAPI Voice Call Control[60]), SMS (OneAPI SMS[61]) and MMS (OneAPI MMS[62]).  

B.1) Authentication deviation 

 

The API authenticates the requests it receives by looking for an application token 

parameter in the resource called. The logic behind this decision is a design one: all applications that 

interact with the solution are seen as third party and will need to go through an authorization 

process, where the database is queried for whether the application is authorized to make requests or 

not. Unfortunately, the OneAPI specification does not contemplate this token-based authentication, 

relying on certificate exchanging and HTTP-based authentication mechanisms. 

Certain alternatives exist, such as integrating the application token in the request bodies, 

but this had two major disadvantages: firstly, it was a greater deviation from the original 

specification, altering the bodies sent, and secondly, this meant that in a terminate call request, 

which is expected to be accessed via a DELETE method, would also need a JSON body with the 

token. Although the first disadvantage is a trade-off between needing to bring the desired features 

to the solution and maintaining OneAPI specification, the second is a significant obstacle since no 

expected body is present in a DELETE method[88]. By using such approach, the result would be a 

defective API design which would result in several obstacles for developers using the solution, 

such as the possibility of breaking client implementation. 

Another alternative could be the sending of the applicationToken via an URL encoded 

parameter. However, this brings its own obstacles: in order to maintain pattern across the API 

design, all other methods would have to contain this URL encoded parameter and, in POST 

methods, would also have to bring JSON bodies. This would bring a conflict in content types 

accepted by the API (as OneAPI states that only JSON content types should be exchanged) and 

would possibly be an obstacle to HTTP client implementations.  
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As such, in order to minimize impact and deviations to the OneAPI integration and 

maintain a sensible pattern across the API methods, the application token is sent in the resource 

URL as show in Snippet 4. 

 

 

Snippet 4 - Example resource showing the application token location 

 

This is not a perfect solution as it still breaks specifications but is seen as a less intrusive 

way of sending the token, as developers using this solution would only need to add a variable to the 

path base of their OneAPI implementations and use the solution, requiring less development effort. 

B.2) Features 

 

As referred above, this API will be used to provide all the call control, notification and 

authorization needs with which to use on developed applications. 

B.2.1) User authentication 

 

This feature-set refers to the authenticating methods provided by the API. The solution 

already authorizes the request based on the token given, as referred before, but a different method 

is used to authenticate network users that log in the applications. In order to enable a third party 

application to authenticate network users, the AS will expose a simple user authentication interface. 

This is a feature that is not planned in the OneAPI specification and, as such, is exposed in a URL 

base different from the rest of the third party call control methods. 

Request 

 

To authenticate a user, a developer will have to make an HTTP GET request, with a body 

such as the one shown in Snippet 5, URL featuring the application token and content-type set to 

application/json (Snippet 6). 

 

 

Snippet 5 – Example user authentication request body 
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Snippet 6 – Example user authentication request 

 

Response 

 

The above request will wield a response such as the one in Snippet 7. 

 

 

Snippet 7 - Example user authentication response 

 

The result of “credentials” field may be true or false, depending whether the credentials 

that were sent in the request are valid or invalid. 

B.2.2) Sending an SMS 

 

With this feature, the developer is able to send a textual message to a desired user, a pager-

mode message following OneAPI’s SMS specification[61]. 

 

Request 

 

Defined in Snippet 8 is the JSON body required for this request, placed to the API via the 

POST method. 
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Snippet 8 - Example SMS send request body 

 

An example curl request can be seen in Snippet 9, again featuring application token and 

body. 

 

 

Snippet 9 - Example SMS send request 

Response 

 

A request such as Snippet 9 would result in a response similar to Snippet 10. 

 

 

Snippet 10 - Example SMS send response 
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At this point, the solution responds with the “resourceURL” parameter in blank, since no 

mechanism for message delivery state was implemented. 

