

Universidade de Aveiro

2014

Departamento de Eletrónica,

Telecomunicações e Informática

Bruno Simões Cruz Evolução da Telefonia na Web

Web Telephony Evolution

ii

 iii

Universidade de Aveiro

2014

Departamento de Eletrónica,

Telecomunicações e Informática

Bruno Simões Cruz Evolução da Telefonia na Web

Web Telephony Evolution

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos

requisitos necessários à obtenção do grau de Mestre em Sistemas de

Informação, realizada sob a orientação científica do Doutor João Paulo Silva

Barraca, Professor assistente convidado do Departamento de Electrónica,

Telecomunicações e Informática da Universidade de Aveiro.

iv

 v

o júri / the jury

presidente / president Prof. Doutor José Manuel Matos Moreira

Professor auxiliar da Universidade de Aveiro

vogais / examiners committee Prof. Doutor João Paulo Barraca

Professor assistente convidado da Universidade de Aveiro

Profª Maria João Mesquita Rodrigues da Cunha Nicolau Pinto

Professora auxiliar do Departamento de Sistemas de Informação da

Escola de Engenharia da Universidade do Minho

vi

 vii

agradecimentos /

acknowledgements

Desde já, gostaria de agradecer ao meu orientador, o Prof. Doutor

João Paulo Silva Barraca, por todo o apoio e conselhos ao longo deste último

ano. Gostaria também de agradecer ao Alexandre Brito pela ajuda e paciência,

pelo conhecimento partilhado e simpatia. Um bem-haja ao Nuno Costa, pela

visão, experiência e energia, que tanto me ensinaram. Ao Filipe Pinheiro, um

obrigado por todo o apoio e flexibilidade. À WIT Software e a todos os seus

elementos, nomeadamente o André Silva, equipa de WebRTC e o Nuno

Campos, pela oportunidade, pela maneira como me receberam e todo o

esforço em me ajudar.

Não posso deixar de agradecer a todos aqueles que me ajudaram

durante o meu percurso académico, com especial apreço ao Prof. Cláudio

Teixeira. Dedico este trabalho a toda a minha família, à minha paciente

namorada e amigos, por todo o carinho e força, por estarem sempre lá. Mas,

especialmente, dedico-o aos que já não consigo ver.

A todos, saibam que vos agradeço por tudo.

viii

 ix

palavras-chave

IMS, VoLTE, SIP, Mobicents, OneAPI, GSMA, OMA, RCS, WebRTC, API,

integração de serviços

 resumo

Com a ameaça imposta às operadoras por aplicações OTT como WhatsApp

ou Skype, diversas iniciativas coordenadas pela GSMA foram criadas para

tentar responder a este fenómeno. Paralelamente, com a evolução de

tecnologias como HTML5 e WebRTC, novos serviços como o Twilio têm

surgido, oferecendo APIs para o desenvolvimento de novas aplicações Web.

No entanto, a integração destas tecnologias em tradicionais redes de

telecomunicações não faz parte das actuais especificações. Sendo assim, o

objectivo desta dissertação consiste na especificação e implementação de um

protótipo baseado nestas tecnologias emergentes, integrado com uma rede

IMS. Primeiramente, foi feito um estudo do estado de arte, definindo requisitos

e casos de uso a serem explorados. De seguida, o desenho da solução foi

feito e implementado, tendo sido criado uma plataforma que alia WebRTC e a

OneAPI da GSMA (que define funcionalidades básicas para operadores),

oferecendo interoperabilidade entre ambos os mundos. A solução é composta

por um servidor aplicacional que expõe a API e gateway WebRTC, tendo sido

testada e considerada adaptada às necessidades estabelecidas.

x

 xi

keywords

IMS, VoLTE, SIP, Mobicents, OneAPI, GSMA, OMA, RCS, WebRTC, API,

service integration

abstract

With the threat to operators by OTT applications such as Skype or WhatsApp,

several initiatives coordinated by GSMA were created in an effort to respond to

this phenomenon. In parallel, with the evolution of technologies such as HTML5

and WebRTC, new services such as Twilio are now available, offering APIs for

web application development. However, the integration of these technologies

and traditional telecommunication networks is not a part of the current

standards. As such, the objective of this dissertation is the specification and

implementation of a prototype based on these emerging technologies,

integrated in an IMS network. First, a state-of-the-art analysis was made,

defining requirements and use-cases to be explored. Secondly, the design and

implementation of the solution was done, creating a platform that unites

WebRTC and GSMA’s OneAPI (which exposes basic operator features),

offering interoperability between both worlds. The solution is composed by an

application server that exposes the API and a WebRTC gateway, having been

successfully tested and adapted to the established needs.

xii

xiii

Table of Contents

Index of Figures .. xvii
Index of Tables .. xix
Index of Snippets ... xxi
Glossary .. xxiii
Introduction .. 1

1.1. Motivation .. 2
1.2. Objectives .. 2
1.3. Contributions.. 3
1.4. Document structure .. 3

IMS centric communication ... 5
2.1. IP Multimedia Subsystem .. 5

2.1.1. Transport layer ... 7
2.1.2. Control or IMS layer .. 8
2.1.3. Service or Application layer .. 10
2.1.4. Example IMS flows ... 11
2.1.5. Voice over LTE .. 12

2.2. IMS core implementations ... 15
2.2.1. Clearwater .. 15
2.2.2. OSIMS – OpenIMS Core ... 17
2.2.3. Kamailio ... 18
2.2.4. Core comparison .. 19

2.3. Web oriented RTC technologies .. 19
2.3.1. WebRTC .. 19
2.3.2. Other approaches ... 21
2.3.3. Technology comparison ... 22

2.4. Web-oriented RTC on IMS .. 23
2.4.1. Existing solutions ... 26

2.5. Telephony APIs ... 27
2.5.1. Twilio ... 27
2.5.2. Plivo ... 28
2.5.3. OneAPI .. 29
2.5.4. Summary .. 30

2.6. Chapter summary ... 31
Requirements for a WebRTC integration on IMS .. 33

3.1. Example use-cases ... 34
3.2. API features ... 36

3.2.1. Notification mechanism ... 38
3.2.2. API analytics .. 39
3.2.3. Integration features .. 39

3.3. Portal features .. 40
3.3.1. User provisioning API ... 41

3.4. WebRTC features ... 42
3.5. Network interfaces ... 43
3.6. Non-functional features.. 44

3.6.1. Availability and scalability .. 44
3.6.2. Availability strategy ... 45
3.6.3. Performance ... 46
3.6.4. Interoperability ... 46
3.6.5. Security .. 47

3.7. Chapter summary ... 47
Solution proposed ... 49

4.1. Application server .. 50
4.1.1. OneAPI layer ... 53
4.1.2. OneAPI notification manager .. 54

xiv

4.1.3. Database Manager .. 55
4.1.4. SIP Servlet ... 56
4.1.5. Authentication flow ... 57
4.1.6. Call transfer flow ... 58
4.1.7. Call hold/resume flow .. 58
4.1.8. Messaging flow .. 59
4.1.9. Notification flow .. 60

4.2. Portal .. 61
4.2.1. User Provisioning API ... 63
4.2.2. Developer registration .. 63
4.2.3. Application submission and approval .. 64
4.2.4. Application suspension .. 65

4.3. WebRTC .. 66
4.3.1. OpenIMS modifications ... 66
4.3.2. User interface ... 67

4.4. Third party application ... 69
4.5. Chapter summary ... 70

Evaluation and results .. 73
5.1. Testbed description .. 74
5.2. Call throughput .. 75

5.2.1. IMS signalling .. 75
5.2.2. IMS signalling and RTP exchange ... 80
5.2.3. AS .. 84
5.2.4. WebRTC and AS ... 87
5.2.5. Test results summary ... 89

5.3. Mouth-to-ear delay ... 89
5.3.1. Peer-to-peer call ... 91
5.3.2. RTPproxy call .. 92
5.3.3. AS call.. 93
5.3.4. WebRTC calls .. 93
5.3.5. GSM calls .. 95
5.3.6. Test results summary ... 97

5.4. Chapter summary ... 98
Conclusion .. 99

6.1. Future work .. 100
References .. 103
A) Requirements.. 109

A.1) Functional requirements ... 109
A.2.1) API/WebRTC requirements ... 109
A.2.2) Portal requirements .. 114

A.3) General requirements .. 118
B) OneAPI layer .. 120

B.1) Authentication deviation ... 120
B.2) Features ... 121

B.2.1) User authentication ... 121
B.2.2) Sending an SMS ... 122
B.2.3) Sending an MMS .. 124
B.2.4) Notifications ... 128
B.2.5) Make Call ... 129
B.2.6) Retrieve Call Information ... 132
B.2.7) End Call .. 133
B.2.8) Add To Call .. 135
B.2.9) Retrieve Participant Information .. 136
B.2.10) Delete Participant from Call ... 137
B.2.11) Hold/Resume Call .. 138

C) User Provisioning API ... 141
C.1) Features ... 141

 xv

C.1.1) Request authentication ... 141
C.1.2) User creation/update ... 141
C.1.3) User deletion .. 145
C.1.4) HTTP responses ... 147

D) User provisioning solutions .. 148
D.1) Welcome notice .. 148
D.2) Third party registration ... 149
D.3) Diameter/Cx integration ... 149

E) Notification mechanisms solutions .. 151
E.1) Push alternatives - WebSockets/HTTP Streaming .. 151
E.2) Pull alternatives - Long polling ... 151

F) Testbed components and software ... 152
G) OpenIMS modification ... 153
H) MTS default proprieties ... 153
I) P-CSCF error and modification .. 154

xvi

 xvii

Index of Figures

Figure 1 - IMS architecture .. 6
Figure 2 - Closer view on control layer components .. 9
Figure 3 - User registration flow within an IMS core .. 11
Figure 4 - Call invitation flow within an IMS core .. 12
Figure 5- EPC, LTE and IMS relation .. 13
Figure 6 - Call invitation flow within an LTE/IMS network .. 14
Figure 7 - Clearwater's architecture (with Bono) ... 15
Figure 8 - Blind call transfer example .. 16
Figure 9 - OpenIMS's architecture ... 17
Figure 10 - Kamailio's IMS capabilities ... 18
Figure 11 - WebRTC's architecture .. 20
Figure 12 - SBC RTC on IMS solution .. 23
Figure 13 - Gateway architecture for RTC on IMS .. 24
Figure 14 - Click-to-Call flow diagram (initial invite exchange) ... 24
Figure 15 - Plivo's high-level architecture .. 28
Figure 16 - Logical view of the system .. 33
Figure 17 – Calling a client from a CRM application .. 35
Figure 18 – Adding a friend to an on-going call .. 35
Figure 19 – Third-party call example ... 37
Figure 20 – Webhook notification mechanism ... 38
Figure 21 - Apigee as a proxy .. 39
Figure 22 - User provisioning API ... 42
Figure 23 - Network load-balancing ... 45
Figure 24 – WTE reference architecture .. 49
Figure 25 - VaaS' call triggering workflow .. 51
Figure 26 – VaaS’ modules .. 51
Figure 27 – WTE’s AS new and modified modules ... 53
Figure 28 - OneAPI layer methods ... 54
Figure 29 - OneAPI Notification Manager methods .. 55
Figure 30 - Database manager methods ... 56
Figure 31 - SIP Servlet methods ... 56
Figure 32 - User/Application authentication flow .. 57
Figure 33 - Call transfer flow ... 58
Figure 34 - Call Hold flow ... 59
Figure 35 – Pager-mode message flow example .. 60
Figure 36 - Webhook notification flow .. 60
Figure 37 - Long-polling notification flow ... 61
Figure 38 - Portal's screenshot .. 61
Figure 39 - WTE Portal's components .. 62
Figure 40 - Developer registration (user side) .. 64
Figure 41 - Developer registration (administration side).. 64
Figure 42 - Application publishing request .. 65
Figure 43 - Application suspension flow .. 65
Figure 44 - WWC chat interface .. 67
Figure 45 - Contact creation event on the WWC ... 69
Figure 46 - Third party application architecture ... 69
Figure 47 - Default script steps and signalling flow ... 76
Figure 48 - Call establishment times at 165 SC (signalling only) .. 77
Figure 49 - Call establishment times at 330 CS (signalling only) .. 77
Figure 50 - Call establishment times at 495 SC (signalling only) .. 77
Figure 51 - Call establishment times at 660 SC (signalling only) .. 78
Figure 52 - Call establishment time distribution, in seconds (330 SC, signalling only) 79
Figure 53 - Call establishment time distribution, in seconds (660 SC, signalling only) 79

xviii

Figure 54 - RTPproxy signalling flow .. 80
Figure 55 - Call establishment times at 66 SC (signalling and RTP) ... 81
Figure 56 - Call establishment times at 99 SC (signalling and RTP) ... 81
Figure 57 - Call establishment times at 132 SC (signalling and RTP) ... 82
Figure 58 - Call establishment times at 165 SC (signalling and RTP) ... 82
Figure 59 - MTS response time, in seconds, at 99 SC .. 83
Figure 60 - MTS response time, in seconds, at 132 SC .. 83
Figure 61 - Call establishment time distribution, in seconds (99 SC, signalling and RTP) 84
Figure 62 - API signalling flow .. 85
Figure 63 - MTS response time, in seconds, at 99 SC .. 85
Figure 64 - MTS response time, in seconds, at 132 SC .. 86
Figure 65 - WebRTC load-test approach .. 88
Figure 66 - MTS response times (20 concurrent calls) ... 88
Figure 67 – Mouth-to-ear test configuration .. 90
Figure 68 - Peer-to-peer test configuration ... 91
Figure 69 - Peer-to-peer audio comparison .. 91
Figure 70 - RTPproxy test configuration .. 92
Figure 71 - RTPproxy audio comparison ... 93
Figure 72 - AS audio comparison ... 93
Figure 73 - WWC audio comparison .. 94
Figure 74 - AS/WWC test configuration .. 94
Figure 75 - WWC/AS audio comparison ... 95
Figure 76 - GSM test configuration .. 95
Figure 77 - GSM delay test result (same operator) ... 96
Figure 78 - GSM delay test result (different operators).. 96
Figure 79 - WCDMA delay test result (same operator).. 97
Figure 80 - Messaging flow .. 124
Figure 81 - Call Triggering flow .. 132
Figure 82 - Hang-up flow ... 134
Figure 83 - User creation flow .. 145
Figure 84 - Welcome notice ... 148
Figure 85 - Third party registration .. 149
Figure 86 – Diameter/Cx integration .. 150

 xix

Index of Tables

Table 1 - Feature comparison ... 30
Table 2 - Performance test results summary... 89
Table 3 - Mouth-to-ear test results summary .. 97
Table 4 - Application authentication functions .. 110
Table 5 - Developer authentication functions ... 110
Table 6 - User authentication functions .. 110
Table 7 - Call operations overview... 112
Table 8 - Messaging functions ... 112
Table 9 - Notification functions ... 113
Table 10 - Presence functions ... 114
Table 11 - Available analytics functions .. 114
Table 12 - Billing function ... 115
Table 13 - Administrative actions .. 115
Table 14 - Marketplace functions ... 116
Table 15 - Application management operations ... 116
Table 16 - Developer management operations ... 117
Table 17 - User actions ... 117
Table 18 - User management operations .. 118
Table 19 - General requirements .. 119
Table 20 - HTTP response codes .. 147
Table 21 – MTS default configuration changes ... 153

xx

 xxi

Index of Snippets

Snippet 1 – SIP message format ... 8
Snippet 2 - Example user creation body ... 63
Snippet 3 - Call logging in the AS .. 86
Snippet 4 - Example resource showing the application token location .. 121
Snippet 5 – Example user authentication request body .. 121
Snippet 6 – Example user authentication request ... 122
Snippet 7 - Example user authentication response ... 122
Snippet 8 - Example SMS send request body ... 123
Snippet 9 - Example SMS send request .. 123
Snippet 10 - Example SMS send response ... 123
Snippet 11 - Example MMS send request body (part 1)... 125
Snippet 12 - Example MMS send request body (part 2)... 126
Snippet 13 - Example MMS send request .. 127
Snippet 14 - Example MMS send response .. 128
Snippet 15 - Example notification request ... 129
Snippet 16 - Example notification response ... 129
Snippet 17 - Example call triggering request body (basic call session).. 130
Snippet 18 - Example call triggering request body (complete call session) 130
Snippet 19 - Example call triggering request ... 131
Snippet 20 - Example call triggering response ... 131
Snippet 21 - Example call information retrieval request .. 132
Snippet 22 - Example call information retrieval response .. 133
Snippet 23 - Example call ending request .. 133
Snippet 24 - Example call ending response .. 134
Snippet 25 - Example add to call request body .. 135
Snippet 26 - Example add to call request ... 135
Snippet 27 - Example add to call response ... 136
Snippet 28 - Example participant information retrival request ... 137
Snippet 29 - Example participant information retrieval response .. 137
Snippet 30 - Example participant deletion from call request .. 138
Snippet 31 - Example participant deletion from call response ... 138
Snippet 32 - Example hold call request body ... 139
Snippet 33 - Example hold call request .. 139
Snippet 34 - Example hold call response .. 139
Snippet 35 - Example user creation request body (JSON) ... 142
Snippet 36 - Example user creation request body (XML) .. 142
Snippet 37 - Example user creation request (with JSON body) ... 143
Snippet 38 - Example user creation request (with XML body) .. 143
Snippet 39 - Example user creation response ... 144
Snippet 40 - Example user deletion request body (JSON) ... 145
Snippet 41 - Example user deletion request body (XML) .. 146
Snippet 42 - Example user deletion request (with JSON body) ... 146
Snippet 43 - Example user deletion request (with XML body) .. 146
Snippet 44 - Example user deletion response ... 147
Snippet 45 - OpenIMS modification for evaluation ... 153
Snippet 46 - OpenIMS's SDP utilities module ... 154
Snippet 47 - SDP utilities modification .. 154

xxii

 xxiii

Glossary

API Application Programming Interface, defines specific means of interaction between

software components.

AS Application Server, servers that host and execute services made available to network’s

subscribers.

B2BUA Back-to-Back User Agent, a type of application server architecture, designed to enable

manipulation of individual communication legs.

CDR Call Detail Record, the name of the logs generated to describe a given call, using details

such as participants, duration, error messages, among others.

Codec Short for COmpressor/DECompressor, a mechanism of encoding or decoding data

streams for faster media exchange.

CPS Calls Per Second, an aggregate metric of performance used to indicate the number of new

calls per second that a telephony server is able to handle.

CSCF Call Session Control Function, nodes that manage the signalling from users to services

and from one network to another, composing the main components of an IMS core.

DTMF Dual-Tone Multi-Frequency signalling, the tones generated by pressing a key in a

telephone’s keypad. The capture of these signals is crucial to automated systems in call

centers, for example.

EPC Evolved Packet Core, the core of an LTE network, introduced by 3GPP.

GSMA Groupe Speciale Mobile Association, a group of mobile operators motivating the

standardization of GSM networks.

HSS Home Subscriber Server, the centralized database for an IMS network containing user-

related information and exposing methods for authentication and authorization.

HTTP Hypertext Transfer Protocol, a communications protocol widely used in the Internet.

IMS IP Multimedia Subsystem. A novel network architecture designed for communication

convergence and easing the creation and deployment of multimedia services - one could

see it as Service Oriented Architecture (SOA) for telecommunication usage.

IP Internet Protocol, one of the main protocols used for establishing Internet

communications.

IP PBX Internet Protocol Private Branch eXchange, a system that connects private extensions to

public networks, over an internet protocol stack.

KPI Key Performance Indicators, metrics used to measure performance across a system.

LTE Long Term Evolution. A novel standard of high-speed, wireless communications destined

for mobile terminals.

MMS Multimedia Messaging Service. Enables the sharing of multimedia content via what

would otherwise be a simple text message.

xxiv

MSRP Message Session Relay Protocol, a protocol responsible for exchanging the content of a

messaging session between participants.

OMA Open Mobile Alliance, responsible for delivering technical application and service

framework specifications.

PoC Proof of Concept, a demonstration of the feasibility of a project through, in this case, the

development of an example application.

PSTN Public Switched Telephone Network, the aggregate of circuit-switched, public telephone

networks.

QoS Quality of Service, general service quality evaluation, mainly focused on its user’s

perspective.

RCS Rich Communication Services, a service designed to offer enhanced communication with

features such as presence tracking (as one would see in a chat service) and easy file-

sharing.

RTC Real-Time Communication, the concept referring to communications done in a near

instant manner.

RTP Real-Time Transfer Protocol is a network protocol used in real-time applications.

SBC Session Border Controller, an IMS component responsible for security measures and

signalling control, among other functionalities.

SDP Session Description Protocol, the protocol that describes the media initialization

parameters, used for session management and parameter negotiation (what the clients will

be using for communication purposes).

SIP Session Initiation Protocol, a protocol responsible for signalling and managing

communications between all the participants of a certain session, used wieldy in VoIP

services and one of the most used protocols in IMS networks.