 

Messaging Flow 

 

This API request/response reflects the interaction in Figure 80 with the network 

components: 

 

 

Figure 80 - Messaging flow 

 

B.2.3) Sending an MMS 

 

With these functionality, a message with multimedia content can be sent to users (only 

supported by the WebRTC client, however, due to compatibility issues between devices). This 

feature does not implement the OneAPI specification on MMS’s[62]  entirely, being the deviation 

discussed below. 
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Request 

 

This feature is available by placing a multipart POST request to the solution, with the 

resource featuring both application token and sender address. This multipart request can be seen in 

Snippet 11 and Snippet 12. 

 

 

Snippet 11 - Example MMS send request body (part 1) 
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Snippet 12 - Example MMS send request body (part 2) 

 

By analyzing the request, one can see two distinct sections: 
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 A JSON body section, containing all the relevant message information, from the sender to 

the address to be sent to; 

 An attachment containing a vCard (as per vCard 2.1 specifications[89]) or a JPEG image, 

in which case the “name” parameter should be set to “image” instead of “vcard”; 

 

In both sections, certain details must be emphasized, such as the Content-Disposition 

headers and the names. In contrast to the definition presented in the OneAPI specification, where 

the attachment would be sent in a sub-section of the multipart request, in this case one can see that 

the structure has been altered. This has been done in order to simplify implementation and the 

request body itself for easier analysis and data parsing. An example request can be seen depicted in 

Snippet 13. 

 

 

Snippet 13 - Example MMS send request 

 

In this example, a directory is used to locate the vCard to be sent. Again, if one were to 

send an MMS with a JPEG image, the attachment declaration would change from 

"vcard=@/home/user/Desktop/vcard_test.vcf" to a declaration pointing to an image file 

"image=@/home/user/Desktop/image_test.jpg". 

 

Response 

 

A response to the request would be similar to the one in Snippet 14. 

 



Annex 

128 

 

Snippet 14 - Example MMS send response 

 

Again, the solution responds with the resourceURL parameter in blank, since no 

mechanism for message delivery state was implemented. In terms of message flow in the platform, 

this API request/response flow is exactly alike the previous text messaging flow in Figure 80, with 

the only deviation being in the content sent. 

B.2.4) Notifications 

 

Notifications are available via Webhooks, with clients registering a URL where they wish 

to receive call state notifications, as well as a long-polling mechanism. This feature-set refers to 

such mechanism and how this is mapped in the solution’s API. As was the case in the 

authentication feature above, this long-polling mechanism was not presented in the original 

OneAPI specification. It was created to provide a fallback method for retrieving call notifications, 

in cases where the communication is possibly barred by network configurations, for example. Call 

state messages for the ongoing call sessions are stored in the server temporarily, with a lifetime of 

60 seconds – after which they will simply be discarded. A third-party client is able to request the 

notifications of the call it triggered, identifying it by its call session identification string. 

 

Request 

 

Upon requesting the triggering of a call session, the third-party client may request its 

notifications by sending a GET request to the API resource in Snippet 15. At this time, and 

following long-polling execution flows, the request will hang until either (A) a message is available 

to be delivered to the client or (B) a timeout occurs, the latter happening if the request is not 

responded within 10 seconds. In order to continue to receive updates, the client must cyclically 

request notifications in this manner. 
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Snippet 15 - Example notification request 

 

Response 

 

The response to a notification request will be similar to the one in Snippet 16. 

 

 

Snippet 16 - Example notification response 

 

With this response, the message was deleted from the server, as it waits for more 

notifications.  

B.2.5) Make Call 

 

The Make Call function relates to the triggering of a call between the server and the 

participants, connecting both via a media bridge allocated in the server. 

 

Request 

 

Make Call is available by making a POST request to the API, with the JSON body for a 

basic call session defined in Snippet 17 and a complete call session  (with callback referencing) 

defined in Snippet 18. 
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Snippet 17 - Example call triggering request body (basic call session) 

 

 

Snippet 18 - Example call triggering request body (complete call session) 

 

This request can be done to the API, with the proper ContentType (application/json) via 

curl, an example depicted in Snippet 19. 
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Snippet 19 - Example call triggering request 

 

Response 

 

Snippet 20 features the request’s response, with a call placed between “+351910000001” 

and “+351910000002”. 

 

 

Snippet 20 - Example call triggering response 

 

Call triggering flow 

 

The interaction above results in the flow in Figure 81. 
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Figure 81 - Call Triggering flow 

 

As one can see, a POST request is sent to the API, which in turn sends a SIP INVITE to the 

first participant. After receiving its response (with a 200 OK code), the AS notifies the third party 

application (if a notifyURL was used for subscription to these events) and then sends another SIP 

INVITE to the other participant. After receiving its response, the AS connects both users and media 

exchange is initiated. 

B.2.6) Retrieve Call Information 

 

The Retrieve Call Session Information feature allows a third party developer to get 

information regarding an on-going call session. 

 

Request 

 

This feature is available by placing a GET request to the solution, with the resource in 

Snippet 21 featuring both application token and call session identifier. This interaction does not 

reflect a SIP exchange, being confined to the retrieving of the required information from the 

internal server logic. 

 

 

Snippet 21 - Example call information retrieval request 

 

 



Annex 

 133 

Response 

 

A request such has the above would result in a response similar to Snippet 22. 

 

 

Snippet 22 - Example call information retrieval response 

B.2.7) End Call 

 

The End Call feature is related to the ending of a call session, not an individual 

participant’s session. This is a function that is translated into the hang-up of the call. 

 

Request 

 

This feature is available by placing a DELETE request to the solution, with the resource 

featuring both application token and call session identifier, as per Snippet 23. 

 

 

Snippet 23 - Example call ending request 
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Response 

 

A request such has the above would result in a response similar to Snippet 24, all in all 

similar to the retrieval of a call session’s information. 

 

 

Snippet 24 - Example call ending response 

 

Hang-up Flow 

 

The hang-up process depicted in Figure 82 is very similar to the call triggering flow, with a 

few minor changes. 

 

 

Figure 82 - Hang-up flow 
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As represented in Figure 82, a DELETE request is sent to the API, which in turn sends a 

SIP BYE to the first participant. Again, if a notifyURL was given, after receiving a 200 OK code, 

the AS notifies the third party application and sends a SIP BYE to the other participant. After 

receiving its response, the call is terminated with the allocated resources within the AS freed. 

B.2.8) Add To Call 

 

The Add To Call feature relates to the adding of a new participant to a call session, 

translating into the invitation of a participant and allocation to a specific conference. 

 

Request 

 

The feature is available by placing a POST request to the solution with a JSON body as the 

one defined in Snippet 25. 

 

 

Snippet 25 - Example add to call request body 

 

The curl in Snippet 26 is an example of the methods usage – note the presence of the 

content-type and both call session identifier/application token in the resource. 

 

 
Snippet 26 - Example add to call request 

 

Response 

 

The response will be similar to the example in Snippet 27. 
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Snippet 27 - Example add to call response 

 

During this interaction, a call should have been placed to “+351912345678”, consequently 

connecting it to the on-going call session and exchanging the media. 

 

Add To Call Flow 

 

The hang-up process is very similar to the call triggering flow in Figure 81, with the only 

change being that only one call invitation results from the HTTP POST request. 

B.2.9) Retrieve Participant Information 

 

The Retrieve Participant Information feature allows a third party developer to get 

information regarding a participant in an on-going call session. 

 

Request 

 

This feature is available by placing a GET request to the solution, with the resource in 

Snippet 28 featuring application token and call session ID, in addition to participant ID. This 

interaction does not reflect a SIP exchange, being confined to the retrieving of the required 

information from the internal server logical (the listings that contain the calls and conferences). 
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Snippet 28 - Example participant information retrival request 

 

Response 

 

A request such has the above would result in a response similar to Snippet 29. 

 

 

Snippet 29 - Example participant information retrieval response 

B.2.10) Delete Participant from Call 

 

The Delete Participant from Call Session feature enables the termination of a call-leg from 

a conference, returning participant information. This reflects the ending of a call for a participant, 

not the ending of the call for all parties involved. 

 

Request 

 

This feature is available by placing a DELETE request to the solution, with the resource in 

Snippet 30 featuring application token, call session ID and participant ID. 
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Snippet 30 - Example participant deletion from call request 

 

Response 

 

A request such has the above would result in a response similar to Snippet 31. 