SMS Short Message Service, a text message service best known for its mobile usage.

TAS Telephony Application Server, a B2BUA server designed to expose call-related services

(from call setup to call forwarding features).

VoIP Voice over Internet Protocol. The concept describing the technologies designed to enable

audio communication via the Internet.

VoLTE Voice over LTE. A concept similar to VoIP but adapted to LTE-supporting mobile

networks.

WebRTC Web Real-Time Communication, an API for voice/video communication and data transfer

between browsers.

3GPP 3rd Generation Partnership Project, a project formed by the collaboration between major

standard defining organizations in the telecommunications realm, focusing on the

definition of standards that will be used in emerging technologies.

Introduction | 1

1

Chapter 1

Introduction

From landline phones and legacy networks to softphones and telephony over the Internet,

telecommunications have come a long way over these past years, changing the way people interact

with each other. High-speed Internet access has only recently become available over mobile

networks, with users becoming more frequent consumers of mobile data plans. The evolution of

smartphones, with more processing power and more user-focused features, as brought an ever-

increasing interest in mobile applications, with the creation of marketplaces designed to facilitate

their discovery. With the merging of these worlds, both mobile and web, a multitude of telephony

applications have become available, seen by users as cheaper alternatives to communicate across

the world. Applications such as Skype, Line or WhatsApp give the users the power to call each

other in real-time over the internet, lowering the costs these calls would mean to the parties

involved. These so called Over-the-Top (OTT) applications, conveying only financial gain to the

companies behind them, are turning operators into mere bit pipes: in this scenario, they only assure

the connectivity to the Internet and charge the traffic used, but gain nothing over the multimedia

communication established. This constitutes a major threat to operators, who see their profits

decrease with the increase in usage of these types of applications. With the evolution of standards

and with associations such as GSMA (Groupe Speciale Mobile Association, formed by several

major telecom operators) motivating and empowering the searches for innovation, solutions are

being proposed to attract consumers to the operator’s world. From network architectures such as

IMS (IP Multimedia Subsystem), designed to create a bridge between traditional telecom and the

Internet, operators are considering new ideas to maintain profits and consumers, solutions such as

the Rich Communication Services (RCS) program. Not only multimedia calls, the objective of

these solutions is to give consumers the features they are already used to and most appreciate in the

OTT world, features such as instant messaging, multimedia content sharing (either within a call or

by messaging services) – enhanced experiences designed to offer rich, although simple means of

communication through the operator’s realm.

Parallel to telecoms, Internet communication is also in turmoil, with standards being

proposed to enable new Real-Time Communication (RTC) experiences. Having started with Voice

over Internet Protocol (VoIP) and Flash technologies (Flash being a multimedia platform that

allows multimedia content exchange in real-time), advances are now being made on RTC to allow

for grander experiences in this field, enabling communication without the need of specific

Introduction | 1

2

applications or browser plugins (something obligatory in Flash). This standard, known as

WebRTC, aims to allow not only multimedia calls but the means to exchange data over secure

connections and at the same easing the hassle of installing other components. Although still open,

this standard as seen much adoption on the market, gaining operators attention as new solutions to

create interoperability between traditional networking and this technology are investigated.

However, connecting a mobile caller to an Internet one can be challenging, even with the

technology available. With this in mind, this dissertation has as objective the specification, design

and implementation of a prototype that will enable third-party developers, without

telecommunications background, to integrate advanced communication functionalities into their

web applications, providing value-added features integrated with telecommunication operators.

1.1. Motivation

With architectural advances such as the 3rd Generation Partnership Project (3GPP) defined

IMS architecture, along with recent and emerging technologies such as WebRTC, the Internet and

telecommunication worlds are experiencing a convergence, with the added strength over the search

for interoperability – an objective otherwise inexistent in the standards created. WebRTC itself, a

still open-standard that is growing in popularity, has brought new life to IMS, motivating the

creation of a diversity of novelty web-oriented multimedia services. These services are sustained by

brand new use-cases such as rich collaboration and RCS clients, services growing in popularity that

offer telecom users features that they are used to in other web applications.

Such advances, technologies and use-cases are the main drive for this dissertation, where

the research made will direct the work towards a platform which is able to unite network users to

developers with no background in communication. Although the search for interoperability

between both Internet and telecom users has been fomented by these latest developments, the task

of connecting both worlds is daunting and complex. This highly motives the creation of the

platform and this dissertation, aiming to provide a solution for this problem, creating a bridge

between users and the means to enable communication between traditional clients and WebRTC-

supported ones.

1.2. Objectives

This dissertation has as objective the design and development of a platform that foments

interoperability between endpoints placed in traditional telecommunication networks and web-

oriented clients, enabling their communication through calling and messaging. The solution’s

Introduction | 1

 3

development will require several details, from implementation of the component exposing a

standardized API to the addition of support for WebRTC. A complete platform will be created,

featuring a user-centered approach towards service discovery, enabled by the creation of a portal

that features a marketplace where network services will be published. Featuring an analysis on

market state, this document may also be seen as a technical options research, exposing current

trends and alternatives, such as IMS cores, RTC technologies, telephony APIs and alternative for

the creation of the solution.

1.3. Contributions

This dissertation was developed in an enterprise environment, working with a

telecommunications-geared company called WIT Software. A company renowned for its products

in the telecommunication market, WIT offers a multitude of novel technological solutions from

mobile applications to RCS clients and works with major operators worldwide. From this

dissertation resulted several contributions to the business.

 Firstly, the solution made is now part of WIT Software’s offerings, having the developed

proof-of-concept already been shown to a major client and considered an interesting solution to the

problem at hand. Secondly, the work made on the WebRTC client that is used in this platform

augmented the product itself, implementing features that had been planned previously but not yet

developed. Thirdly, with the knowledge gained with this dissertation the author was able to help in

a company-provided IMS/VoIP course, teaching WIT collaborators, with no knowledge in this

field, technical insight into how these technologies behave when dealing with tasks from peer-to-

peer calls to call forwarding and application server deployment.

1.4. Document structure

This dissertation will be divided in six chapters, with the first and last containing

introduction and final conclusions, respectively:

 Chapter 2 – this chapter will present the state of the art for this dissertation, describing the

research made in terms of IMS, RTC technologies, existing integration solutions and

telephony APIs;

 Chapter 3 – this chapter will describe proposed requirements for an IMS and RTC

integration, with considered use-cases being presented along with system requirements;

Introduction | 1

4

 Chapter 4 – in this chapter, development results of the proposed solution will be analyzed,

covering what was implemented and how it was done, obstacles that arouse from the

design decisions and limitations that have emerged;

 Chapter 5 – this chapter will feature solution evaluation, presenting testing results and

discussing them, providing in-depth knowledge on the solution’s behavior.

At the end of each, a summary will be made, resuming and emphasizing the most relevant

topics and ideas. After the dissertation’s conclusions, an annex section will be featured, composed

of topics that provide further information on certain overviewed subjects.

IMS centric communication | 2

 5

Chapter 2

IMS centric communication

In order to pave the way towards a proper solution planning and to gain context on the

fields and markets involved, where they are headed and what is being done, an investigation of the

current state of the market regarding telephony API’s, IMS cores and existing telephony over the

web solutions was made.

As such, throughout this chapter, an introduction and proper historical view on the IMS

network and RTC enablers (such as WebRTC or Flash) will be highlighted, in order to better

understand the changes that these technologies have gone through these past few years.

Furthermore, a research on the main components of such a solution must be made, as well as

available products for web communication. Although not intended to provide a comprehensive list

and description of the mentioned topics, an effort was made to obtain and present the most relevant

solutions and concepts in the scope of this dissertation.

2.1. IP Multimedia Subsystem

From circuit switched networks (where an operator would route the call to its destination)

to packet switched networks (where the Internet’s own packet switching capabilities and IP usage

enable communication between parties) and the concept of VoIP, innovation on the underlying

means that enable people to connect and communicate with each other around the world is

staggering and ever-evolving. Additionally, as communication drifted from fixed to mobile, came

the cellular telephony expansion, where evolving standards from 3GPP and OMA (Open Mobile

Alliance) brought a diversification of the services provided, from voice and multimedia messaging

to e-mail and mobile Internet access, along with speed and reliability.

With the exploration of both wired and wireless telephony capabilities came the desire for a

convergence of these technologies, where subscribers would be able to access Internet multimedia

services from a diversity of devices (either fixed, home telephones or mobile smartphones). With

this in mind, IMS was developed, leveraging these services with the existing networks and

providing all functionalities needed for a “complete service delivery”[1] (from client registration to

billing).

IMS centric communication | 2

6

Not itself a technology but more precisely an architecture, IMS was first pushed in 2003,

released by 3GPP for mobile usage, and has since seen its widespread use on mobile and fixed/IT

networks[2]. With the increase of its popularity, especially among key players in the

telecommunications market, IMS has become the industry standard for multimedia services,

providing security, reliability and efficiency. From a market perspective, IMS lets telco companies

drift from previous silo’ed services (i.e. services incapable of connection and operation with each

other) and create advanced client-oriented services. This way, operators are able to roll-out their

own applications in an easier manner[3], reducing operating costs and time-to-market. This makes

them able to provide appealing new services, seizing new clients. By using these means, these

telecommunication companies are also able to compete with popular Over-The-Top (OTT)

communication applications (Skype, WhatsApp, among others)[4] which only convey financial

benefit to the company that offers the application itself, not the one supporting the communication

from a user’s phone. IMS’s architecture is composed of three main layers (disregarding the device

layer), each with its own purpose and commonly implemented components – as seen in Figure

1[5].

Figure 1 - IMS architecture

These layers will be covered in the next sections, an overview which is required for a better

understanding of concepts presented throughout this dissertation, leaving aside low-level details

such as their inner workings or implementation.

IMS centric communication | 2

 7

2.1.1. Transport layer

From softphones to computers, IMS enables users to connect to the network with a variety

of devices. Landlines are also supported: the transport layer has the means for a Public Switched

Telephone Network device (PSTN) to interact with IP based ones, giving the analog data a proper

conversion to IP packets (in the PSTN gateway previously shown on Figure 1).

This layer is where these devices are able to interact with the network, using different

connection types such as wireless internet, mobile networks or LTE and exchanging a signalling

protocol known as SIP. SIP itself is a crucial protocol used within the network and indeed in the

VoIP world. Specified in RFC 3261[6], it is one of the several protocols seen on the Service or

Application layer of an IMS network, used for signalling and session management, enabling the

control of call sessions, for example. It allows for three main session-related actions: call

management, creation of calls between two or more participants and termination of those calls.

From the exchange of SIP requests, one can negotiate what features will be available during the

call session, the changing of these features amidst the session, user location and participant

management.

In order to interact with the IMS network, User Agents (or UA, the names given to

interacting entities) first need to go through a registration procedure, sending a SIP request called

REGISTER to the network, with a certain expiration date which they must refresh, in order to keep

themselves registered. After this action, and among the SIP commands available, one can find the

commands to invite a peer to a call or terminate it (INVITE and BYE), cancel a sent invitation

request or acknowledge a received invitation (CANCEL and ACK). SIP MESSAGE is also

available, used when sending textual messages to other users, and, although there are many other

commands, these six will be the most referred through this dissertation.

Similar to Hypertext Transfer Protocol (HTTP), a SIP request is composed by message

headers and body – where one can find SDP. Whereas SIP is only used for signalling, to define and

exchange session features the Session Description Protocol (SDP) is used. First published in 1998

on RFC 2327[7], SDP provides the means for a party to exchange specific session details and will

normally be contained in the SIP message body. For instance, in SDP one can find the codecs that

will be used and their priority, session owner and name and the time a session is active, where in

SIP one finds contact identifiers and parties involved in a session (the “to” and “from” fields). An

example of a SIP request for a call invite can be seen in Snippet 1.

IMS centric communication | 2

8

Snippet 1 – SIP message format

Depicted in Snippet 1 is an INVITE which contains information regarding from whom the

call invite has been sent and to whom it was addressed (“From” and “To” field). Network-related

information can also be seen, such as the IP in the contact address (“Contact” field) that locates the

user or routing information such as the “Route” and “Via” fields, which show where the request

will flow through. The SDP information shows that the only audio codec negotiated is G711

(defined by the acronym PCMA in the “a” field, which relates to session attributes) and that the

RTP audio stream can be accessed in port 15004, with IP 172.22.0.60 (fields “m” and “c”,

respectively).

2.1.2. Control or IMS layer

Represented in Figure 2[8], this layer is where SIP sessions are managed, being responsible

for providing service/device communication, user authentication and more. As mentioned in the

transport layer, SIP is used for signalling/session management. In order for the protocol to make its

way through the network, different elements are required, such as the Call Session Control

Functions (CSCF):

IMS centric communication | 2

 9

Figure 2 - Closer view on control layer components

 Proxy-CSCF - “(…) the first point of contact (…) to the user terminals”[9], it is the bridge

between the converged networks and the IMS core, routing packets to the desired servers.

It is also able to provide security functionalities (signal inspection, for example);

 Serving-CSCF - among other functions, performs session control/registration, maintains

session states and routes traffic as needed to other network components or services[9];

 Interrogating-CSCF - acts as the “point of contact for peer IMS networks”, facilitating the

connections between the users and contacting the Home Subscriber Server (HSS) to

determine user identification[9].

Alongside the CSCFs come other elements, such as the Home Subscriber Server (HSS),

Media Resource Function (MRF) and Policy Control and Charging Rules Function (PCRF):

 HSS – the HSS is essentially a centralized database, storing the identities of all network

users. Not only for session management, this element is very important for user

authentication and authorization, in addition to maintaining control over interactions that

certain users may have with application servers;

IMS centric communication | 2

10

 MRF – this optional component is divided in two parts, one providing media controls – the

Media Resource Function Controller (MRFC) – and the other providing processing

functions - the Media Resource Function Processor (MRFP). These elements enable, for

example, the playback of announcements and tones[9];

 PCRF – according to its standard definition, this is an “element that encompasses policy

control decision and flow based charging control functionalities”[10]. Again, an optional

element depending on required use-cases, this node acquires certain network

responsibilities on billing and security policy up-keeping.

With this analysis, one can see how this layer encapsulates every detail regarding SIP

signalling, from security issues to request forwarding. However, services that the network exposes

are not included here, being left for the service layer.

2.1.3. Service or Application layer

In this top layer, one can find all Application Servers (AS) that have been deployed on the

network. It is common to find multiple AS’s, each with its own desired purpose and able to execute

different multimedia services, such as:

 Presence Server – this server, through the management and tracking of the availability on

subscribed users, allows a user to disclose his status (if online, busy, away or offline, for

example) and to be notified of other user’s status changes;

 Telephony Application Server (TAS) – this server provides call services, from call routing

to conference bridging. It is also able to interact with the previously mentioned MRF to

provide tones and announcements;

As mentioned, services are exposed by AS’s deployed on the network. As such, one could

use these capabilities to provide a custom AS, exposing an API for developer use and a portal for

facilitating the creation of new applications. This scenario is directly related to the objective of this

dissertation and one can see how this layer is one where some of the focus will possibly be

targeted.

IMS centric communication | 2

 11

2.1.4. Example IMS flows

In order to better understand how network components work with each other, one could

consider a simple scenario where a user registers in the network, with Figure 3[11] representing the

flows generated in the IMS core. Although a high-level view on the procedure itself, not intending

to give a full description on it, this scenario is useful for creating the proper context around IMS

components and their responsibilities. The main concepts to take are that upon receiving a

REGISTER request from a user’s device, the request is forwarded by the P-CSCF (the first point of

contact to the network) to the I-CSCF. This component queries the HSS for an available S-CSCF

for user appending, a contact done by calling an HSS exposed interface called Cx and exchanging

the Diameter protocol, which is intended for AAA (Authentication, Authorization and Accounting).

Figure 3 - User registration flow within an IMS core

After this, the given S-CSCF is contacted, this time interacting with the HSS to create an

authorization vector which will be sent to the user in a 401 Unauthorized response. The user’s

device sends a REGISTER request again, this time with the response for the original authorization

vector. Essentially, this request goes through the steps above a second time, reaching the given S-

CSCF. Now, the HSS is notified of the registration and accesses the user’s profile, seeing which

application serves it has access to, among other actions. The final response is a 200 OK sent to the

user, showing all information regarding said registration.

IMS centric communication | 2

12

At this point the user is registered and allocated to an S-CSCF. Posteriorly, and choosing to

place a call, a flow similar to the one in Figure 4 will be generated.

Figure 4 - Call invitation flow within an IMS core

Since both call parties are registered, their location is known and no authorization

mechanisms must be made. As such, I-CSCF and HSS are not contacted at this point - considering

a scenario where both devices are registered in the same network and allocated to the same S-

CSCF. As an invitation comes from the caller’s device to the network, it is forwarded by the P-

CSCF to the S-CSCF and then to the callee’s device. It responds to the invitation with a 180

Ringing, signalling that the device is indeed ringing. Upon user acceptance, it sends a 200 OK to

the network, forwarded to the caller and indicating that the call is in progress.

2.1.5. Voice over LTE

With IMS only handling signalling and exposing web-oriented services through application

servers deployed on the network, proper transportation still as to be ensured, enabling the exchange

of SIP request with the network. One recent technological advance in this field, dedicated to the

evolution of Internet access and its speed in mobile endpoints, is LTE.

SIP

Call parties

SIP

IMS Core

INVITE

200 OK

P-CSCFCallee

Trying and ACK
responses are not

represented

INVITE

S-CSCFCaller

SIP

INVITE
INVITE

180 Ringing
180 Ringing

180 Ringing
180 Ringing

200 OK

200 OK
200 OK

IMS centric communication | 2

 13

Deployed worldwide as the means of increased capacity and wireless network speed,

3GPP’s defined Long-Term Evolution (LTE) is more than just efficiency, but completely redefines

a traditional telecommunications network with packet-switching over an IP environment – through

a novel core network called Evolved Packet Core (EPC), as depicted in Figure 5.

Figure 5- EPC, LTE and IMS relation

From a user stand-point, this will mean that more speed will be available to its endpoint via

the cellular network, easing data access. However, more than just a high-speed pipeline for data

transfer, LTE is seen as a future possibility for convergence into an all-IP world with VoLTE as a

novel effort to exact that purpose. VoLTE, short for Voice over Long-Term Evolution, is an

initiative made by GSMA to motivate the standardization of voice and messaging delivery over

LTE networks. Although an in-depth analysis on LTE and VoLTE is out of scope, it is important to

realize how such advances affect the technologies involved. Analyzing both Figure 5 and Figure 6,

one can see how IMS and LTE are related. Essentially the same interactions are done, with a

caller’s INVITE request reaching the IMS network’s P-CSCF and forwarded to the S-CSCF,

locating the callee and sending the invitation. However, as depicted in Figure 6, two other

components are now featured, certain core elements of the EPC – the S-GW and P-GW (ignoring

the PCRF):

IMS centric communication | 2

14

Figure 6 - Call invitation flow within an LTE/IMS network

 S-GW (Serving-Gateway) - responsible for the forwarding and general routing of data

packets exchanged by the user’s device, it also handles the handover between the LTE

realm and other traditional mobile network, 3GPP technologies;

 P-GW or PDN-GW (Packet Data Network Gateway) - enables the exchange between the

user’s device and the packet network itself, enforcement of security policies and data

inspection, by acting as the point of contact for incoming traffic.

Maintaining its purpose of bridging multimedia services and bringing them into an

operator’s network, LTE is no more than just another transport mechanism (like those seen in topic

2.1.1). Although certain elements such as the EPC and its components have to co-exist, remaining

in the middle of the signalling path, these components are dedicated to the interaction between the

user’s device and its supported mobile network. The network modifications it imposes come to

affect the operator’s core, but the added signalling in this architecture does not affect IMS in any

way[12], since the same SIP and SDP still reaches the core (even though it suffers a few

modifications mainly relating to quality of service features[13]). In short, the advances made by

3GPP and GSMA, pushing the speed of cellular networks and augmenting user experience, will not

impair this solution of its objectives in the future, being it prepared to handle the core’s evolution.

IMS centric communication | 2

 15

2.2. IMS core implementations

There are several IMS cores available in the market, from companies such as Huawei and

Oracle’s Acme Packet, providing all-in-one or custom-made solutions to fit the clients’ needs,

solutions that are matured and have been market-tested extensively. The core itself should be

“plug-and-play” (i.e. after developing an application server using a core, it should work on a

different one due to the standards enforced), so after development one can adapt the solution to any

already deployed core. Over the next few sections, known and publicly available IMS cores will be

analyzed.

2.2.1. Clearwater

Clearwater is a project made available open-source by Metaswitch Networks[14]. Being an

“IMS in the cloud” solution, this core (with its architecture featured in Figure 7[15]) contains some

components that would be very useful to this dissertation, such as Bono, its WebRTC gateway.

Figure 7 - Clearwater's architecture (with Bono)

From Clearwater’s own website[14]: “(Clearwater) natively supports interworking between

WebRTC clients and standard SIP-based clients, using SIP over WebSocket signalling” and “you

can use Clearwater as the IMS core to support 3GPP standard services such as Voice over LTE

(VoLTE) with a suitable TAS and SCC-AS (Service Centralization and Continuity Application

Server)”.

IMS centric communication | 2

16

Even so, this open-source project does not feature certain functionalities that would be of

great importance to an operator or to a user - call-transfers are not supported, for example. Its core

does not contain an HSS (only an HSS mirror for internal usage) and supports several IMS related

interfaces for integration with other components. Although it provides Sprout (a node

encapsulating the services of an I-CSCF, S-CSCF and TAS), the telephony services exposed are

not suitable for call-transfer for example.

Figure 8 - Blind call transfer example

Figure 8[16] represents a “blind call transfer” where, during an ongoing call between user

UA1 and user UA2, user UA2 transfers the call to user UA3, without announcing the transfer

beforehand. This operation use of a SIP request called REFER and requires the manipulation of

call-legs (for the call transfer), which makes the operation far more complex than simple request

forwarding. Since the built-in components and TAS are not capable of handling such scenarios, this

mechanism would either have to be implemented or an external, more feature-rich TAS would need

to be integrated.

IMS centric communication | 2

 17

2.2.2. OSIMS – OpenIMS Core

An initiative from Fraunhofer FOKUS launched in the end of 2006, the OSIMS (an

abbreviation for Open-Source IMS Core) is an open-source product that is being used worldwide as

a test-bed for IMS technology testing and application prototyping, providing an IMS core reference

implementation[17].

Figure 9 - OpenIMS's architecture

With its creation motivated by the lack of open-source IMS cores at the time, as

represented by Figure 9[17], its architecture is composed of all the standard elements discussed

above – P-CSCF, S-CSCF, I-CSCF, a HSS called FHoSS (FOKUS Home Subscriber Server),

gateways for legacy networks and support for media proxies. Also crucial is the implementation of

the ISC (IMS Service Control) interface, allowing the development of applications servers by

enabling IMS routing features. However, this core is not fit for production environments, being

only suitable as a testbed for development purposes.

OpenIMS has served as the basis for other projects, such as Kamailio IMS, which will be

discussed next. Additionally, application development frameworks such as Mobicents provide

several examples of communication with this core and tutorials for integrating the FHoSS with

Clearwater’s core are also available.

IMS centric communication | 2

18

2.2.3. Kamailio

Kamailio[18] started as a SIP Server. However, over the past few years, with the evolution

of the OpenIMS Core, there was a need from the Kamailio project to keep up with the advances

made – thus a port was created, featuring IMS functionalities on the Kamailio core[19].

Figure 10 - Kamailio's IMS capabilities

With its architecture depicted in Figure 10, this port has its basis on OpenIMS’s

components (Proxy, Serving and Infrastructure-CSCFs). However, all other remaining components

are not featured. For example, the use of an external HSS is required, components such as SMS

gateways or PCRFs are also not present – alike the HSS, external components must be integrated in

order to expose their functionalities. Kamailio already implements all the authentication

mechanisms needed for HSS exposed interfaces and all the capabilities needed to handle session

signalling through the CSCFs. The advantage of this project is the added stability when comparing

it to OpenIMS (an unmaintained project, despite community support). Moreover, Kamailio itself is

capable of a number of communication features and could be used as an AS in the network to bring

other specific features to the network. It exposes a plug-and-play module interface for extension

install, featuring a Presence Server and Web Management Interface, among many others. Although

not having its own media server, Kamailio works with FreeSWITCH[20], an “open source (…)

telephony platform designed to route and interconnect popular communication protocols using

audio, video, text (…)”, i.e., FreeSWITCH could be used as a Media Server, featuring support for

multiple codecs (from G.722 to H.264).

IMS centric communication | 2

 19

2.2.4. Core comparison

Although retaining common core elements and being already available solutions, there are

significant differences between the cores. Comparing OpenIMS’s architecture and Clearwater’s for

example: taking a look at both, on Figure 7 and Figure 9, one can see that both have their own

advantages - Clearwater has a WebRTC gateway, a strong point towards this dissertation goal, but

OpenIMS features a proper HSS. To enable such functionality in Clearwater, one could either

purchase available solutions from the company or implement them (Clearwater has the capability

to interact with OpenIMS’s HSS, for example).

However, since OpenIMS already features this node, development effort on integration of

external components is diminished, avoiding possible obstacles by taking advantage of its native

support. When studying Kamailio, one sees a similar scenario: it’s a SIP Server with Rich

Communication Services (RCS) features, gateways for legacy networks and WebSocket support

(which could be used for WebRTC handling, analyzed in the next topics). However, it does not

include other important elements, meaning that there would still be a need to implement other

components in order to correspond to IMS standards.

 With this comparison made, the core that will be used for as a testbed will be OpenIMS,

because of its features, tutorials, community and influence on other projects.

2.3. Web oriented RTC technologies

A telecommunication concept, Real-Time Communications (RTC) refers to the exchange

of information in a near-instantly manner. RTC can be seen in various scenarios, from normal

telephony calls to Instant Messaging (IM) to videoconference. In the following sections, web

oriented frameworks that provide such communication will be described.

2.3.1. WebRTC

WebRTC is an open framework for the web that enables RTC in the browser[21],

embedding audio/video into it and allowing the communication between two users to be made

without third-party applications or plugins, unlike previous VoIP solutions. Moreover, this

technology was thought as a way of facilitating the development of RTC solutions over the web,

using just one’s browser and a simple JavaScript API, depicted in Figure 11, exposing audio/video

processing for developers to create their own applications.

IMS centric communication | 2

20

Figure 11 - WebRTC's architecture

With WebRTC, access to computer devices such as microphone, camera and screen is

granted, allowing the capture of a person’s voice and transmission of the audio during a real-time

call, for example (handled by components Audio Capture/Render and Video Capture, in Figure 11).

Moreover, these same calls can be established in a peer-to-peer manner, using Javascript-based

methods. For audio and video calls, WebRTC’s Audio and Video Engine support G.711 and VP8

(among others), although the standard is still open at this time, meaning that the codecs supported

may change in the future. The calls themselves are secured using SRTP (Secure Real-time

Transport Protocol[22]), an added security layer designed to protect its content by encrypting the

RTP exchanged.

More than just audio or video calls, WebRTC features a channel solely aimed at

exchanging data, called RTCDataChannel. Essentially, a stream established using a protocol called

SCTP (Stream Control Transport Protocol[23]), this channel allows for low-latency data exchange,

with configurable aspects such as delivery assurance. As a means of media negotiation and session

description, WebRTC also uses SDP as a standard protocol - although this framework still needs a

protocol for signalling which the standard deems as undefined. This signalling can be established

using custom solutions or, to increase interoperability with IMS networks, using SIP to server

signalling. Here, taking advantages of a specification first released in 2014, one could use SIP over

WebSockets[24], which “enables two-way real-time communication between clients and servers”.

IMS centric communication | 2

 21

In terms of media exchange, a recurring problem with SIP was the overlook of the Network

Address Translation (NAT) process. This process enables the “masquerading” or modification of

IP addresses, from non-unique addresses that exist in a local network to unique IP’s used for

Internet access[25]. Not being able to contact users located behind these translations, NAT

traversal techniques were developed, such as ICE or STUN (Interactive Connectivity

Establishment[26] and Session Traversal Utilities for NAT[27], respectively), to allow

communication – techniques which are supported natively by WebRTC.

In an effort to study what is being done with this emerging technology, how companies

have reacted to it and the use-cases implemented, several applications were analyzed, among

which:

 Anymeeting - a web application designed for small business users, to power them with

video/audio communication, screen sharing and social/chat capabilities[28];

 Talky[29] – a web application focused on anonymous video chat and screen sharing,

person-to-person or groups. Using WebRTC, the user doesn’t need to download plugins –

just create a room (or conversation) and share the link with friends;

 LiveCom[30] – another product, with video conference capabilities, differs from the

previous two by enabling the placement of call to PSTN numbers ranging from Argentina

to the United Kingdom.

2.3.2. Other approaches

There are other approaches available enabling RTC over the web, one of them being a

competing standard to WebRTC. Customizable, Ubiquitous Real Time Communication over the

Web (CU-RTC-WEB) is a Microsoft competing standard to WebRTC, motivating a discussion

over the latter’s adopted design decisions. Encountering possible obstacles in interoperability with

the usage of SDP, Microsoft has argued that, with CU-RTC-WEB[31], cross-application

development will be easier, “proposing a low-level API that is interoperable and flexible” in

contrary to WebRTC’s API which “is a higher level API that is less interoperable (…) and

supports fewer scenarios”. Additionally, CU-RTC-WEB supports a wider array of codecs,

reinforcing its position on a more flexible solution to web communications[32]. This proposal was

submitted to WebRTC’s working group in late 2012 and as seen some of the proposed

modifications accepted.

IMS centric communication | 2

22

However, in terms of market adoption, CU-RTC-WEB as been left aside, with developers

focusing on WebRTC, showcased by the growing number of WebRTC based solutions. Another

RTC enabler is Flash, a multimedia platform first seen in the late 2000’s (then called Macromedia

Flash). Flash saw wide acceptance over the years, with cross-platform plugins (Flash Player) made

available to all users by Adobe and possible incompatibilities being resolved by the company.

Even with its strong presence, Flash has seen its popularity decrease, especially regarding

mobile phones – it’s now deprecated and Adobe AIR/HTML5 are being used more commonly.

Despite these “set-backs”, Flash and IMS interacting is possible, due to the existence of several

Flash solutions that can communicate with SIP instances. Among these, one can find Flash2VoIP, a

“conventional SIP based video telephone written in Adobe Flash”[33] which can be used to make

audio/video calls with support for the H.264 video codec. One can also find Flash2IMS[34], an

open-source gateway from Doubango Telecom that can be deployed on an IMS network to provide

Flash interoperability.

2.3.3. Technology comparison

RTC technologies have been evolving over the past years, with WebRTC and CU-RTC-

WEB still standards being defined. Even so, there are presently several differences that can be

concluded when comparing one technology to another.

Even though Flash is still a major presence in this field, the rise of other RTC frameworks

have seen its popularity decrease - WebRTC is an open-source solution that has been gaining

followers since its release[35], although still not as used as Flash[36]. Moreover, being Flash such a

matured solution, there are several development tools available to ease application development,

whereas in WebRTC’s case, there are several frameworks (such as easyRTC[37]) that aim to help

development, but are still in very early stages – just like WebRTC itself.

As for WebRTC/CU-RTC-WEB, WebRTC as seen much more adoption than the latter and

with Google involved with WebRTC’s standardization, Android has been the mobile platform that

has supported this framework the most[38]. Market differences aside, WebRTC has a fixed

supported codec (VP8[39]) while Microsoft’s solution supports a wider number of codecs, which

may ease the development of new applications. However, with SDP part of WebRTC’s standard,

this may ease the connection with SIP networks/equipment.

In summary, due to its growing popularity and the current state of competing technologies,

WebRTC is the main objective of this dissertation. It is still being defined (for instance, mandatory

media codecs have been in discussion recently) and is very new to the market, which may bring

some additional obstacles in terms of implementation and product lifecycle.

IMS centric communication | 2

 23

2.4. Web-oriented RTC on IMS

There are already several components in IMS that play a significant part in allowing web

RTC technologies to fully interact with these types of networks. Even so, most of the products

encountered are gateways designed to bring SIP to the browser, as a means of media controlling

and translation[40]. One of these components is the Session Border Control (SBC). Not seen in the

IMS cores analyzed, SBC’s provide security and complex network functionalities, able to support

mechanisms for transcoding and protocol translation in WebRTC-enabled scenarios (for instance,

supporting SIP over WebSockets). Obstacles such as NAT transversal, referred in section 2.3.1, can

also be mitigated by an SBC, providing important functionalities for SIP exchanges. Figure 12

represents an architecture that could be implemented for such a scenario, with the WebRTC caller

representing a WebRTC endpoint connecting to the SBC.

Figure 12 - SBC RTC on IMS solution

SBCs have certain disadvantages that cannot be overlooked: not only is such a solution

located between the user and the network, meaning that it will “break the end-to-end signaling

path”[41] and media path (adding delay and performance issues to the calls), it also creates a

dependency on the network, eliminating the possibility of a “plug-and-play” core, as referred

previously on section 2.2. Due to an SBC’s complexity and network footprint, there are cases

where one would choose not to use one - for instance, for simpler scenarios like click-to-talk

functions. In this case, a WebRTC gateway could be used to provide the needed interaction

capabilities from the web to the network, with possible transcoding/translation arranged, alongside

support for security measures. One may consider Figure 13 as a representation of such architecture.

P-CSCF

WebRTC support
SBC

I-CSCF S-CSCF

HSS

WebRTC CallerSIP endpoint

WTE API

IMS centric communication | 2

24

Figure 13 - Gateway architecture for RTC on IMS

With communications passing through the gateway and, after proper treatment, being

forwarded to the other endpoints, performance issues can be predicted due to the increased

processing demands. On the other hand, this strategy would diminish the footprint on the network

that a SBC would bring and provide higher scalability[42] when optimizing the solution.

An alternative would be to create an AS, exposing an API that would provide all the

functionality needed to place a call from a WebRTC client to a PSTN phone, being responsible for

receiving notifications for new calls and handling them, for example. Figure 14 gives a high-level

overview on the exchanges that would be seen in such a scenario when creating a click-to-call use-

case.

Figure 14 - Click-to-Call flow diagram (initial invite exchange)

P-CSCF

I-CSCF S-CSCF

HSS

WebRTC CallerSIP endpoint

WTE API

WebRTC Gateway

3. Invite A4. Invite A

5. Invite B

1. HTTP Post

2. HTTP OK

6. OK

8. OK

10. OK

App

Server
A
P
I 9. Invite B

7. OK

Browser RTC
client B

S-CSCF

P-CSCF

SIP Endpoint A

IMS centric communication | 2

 25

In a normal Click-to-Call scenario, a user would click a button on his browser, triggering a

call to the desired service. As can be seen in Figure 14, upon the exchange of SIP INVITE

messages from the AS to the SIP endpoint, and having the callee acknowledged the INVITE,

another INVITE from the AS would be sent to the caller’s phone. After that, with both parties

accepting the call, a call session would be established. As one can see, with the API located in an

AS solution, third-party call controls are possible, with the server maintaining call states. However,

as traffic increases due to the service’s usage, scalability and performance could become a problem,

reducing Quality of Service (QoS) and affecting how other calls are placed.

Implementing an AS requires the analysis of non-trivial technical issues, as it would

require the use of a SIP and HTTP container and complex frameworks. A SIP Container is a

component responsible for the processing of SIP requests, managing the network’s ports for

incoming traffic[43]. Upon the arrival of a SIP message, actions are triggered to deal with the

request accordingly, answering or redirecting it, for example. The container interacts with SIP

servlets, which are managed by a HTTP container, a separate component responsible for servlet

life-cycle management. For instance, Mobicents on Tomcat[44] provides an environment for the

development of multimedia services, in case an AS side solution was followed in this dissertation.

In order to create a telephony API enabling web-oriented RTC calls, Mobicents itself features

functionalities that would be of great use to such objective, featuring an HTML5 WebRTC Client

and its own Media Server, complementing the network.

An alternative to the previous solution would be Sailfin on Glasshfish[45], which had

contributions by Ericsson throughout the project’s development. By using Glassfish and

augmenting it to provide SIP enabled communication and multimedia services, Sailfin is able to

provide multiple tools that would fit this dissertation’s needs. However, after acquisition by Oracle,

this project was left behind; although still being used, Mobicents has since been used more actively

and has gained a strong community as a result.

Either using gateways, SBCs or creating a custom AS, there are pros and cons that

developers and operators must be aware of, conditions that affect many network and usage

parameters, from call quality, session signalling and security (the methods used to ensure privacy

along the call sessions, for example) to drawbacks such as NAT Transversal. There are already

several solutions, each falling in one of the categories analyzed in this section, that will be analyzed

in the next topic.

IMS centric communication | 2

26

2.4.1. Existing solutions

Among the solutions researched, those encountered could bring a beneficial insight to the

market reaction towards IMS components supporting RTC technologies. Several vendors provide

SBC solutions with RTC-enabling functionalities. Among these, Oracle has launched a product

called Oracle Communications WebRTC Session Controlled Solution, a combination between

Oracle’s OCCAS (Oracle Communications Converged Application Server[46]) and Acme’s

SBC[47], providing the capabilities to enrich WebRTC applications with “carrier-grade signaling,

policy and charging”[48].

Focusing on gateways, major vendor’s solutions can be found, but open-source alternatives

as well, projects such as those from Doubango Telecom, like the flash2IMS gateway and

webrtc2sip[49]. The latter is also a gateway that enables WebRTC to SIP network communication,

allowing a “web browser to make and receive calls from/to any SIP-legacy network or PSTN”[50].

Using webrtc2sip and sipml5[51], an “HTML5 SIP client” also from Doubango, a user can connect

to a SIP network from their browser. With a media stack relying on WebRTC and a SIP/SDP stack

implemented with JavaScript, this project comes with several important features, such as screen

sharing and call-transfer, all according to 3GPP IMS Standards.

Among the gateway vendors, one can also find WIT Software and their WCAS (WIT

Communications Application Server). This is an IMS ready, server platform able to expose

converged telephony services across networks and devices, capable of mediating different

protocols and integrating different telecom operator sub-systems like billing services (among

several others), to provide a more feature-rich solution. The WCAS is able to act as a SIP registrar,

for example, enabling the registration of users in the solution. In parallel to the WCAS is another

product called WebRTC-to-SIP gateway, enabling (when deployed on the network) the registering

of WebRTC clients as endpoints and the translation of all incoming HTTP requests into SIP

requests, empowering them with all the signaling and communication needs. Having this in mind,

and with the advantages of being an in-house product that has been tested and trialed in this field,

with a strong knowledge base available, it will be used to provide the ability for this platform to

support WebRTC communication.

IMS centric communication | 2

 27

2.5. Telephony APIs

With the rising adoption of WebRTC[52], the market as seen the launch of several web

telephony, WebRTC-supporting solutions, enabling developers to create new applications that

would use the companies telecommunication functionalities. In an effort to better understand the

market direction (most commonly seen services made available, for example) and competition in

this area, a market research has been conducted, with an overview of the competition encountered

being featured in this section.

2.5.1. Twilio

Twilio offers a REST API to developers so they can empower their applications with

communication capabilities. From voice to text/multimedia messages, this service recently started

supporting SIP, making it possible to integrate a Twilio powered web application (using WebRTC)

with an IMS network.

After experimenting with the service, there are several functionalities (portal and API wise)

that stand-out. From dashboard to documentation, this solution’s developer portal offers several

useful features:

 A developer’s dashboard features several analytics graphs (Voice and SMS analytics,

showing the usage of both) and quick access to other functionalities with a top-menu.

Access to Twilio’s numbers bought and billing overview is also available, with information

regarding recent payments and usage summary;

 A developer has access to full activity logs, ranging from daily to monthly, featuring the

durations of calls, errors that might have occurred and also a “Status” graph, which shows

calls that have ended in different scenarios (busy, no answer or failed, for example);

 Triggers can be created to, for example, send an email to the developer whenever a call

exceeds a certain amount of time. One can create their own triggers with TwiML - Twilio’s

Markup Language. When a developer’s number receives a call or a text, Twilio is able to

execute a previously set script, recording the call, for example.

Drifting from the portal, Twilio features a REST API exposing a rich set of functionalities.

From this API, a developer can make SIP calls, arrange conferences, manage already ongoing call

sessions, have a caller queued as it waits for its call to be put through or record a call (and have the

transcript of the recording made).

IMS centric communication | 2

28

In terms of messaging, one can send SMSs (and more recently MMSs), store media objects

that have been sent/received or use short codes (numbers that are purposed for high messaging

usage) to send several messages. A developer is also able to access his account via the API, verify

its numbers and incoming/outgoing calls, receive notifications for events (useful for debugging

purposes) and manage a connected application‘s authorization.

2.5.2. Plivo

With an API similar to Twilio (a REST API that exposes the inner telephony system)

comes Plivo, a San-Francisco based start-up company with an open-source framework for similar

telephony objectives - to bring voice and messaging to applications, capable of interacting with an

existing telecommunications network.

Figure 15 - Plivo's high-level architecture

Featuring voice calling and SMS, support for SIP and public networks, Plivo has some

similarities to Twilio, in both API and developer portal. More than just the API, it has on its

roadmap the development of a private cloud (i.e., one will be able to deploy a personal Plivo

Cloud, as seen in Figure 15[53], for more privacy or redundancy) and Plivo can also connect to a

network, although it requires a FreeSWITCH gateway implemented, which can be a problem in

some architectures. Additionally, Plivo has recently launched an SDK to enable WebRTC to SIP

interaction[54]

In terms of portal functionalities, Plivo also features a dashboard with analytics for

voice/SMS (logging of the last 24 hours) and account credentials, having a menu with billing,

pricing, logging and numbers bought options for quick access. Also presented in this menu is an

option to view documentation, where a developer can find tutorials and SDK/API references.