 

 
Snippet 31 - Example participant deletion from call response 

 

Participant Termination Flow 

 

This individual call hang-up process is very similar to the call hang-up flow, with the only 

change being that only one SIP BYE is sent as a result to the HTTP DELETE request. 

B.2.11) Hold/Resume Call 

 

The Hold/Resume Call features relate to the triggering of a call hold/resume to a call 

session. With this method, one can put all participants of a given call session on hold and then 

resume the call on command.  
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This feature is not present in the OneAPI specification, having been implemented 

following the patterns shown in the previous methods. The parameter “callAction” is in fact new, 

chosen since no other parameter in the specification was close enough to properly describe the 

actions to be taken in the call. 

 

Request 

 

Both hold and resume features are available by placing a POST request to the solution, 

with the resource featuring both application token/call session identifier and a JSON body with the 

call action set to “hold” or “resume”, like depicted in Snippet 32. 

 

 

Snippet 32 - Example hold call request body 

 

An example of its usage may be seen by the curl request in Snippet 33. 

 

 
Snippet 33 - Example hold call request 

 

Response 

 

The response will be similar to the example in Snippet 34. 

 

 

Snippet 34 - Example hold call response 
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During this interaction, the call should have been put on hold or resumed, depending on its 

previous state (if the call was not on hold, or vice-versa, a 404 Not Found response will be 

triggered). 

 

Hold/Resume Call Flow 

 

The Hold/Resume process is very similar to a normal call triggering flow, with the 

participants being re-invited to participate in a call session set to a different conference room, 

where media will not be exchanged due to the changes made to the SDP exchanged in the re-invite. 
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C) User Provisioning API 

 

 

This API can be used to remotely insert network users in the WTE solution, providing a 

way for operators that already use a back-office for creating new users in the HSS, to also 

communicate with the solution and store a synchronized version of the data, allowing users to make 

use of the same credentials across third party applications. The API has been modeled with the 

influence of OMA Push definition, allowing both XML/JSON content.  

C.1) Features 

 

As referred above, this API is only used to register network users in the solution, having 

the features below analyzed been implemented. 

C.1.1) Request authentication 

 

In its current state, the API proceeds to trigger authorization methods to all incoming 

requests, via an application token contained in the request body. The logic behind this decision was 

a design one: all applications that interact with the solution will be seen as third party – in this case, 

third party administrative applications. This means that an incoming request coming from this 

application (in this case, the operator’s back-office), one that was previously published by an 

administrator, will go through an authorization mechanism in order to be processed. 

C.1.2) User creation/update 

 

Both user creation and update are available by making a PUT request to the API, with a 

JSON (Snippet 35) or XML (Snippet 36) body defined with all the mandatory fields – from 

application token to the user’s desired password. 
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Snippet 35 - Example user creation request body (JSON) 

 

 

Snippet 36 - Example user creation request body (XML) 

 

This API can only be accessed by privileged applications (“administrative applications”, 

reserved for administration and not available from a user/developer marketplace). As such, it gives 

full control over users’ details, requiring only the email to stay unique and be maintained across 

updates. 

 

Request 

 

Example usage – properly setting content-type and method via a curl call -, can be seen in 

Snippet 37 and Snippet 38, with a JSON and XML body, respectively. 
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Snippet 37 - Example user creation request (with JSON body) 

 

 

Snippet 38 - Example user creation request (with XML body) 

 

Response 

 

An example response to a request with a JSON body can be seen in Snippet 39. Note that 

the response is a 200 OK HTTP code, signifying that the request was received, processed, and the 

user was created. If, for some reason, the body structure was invalid or the given application token 

was rejected because the application was not previously authorized to make such actions, the 

response would be a 400 Bad Request and a 401 Unauthorized, respectively. 
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Snippet 39 - Example user creation response 

 

Processing flow 

 

The diagram in Figure 83 demonstrates the resulting processing flow from the interaction 

above. As one can see, the API will check whether the request is well formed (if all the necessary 

fields are present and the package syntax is correct, among others), sending an HTTP 400 (Bad 

request) code otherwise. After this, the application token is checked, validating whether the 

application sending the request is authorized do to so. If not, the response will be an HTTP code 