However, the ability to generate notifications over events or to trigger actions when certain

scenarios are caught is not available.

IMS centric communication | 2

 29

On the API side, Plivo implements much of the same functionalities that Twilio does, with

other functions included such as DTMF processing (Dual-Tone Multi-Frequency, the ability to

send digits over a call), “Play” and “Speak” features which let a developer play sounds or text-to-

speech during a call. A developer may also send a recording over a message and is able to manage

his endpoints, applications, (sub)accounts, incoming/outgoing carriers or rent new numbers, all

through the API. More importantly, Plivo can be viewed as a technological enabler. This company

provides an open-source framework[55] for “telephony application prototyping” such as Billing

and Voicemail, to be used in conjunction with SIP networks (using the aforementioned

FreeSWITCH gateway).

2.5.3. OneAPI

This emerging communications market as seen the rise on novelty solutions, such as the

ones already analyzed. In an effort to define an API that would provide standardized access to

communication services such as call control or billing, the GSMA’s OneAPI[56] initiative has

emerged, with the support from several major operators – among which Vodafone, AT&T and

Deutsche Telekom. Created in 2008, this initiative has the objective to provide a reference API

design for third party call control, payments, location, messaging, device capabilities and data

connection description. With its designs residing on an older OMA’s specification known as Parlay

X[57], OneAPI offers a subset API based on REST principles, relying on the JSON format for

requests and responses, facilitating inclusion in web developments. In its first iteration, GSMA

published specifications on textual messaging and multimedia messaging, while in its second one

relating to call control. These three are the most relevant API specifications for this dissertation and

feature a multitude of methods such as call triggering, add to call, ending of a particular call session

and retrieval of its descriptions, among many others in the third party call control part. Focusing on

messaging, specifications are available for the sending of text messages and multimedia messages,

as well as reception of these in the server and delivery checking.

By using these initiatives and applying them to form the basis of this solution’s API design,

one can already mitigate possible problems arising from design choices: these initiatives have

already influenced the development of several other products, they have been market-tested and

have the influences of major players. Additionally, by using an already known and market-tested

standard interface, overall attractiveness of the API is augmented and development is facilitated,

mitigating possible shortcomings.

IMS centric communication | 2

30

2.5.4. Summary

As a reference point for the API’s explored, a brief comparison can be seen in Table 1. As

one can see, Twilio and Plivo are very similar, differentiating in a few features such as rich

messaging and DTMF processing. GSMA’s OneAPI does not expose many of the features

provided by the others, among which call modifications like call hold or transfer.

 Twilio Plivo OneAPI

Call placement
  

Call modification
  

Conference calls
  

Call recording
  

DTMF processing
  

Messaging (text)
  

Messaging (multimedia)
  

Account management
  

Application management
  

Table 1 - Feature comparison

Having these insights on available solutions will be very useful when designing this

dissertation’s API and portal, realizing which functionalities seem most popular and are already

available, how developers will view the solution and defining planned features. One detail that

stands-out among the services researched is the ease of use, providing multiple examples and

developer focused information on the dashboards (analytics, logging, billing summaries, among

others). Twilio, for example, provides extensive documentation and implementation examples for

multiple programming languages.

Going from a user-centered overview to a technological overview, all the solutions

analyzed employ REST APIs. The reasons behind this decision can be somewhat narrowed down

to the role REST assumes in communication, privileging point-to-point communication which

greatly adapts to the telephony use-cases here assumed versus a service model better adapted to

intermediated services (SOAP). Requests/responses are also “lighter” than those exchanged in

SOAP due to the latter’s encapsulation, providing easier parsing of the content and reduced

bandwidth consumption, for example.

IMS centric communication | 2

 31

On the topic of request/responses, Plivo and OneAPI send responses using the JSON

format, something also possible with Twilio, although using XML by default. Twilio also follows

this approach to requests, allowing these to be made using either XML or JSON. The choice

between these data formats can be difficult when deploying a new service:

 XML is more verbose when compared to JSON, which increases its size[58] and,

consequently, affects bandwidth;

 Depending on the type of information, XML can have an advantage since it supports a

wider range of data type than JSON (which only supports text and numbers). However,

JSON does have native support for arrays;

 Querying-wise, JSON has an advantage, since the data is stored not in a tree structure, like

XML, but in arrays and records[59].

As seen, from the type of service architecture to the data formats used, certain design

decisions must be carefully considered, lest performance and scalability be affected as the solution

is developed and used. More than what functionalities the API’s are able to deliver and the

architectural decisions made, the way the API is organized - how it appears to developers and how

they are able to use the underlying services - is an important detail that should not be overlooked.

For example, if the API is designed in a similar fashion to Twilio’s, developers that have used it

will adapt better to the solution provided, decreasing its learning curve and development effort.

2.6. Chapter summary

Throughout this topic, several concepts were addressed, necessary to a better understanding

and proper planning of a solution for this dissertation’s objective - to develop and deploy a

telephony API that would allow developers to create their own application and empower them with

other, already available services such as billing and logging, among others. Moreover, this research

is especially useful to understanding how the market reacted to both IMS and RTC technologies,

with the first being used as the cornerstone for multimedia services integration in a

telecommunications network and the latter being seen as a powerful technology for the future.

After covering and comparing several fundamental aspects of the technologies,

components and frameworks related to the context of this dissertation, different conclusions were

presented, shaping the next steps of its planning. The next steps will involve requirements

definition and system design, from a high-level perspective: the solution’s architecture, API design,

identification of possible constraints, among many other details.

IMS centric communication | 2

32

This overview on the available tools serves not only the purpose of a state-of-the-art

overview but additionally as a technical options investigation, providing proper knowledge base for

the decisions that will be made during this solution’s development. Thinking of a solution where

the API would be exposed via an AS, one can see how the OpenIMS core and the Mobicents

framework would make an acceptable alternative for test-bed and development. The API itself

could be designed following a similar approach to Twilio and applying OneAPI/OMA’s

definitions, pleasing third party developers that are already familiar with these entities. Moreover,

RTC-wise, one can see how Flash was deprecated and is losing popularity, whereas WebRTC is

being seen as the go-to technology for RTC. Due to the growing popularity and the possibility of

not having to use third-party plugins to place calls, WebRTC could be the web-oriented RTC

enabler used in such a solution. Although posing its difficulties, since it still is a working draft, the

market has reacted quite favorably to this technology, with new use-cases and applications being

implemented every day.

Requirements for a WebRTC integration on IMS | 3

 33

Chapter 3

Requirements for a WebRTC integration on IMS

The research made in the previous chapter was crucial, providing an overview on market

status and current trends, such as the exposure of REST APIs by the telephony solutions covered.

The solution proposed in this dissertation will now be described in terms of objectives and feature

use-cases, how and where the API will be exposed, which features to include, among other details.

With this in mind, a high-level view of the solution will now be addressed, analyzing several

aspects such as insight into which functionalities will be focused on and possible constraints

affecting the implementation.

Following the AS approach for API exposure, Figure 16 represents a proposal of an

implementation of such a solution, with each of the components being analyzed over the next

sections.

Figure 16 - Logical view of the system

The API will facilitate the creation of applications that allow the placement of calls,

conferences or rich messaging to other network endpoints, abstracting internal mechanisms and

complexity and keeping the interfaces simple enough to help developers in its usage. Applications

will use IMS capabilities (via the API) and will have to be registered in a purpose built platform,

the portal.

Rachel

Bob

API Portal
WebRTC
Gateway

Third Party
Application

Third Party
Application

Requirements for a WebRTC integration on IMS | 3

34

The portal will enable the control of registered applications by administrators, maintaining

policies and managing possible network abuses. In a similar fashion to Twilio, the portal has been

designed to leverage the access of different user groups to their dashboards and group functions. In

it, applications will be published and featured on an administration managed centralized listing,

available to platform users. This listing, the portal’s marketplace, will be inspired by mobile

marketplaces such as Google Play, enabling the easy discovery of available services by network

users.

Support for RTC will come by the form of an integration of WIT Software’s WebRTC-to-

SIP gateway in the solution. By using this gateway, WebRTC clients such as WIT’s Web

Communicator (WWC) are able to register as SIP endpoints in the IMS network, enabling them to

receive calls from other network registered devices, for example.

To provide all the functionalities needed to create a feature-rich proof-of-concept, the

portal and API will offer several services for developers to use in order to enrich their applications.

A list of these functionalities was made in annex A) and then prioritized, choosing which features

must be present for user trial. Consequently, even though not all features will be available, an

overview will be made and will be left planned for future improvements, fomenting a richer

solution.

3.1. Example use-cases

Before addressing specific requirements or constraints, certain use-cases that the solution

must enable will now be presented and analyzed. These will give a more contextualized

introduction to the system’s high-level functions, the added value it conveys when compared to

other already researched solutions and, ultimately, example third-party applications for the

solution.

CRM, short for Customer Relationship Management, is a business model designed to help

manage costumers and everyday tasks involving costumer service or technical support. This model

is commonly implemented in companies by dedicated applications, which help keep track of the

appointments made by a sales representative – a small example of its innumerous feature. One

could consider a scenario such as the one in Figure 17.

Requirements for a WebRTC integration on IMS | 3

 35

Figure 17 – Calling a client from a CRM application

Bob is a sales representative on his way to a meeting with Rachel. Since Bob wishes to

consult the meeting’s agenda, in order to get some context beforehand, and call Rachel to confirm

its schedule, Bob accesses his company’s CRM application, through his smartphone, and checks all

the desired information. Since the CRM application uses this dissertation’s solution via a

previously implemented plugin, Bob is able to trigger a call to Rachel, connecting both devices

through an operator’s network. After the call, Bob is able to include any notes he may have taken

from the conversation on the web application and store them for later use.

In addition to the previous example, first party communications should be also

implemented, such as the ability to place a call through the application and answer it in the same

webpage. This example can be seen depicted in Figure 18.

Figure 18 – Adding a friend to an on-going call

As such, a user (Bob), accessing a third party application (that uses this dissertation’s

solution) on his tablet, may be able to use such application to trigger a call to Rachel, who is using

Requirements for a WebRTC integration on IMS | 3

36

a SIP phone. Upon answering the call, communication would be enabled between both Bob and

Rachel: Rachel would talk on her phone and Bob on his tablet, in the same webpage where he

started the call. However, during the call, Bob wishes to add Alice to the conversation, accessing

the application using her laptop. Again, with the application integrating this solution, such

conference calls would be possible, with these functionalities being abstracted by the API.

3.2. API features

The telecommunications API, exposed by the AS, will be structured in accordance to

GSMA specifications - voice control[60], text messaging[61] and rich messaging[62] will be

modeled after the OneAPI initiative. Making it a REST API means that its stateless characteristics

ease resource consumption and impose less processing strain, since handling and maintaining

session states is not necessary. On the other hand, this will put additional strain on interpreting all

requests and authenticating them. Nonetheless, by ensuring the usage of tokens and notification

mechanisms, the API will provide proper session processing/handling, something which was

commonly seen in the API’s researched. To developers, this abstraction facilitates the development

of new applications and reduces the time spent on, otherwise, creating the means to communicate

with every single component needed. By simply calling API methods, the developer is able to

deliver new functionalities in a fraction of the time.

The following features will be provided, allowing a developer to create rich,

telecommunication capable, web applications:

 Authentication - application and user authentication, allowing these groups to use the

desired services/resources;

 Third Party Call Control – implemented according to OneAPI guidelines, developers will

be able to use call triggering and ending capabilities, along with call modifications such as

hold/resume. Mechanisms for call transfering will also be exposed;

 Messaging – users are able to send text and multimedia messages to other registered users,

with the methods based on OneAPI specifications;

 Notifications - the forwarding of notifications from the network to the application is

available, notifying it of call states (for example, if the call is in progress) and providing all

the signaling needed to communicate with the network.

Requirements for a WebRTC integration on IMS | 3

 37

The API will also be able to support rich messaging, i.e., the ability to send multimedia

content like vCards (a file format designed for the sharing of contact details from phone numbers to

addresses and personal websites) and JPEG images (Joint Photographic Experts Group, a popular

image format), in addition to textual messages. As referred, through the features provided by the

API, several example use-cases can be idealized like the integration with available content

managers or CRM’s (Customer Relationship Manager). With this integration, a caller would be

able to view its information on a customer upon the triggering of a call. This way, the caller would

have access to the background of a costumer, providing better assistance on a service, for example.

The API will focus on third party call controls, with first party being left to SIP endpoints

or WebRTC clients. The differences between first-party and third-party calls are significant. Figure

19, an example taken from IETF’s RFC 3725[63], will provide the basis for an analysis on what a

typical third-party call between (already registered) SIP endpoints would trigger in the network.

Figure 19 – Third-party call example

One can see how an invite is sent from the AS (represented by “Controller”) to endpoint A.

After receiving an OK from this party, an invite is sent to endpoint B, something that would not

happen in a first party call scenario. If this user accepts the call, an acknowledge response is sent to

A and a new call session will be started between both parties, exchanging media. Network-wise,

one would see a flow of messages forwarded to the S-CSCF, P-CSCF and then back, with the

callee located and informing his decision (if he has accepted or rejected the call, for example).

Since the AS plays a central role on call signaling in these third-party calls, it may manipulate the

call as necessary – it may, in fact, invite other users to the call, creating a conference. One can

consequently say that the AS is acting as a B2BUA (Back-to-Back User Agent), where it remains

in the signalling path and calls are actually established between the clients and the server, not

directly with each other. This would be done by simply forwarding invite requests to the desired

users, establishing the communications exchanges.

Requirements for a WebRTC integration on IMS | 3

38

3.2.1. Notification mechanism

The exchange of notifications between the AS and third party applications is crucial in

order to establish the proper means of communication, providing information on incoming calls or

call states, for example. To provide such support, different approaches may be taken, from pull to

push notifications. This comparison and discussion has been placed as annex E) in this document,

with the chosen solutions presented next.

If the client were to announce to the server a URI where he wishes to receive notifications,

the server would push the information to the client, instead of receiving multiple connections like

planned before. This is called a Webhook-based approach[64], depicted in Figure 20.

Figure 20 – Webhook notification mechanism

The mechanics behind a Webhook, a recent concept, are straight-forward: upon requesting

the creation of a new call, for example, the applications will subscribe to the call notifications by

sending an URI to where these events may be pushed by the server. This is merely a REST

interface, from the client’s side, that receives a specified JSON payload informing of all changes,

call statuses or other relevant information.

Nevertheless, this is not a perfect solution. The default Webhook mechanism is ideal when

in a scenario of server-to-server communication where IP’s are public, but if one was to create a

desktop application, for example, and wanted to use this API, the user might suffer of NAT

transversal problems if proper care wasn’t taken to ensure communication between server and

client. As such, a fallback long-polling mechanism will also be implemented in this solution. In

long-polling, a client’s request is only responded by the server upon receiving new data, timing out

after a certain period of time otherwise. This is completely different from the Webhook mechanic

explained above, drifting from a “push” to a “pull” scenario.

HTTP

API

Third Party
Application

APIHTTP

Requirements for a WebRTC integration on IMS | 3

 39

3.2.2. API analytics

Statistics reporting such as API and application usage, as well as analytics per user, may be

implemented via Apigee[65] integration. Apigee is a company that provides services for API

managing, through an online platform, which acts as a proxy for deployed API’s, as depicted in

Figure 21.

Figure 21 - Apigee as a proxy

With this proxy in place, Apigee is able to provide several features over the incoming

requests – features such as analytics of used API resources, filtering through IP, session

management allocation of quotas for a given application, among many others. From this product,

the solution’s developers and administration will also be able to receive analytics on the product

itself. Apigee’s integration would decrease development effort on features that would, otherwise,

have to be implemented from scratch in the solution.

3.2.3. Integration features

Deployed on an IMS network, a telephony application server would need to interact with

different AS’s in order to achieve features such as presence, chat, billing and conference calls. This

means that several different servers would be deployed on the IMS network:

 Media server - during announcement playback or conferencing, a media server would be

consulted in order to reserve resources and play the desired media or initiate a conference

room. This would be done by following a call flow similar to the one shown in RFC

4240[66], where the user would participate in a call with the media server;

API
Third Party Call

Control

HTTPHTTP

HTTP HTTP

Requirements for a WebRTC integration on IMS | 3

40

 Chat server - a messaging server would be used to provide the messaging needs of the

system, with support for rich exchanges, instant messaging and offline message handling

(storing the message if the user is offline and delivering it when the user comes online

again);

 Billing server - although the AS could generate its own CDR’s, a billing server integration

might also be required for additional billing features, being consulted via the diameter

protocol, for example;

 Presence server - in order to provide presence capabilities and subscription to “friend” lists,

a presence server should be deployed on the network.

In this solution, messaging, conference calls and media playback features will be integrated

into the AS. Billing, presence and chat features were considered and are intended for future

implementation but are of low priority at this stage due to the added complexity and development

effort required, having other features been prioritized to provide an interesting proof of concept.

3.3. Portal features

A portal is required to provide a back-office similar to those featured by Twilio or Plivo,

dealing with different user groups, functionalities and registered applications. These will be

available through the marketplace, upon administrative approval and publishing, to all network

users. Different user groups will have access to different features:

 Users – these are network registered users, able to use the portal after being provisioned by

an operator through a user provisioning API, fully analyzed in annex C). These will be the

main consumers of the application marketplace. Features such as access to billing records

and activity logs are also considered, placed on their dashboard;

 Developers – having registered for developer accounts, these users will be able to create

new applications and submit them for publishing. After submission, developers are able to

consult the publishing status on their dashboards. The assigning of new developers to an

application is also contemplated;

 Administrators – solely responsible for maintaining the solution (e.g., responding to

publishing requests and requests for new developer accounts, disabling applications or

banning developers if they infringe terms of service). On their dashboards, administrators

will have access to notification-handling sections and will be able to create administrative

Requirements for a WebRTC integration on IMS | 3

 41

applications. These will have access to the user provisioning API and can only be seen

when accessing the marketplace via an administrator’s dashboard.

With this in mind, the portal must be able to adapt to the different user groups, exposing

functionalities only fit to their permissions. For instance, developers must not be able to execute

administrative actions and users must not be able to access publishing features or alter application

configurations.

Application and user provisioning mechanisms will also be required. Upon the publishing

of a new application or registration of a new user, certain provisioning procedures must be

engaged, such as proper authorization. Quota definition might also be implemented, meaning that

both users and applications would be limited to an X amount of actions per second (call control

events, for example). This is a security measure that, defined by the administration, may be

implemented in order to prevent network abuse.

Moreover, the usage of an application by a user must be provisioned. Different approaches

may be taken in this case, such as manual or auto provisioning. In the first case, a user would have

to register in an application, whereas in the later case, an already solution-registered user would be

able to use the application immediately. Due to the simplicity this conveys to the user, the auto-

provisioning approach will be chosen. However, how the applications and users are registered

compose completely different scenarios: whereas in the first case developers or administrators

register the applications through the portal, in the latter, a user provisioning API exposed by the

portal will be used. This API will be of exclusive use by administrative applications and will allow

the provisioning of users within the solution.

3.3.1. User provisioning API

User provisioning is a process where the solution will prepare the usage of its services by a

new user. In this process, the user will be registered within the solution, will perhaps have its

quotas established and will be given authorization to use network related services. This process can

also be done in multiple ways - which have been described in annex D).

However, the aim in this is to facilitate user experience and enable the usage of only one

set of credentials by the user – the same credentials used to register the device in the network

should be the ones used to access the platform. The solution that is proposed is a user provisioning

API, exposed by the portal and depicted on Figure 22, which will allow the creation/update and

deletion of a network user.

Requirements for a WebRTC integration on IMS | 3

42

Figure 22 - User provisioning API

This IT abstraction layer will be used exclusively an operator - when registering a new user

in the HSS, an operator will also be able to access this API and use it to register a new user in the

solution’s database. This will allow synchronization between both databases and maintain updated

user records. Consequently, when logging in a third party application, the user would use the same

credentials used in the network. Unfortunately, this is not without its drawbacks, since the

implementation of such a mechanism would mean that user credentials would have to be stored in

an external database (with all the security demands that arise), with the operator having to ensure

the consistency of the data.

3.4. WebRTC features

As referred above, WebRTC support must be enabled in the solution. A WebRTC client

will be able to register in the IMS network, with all interactions being translated to SIP requests.

Consequently, the client will be able to receive and make calls to other SIP endpoints. To provide

the support necessary to establish calls between parties using WebRTC and parties with SIP

softphones, a media transcoding service may need to be implemented due to the difference in

codecs supported.

Transcoding is basically the direct conversion of one codec format to another, a mechanism

that requires a substantial amount of processing power and consequently involves sacrificing either

quality or speed. With this mechanism, call placement between parties with otherwise incompatible

codec formats is possible. However, not just media transcoding that is necessary, but basic network

protocols must be handled as well:

HSS gets a new user entry

WTE’s database gets a
new user entry

Operator registers a new user

User
provisioning

API

IMS

Core

HSS

User provisioning layer

Operator registration backoffice

SIP/ISC

Requirements for a WebRTC integration on IMS | 3

 43

 SIP/SDP are protocols used for signaling and media negotiation and, as such, must be fully

supported to provide a robust and functional solution;

 MSRP is the protocol used in messaging - it is of crucial importance when it comes to

message exchange, providing the support for instance messaging or multimedia content;

 RTP handling must also be implemented, in order to enable the transfer of multimedia

streams between the communicating parties.

All of the above details will be supported via the integration of WIT’s WebRTC-to-SIP

gateway. Together with WIT’s Web Communicator and its SDK, supporting all of the clients’

features, first party call control via a WebRTC-enabled endpoint will be possible. Additionally, a

multitude of features such as audiovisual calls, file transferring, image sharing, geo-location

sharing, DTMF support and call handling (call hold and transferring, for example) are available

between WebRTC clients.

3.5. Network interfaces

There are two areas of focus when discussing this solution’s most relevant interfaces.

These include the APIs that the system will expose and the IMS interfaces used, allowing

communication between the AS/gateway and the network. Focusing on the IMS interfaces, two

will be used, both using SIP as the protocol exchanged and both crucial to the implementation and

integration of this solution in this type of IP-based networks:

 The Gm interface that connects user equipments to the P-CSCF server. This interface will

be essential to the gateway, enabling users to register as a common device, being able to

receive calls and establish communication with other network registered users;

 The ISC interface (IMS Service Control interface) that will connect the application server

to the S-CSCF server, notifying the AS’s of incoming SIP messages, among other usages.

Without the use of this interface, the existence of an AS, able to analyze incoming SIP

signalling messages and create new SIP requests on demand, would not be possible.

Drifting from the IMS interfaces to the APIs exposed, two will be exposed to third party

usage: the layer for telecommunication capabilities and the user provisioning layer for user

registration in the solution. Although not part of the solution itself, a different API will also have to

be exposed, in this case from the client side, due to the notification method that has been proposed

in section 3.2.1.

Requirements for a WebRTC integration on IMS | 3

44

3.6. Non-functional features

When dealing with a telecommunications solution, like any other system, one must analyze

possible constraints that should be contemplated in its implementation. System constraints such as

availability, scalability and performance must not be overlooked or an unreliable solution may be

created, pushing away users.

3.6.1. Availability and scalability

Availability refers to the uptime of the service, demanding the services to be running at all

times or suffering the least downtime possible. This constraint is of extreme importance in this

context, as downtime in a telecommunications service translates in lost calls and, consequently, lost

revenue. Not only available, the service must be able to handle variations in its usage, providing

stable and correct responses in a high-load scenario or with an increasing amount of concurrent

events - this is referred to as scalability, the ability the service as of handling growing amounts of

workload, while maintain its capabilities and stability. Services must be able to accompany the

usage required of it, at software and hardware level. At a hardware-level, this could be done by

deploying the service in other machines, increasing the amount of machines available to respond to

the requests (i.e. horizontal scaling). With more than one server responsible for a single task, load-

balancing could be implemented, dividing the load between the nodes. This would also help

availability, since if one node was to suffer a crash, the other would take its place.

Software-wise, several implementation nuances must be considered and addressed. Details

such as the API being stateless, for example, would mean that less complexity would be demanded

from a server design perspective, simplifying it by not having to maintain and clean up past kept

states. This would affect needed resources, lowering them since the storing of states and processing

of new requests is delegated to other components - a principle called Service Statelessness[67]. As

servers discard the responsibility of transitioning states however, processing requirements are

increased, since each request contains all the necessary information and the server must interpret all

the given information;

The support for concurrent calls to the database is also an issue, necessary to establishing a

scalable environment, especially since both API and portal use the database in their actions.

Connection pools or cache-like methods will be deployed in order to mitigate the risk of database

access becoming a bottleneck. When ensuring security measures, scalability of these servers must

also be taken into account, as validating requests, for example, is easier than the rest of the service

logic.

Requirements for a WebRTC integration on IMS | 3

 45

3.6.2. Availability strategy

Several solutions could be designed to help create a reliable, available and scalable

solution. One of these might be to maintain two or more machines responsible for the same

function, installing the application server in two different machines, for example – a method called

“network redundancy”[68], depicted on Figure 23. This way, in case the AS or WebRTC gateway

failed, communication could be forwarded to the other machine, diminishing call loss – a relevant

advantage.

Figure 23 - Network load-balancing

In this strategy, each component will be horizontally replicated, i.e., each node will be

executed alongside a backup node, placed under an active/active configuration. With the database

being the only common link between both AS and portal, this shall provide three significant

additions to the system:

 Workload may be distributed among the available nodes, with the deployment of a load-

balancer such as Nginx[69], responsible for forwarding of requests;

 A heartbeat/monitoring mechanism could be implemented, with the load balancer either

receiving information from a node stating that it’s in fact “alive” or interacting with a node

to see its current load, respectively. For instance, if two nodes aren’t capable of handling

the requests, more may be dynamically deployed to compensate, in a “cold start” fashion.

As such, scalability is ensured, with multiple nodes responding to the incoming events;

Load balancer

Network
connection

WTE AS 1 WTE AS 2

Requirements for a WebRTC integration on IMS | 3

46

 Since the nodes would be actively in use, in case of failure of one of them, the system

would failover to the other. This way there would always be at least one node capable of

handling the network events, resulting in higher availability.

This solution has its drawbacks, trade-offs for a simple yet reliable system. Increased

server costs aside, requests being processed by a failing node would be lost, even though incoming

requests would be processed normally, with clients being forwarded to the available servers. For

instance, ongoing calls which were stuck to the downed server will be lost, with clients obliged to

repeat the call – a detail acceptable for a consumer-grade product, but which may prove

challenging in an enterprise environment, where the demand for reliability is higher.

3.6.3. Performance

System performance will affect how the solution responds to incoming requests, with any

bottleneck dictating the amount of calls processed or call setup time. If a system can’t handle

incoming calls, users won’t be able to communicate in peak hours; if call setup times are high,

users will become frustrated and confuse it for errors. Availability and scalability measures should

be implemented, for scenarios with increased workloads. Certain baselines must be ensured:

 Call setup time must be minimal – from the time a user starts the call to the time he hears

the ringing tone on the line, no more than two seconds should pass;

 The system must be able to handle multiple concurrent calls. This value, Calls per Second,

must be maximized, with a baseline of 100 CpS being established.

Although testing the solution is required to give more realistic values to these metrics,

these established baseline for performance offer insight into how the system is expected to behave.

3.6.4. Interoperability

In this solution, SIP and WebRTC powered clients must be able to communicate with each

other, increasing interoperability. The support for this RTC technology and for other third-party

application must be provided by the solution, empowering these applications with network

available resources. More complex scenarios are considered in future iterations of the solution,

such as communication between different networks, increasing overall interoperability - providing

call support from a caller on the home IMS network to another visiting network.

Requirements for a WebRTC integration on IMS | 3

 47

3.6.5. Security

More than just authentication and authorization mechanisms, quotas could be given to both

users and applications, limiting the number of requests they are able to make per second. These

types of mechanisms are put into place in order to prevent denial of service attacks, where a great

number of requests per second are made with the purpose of overloading the system and blocking it

from functioning. Additionally, calls between parties should remain private. Using protocols such

as SIPS (secure SIP) one can encrypt calls between parties, adding a secure layer to the exchange.

3.7. Chapter summary

With the dissertation’s goal set on creating a platform exposing a telecommunications API

to third party applications and a marketplace showcasing them to network users, one must quickly

define all the features intended for implementation. Along this definition, certain questions arise,

such as which features will be developed and how the platform will be structured, decisions that

come to affect it both in outcome and roadmap.

In this chapter, these aspects are addressed and one can now see how the solution is

expected to be shaped and the features it will expose. For instance, the decision to use OneAPI

specifications will bring several advantages. These API guidelines have served as the basis of

multiple projects and, as such, lower the learning curve for developers that have already used

similar solutions. Additionally, these are API guidelines that already been thought for use in

different scenarios, lowering the development effort necessary to establish a similar approach.

Moreover, with support for RTC via WebRTC integration, the ability to communicate via ones’

browser brings great potential, bridging the solution with a novel technology. Nevertheless, key

aspects were left out - technical details such as how the features will be implemented were not

discussed nor will be covered.

48

Solution proposed | 4

 49

Chapter 4

Solution proposed

With the functionalities that the solution will provide defined, this chapter will focus on

discussing the results that were achieved during its development, from the structure of the system

to the objectives accomplished – a high-level view on its architecture and what components it will

interact with in the network. Obstacles encountered will also be presented and their influence on

the solution will be explained, as well as the steps followed to mitigate such drawbacks.

In order to establish a baseline reference design of the solution, Figure 24 is presented,

representing the solution’s architecture and showing the several components that it encapsulates.

Each of these components is responsible for specific features and each will be analyzed in depth in

this chapter.

Figure 24 – WTE reference architecture

Firstly, the discussion will fall on how the telephony AS was built and what was used to

develop it – from details like the framework in use to the multiple application layers and

communication flows. All features implemented in this component are shown, according to the

requirements defined in section 3.2.

Solution proposed | 4

50

Secondly, portal results are discussed, showing the technologies used and the application

flows implemented. And finally, a view on how WebRTC support was integrated into the solution

is presented, with some minor adjustments made to the IMS core in use. Finally, an analysis on

which objectives were accomplished and which were not developed at the time is done, comparing

the initially planned feature-set to the features implemented. Also, changes to the initial design are

shown and deviations from the plan are discussed, showing how the solution was affected during

the development phase.

4.1. Application server

In order to develop the AS, and due to the time restrictions imposed, features to include

where prioritized, aiming to achieve the goal of implementing an interesting proof-of-concept. To

ease development effort, a WIT proof-of-concept called Voice as a Service (VaaS) was available to

serve as a baseline for the solution, providing many features useful for the dissertation. An

introduction to VaaS will now be made, discussing the advantages of extending it and modifying it

to fit this dissertation’s needs over creating a new platform entirely.

Much alike this solution’s vision, VaaS is an application server with several third-party call

control features, exposed through a proprietary REST API. It allows the triggering and ending of

call sessions, call holding/resume, call transfer, alongside call information and status retrieval,

through the use of Webhook mechanics. Additionally, it is designed for media bridging, allowing

conference calls and media playback, being able to play a tune for calls on hold. These features

would be of great use to this dissertation, since they align perfectly with the objectives and

requirements proposed. However, the way VaaS works is significantly different than the way the

OneAPI is specified.

Influenced by Twilio’s own workflow, VaaS exposes a REST API, responsible for

translating HTTP requests to SIP actions, leveraging intended call actions through the use of

VaaSML (a TwiML-like markup language defining call session handling). The triggering of a call

with VaaS takes the steps seen in Figure 25 and, as one can see, the workflow generated (and the

parameters it expects to receive) are significantly different than those expected in the OneAPI. One

of the most significant differences falls in the flow expected to exist between client and server –

VaaS must receive a VaaSML stating the way it should handle the call, whereas the OneAPI

expects only one request to be made to the API, containing all the necessary information to connect

the calls.

Solution proposed | 4

 51

Figure 25 - VaaS' call triggering workflow

From call management to SIP handling, the server already features some useful

capabilities. The size and complexity of this solution also reflects the features it exposes.

Implemented in Java 1.6, using Sailfin and SIP Servlets (v1.1, abiding by JSR 289 standards[70]),

the AS was built in a very modular, layered manner, as one can see in the Figure 26.

Figure 26 – VaaS’ modules

Module management

API
Notification

Manager
Call

Manager
Media

Delegate
SIP

Servlet
Worker

Pool
Database
Manager

Media
Session

Solution proposed | 4

52

The modules themselves are mostly self-explanatory, with the most relevant being:

 API - a module that refers to the exposed REST API, implemented using the Jersey

framework[71], featuring the definition of all resources available;

 Notification Manager – where requests coming from the API get translated into call-

specific requests and call notifications are sent to the specified URL’s;

 Call Manager – responsible for call session management, which conference to join,

invite/re-invite handling and media delegation/session triggering;

 Media Delegation – responsible for maintaining media sessions and SDP analysis;

 Media Session – handling of network actions such as port allocation, with help from the

Netty framework[72], for media playback and the media bridging implementation;

 SIP Servlet – where the translated HTTP requests results in SIP exchanges to the network.

Among the most significant advantages and limitations of VaaS, one can emphasize three

main details, the first being its call appending as the server allocates calls in media rooms, bridges

maintained in the server. Consequently, efficiency and scalability are affected, a crucial detail for

any solution designed for multiple, concurrent events. This also creates an obstacle for the

implementation of billing features for example – this is commonly done by call leg in an IMS

network and, since the calls are anchored in the server, billing mechanisms would grow in

complexity. On the other hand, with the session organization that is enforced and call tracking, one

gains a certain security layer for handling error events and logging. Additionally, the server only

supports the G711 audio codec, with video not being contemplated (other codecs may be supported

with some modifications to the media layer).

With VaaS’s details in mind, with its advantages and obstacles contemplated, one was able

to make a decision on whether to use it as a baseline or create a new solution. Several aspects were

taken into account when thinking of a new solution: the development effort necessary, high-level to

finer-grain details such as call session management and network administration. Although not a

perfect solution, VaaS already had many of these details addressed and dealt with. The discussion

fell on whether it would be feasible, in the time-frame expected, to implement such an advanced

solution with a stable SIP handling layer. After careful consideration, VaaS was chosen, having

identified the areas in which the need for modification existed and how to proceed with such

implementations. Taking VaaS and extending it to fit OneAPI’s demands involved many

modifications to the existing implementation, as well as the creation of two OneAPI related

modules. Figure 27 shows the impact it had on the solution, with the round components

representing those that are new or were most significantly modified.

Solution proposed | 4

 53

Figure 27 – WTE’s AS new and modified modules

When going from VaaS to the WTE’s AS (or WTEAS), the first modification to make was

the changing of the Sailfin to Mobicents framework. As already stated, this framework has several

advantages, development and community wise. This change meant several libraries had to be

replaced. After replacing and executing regression tests, VaaS was deployed on an Apache Tomcat

1.6 server, working correctly.

The decision to replace the Java version in use was also made, going from 1.6 to 1.7, a

more current version. However, this modification brought unexpected results in the media playback

functionality used in call holding, which heavily relied on methods that were deprecated between

versions. Consequently, this change was reverted, since modifying the media layer would take

significant development effort, which might compromise the implementation of other more

important features.

With these changes made, development started on the OneAPI modules, analyzing the

current implementation and deciding how the current features may be used.

4.1.1. OneAPI layer

Similar to the existing API module, this module was created to reflect OneAPI’s resources

and methods. Figure 28 represents its multitude of new methods, from call triggering to notification

retrieval and user authentication.

The documentation for this layer can be seen in annex B), with all methods exposed and

design decisions described. Although the methods’ functionality may be inferred by their name and

expected OneAPI features, there are 3 methods that are outside GSMA’s specification:

Module management

API Notification
Manager

Call
Manager

Media
Delegate

SIP
Servlet

Worker
Pool

Database
Manager

Media
Session

One
API

OneAPI
Notification

Manager

Solution proposed | 4

54

Figure 28 - OneAPI layer methods

 authenticateUser – this method will be used to verify if the given user credentials are

correct, enabling user validation to third party applications;

 modifyCallSession – used when applications request the API to place a call on hold or

resume it, which was not contemplated in the OneAPI;

 notificationRetrieval – when notifications reach the AS, they are stored in a message queue

for a limited amount of time. The API contemplates a resource where applications may

request the notifications received for a given call session, using this method. This creates

the alternative notification retrieval mechanism, the long-polling method, a fallback for the

default Webhook one.

Additional methods and resources may be easily created, following the same patterns and

structures used for this implementation. Here, future iterations may take place and other OneAPI

features such as billing or location services may be integrated, enhancing the solution.

4.1.2. OneAPI notification manager

Whereas in VaaS the solution dealt with call legs and conference rooms, in the OneAPI

specification these are mapped to participants and call sessions, respectively. Although these

concepts may be similar in purpose (call legs/participants and conference rooms/call sessions), this

means that certain changes must be made to the original logic, with new features requiring support

from this layer. As such, a new module was created to reflect these changes and demands, with the

new modules visible in Figure 29.

Solution proposed | 4

 55

Figure 29 - OneAPI Notification Manager methods

With this decision and with the new OneAPI model alongside the existing VaaSML one,

both APIs may work concurrently, without compromise to performance or solution stability. As

referred above, although the original logic may have suffered some modifications to fit the present

needs, it was mostly adapted and re-used. Across the other modules, certain changes were made,

supporting the new features. The media layer, worker pool and original API modules were left

untouched – in fact, as referred before, the server is able to expose both APIs concurrently, serving

VaaSML and OneAPI clients if need be. Nonetheless, changes to the interfaces specifying the call

and notification manager modules, necessary to enable the new features, meant that minor

modifications had to be made to these layers. For instance, in the module management layer, the

only necessary modification was the registration of the new modules, which had to be loaded

alongside the existing ones.

4.1.3. Database Manager

VaaS did not interact with any database originally. However, a database module was

implemented using a WIT library that serves as a helper for database connections, with connection

keep-alive and caching methods. This module was developed as an example for future iterations of

the solution, easing development effort. In this AS, the server needs to properly authenticate users

and applications, through their tokens. Due to this demand, new methods were made to interact

with the portals database and extract the necessary information, with Figure 30 representing them.

Solution proposed | 4

56

Figure 30 - Database manager methods

Among these, one can find methods “getApplicationStatusByToken” and

“getUserByCredentials” (used to authorize applications and authenticate users, respectively) and

methods “load” and “unload” (used for module management, loading and unloading of modules).

The first two methods are used to support the implemented authorization mechanisms:

 The “getApplicationStatusByToken” method is used upon the receiving of a new

API request, checking the application status and authorizing or forbidding the

request to be processed;

 Method “getUserByCredentials” is the one called when the API’s “authenticate

user” resource receives a request, comparing the given user credentials to those

stored in the database.

4.1.4. SIP Servlet

New features such as rich-messaging made it necessary for the SIP servlet module to

handle new exchanges and request types. As such, modifications were made to this layer to reflect

such demands:

Figure 31 - SIP Servlet methods

Solution proposed | 4

 57

Not all methods in this class are represented in Figure 31. Here, the only methods done

specifically for this solution are “sendMessage” and “sendRichMessage”, used for sending textual

and multimedia messages, respectively, through a SIP MESSAGE request. For instance, a rich

messaging request coming to the API goes through the notifications manager, call manager and SIP

servlet handler. Here, the correct content-type is established and the message is sent to the IMS

core, being delivered to its destination afterwards.

In order to better understand the stance the solution takes in the network and the way the

different actions will shape system interaction, certain use-cases will now be shown – use-cases

that mirror basic functionalities that are the foundation to user communication.

4.1.5. Authentication flow

Authentication mechanisms are crucial to properly securing the solution from exploits and

to uniquely identify all platform users and applications. For both users and applications, the

authentication procedure follows a flow similar to the represented in Figure 32.

JDBC

AS

2. AS receives the
authentication

request and
processes it

Third Party
Application

REST

1. Request

If the AS verifies the request with success

If the request fails verification

2a. Request

3a. OK response

3b. Error notice

Database

WIT WTE Solution

Figure 32 - User/Application authentication flow

Solution proposed | 4

58

There are subtle differences, however, that define both scenarios. As users log-in through

third party applications, these are responsible for requesting the AS to verify the given credentials.

The AS, in turn, returns a simple true or false, verifying that the credentials match those stored in

the database. On the other hand, now focusing on the applications themselves, their tokens are sent

in the requests made to the API, leaving the AS to authorize and execute the requests, if the tokens

sent have the right privileges (or even match the existing database records).

4.1.6. Call transfer flow

In terms of call transferring, this is made in a blind manner where, upon starting the call

transfer, the current session will always be terminated even if the transfer destination is busy or

unavailable. Unlike a consultative call transfer, this one is done unannounced. A flow similar to

Figure 33 is triggered when transferring an on-going call between client A and B to a client C –

media renegotiation may be necessary.

Figure 33 - Call transfer flow

Along the flow, as the calls are set-up or broken down, the solution notifies the client of the

actions, creating HTTP POST to the URL that has been defined for callback or saving the messages

for long-polling retrieval.

4.1.7. Call hold/resume flow

In this scenario, and abiding by to RFC 5359[73], during an on-going call session, the call

will be put on hold by renegotiating the call characteristics using SDP, as seen in Figure 34.