401 (Not authorized). Finally, only if the above conditions are met is the request processed, with 

the database registering a new user entry and informing the user of the creation (HTTP 200 OK 

response). 
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WIT WTE Solution

Third Party
Application

JDBCREST

WTE API

2. Authorize

4. 200 OK

1. PUT

4. Create

Database

B.1) If the API authorizes the request

3. Ok

5. Ok

B.2) If the API fails to authorizes the request

3. Error

4. 401 Not authorized

A.1) If the request is malformed

2. 400 Bad request

A.2) Else, application is checked for authorization

 

Figure 83 - User creation flow 

C.1.3) User deletion 

 

User deletion follows a similar approach, through a POST request with fewer mandatory 

fields. In Snippet 40 and Snippet 41, one can see these fields for a JSON and XML request. 

 

 

Snippet 40 - Example user deletion request body (JSON) 
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Snippet 41 - Example user deletion request body (XML) 

 

Request 

 

The curl examples are also very similar to the ones presented before and can be seen 

depicted in Snippet 42 and Snippet 43. 

 

 

Snippet 42 - Example user deletion request (with JSON body) 

 

 

Snippet 43 - Example user deletion request (with XML body) 

 

Response 

 

Again, a curl such as the above would yield a response similar to Snippet 44. 
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Snippet 44 - Example user deletion response 

 

Processing flow 

 

The processing flow is, all in all, similar to the flow in the user creation/update topic - 

Figure 83 -, with the difference being that from the database interaction results the erasing of the 

users’ details. 

C.1.4) HTTP responses 

 

The HTTP codes on Table 20 are provided as responses to the requests made. 

 

HTTP 

Code 
Definition Usage 

200 Ok To signal the execution of a request 

400 Bad request When a request was mal-formed 

401 Unauthorized When the request comes from an unauthorized source 

404 Not found 
When the processing of a request, issued to modify or delete 

a user, does not find the specified user 

405 
Method not 

allowed 
When the request calls for an unsupported method 

415 
Unsupported 

media type 
When the request features an unsupported content body 

Table 20 - HTTP response codes 
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D) User provisioning solutions 

 

In terms of user provisioning to use the platform’s services, multiple approaches could be 

taken, each with its own set of advantages and disadvantages. However, the goal is to provide the 

user with the capability of using only one set of credentials – the one used to register in the IMS 

network. 

D.1) Welcome notice 

  

 One of the approaches could be to send a welcome notice[90], upon first registration, as 

depicted in Figure 84. 

 

Figure 84 - Welcome notice 

 

A welcome notice is no more than a message sent to the user upon first registration on the 

network. A common industry solution, this mechanism would, however, fail the goal proposed of 

using only one set of credentials, imposing a client-side dependency on text message support. 
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D.2) Third party registration 

 

A second viable approach could be through third party registration via the application 

server, as seen in Figure 85. 

 

Figure 85 - Third party registration 

 

This would reach the proposed goal, in addition to not demanding credentials to be stored 

in the platforms database, a security plus. Nonetheless, the AS would still be required to handle the 

added user session (one session for endpoint registration and another for API login) and the 

question remains on how the IMS would deal with the same IMPU being used. The OpenIMS core, 

for example, although capable of handling this situation, becomes unstable upon its occurrence. 

D.3) Diameter/Cx integration 

 

 The only true integration considered, provisioning could be made via Cx integration, where 

the credentials sent for authentication would be checked against does in the networks HSS using 

the Diameter protocol. 
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Figure 86 – Diameter/Cx integration 

 

 Again, among the approaches discussed in this annex, Figure 86 depicts the only true 

integration, with the credentials not being stored in the platforms database and with no extra 

consequences for the solution. This is not a perfect solution: excluding the added complexity of the 

implementation this mechanism would demand, security and network restrictions could eventually 

interdict access to this interface. 

  

 

API
IMS

Core

HSS

ISC/SIP

Diameter/Cx



Annex 

 151 

E) Notification mechanisms solutions 

 

In this annex, alternative methods for notification handling will be analyzed, reviewing 

methods such as push or pull mechanics. Push or server push, refers to the transfer of data, with the 

communication started from the server to the client. Pull, by contrast, is when the client inquires 

information from the web server, with it responding with the desired information. There are several 

advantages and disadvantages to both: 

 

 Push requires an open connection, where this pathway is used to send the information to 

the client. Consequently, this requires open ports from both server and client sides, creating 

problems in terms of network usage (especially in mobile devices) and port limitation; 

 Pull requires constant multiple requests to the server which also creates problems in terms 

of network usage and bandwidth, but leaves out port limitations. 

E.1) Push alternatives - WebSockets/HTTP Streaming 

 

WebSockets or HTTP streaming is where a connection is established between client and 

server, allowing the latter to push notifications to the client. This results in real-time 

communication between the parties. The difference between both is in the initial handshake, which 

is repeated (in HTTP) for every message sent. In both cases, a bottleneck occurs in terms of 

concurrent connections and the opening of sockets would mean an increase in developer 

complexity for the API. 

E.2) Pull alternatives - Long polling 

 

Long polling is where a connection is cyclically opened between the client/server until a 

certain events occurs. Upon these events, data is sent and the connection is closed. This can be 

more efficient if the frequency of messages is low since, if you have two messages in the server 

awaiting client request, the second one will only be sent after the first. Comparing to the previous 

alternative, network management is less complex, since 1:1 port mapping of the server to the client 

would not be required. This also diminishes required resources - a 1:1 mapping would mean the 

reservation of a processing thread per user. Unfortunately, the problem with concurrent messages 

still stands but can be mitigated with efficient server-side logic and framework usage. 
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F) Testbed components and software 

 

Description 

CPU Intel Pentium Dual CPU T2310 @1.46 Ghz 

Memory 3 GB 

HDD Speed: 50 MB/s 

Network Ethernet@1000 Mbps 

OS Ubuntu 12.04 LTS (32 bit) 

 

Description 

CPU Intel Pentium i7 CPU M60 @2.67Ghz 

Memory 8 GB 

HDD Speed: 50 MB/s 

Network Ethernet@1000 Mbps 

OS Windows 7 Professional (64 bit) 

 

Software Version 

OpenIMS Core R1186 

Sippy RTPproxy v1.2.1 

WIT Communications Application Server v3.7 

Wowza Media Server v3 

Sun JVM v1.6.0_45 

Apache Tomcat v7.0.29 

Mobicents v2.0.0 

MySQL v5.5.35 

PostgreSQL v9.1.13 

MTS (Multi-Protocol Test Suite) v5.8.3 
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G) OpenIMS modification 

 

The following modifications were done across the pcscf.cfg, icscf.cfg and scscf.cfg files of 

the IMS core, in order to maximize throughput: 

 

 

Snippet 45 - OpenIMS modification for evaluation 

 

H) MTS default proprieties 

 

The values defined in Table 21 were used in all MTS-involved test-cases. 

 

File Property Default Value 

tester.properties logs.STORAGE_LOCATION  FILE 

tester.properties stats.GENERATE_CHARTS_PICTURES  true 

udp.properties socket.RECEIVE_BUFFER 8192 1048576 

udp.properties socket.SEND_BUFFER 8192 1048576 

Table 21 – MTS default configuration changes 

 

This values define the storage location for the logs (defined here as “FILE”, meaning that 

logging will be stored in separate files in the client’s machine), chart generations (defined here as 

“true”, in order to generate delay charts, among others statistics) and general network buffer 

parameters (UDP buffers set to an higher value that the defaults, in order to maximize 

performance). 
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I) P-CSCF error and modification 

 

The issue was located in the sdp_util.c file (present in the pcscf module of the IMS core), 

where one can find the following code: 

 

 

Snippet 46 - OpenIMS's SDP utilities module 

 

This will always return “false” since line 979 is missing an asterisk before c1p_altered. 

This line was changed to: 

 

 
Snippet 47 - SDP utilities modification 

 

This modification corrected the issue and enabled the proper execution of RTPproxy 

enabled signalling flows. 

 