Solution proposed | 4

 59

IMS CoreWIT WTE Solution

CSCFThird Party
Application

SIP Endpoints

SIP SIPREST SIP

WTE API SIP/VoIP
Client B

ACK and Trying
responses are not

represented

Clients A and B are currently connected

1. POST

SIP/VoIP
Client A

Media Stopped

3. INVITE
2. INVITE

4. OK
5. INVITE

3. INVITE
2. INVITE

4. OK
5. INVITE

1. POST

WebRTC
Client (A)

Figure 34 - Call Hold flow

1. The third party application sends an HTTP POST to the solution, wishing to put the on-

going call on hold;

2. This results in the sending of a SIP request, by the solution, to both parties, renegotiating

the call for both to only receive media (“recvonly”, enabling the endpoints to receive call

hold music);

3. After this successful transaction, the solution notifies the application of the event

occurrence.

To resume the call, another renegotiation procedure takes place, but enabling two-way

media streaming once again[73].

4.1.8. Messaging flow

Since chat relies heavily on presence, chat functionalities have been disregarded at this

stage, having been left to a future iteration of the solution. Nevertheless, just like a call flow, a chat

session flow follows a very similar path. These sessions intended for messaging, a mode called

Session-Based Messaging[74], are just alike call sessions, but use different media exchanges –

instead of RTP, MSRP (Media Session Relay Protocol) would be exchanged. In case of a SIP

MESSAGE request (or Pager-mode messaging[75]), the flow would suffer some differences.

Solution proposed | 4

60

Figure 35 – Pager-mode message flow example

In this case, a chat session wouldn’t be created: only the message sent by the sender would

be delivered - Figure 35. A web client would send his message via the API, being forwarded

accordingly until reaching its destiny. Upon successful arrival, the endpoint would respond with a

200 OK, forwarded to the sender, notifying of its delivery. This is the approach taken in this

solution to exchange both textual and rich messages.

4.1.9. Notification flow

The default notification mechanism is based on a Webhook[64] approach, where the client

specifies an URL where he wishes to receive information For instance, a messaging application

triggers the flow in Figure 36 upon sending a new message.

Figure 36 - Webhook notification flow

An HTTP POST, from the third party application to the API, is sent (1) specifying the

message body, address, among others, and the notification URL. The solution then responds with

an HTTP 201 (2), stating that it has created the message. Upon sending the message, the solution

responds with an HTTP POST to the given URL with information stating that the message has

indeed been sent to the desired party (3) and the application responds with a 200 Ok, for example,

stating that the message has been received. The user can also choose to use the long-polling

notification handler instead, retrieving queue messages and generating the flow in Figure 37.

3. Message4. Message

5. Message

1. HTTP Post

2. HTTP OK

6. OK

8. OK

9. OK

App

Server
A
P
I

7. OK

Browser RTC
client B

S-CSCF

P-CSCF

SIP Endpoint A

API

Third Party Call
Control

API

1. HTTP POST

2. 201 Created

3. HTTP POST

4. 200 OK

Solution proposed | 4

 61

Figure 37 - Long-polling notification flow

4.2. Portal

Made using Java and the Struts 2 framework for web application development, the Portal,

depicted on Figure 38, was implemented from scratch to fit the needs of this dissertation for a

backoffice supporting user, developer and application management, through administrative control.

Several features are exposed, among the user groups supported. Developers are able to register in

the platform, publishing applications and consulting their statuses. Both requests (developer and

application registration) must be approved posteriorly by administration, grating authorization to

use the solution. Administrators may also register applications (referred to as “administrative

applications”, which are not seen by developers or users in the marketplace) – a concept created for

those applications that wish to use the user provisioning API.

Figure 38 - Portal's screenshot

Solution proposed | 4

62

Similarly to VaaS’ modules, the portal is composed of 4 main ones (depicted on Figure 39)

that enable all the features discussed, each responsible for its own set of functionalities:

Figure 39 - WTE Portal's components

 Models – this is a component where all the classes used are established. Here one can see

what a user or application object is composed of, among other details;

 REST – the component where the User Provisioning API logic can be seen, exposing all

the methods available and the logic through which the received data goes;

 Struts – all the logic that forms the web application itself, such as button actions or page

routing, is established in this package;

 Utils – certain global functions are needed by the application, such as login validation and

database access. These functions can be consulted in this component.

Although almost all of the portal’s features have been successfully implemented, there are

still some functionalities missing, considered of lower priority – mostly user-centered features. For

instance, user accounts have been left simplified, with no place for personal information such as

names or dates of birth - as a result, mechanisms for account detail edition are also missing.

Developer opt-out (enabling a developer to delete the account) and work groups, where many

developers share responsibility for the same application, have not been implemented and neither as

activity logging. Thus, dashboards are kept very simple, with room for improvement.

Some features that were not in the initial plan were implemented, such as the

administrative applications and application registration by an administrator. This was done due to a

growing need to separate applications using the above API and applications from third party

developers, which should not use this API in their actions. The API itself is a crucial part of the

solution, enabling an operator to register a new user in the solution.

Solution proposed | 4

 63

4.2.1. User Provisioning API

The user provisioning API exposes CRUD operations regarding network users, enabling

their provisioning in order to use the services provided by the solution. Similarly to the OneAPI

layer referred above, the documentation for this API can be seen in annex C). An example on user

creation can be seen in Snippet 2, where a user may be created by sending a request to the API with

the depicted parameters, in either JSON or XML.

Snippet 2 - Example user creation body

In this case, the “impu” parameter refers to the users’ email and the “msisdn” to its token.

The MSISDN (Mobile Subscriber Integrated Services Digital Network-Number) is a random

number, operator generated, which identifies a subscription in a network and, since this API is

directed towards operators, was considered for replacement, predicting posterior compatibility

issues.

The API was kept simplified, much alike the portal, with the focus being on delivering

voice and messaging features, with less attention on portal functionalities. As such, more attention

was given to its workflows (developer and application management, analyzed over the next

sections) and basic storage needs, than complex user interactions.

4.2.2. Developer registration

The developer registration procedure is separated into two different flows, depicted in

Figure 40 and Figure 41. First, a developer lands on the page and request an account in the

platform.

Solution proposed | 4

64

Figure 40 - Developer registration (user side)

 Afterwards, administration will receive a notification, warning it of pending requests. At

this point, the decision will be made on whether to accept the developer or deny its registration.

Figure 41 - Developer registration (administration side)

Although not an implemented feature, either event would result in the sending of an e-mail,

welcoming the user and guiding it in its first steps or explaining why the registration request was

denied.

4.2.3. Application submission and approval

Application submission and approval follow a procedure similar to any mobile marketplace

submission like Google Play’s, as seen in Figure 42.

Visitor lands on the

developers account

page

Is user

logged in?

Display register

page

Display personal

dashboard
Yes

Register request

and information
User fills in the formNo

Administration checks

pending requests

Is the request

approved?

Send email

denying the

request

No

Send email approving the request and warning the

developer for any relevant information
Yes

Solution proposed | 4

 65

Figure 42 - Application publishing request

As developers enter a page of the platform dedicated to application submission, they are

asked to fill in a form, writing the application’s name, description and URL. After this has been

properly filled, a notification is sent to administration, warning them of the pending request. After

this, the administration is responsible for approving or rejecting an application based on its

description.

4.2.4. Application suspension

Application suspension can come from failing to abide by terms of service. With

administration watching for reported issues regarding applications and their usage of the network,

they may choose to disable an application from using network resources via their dashboard.

Administration must be able to identify the reported issue and uncover its cause. If it is breaching

terms of service (and creates any of the behaviors specified in Figure 43), the administration may:

Figure 43 - Application suspension flow

Developer lands on the

application submission

page

Is the form

properly filled?

Request

modifications

Send application

submission

request

Yes

No

User fills in the form
Information

 is altered

An issue is reported

regarding an application

Is the

information

enough?

Request more

details

Sends a notice to

the application’s

team

Yes

No

Administration analyses

 the issue

Receives new

information from the user

User suffers/

discovers an issue

with an application

User send an email

to the platform’s administration

Is the event

recurring?

No

Disable the

application
Yes

Solution proposed | 4

66

a) Send a notice to the application’s team, warning them of the reported issue and giving them

time to correct it. The team may respond to the notice, justifying the problem and/or asking

for more time, delaying the process – a decision that is left to the administrator;

b) If the issue is recurrent during the time-frame of the correction process, the user will be

notified that the process is underway;

c) If the issue is recurrent then the decision of suspending the application is left to the

administrator: if the events are scarce, a notice to the team should suffice; if, on the other

hand, the problem is reported by a number of users, the application should be disabled.

The disabling of the application will be, effectively, revoking the given token. This will

prevent the application from authenticating and will force the request of a new token.

4.3. WebRTC

WebRTC support comes by the integration of two crucial WIT components: the WebRTC-

to-SIP gateway and WebRTC Communicator (WWC) which is composed of client and SDK. Being

WIT Software products, these were not purpose-built, having modifications been made to fit WTE

needs. WIT’s WebRTC Communicator is a browser softphone, implemented using HTML5 and

Javascript, supporting an array of communication features such as audio and video calls (using

WebRTC) to SIP endpoints or other WWC users, chat messaging with file transferring and image

sharing support. These are just two of the most relevant examples of the many features the client

supports. The client itself is compliant with GSMA’s Rich Communication specifications[76] and

provides an SDK which can be shared among developers wishing to create applications supporting

these types of telecommunication capabilities. The WWC connects to the WebRTC-to-SIP

gateway, which itself is made in Java and connects to the network’s P-CSCF to enable all the

communication features.

4.3.1. OpenIMS modifications

Certain modifications had to be made to the IMS core in use, in order to support the

WebRTC-to-SIP gateway and WWC client. Although this behavior is configurable, the gateway

supports +351<number> contact formats and these number formats are forwarded to break-out

servers in the OpenIMS core. Since no break-out server was integrated in the solution, the call

would fail. As such, this call forwarding feature was disabled. Additionally, OpenIMS is very strict

Solution proposed | 4

 67

on the format of the messages it accepts - if they are not “well-formatted”, at least from a core

perspective, they are automatically discarded. This happened when using the gateway and client –

messages featured a port number next to the SIP address (“sip:name@domain:port”), not accepted

by the server. As such, these addresses had to be cleaned in order to proceed.

4.3.2. User interface

In order to better understand how the features and modules are used, Figure 44 is shown.

Here, one can see the clients chat interface, where several elements should be emphasized:

Figure 44 - WWC chat interface

 On the left, the users’ address book is shown, where contacts are stored;

 Stickers and emoticons can be selected on the right, also being available by shortcuts in the

chat fields;

 The chat timeline can be seen in the middle, with two files being represented – an image,

shown as a thumbnail (may be seen entirely on click) and a file that can be immediately

downloaded;

 On the bottom right, one can see a popup, generated when the client received the last

message.

Solution proposed | 4

68

Some messaging features, however, had to be implemented specifically for the WTE

solution, in order to support its messaging requirements. In order to process a SIP MESSAGE

request made from the AS to the WWC, certain modifications had to be made to the client and

SDK, since messaging was only originally available through Session-mode messaging (with a

MSRP session established). These modifications, made in Javascript and affecting the processing

of SIP MESSAGE requests, allowed the application to process plain text messages and rich

messages (containing vCards and base-64 encoded JPEG image files), while maintaining chat

messaging between clients.

4.3.2.1. Plain text processing

The SDK implements logic for addressing different SIP requests in a different manner. As

such, modifications were made to the actions taken, by the system, upon receiving a SIP

MESSAGE request. Whereas previously the client did not support pager-mode messaging, as

referred above, these modifications now allow the client to process the textual content of the

request, showing it in the clients’ chat interface. This allows pager-mode and session-mode

messaging to work seamlessly, from a users’ perspective, a detail that is crucial when designing a

clean, simple interface.

4.3.2.2. Rich content processing

A rich message, coming from the AS, will have a content-type such as “text/vcard” or

“image/jpeg”, containing the file’s metadata which will either be textual (in the vCard case) or

encoded (in the JPEG’s case). As such, rich message processing followed a similar route to the

processing done in the previous topic. In addition for interpreting their content, SIP MESSAGE

requests are inspected for their content-type. Posterior processing depends on the result:

 If the content-type received is “text/vcard”, the SDK will parse the metadata, retrieving a

specific set of fields (name, telephone, email, workplace and location). Afterwards, an

event, that would otherwise be a user action, is triggered – creation of a new contact in the

clients’ address book (Figure 45);

 If the request contains an “image/jpeg” content-type, the SDK will decode the content and

show the image as a thumbnail in the clients’ chat timeline, also making it available for

zoom-in.

Solution proposed | 4

 69

Both these actions allow for posterior download of the file sent and were both created

specifically for this API use-case.

Figure 45 - Contact creation event on the WWC

4.4. Third party application

Again, taking on the reference architecture shown above on Figure 24, one can see several

components that enable all the desired functionalities and the interactions between the third party

applications and the network. An application will be typically composed of 2 core elements, as

depicted in Figure 46 - a component that will handle third party call controls and one that will

enable WebRTC features. A final, optional component is its own REST API for notification

retrieval.

Figure 46 - Third party application architecture

API

Portal

WebRTC Gateway

Third Party Call Control

API

WebRTC Component

HTTP

HTTP

HTTP

Solution proposed | 4

70

All components on Figure 46 have their own very distinct responsibilities:

 The 3PCC (Third Party Call Control) component will be responsible for sending requests

to the solution’s API, triggering all the desired events – from call placement to messaging;

 For first party call controls, the WWC will be used, communicating with the WebRTC-to-

SIP gateway. This is essentially a client, with a proprietary SDK used to develop the

application. Again, these components were not developed in this solution, although certain

features in the SDK and client were implemented in order to create this dissertation’s proof

of concept (the pager-mode messaging features via SIP MESSAGE);

 Finally, the application’s API will have the sole responsibility of receiving notifications

from the AS. If such is not implemented, a mechanism for long-polling is also available for

applications to retrieve incoming notifications.

This architecture is for an example application nonetheless; if, for example, the developer

wishes to only focus on a web application that can trigger 3PCC functionalities, the WebRTC

component would not be used.

4.5. Chapter summary

Throughout the implementation phase, as features gained form and with the decision of

using VaaS as the baseline and the OneAPI as reference API model, certain changes to the

requirements were made to the AS. Almost all of the planned features were implemented, from call

control to notifications and authorization/authentication (user/application authentication and

authorization was completed). Conference calling is also implemented at this stage, as well as a

long-polling mechanism, giving a developer a fallback mechanism for notification retrieval,

enriching the application and possible use-cases. Developer authentication and the retrieval of

application descriptions were first planned but posteriorly discarded. API statistics, billing and

presence services also remain unimplemented at this stage. This is due to their priority, with focus

being deviated to more important functionalities.

Additionally, certain limitations should be noted. With VaaS’ media layer relying on

deprecated methods and with the server only supporting the G711 codec at this time, errors may

occur if the configured call hold music does not follow very specific conditions – encoded in G711,

with 16 bits and 8000Hz. Errors take the form of internal errors, with media not being played, or

reproductions at very low sound levels.

Solution proposed | 4

 71

Signalling wise, there are also some limitations that exist, were if one client disconnects the

BYE message is not forwarded to the other parties. This decision was made due to the OneAPI

specification of appending the call to the server, having been decided that the server would only

maintain a B2BUA stance and not proxy requests.

 Focusing on the portal, as referred before, most of the features planned were implemented,

as well as the features for the WWC client. This client is also able to display vCard handling in a

manner not planned initially, which is seen as a positive decision in terms of user experience

(presented in 4.3.2.2), contributing to the WWC project.

In short, the decision of using VaaS, the WebRTC-to-SIP gateway and WWC client for

bootstrapping the solution is seen as a positive one, resulting in a more advanced, stable and

feature-rich proof-of-concept, with room for evolution.

72

Evaluation and results | 5

 73

Chapter 5

Evaluation and results

A software evaluation strategy will detail, from a high-level perspective, how testing will

be approached during this dissertation’s development, including what types of tests should be done

and their priorities, alongside the different levels of testing that have been planned. These tests will

be used to study several system characteristics, such as performance under load, delays, mouth-to-

ear delay, among many others metrics. System performance is crucial and will affect how well the

solution responds to requests made, affecting overall quality of service (QoS), from call setup times

to the delivery of messages in due time. As such, the system must be able to handle increasing

workloads, all the while maintaining a stable environment for user interactions. With this concern

in mind, the network components in use and the architecture planned (from a high-level view) must

be analyzed, identifying possible bottlenecks which could eventually limit the amount of calls that

the system would be able to handle. Its performance will be influenced by different details, such as

the implementation of the components themselves.

System monitoring is also a concern that should be addressed. Performance indicators

(KPI, short for Key Performance Indicators), could be used to monitor the system and make

scalability decisions – one could implement a mechanism that, upon monitoring an above average

load on the system, would trigger the deployment of another node, resulting in better load-

balancing of incoming events. Additionally, and from a call perspective, analytics could be made

available to the clients allowing them to dynamically renegotiate codecs when the quality of a call

degrades. Parallel to these indicators (events for second, bandwidth, among many others), are

aggregate metrics such as Calls Per Second (CpS). Due to softphone to WebRTC calls possibly

needing to go through transcoding, performance and call quality might be affected in these

scenarios, due to the processing demands required. To analyze this issue, mouth-to-ear delay tests

were made in addition to load-testing studies to assess the solution’s performance.

Load-testing will be used to simulate multiple and concurrent access to the solution’s

features by users. This testing is designed to ensure that the system is able to cope with numerous

concurrent calls in an efficient manner, consequently testing its scalability and how it behaves

under load. In this testing scenario, care should be taken into analyzing how delay increases the

setup of new calls sessions and if requests are lost. Bottlenecks in the system could also be

identified - for instance, if the API becomes a bottleneck or if the solution’s SIP layer is not able to

cope with incoming requests. To this end, multiple tools may be used, such as MTS[77] or

Evaluation and results | 5

74

SIPp[78] which help load-test the platform by generating SIP traffic and The Grinder[79] or

Vegeta[80], used to load-test the API. These types of test cases are of great importance to this

dissertation, providing feedback on its quality and possible weaknesses that should be promptly

mitigated.

On the other hand, mouth-to-ear tests are designed to assess performance on an audio

transmissions level, measuring the time it takes for a callee to listen to the words spoken by a caller

– higher delays lead to client-side difficulties, with callers losing the sense of real-time

communication as audio gets delayed across the network. To test this scenario, an approach will be

defined using the Audacity audio tool[81], which enables audio manipulation to fit a number of

needs. With this test-case, the components which add more delay to communication will be

identified, measuring how they impact the platform and if the platform itself is efficient enough to

fit this dissertation’s needs.

5.1. Testbed description

This topic provides an overview on the hardware components used in the server and client

machines, as well as software versions in use and possible component configuration. Although a

full description may be seen in annex F), a few of the main characteristics will now be described.

The server machine, where IMS core, AS and gateway will be deployed, has an Intel Pentium dual

core processor with three gigabytes of memory, running an Ubuntu operating system. The client

machine, where test clients will be deployed, has a more powerful Intel Pentium dual core

processor with eight gigabytes of memory, running a Windows 7 operating system. Both machines

have physical connections established to a local network, diminishing external constraints that

might influence the results.

Due to restrictions on the hardware currently available, the following components were

executed in the server machine:

 OpenIMS core (R1186) and Sippy RTPproxy (v1.2.1), along with all the databases;

 Apache Tomcat (v7.0.29) and Mobicents (v2.0.0), using Sun’s JVM (v1.6.0_45) with no

default configurations changed;

 AS (R3603) and WebRTC-to-SIP gateway (v3.7).

Since the test machine had enough physical memory to handle the components, this was

not regarded as a bottleneck. OpenIMS modifications also had to be made, disabling logging and

increasing child processes available to the components, to maximize server throughput (annex G)

Evaluation and results | 5

 75

contains such modifications). The reasoning behind this decision lies on logging being a very

expensive writing operation, which greatly affects performance.

The SIP testing tool used was MTS (Multi-protocol Test Suite[77]), with the test scripts

developed following the asynchronous model described in its users’ manual[82]. The software ran

on Sun’s JVM configured with one gigabyte of memory and several default proprieties were

modified from their default values (seen in the H) annex). MTS is a very feature rich tool, able to

simulate SIP requests and RTP flows, providing metrics and graphs relating to the gathered data,

display request/response delays, transaction duration, among many others. However, it requires a

substantial amount of processing power and a particular bug was noticed during the tests: in certain

cases, SIP transactions were not correctly closed, resulting in statistics revealing missing BYE’s.

To mitigate this issue, a customized Python script was used to parse the logs and confirm the

results.

5.2. Call throughput

The objective of these tests was to evaluate the performance of the solution handling

common operations performed by endpoints, focusing on calls only. Firstly, a strict IMS-only

signalling test was made, to establish a baseline with a scenario based on call invites. The second

test was based on the previous scenario, but with media exchange enabled via a media proxy,

increasing performance requirements to handle all transmissions. In the third test-case, the media

proxy was discarded and the AS was used, a scenario design to test the AS’s ability to handle

intensive and concurrent user actions. The fourth and final test-case is based around the WebRTC

support, testing the impact it has on the platform.

Across all tests, certain default parameters were established to ensure consistency in the

results. Before conducting the tests, clients were previously registered in the network and call

establishment was set to 3 seconds, while call duration was set to 30 seconds. Therefore, the

maximum number of simultaneous calls (SC) in the tests can be calculated as 𝑆𝐶 = 33 ∗ 𝐶𝑃𝑆

(Calls Per Second, the rate at which the scripts will generate new calls).

5.2.1. IMS signalling

This test was made with only the IMS core deployed on the server, aiming to understand

the signalling capacity of the core. Baseline values were established and will be used for comparing

the results gathered when the other components are involved in the communication.

Evaluation and results | 5

76

Call parties (both “callers” and “callees”) were simulated using MTS scripts. Two users

were created on the core’s HSS and registered before each test with an expiration interval larger

than the test duration. The number of clients connected is not relevant, since having the clients

registered is virtually inexpensive and call establishment is not impacted by having several calls

between the same clients. For each test, the scripts executed the steps in Figure 47 continuously.

Figure 47 - Default script steps and signalling flow

The test scripts were executed multiple times, with different CPS, revealing how the server

behaved when faced with theses variations. Figure 48 - Figure 51 reveal how the solution behaved,

in terms of response delay, to a 165 to 660 simultaneous call variation. These delays (measured

between the sending of an INVITE and receiving of a 200 OK) are gathered and reported by MTS,

with each graph corresponding to the results of an individual test (chosen for reflecting an average

scenario after a certain amount of testing).

Evaluation and results | 5

 77

Figure 48 - Call establishment times at 165 SC (signalling only)

Figure 49 - Call establishment times at 330 CS (signalling only)

Figure 50 - Call establishment times at 495 SC (signalling only)

Evaluation and results | 5

78

Figure 51 - Call establishment times at 660 SC (signalling only)

Response times cannot be lower than 3 seconds, since this is the delay introduced between

‘Ringing’ and ‘Established’ states. As such, the added delay at this call rate is considered

acceptable. Increasing SC value results in growing response times and, consequently, delay - for

instance, at 660 SC the increase in average delay is ~15.95 seconds (from 3.05 to 19 seconds).

Additionally, certain spikes can be seen in the delay, increasing and especially noticeable

in the end of Figure 49 and beginning of Figure 51. These are attributed to the allocation of more

memory by MTS, as the software demands more resources in order to process all the information.

Although delays increase as SC values become higher, as long as the delay remained lower than the

request timeout time, calls would still be able to be established, even though this is an unacceptable

scenario for client communication purposes (due to the increasing call setup time).

At its best, the IMS core was able to handle 330 SC without errors for 2min, for an

approximated total of 1200 calls made. Response times were overall stable during the entire test

duration, as were CPU load and memory occupation. Additionally, at this level, the core was able

to handle all requests in the same approximate delay, as represented by the stronger bar in Figure

52.

Evaluation and results | 5

 79

Figure 52 - Call establishment time distribution, in seconds (330 SC, signalling only)

One can see a remarkable difference it constitutes when comparing these results to the

results in Figure 53, with the rate set to 660 SC.

Figure 53 - Call establishment time distribution, in seconds (660 SC, signalling only)

Whereas in the first, all requests where responded in the same approximate delay, here 60%

where answered in an average ~19 seconds and 40% with an average delay of ~25 seconds. This is

caused by increased MTS processing time and effort to deal with all the transactions, due to the

amount of messages received server side, making it the bottleneck in this scenario.

Evaluation and results | 5

80

5.2.2. IMS signalling and RTP exchange

More than just signalling, audio calls involve (among others) RTP exchange and possible

communication with networks AS’s. Thus, before testing API or WebRTC performance, different

test sets involving media exchange or AS deployment should also be executed, since both may

hinder server performance. However, both these tests are not applicable in the current scenario.

Firstly, the core’s P-CSCF does not relay media, serving merely as a signalling proxy. As such,

media is exchanged in a peer-to-peer manner, not adding load to the core. Secondly, since the AS

triggers its own events, initiating the sessions and remaining on the signalling path, the core does

not interact with it in first-party calls. Simply deploying the AS on the server will only consume

memory, not interfering with the server’s performance – incoming requests will not be forwarded

to the AS. In order to properly define a baseline performance value for the first case, a different

approach must be taken. The AS will act as a media bridge when tested, with parties establishing a

media stream with the server and exchanging data. As such, a similar scenario will be mapped in

this case, deploying an RTP proxy (Sippy RTPproxy[83]) which will act as a media bridge for all

communications. This will generate the flow in Figure 54, testing signalling and media handling

performance.

Figure 54 - RTPproxy signalling flow

Evaluation and results | 5

 81

An error was uncovered in the P-CSCF when deploying the RTPproxy and enabling its

usage. During calls, the RTP ports exchanged in the SDP would be changed to those allocated by

the proxy, but the IP would remain the same, breaking communication. The issue uncovered and

the modification applied can be seen in annex I). Having fixed the issue, the P-CSCF began to

properly change the SDP to the IP coming from the RTPproxy, enabling media relay. For this test

case, the MTS tool simulated a G711 stream, with the encoded audio consisting of packets with a

160 bytes payload sent every 20ms (50 packets/s). As in the scenario above, testing was executed

multiple times, with Figure 55 - Figure 58 revealing how the solution behaved with different SC

rates.

Figure 55 - Call establishment times at 66 SC (signalling and RTP)

Figure 56 - Call establishment times at 99 SC (signalling and RTP)

Evaluation and results | 5

82

Figure 57 - Call establishment times at 132 SC (signalling and RTP)

Figure 58 - Call establishment times at 165 SC (signalling and RTP)

Analyzing Figure 55 - Figure 58, one can see similarities between them, as they show that

average response delay is maintained at ~3.15 seconds. However, this does not reflect reality since,

above a rate of 99 SC, the test reveals that calls are lost – 0.33% of the calls at 165 SC, 1.02% at

198 SC and increasing. Delay may remain similar, but requests are lost. This result is unacceptable

for a communication system, where reliability is a key factor. The reason for the lower rate and

calls lost lies on the MTS, which cannot handle all the signalling and media streams, due to

hardware limitations (as seen in Figure 59 and Figure 60).

Evaluation and results | 5

 83

Figure 59 - MTS response time, in seconds, at 99 SC

Figure 60 - MTS response time, in seconds, at 132 SC

As such, 99 SC was established as the baseline rate the server can handle, resulting in 360

calls made in 2 minutes. Again, at this rate, the server was able to handle all requests in the same

timeframe, as seen in Figure 61. Even though some delay spikes may be seen in this figure,

similarly to the previous test case, this was seen as not affecting performance at this CPS rate.

Again, the cause of these spikes is MTS, with Java acquiring more resources from the system.

Evaluation and results | 5

84

Figure 61 - Call establishment time distribution, in seconds (99 SC, signalling and RTP)

5.2.3. AS

This test set was made with the IMS core and AS deployed on the server, with calls being

triggered by the API to registered users. Similarly to the previous test-case, resulting values will be

compared with the baseline established in the previous test scenarios, analyzing how server

performance as been affected.

Again, test clients (“MTS Responders”, as referred in Figure 62) were simulated using

MTS scripts, with default values applied (call establishment was set to 3 seconds and call duration

to 30 seconds). The tool used to stress test the API, represented by “Loader” in the same figure, is

Vegeta[80]. A very simple tool to use, it provides a number of interesting functionalities, such as

request rate and test duration parameterization, with methods for retrieval of delay metrics, among

many others.

Again, two users were created on the core’s HSS and registered before each test with an

expiration interval larger than the test duration. For each user, the scripts executed the steps in

Figure 62 continuously.

Evaluation and results | 5

 85

Figure 62 - API signalling flow

Similar to the previous test-case, upon INVITE acceptance by the MTS script, a G711

stream is generated, following the same parameters: encoded audio consisting of packets with a

160 bytes payload sent at a rate of 50 packets/s. The test was executed and again, the results

gathered indicate that MTS was the bottleneck. When going from 99 SC to 132 SC, the delay

increase was such that calls were lost, as depicted in Figure 63 and Figure 64.

Figure 63 - MTS response time, in seconds, at 99 SC

Evaluation and results | 5

86

Figure 64 - MTS response time, in seconds, at 132 SC

The MTS approach taken thus far could not be replicated in this scenario, since INVITEs

were not being made by the MTS tool and responders were not talking directly to each other

(establishing a connection to the server in this case). Consequently, delay graphs like the ones

shown before could not be generated. In order to mitigate this issue, logging was enabled in the AS

and additional log messages (such as the one depicted in Snippet 3) were implemented when

sending an invite and receiving a response. The first three sections of the message are not relevant

for these results, but the rest of the message reveals all necessary information to calculate signalling

delays, divided by hyphens - the first section (“Invite sent”) reveals the SIP request’s method, the

second the call identifier associated with the request and the third a timestamp down to the

microsecond. Logging was then captured, stored in a separate file and a custom python script was

made to parse the file and calculate minimum, maximum and average delays of the featured calls

(represented in microseconds).

Snippet 3 - Call logging in the AS

At 99 SC, the results were as follows: for a total number of 720 calls, the mean average

delay was 138 ms (from a minimum of 115 ms to a maximum of 506 ms). The delay cannot be

inferior to 0.1 seconds (or 100 ms), since this is the waiting period established by the MTS tool to

respond to an INVITE request with a TRYING response. When comparing this to results seen

before, in Figure 56, one can see the similarities of the results, as at a similar level of load, the AS

behaves much like the RTPproxy.

Evaluation and results | 5

 87

API response metrics such as mean and maximum delay were also retrieved from Vegeta

after the tests, showing an average latency of 28 ms at 99 SC (to a maximum of 740 ms) and an

average latency of 45 ms at 132 SC (to a maximum of 1.25 seconds).

In short, although the API may have been slower at times to respond to incoming Vegeta

requests, signalling behaved correctly. More tests could have been made if more powerful

hardware was available for the testing machine.

5.2.4. WebRTC and AS

One final test-case should be made to the WebRTC support, using the gateway and WWC

client in conjunction with the AS, to see how the different interactions affect platform performance.

Although the WebRTC components were not developed for this dissertation, an end-to-end stress

test is relevant due to the interactions made between the WWC client, gateway and IMS network.

By itself, the WebRTC support will not put extra-strain on the AS, since it would only see

endpoints - the impact a WebRTC client makes on the AS is no more significant than any other SIP

endpoint. However, more memory and processing power would be used in the server, since the

gateway would also be deployed, alongside all the other components. Demands such as transcoding

are non-existent in this case, lowering processing demands: the AS only supports the G711 codec,

which is also supported by the browser itself (Chrome supports this codec along with OPUS and

VP8, among many others)[84]. Load-testing the WebRTC support will take a different approach

from the one taken thus far, depicted in Figure 65, since several conditions are in place – from

WebRTC needing browser capabilities for media device usage to user actions needing to be

mimicked in other to produce automatic tests (client heavily rely on user interactions).

In order to mimic the user actions needed to answer calls, a purposed built WWC test client

will be used, registering N different clients in the IMS to answer all incoming calls. This test client

will run on the client’s machines browser, thus enabling the capture of local media. An obstacle

may immediately be envisioned, with the browser very likely becoming a bottleneck, will all the

media connection established and demanded resources. A similar workflow as the one in the

previous test-scenarios will be recreated: MTS will be responsible for triggering API calls to an

answering MTS script and to the WWC client, placing N calls. MTS will be used instead of

Vegeta, due to the need to dynamically change the requests made to the API to call each of the

registered WWC users.

Evaluation and results | 5

88

Figure 65 - WebRTC load-test approach

Load-testing the solution in this scenario was made and, at first, the browser became a

bottleneck at around 20 concurrent calls, with call acceptance being delayed until other ongoing

calls were terminated. Not an unforeseen obstacle, the chosen approach had to be tweaked due to

Chrome’s limitations, with clients being executed from two different Chrome browsers to increase

the number of concurrent calls (due to hardware limitations, more clients were unavailable). The

same test was done re-done, with only 10 clients being registered in each browser, and the results

achieved reflect what has been seen thus far.

Figure 66 - MTS response times (20 concurrent calls)

Custom WWC

WTEAS MTS API caller

MTS responder

API
calls

Media exchangeMedia exchange

Evaluation and results | 5

 89

As shown in Figure 66, even though MTS response times seem low, they are increasing

rapidly, reflecting what has been seen thus far across the previous test-cases. Although SIP

exchange delays remain in very satisfying intervals at this level, this increase already gives the

indication that MTS will most likely become a bottleneck in more intense scenarios. With hardware

limitations forbidding higher call rates and the analysis made, the SC value considered for this case

will be 99 SC, similarly to the previous test.

5.2.5. Test results summary

Due to the restrictions imposed during this test phase, in terms of hardware limitations,

more intense performance testing was not made – higher simultaneous calls or test durations would

be factors that might wield more in-depth results. Although not reflecting the components real

capabilities and not allowing the search for more accurate bottlenecks, the tests made already

feature a level of insight to the components behaviour under load, abiding by the non-functional

constraints referred in the beginning of the chapter.

Table 2 resumes the findings of the performance tests, expressed in number of

simultaneous calls.

Test Results

IMS signalling 330

IMS signalling and RTP 99

AS 99

WebRTC and AS 99

Table 2 - Performance test results summary

5.3. Mouth-to-ear delay

In addition to load-testing, inquiring whether performance becomes an issue under

substantial amounts of user actions, mouth-to-ear delays were also analyzed in the different

scenarios. This call quality metric reveals voice latency within a call, i.e., the timeframe between a

word being spoken on one end of the call and being heard on the other. A multitude of factors may

interfere with this metric, from network quality to server/client implementation and audio

conversion.

Evaluation and results | 5

90

Using a tool called Audacity[81], with a configuration inspired by articles where similar

test-cases were done[85] and its own manual, the default testing approach depicted in Figure 67

was followed.

Figure 67 – Mouth-to-ear test configuration

In this approach, Audacity is executed in the server machine, alongside all other network

components (OpenIMS, WebRTC-to-SIP gateway and RTPproxy, among others). Two connections

were established between the server and both caller/callee:

 One where the server’s headphone jack and the caller’s microphone jack (either X-Lite 4

or, in WebRTC scenarios, WWC) were connected via a male-to-male line;

 A second one, where the callee’s (Snom 821) sound-out was connected to the server’s line-

in. This was done by taking a normal 4P4C cable, that would otherwise connect a headset

to the telephone system, and soldering both microphone and sound lines to two separate

headphone jacks (mono, 3.5 mm).

To start the test, a call would first be established between both parties. Audacity then

played a pre-recorded media file (containing a total of 31 sound pikes) which would feed the

caller’s microphone and, in parallel, also record the sound being received by the callee. This would

enable a direct comparison between the time a sound was made, in the media playback, and the

time the same sound was received.

X-Lite 4/WWCSnom 821

Server

Mic-in Sound-out

Sound-out Mic-in

Evaluation and results | 5

 91

Following the same analysis featured in the performance testing, the first test made was a

peer-to-peer call, establishing a baseline for comparison, with posterior tests incrementally adding

solution components to see on these impacted audio transmissions.

5.3.1. Peer-to-peer call

This test, made with only the IMS core deployed on the server, serves as a baseline for

average delay between client calls (Figure 68).

Figure 68 - Peer-to-peer test configuration

After being fully established (both clients have accepted the call), the actions referred

above were executed – media playback to X-Lite’s microphone, in parallel to Snom microphone

recording. This test scenario led to the following results:

Figure 69 - Peer-to-peer audio comparison

X-Lite 4Snom 821

Server

Mic-in Sound-out

Sound-out Mic-in

Media exchange

Evaluation and results | 5

92

The top axis in Figure 69 represents time in 5 ms increments, with the original media file

being the audio track on top and the recording at the bottom. As one can see, the first spike in the

original track began at approximately 1 second, whereas the first spike in the recording only began

at 1.25 seconds – a difference of approximately 250 milliseconds. This is a very significant delay

which, according to ITU’s recommendation on one-way transmission times[86], may result in only

a satisfactory call experience, falling under a “Users satisfied” level of acceptance – ITU

recommends a delay of 150 ms and establishes an upper bound at 400 ms. This 250 ms delay may

be a result of the network configuration or bandwidth, codec delays or sound acquirement by the

devices, but is unrelated to any of the WTE solution components, since these were not deployed

nor used in this test. As such, this test result will be used as a baseline in the following tests.

5.3.2. RTPproxy call

After deploying the RTPproxy in the server, this test will now trigger a significantly

different flow from the one above, with media being relayed by this proxy to the call participants,

as represented in Figure 70.

Figure 70 - RTPproxy test configuration

Figure 71 represents the captured media, with the original audio file being again on top and

the recording below.

X-Lite 4Snom 821

Server

Mic-in Sound-out

Sound-out Mic-in

RTPproxy

Media exchange Media exchange

Evaluation and results | 5

 93

Figure 71 - RTPproxy audio comparison

As in the scenario above, the first audio spike featured in the original track starts at about

the 1 second mark but, in this case, the first spike in the recording appears at approximately 1.255

seconds. A difference of 255 ms, an added 5 ms when comparing to the previous test result, this is

a possible consequence from the media bridging established or the proxy’s own implementation.

5.3.3. AS call

In this test, a call was triggered by the API to both parties, with connections being

established between the clients and the AS, where media is exchanged during the call session – i.e.,

audio relay is made in the AS. The results achieved in this case can be seen in Figure 72.

Figure 72 - AS audio comparison

Here, the first spike in the call recording appears at 1.26 seconds, for a total difference of

260 ms (considering the original track). As one can see, the AS behaves well in this realm, with its

performance comparable to the RTPproxy’s.

5.3.4. WebRTC calls

The first part of this test is composed of an end-to-end scenario where a call is established

between the WWC client and the Snom phone, exposing the gateway’s influence amidst the media

path. The results can be seen in Figure 73.

Evaluation and results | 5

94

Figure 73 - WWC audio comparison

As one can see, the first spike now starts at around 1.28 seconds, 20 ms’s more than in the

previous test case or a total difference of 280 ms from the original audio track. The second part of

this test features a scenario that involves not only the WWC client, but the AS as well, with Figure

74 representing its test configuration.

Figure 74 - AS/WWC test configuration

When comparing this previous test result to this test, where the AS is involved for media

relay, one can see that the first spike (in Figure 75) is triggered at around 1.29 seconds, meaning

that the AS added a 10 ms delay, minimally impacting the solutions performance in terms of audio

transmission.

WWCSnom 821

Server

Mic-in Sound-out

Sound-out Mic-in

WTEAS GatewayMedia exchange Media exchange

Media
exchange

Evaluation and results | 5

 95

Figure 75 - WWC/AS audio comparison

At an average delay of 290 ms, performance is placed near ITU’s “Some users dissatisfied”

level, which has its lower-bound reference value set to 300 ms.

5.3.5. GSM calls

This test was done in order to establish a baseline comparison between the normal behavior

for a traditional GSM (Global System for Mobile) phone call and a call made using the solution

developed in this dissertation. The approach taken, depicted in Figure 76, was similar to the ones

seen on the peer-to-peer test-case, with a sound-source playing the original audio, which is

captured by the caller’s speakers and sent to the callee. The transmitted audio is captured by the

server’s microphone, coming from the callee’s loud-speakers. Again, no server component such as

IMS core or WTE solution was used; this test-set was strictly made using smartphones registered to

operator’s networks. Although this difference resulted in a certain echo on the recording, along

with some delay from the caller’s speakers when acquiring the sound, this allowed for easy capture

of the transmitted audio:

Figure 76 - GSM test configuration

Server

Mic-in Sound-out

Sound-out
Mic-in

Media exchange

GSM

CallerCaller

Evaluation and results | 5

96

The first test, depicted in Figure 77, was made between two different smartphones,

functioning in the same operator and in GSM-mode. In this scenario, results showed that delay is

situated near the 300 ms level (the difference between the start of the “signal generated” and the

“signal sent”). As one can see by the difference between the start of the “signal sent” and the start

of the “signal received”, the device’s speakers had an acquisition delay of about 110 ms.

Figure 77 - GSM delay test result (same operator)

300 ms places the communication at the upper bound limit of ITU’s “Some users

dissatisfied” level of acceptance. Another test was done, although resulting in increasing delay

times, with a call being made between different smartphones registered to different operators

(Figure 78).

Figure 78 - GSM delay test result (different operators)

Results gathered indicate that delay was set at about 440 ms, going beyond ITU’s upper

bound limit on call delay recommendations (400 ms) and falling to ITU’s “Many users dissatisfied”

level of user acceptance.

Although a test with 4G support wasn’t possible (fourth generation, referring to LTE-

enabled smartphones), one was made with WCDMA (Wideband Code Division Multiple

Access[87], a third generation technology allowing more speed in data exchange, among other

improvements). This test can be seen depicted in Figure 79, with delay set at about 280 ms, placing

at the bottom limit of ITU’s “Users satisfied” level.

Signal generated

Signal

sent

Signal

received

Signal generated

Signal

sent

Signal

received

Evaluation and results | 5

 97

Figure 79 - WCDMA delay test result (same operator)

5.3.6. Test results summary

The most significant delay can be noticed when studying the gateway’s impact, which is

more likely to worsen call experience. The WWC, as explained previously, sends its media to the

gateway, which only then forwards it to the necessary locations. This action greatly impacts the

system, but is essential to maintaining control over the media flow and allow for transcoding

mechanisms to be executed, if required.

The test results gathered are compiled in Table 3, expressed in milliseconds, with a column

detailing delay difference from a test-case to the default one.

Test Average delay Delay difference

Peer-to-peer call 250 -

RTPproxy call 255 5

AS call 260 10

WebRTC call 280 30

WebRTC/AS call 290 40

Table 3 - Mouth-to-ear test results summary

One can see how comparing these results to the delay in a call between two mobile phones

this is not fair, as network conditions for those calls were unknown, whereas in the solution’s tests

they were known and controlled, easing testing itself and creating more consistent results.

However, they do provide a good reference to the delay that can be expected in this scenario and

one can see how this solution’s performance remains on par, since the lowest delays recorded for

the calls were 280 ms (in WCDMA mode) and 300 ms (in GSM mode).

Signal generated

Signal

sent

Signal

received

Evaluation and results | 5

98

5.4. Chapter summary

Several conclusions may be extrapolated from the testing results gathered. Four main test-

cases were executed, performance-wise: a scenario designed to test only IMS signalling

throughput, another scenario including signalling and media exchange through an RTP proxy, one

especially devised for the AS and another including WebRTC support. After a significant amount

of testing and posterior analysis, one was able to find that above all, the reasons for the values fall

on MTS performance. The tool remained a bottleneck over all the scenarios, not being able to cope

with the load, signalling and media exchange necessities.

Focusing on the mouth-to-ear tests, one can see how these were affected by established

baseline of a 250 ms delay, a test-case where only the IMS core was in use (and peer-to-peer media

exchange was enforced). This result is considered substantially high, even when comparing it to the

GSM/WCDMA tests made. If one was to look only at the added delay from the other components

(AS and/or gateway), the results would be significantly lower - an average of 5 ms gained by the

AS or 30 ms by the gateway. As such, an assumption is made on the solution’s performance not

becoming a bottleneck in other network configurations, as well as lower delays on the WebRTC-

enabling components if conditions were bettered.

Overall, this testing phase was useful for gathering more in-depth information on the

components behavior, enriching this solution. Moreover, even though the baselines values

established were those gathered from the limited analysis, the belief on higher performance levels

remains.

Conclusion | 6

 99

Chapter 6

Conclusion

Advances and research are being made to create a higher degree of interoperability

between traditional telecommunications network and the web-centered world, with WebRTC

motivating new use-cases around the IMS architecture. This dissertation is such an example,

providing, at first, a background research on the tools available to create such a solution. Among

these tools, one can find IMS cores and network components, as well as API designs that come to

facilitate the modeling of the API exposing third party call controls. From these designs, the one

chosen was the one delivered by GSMA and its OneAPI initiative. Influenced by major operators

and influencing several projects around the globe, this initiative provided great groundwork over

the way the API should be modeled, featuring specifications on different telephony aspects (from

voice to messaging). The search for network components was also crucial, revealing solutions

already used to provide WebRTC support over the IMS network and aiding in the search for an

optimal solution – in this case, the usage of WIT Software’s WebRTC-to-SIP gateway and client

(WIT WebRTC Communicator). Taking into account the research and the knowledge gathered, it

was possible to plan several use-cases and define platform requirements that reveal the solution’s

potential. Providing popular telephony functionalities, with the added value of the API designs in

use, this solution also empowers users by enhancing service discovery, via a marketplace were

applications are published.

The requirements defined came to affect the solution’s roadmap and its development,

where the implementation of certain features like call session managing, rich messaging

exchanging and notification mechanisms was prioritized over others such as billing and chat

functionalities. Re-using existing WIT projects and products, the solution created features an AS

extended to expose OneAPI functions and a portal, custom-built to enable the management of

every aspect of the platform. Additionally, WebRTC support was provided with the integration of a

WebRTC gateway and client, the latter modified to accept messaging from the AS. The

development effort of implementing and integrating the components meant that the requirements

were almost entirely implemented. Moreover, throughout its development, additional changes to

the requirements emerged, with the user provisioning mechanism designed (a custom API for

network user registration in the platform) requiring the concept of “administrative applications”,

privileged applications that have exclusive access to that API. The decisions on re-using existing

projects to fit this dissertation’s needs enabled the exposing of a stable and feature-rich solution,

Conclusion | 6

100

with its performance evaluated and proving to be on par with current expectations on mobile call

delays, for example. Load-testing the platform revealed its behavior under stress, with the solution

out-doing the tool in use across the different test-cases With the tool itself unable to handle all the

call events created, the solution was able to perform efficiently in every test, never exposing

bottlenecks that would impair communications or bring the system to a halt.

In short, the proposed objective of developing a proof-of-concept, featuring both telephony

API and WebRTC support, is considered a success, with the platform succeeding in both features

exposed and performance constraints. With the design decisions and components architecture, the

platform has room to grow into a richer, enterprise-driven solution, able to be customized to fit any

growing needs.

6.1. Future work

The current application server’s implementation is functional and stable, providing already

a high-level of error handling through a complex SIP layer and already packing some interesting

features. Nonetheless, room for evolution exists across several domains.

The AS could eventually provide mechanisms for DTMF processing, chat messaging, API

analytics and user handling. Rich messaging could also be enriched by supporting more content-

types, increasing the amount of files that may be exchanged. Development could also be made on

the SIP layer, with the server acting as a proxy for BYE requests, for example, empowering the

user. Another layer that could be improved is the media one, providing support for more codecs in

simultaneous, as well as a more complete announcement playback feature.

The portal has room to grow, from user experience to the administrator mechanisms. On its

marketplace, features could be added to show more application details or even enable the rating of

a published application. Development could be made on this area to reduce demands on

administration of having to handle all requests.

Both API’s could grow in terms of functionalities, focusing on other contexts such as

billing or more complete user provisioning mechanisms. This would allow the creation of more

enhanced use-cases, which would make the platform more flexible to other usage contexts.

In terms of the solution itself, further testing could be made to ensure its correct behaviour

under stress and overall interoperability. With other performance tools and more powerful

hardware, extended testing could be made to ensure the solution is able to handle higher numbers

of concurrent calls and test its processing capabilities under intensive stress. Additionally,

integration tests could be made, deploying the platform in a real operator network and testing its

support for different clients and smartphones. Although federation between multiple operators was

Conclusion | 6

 101

not considered, this would be necessary for widespread deployment of the solution. In terms of the

use-cases explored and implemented during the course of this dissertation’s development, popular

CRMs such as SugarCRM and Salesforce could be supported by creating plugins for these tools.

This would properly show-off the solution’s capabilities and the added value brought.

102

References

 103

References

[1] K. Al-Begain et al., IMS: A Development and Deployment Perspective, p.^pp. 316: John

Wiley & Sons, 2009.

[2] P. Granstrom, L. Norell, and S. Akesson, Converged service for fixed and mobile

telephony, Ericsson Review, 2009.

[3] The Architecture and Benefits of IMS, Dialogic Corporation, 2009.

[4] B. Williamson, “Over-The-Top (OTT): helping or hindering network investment?,”

InterMEDIA, vol. 41, no. 13, 2013.

[5] K. S. Jr, Introduction to the IP Multimedia Subsystem (IMS): IMS Basic Concepts and

Terminology, F5 Networks, Inc., 2007.

[6] J. Rosenberg et al., "RFC 3261 - SIP: Session Initiation Protocol," IETF, 2002.

[7] M. Handley, and V. Jacobson, "RFC 2327 - SDP: Session Description Protocol," IETF,

1998.

[8] Lynne, "CSCF in VoLTE – The P-CSCF (Part 1 of 4)," Award Solutions, Inc., 2013.

[9] Introduction to IMS, Ericsson AB, 2007.

[10] "Universal Mobile Telecommunications System (UMTS); Policy and charging control over

Gx reference point (3GPP TS 29.212 version 7.4.0 Release 7)," Gx Reference Point, ETSI,

2008.

[11] M. Poikselkä et al., Voice over LTE (VoLTE): John Wiley & Sons, 2012.

[12] Voice and Video calling over LTE, Ericsson, 2012.

[13] IMS procedures and protocols, Spirent, 2014.

[14] M. Networks. "About Clearwater," http://www.projectclearwater.org/about-clearwater/,

2013.

[15] M. Networks. "Clearwater Architecture,"

http://www.projectclearwater.org/technical/clearwater-architecture/, 2013.

[16] V. Technologies. "SIP Call Transferring," http://www.vocal.com/sip-1/call-transferring/,

3014.

[17] F. FOKUS. "OSIMS - The FOKUS Open Source IMS Core,"

http://www.fokus.fraunhofer.de/en/fokus_testbeds/open_ims_playground/components/osi

ms/index.html, 2014.

[18] Kamailio. "Kamailio SIP Server," http://www.kamailio.org/w/, 2014.

[19] Kamailio. "What is the IP Multimedia Subsystem (IMS) in Kamailio 4.0?,"

http://www.kamailio.org/w/2013/05/ims-kamailio/, 2013.

http://www.projectclearwater.org/about-clearwater/
http://www.projectclearwater.org/technical/clearwater-architecture/
http://www.vocal.com/sip-1/call-transferring/
http://www.fokus.fraunhofer.de/en/fokus_testbeds/open_ims_playground/components/osims/index.html
http://www.fokus.fraunhofer.de/en/fokus_testbeds/open_ims_playground/components/osims/index.html
http://www.kamailio.org/w/
http://www.kamailio.org/w/2013/05/ims-kamailio/

References

104

[20] Kamailio. "FreeSwitch as Media Server and SBC for Kamailio 3.1,"

http://www.kamailio.org/w/2010/11/freeswitch-as-media-server-and-sbc-for-kamailio-3-1/,

2014.

[21] R. Manson, Getting Started with WebRTC, p.^pp. 114: Packt Publishing, 2013.

[22] M. Baugher et al., "RFC 3711 - The Secure Real-time Transport Protocol (SRTP)," IETF,

2004.

[23] E. R. Stewart, "RFC 4960 - Stream Control Transport Protocol," IETF, 2007.

[24] I. Baz Castillo et al., "The WebSocket Protocol as a Transport for the Session Initiation

Protocol (SIP)," Internet Engineering Task Force, 2014.

[25] S. Wilkins, Basic NAT Concepts and Configuration, Cisco Press, 2011.

[26] J. Rosenberg, "Interactive Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal for Offer/Answer Protocols," Internet Engineering

Task Force, 2010.

[27] J. Rosenberg et al., "Session Traversal Utilities for NAT (STUN)," Network Working

Group, 2008.

[28] Anymeeting. "Anymeeting - Features," http://www.anymeeting.com/Free-Web-

Conferencing-Features.aspx, 2014.

[29] &yet. "Talky," https://talky.io/.

[30] LiveCom. "webRTC:bring us closer," http://lwork.hk:8086/###, 2014.

[31] I. Microsoft Open Technologies. "HTML5Labs - FAQ,"

http://html5labs.interopbridges.com/prototypes/cu-rtc-web/cu-rtc-web/faq, 2014.

[32] J. Paoli. "Customizable, Ubiquitous Real Time Communication over the Web (CU-RTC-

Web)," http://blogs.msdn.com/b/interoperability/archive/2012/07/28/customizable-

ubiquitous-real-time-communication-over-the-web-cu-rtc-web.aspx, 2013.

[33] GTalk-To-VoIP. "Flash-to-VoIP," https://www.flash2voip.com/.

[34] D. Telecom. "flash2ims," https://code.google.com/p/flash2ims/.

[35] D. Bubley. "WebRTC forecasts upgraded: mobile support accelerating,"

http://webrtcstats.com/webrtc-forecasts-upgraded-mobile-support-accelerating/, 2014.

[36] WebRTCstats. "First WebRTC statistics in the World!," http://webrtcstats.com/first-

webrtc-statistics/, 2013.

[37] P. S. Inc. "EasyRTC Enterprise," http://www.easyrtc.com/, 2014.

[38] E. Reeves. "5 Facts About Web Real Time Communication (WebRTC),"

http://blogs.ixiacom.com/ixia-blog/5-facts-about-web-real-time-communication-webrtc/,

2014.

[39] J. Bankoski et al., "VP8 Data Format and Decoding Guide," IETF, 2011.

http://www.kamailio.org/w/2010/11/freeswitch-as-media-server-and-sbc-for-kamailio-3-1/
http://www.anymeeting.com/Free-Web-Conferencing-Features.aspx
http://www.anymeeting.com/Free-Web-Conferencing-Features.aspx
http://lwork.hk:8086/
http://html5labs.interopbridges.com/prototypes/cu-rtc-web/cu-rtc-web/faq
http://blogs.msdn.com/b/interoperability/archive/2012/07/28/customizable-ubiquitous-real-time-communication-over-the-web-cu-rtc-web.aspx
http://blogs.msdn.com/b/interoperability/archive/2012/07/28/customizable-ubiquitous-real-time-communication-over-the-web-cu-rtc-web.aspx
http://www.flash2voip.com/
http://webrtcstats.com/webrtc-forecasts-upgraded-mobile-support-accelerating/
http://webrtcstats.com/first-webrtc-statistics/
http://webrtcstats.com/first-webrtc-statistics/
http://www.easyrtc.com/
http://blogs.ixiacom.com/ixia-blog/5-facts-about-web-real-time-communication-webrtc/

References

 105

[40] L. Miniero. "Are all WebRTC gateway the same?," 2014;

http://lphs.acmepacket.com/blog/bid/175527/Are-all-WebRTC-gateways-the-same.

[41] Underdstanding Session Border Controllers, FRAFOS, 2013.

[42] Security Gateways Versus Session Border Controllers for Protecting Fixed-Mobile

Convergence Networks, Reef Point Systems, 2006.

[43] E. Cheung, “Implementing Endpoint Services Using the SIP Servlet Standard,” in

International Conference on Networking and Services, 2009, pp. 6.

[44] L. Red Hat Middleware. "Mobicents SIP Servlets,"

http://www.mobicents.org/products_sip_servlets.html, 2014.

[45] P. Sailfin. "Sailfin Project," https://sailfin.java.net/, 2013.

[46] Oracle, "Oracle Communications Converged Application Server ", 2010.

[47] Oracle, "Oracle Communications Session Border Controller ", 2013.

[48] Oracle, “Oracle Communications WebRTC Session Controller Solution,” 2013.

[49] D. Telecom. "webrtc2sip," http://webrtc2sip.org/, 2013.

[50] D. Telecom. "webrtc2sip - Smart SIP and Media Gateway,"

https://code.google.com/p/webrtc2sip/, 2013.

[51] D. Telecom. "sipml5 - World's first HTML5 SIP client," http://sipml5.org/, 2013.

[52] R. Lidstone. "Enterprise, SMB WebRTC Adoption on the Rise,"

http://www.webrtcworld.com/topics/webrtc-world/articles/351721-enterprise-smb-webrtc-

adoption-the-rise.htm, 2014.

[53] P. Inc. "Plivo Docs - APIs for Voice, SMS and Text Messaging,"

http://plivo.com/docs/api/, 2014.

[54] P. Inc. "Plivo Launches SDK That Lets Developers Connect WebRTC And SIP,"

http://plivo.com/blog/plivo-launches-sdk-that-lets-developers-connect-webrtc-and-sip/,

2014.

[55] P. Inc. "Plivo Framework," https://github.com/plivo/plivoframework/, 2014.

[56] "GSMA One API Exchange Architecture for cross-operator network APIs," GSMA, 2013,

p. 6.

[57] "Open Service Access (OSA); Parlay X Web Services; Part 2: Third Party Call (Parlay X

2)," ETSI, 2008.

[58] Pragmateek. "JSON vs. XML: Some hard numbers about verbosity,"

http://www.codeproject.com/Articles/604720/JSON-vs-XML-Some-hard-numbers-about-

verbosity, 2014.

[59] K. Mikoluk. "JSON vs XML: How JSON Is Superior To XML,"

https://www.udemy.com/blog/json-vs-xml/, 2013.

http://lphs.acmepacket.com/blog/bid/175527/Are-all-WebRTC-gateways-the-same
http://www.mobicents.org/products_sip_servlets.html
http://webrtc2sip.org/
http://sipml5.org/
http://www.webrtcworld.com/topics/webrtc-world/articles/351721-enterprise-smb-webrtc-adoption-the-rise.htm
http://www.webrtcworld.com/topics/webrtc-world/articles/351721-enterprise-smb-webrtc-adoption-the-rise.htm
http://plivo.com/docs/api/
http://plivo.com/blog/plivo-launches-sdk-that-lets-developers-connect-webrtc-and-sip/
http://www.codeproject.com/Articles/604720/JSON-vs-XML-Some-hard-numbers-about-verbosity
http://www.codeproject.com/Articles/604720/JSON-vs-XML-Some-hard-numbers-about-verbosity
http://www.udemy.com/blog/json-vs-xml/

References

106

[60] "OneAPI V2.0 Voice Call Control Rest," Aepona, 2012.

[61] "OneAPI SMS REST V2.0," Aepona, 2012.

[62] "OneAPI Multimedia Messaging REST V2.0," Aepona, 2012.

[63] J. Rosenberg et al., "Best Current Practices for Third Party Call Control (3pcc) in the

Session Initiation Protocol (SIP)," IETF, 2004.

[64] P. Dix, Service-Oriented Design with Ruby and Rails, p.^pp. 320: Addison-Wesley

Professional, 2010.

[65] Apigee. "Apigee Developer Platform," https://developers.apigee.com/app-services, 2014.

[66] E. E. Burger, J. Van Dyke, and A. Spitzer, "Basic Network Media Services with SIP,"

IETF, 2005.

[67] T. Erl, SOA: Principles of Service Design: Prentice Hall PTR, 2007.

[68] A. Handa, System Engineering for IMS networks: Newnes, 2009.

[69] C. Nedelcu, Nginx HTTP Server, p.^pp. 318: Packt Publishing, 2013.

[70] M. Kulkarni, and Y. Cosmadopoulos, SIP Servlet Specification, version 1.1, 2008.

[71] O. Corporation. "Jersey - RESTful Web Services in Java," https://jersey.java.net/, 2014.

[72] T. N. Project. "Netty Project," http://netty.io/, 2014.

[73] E. A. Johnston et al., "Session Initiation Protocol Service Examples," IETF, 2008.

[74] M. Poikselkä, and G. Mayer, The IMS: IP Multimedia Concepts and Services, 3rd Edition

ed.: Wiley, 2009.

[75] J. Rosenberg et al., "Session Initiation Protocol (SIP) Extension for Instant Messaging,"

IETF, 2002.

[76] "RCS-e - Advanced Communications: Services and Client Specifications," GSMA, 2012.

[77] MTS. "MTS," http://mts.arm-tool.com/, 2014.

[78] R. Gayraud. "Welcome to SIPp," http://sipp.sourceforge.net/, 2014.

[79] P. Zadrozny, P. Aston, and T. Osborne, J2EE Performance Testing with BEA WebLogic

Server: Apress L.P, 2003.

[80] T. Senart. "tsenart/vegeta - HTTP load testing tool and library,"

https://github.com/tsenart/vegeta, 2014.

[81] T. Audacity Team. "Audacity: Free Audio Editor and Recorder,"

http://audacity.sourceforge.net/, 2013.

[82] MTS, "Documentation MTS - User Manuals," 2014.

[83] I. Sippy Software. "Sippy SIP B2BUA," http://www.b2bua.org/, 2014.

[84] Google. "The Chromium Projects - Audio/Video," http://www.chromium.org/audio-video,

2014.

http://netty.io/
http://mts.arm-tool.com/
http://sipp.sourceforge.net/
http://audacity.sourceforge.net/
http://www.b2bua.org/
http://www.chromium.org/audio-video

References

 107

[85] C. Agastya, D. Mechanic, and N. Kothari, “Mouth-To-Ear Latency in Popular VoIP

Clients,” Columbia University, New York, 2009.

[86] "Series G: Transmission Systems and Media, Digital Systems and Networks," ITU, 2003.

[87] R. Tanner, and J. Woodard, WCDMA: Requirements and Practical Design: John Wiley &

Sons, 2005.

[88] R. Fielding et al., "RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1," IETF, 1999.

[89] V. Consortium, "vCard - The Electronic Business Card," 1996.

[90] J. Rosenberg, "RFC 3680: A Session Initiation Protocol (SIP) Event Package for

Registrations," IETF, 2004.

108

Annex

 109

A) Requirements

In this annex, a high-level view of the requirements for the system were given, discarding

low-level details like internal workflows of the stated operations - how a RTP channel will be

opened to provide media exchange between a third-party application and a SIP endpoint already

registered on the network, for example. Although some features were discusses, not all will be

integrated into the solution at this time. For instance, in order to create an interesting proof-of-

concept, features such as call controls were prioritized over those of presence services.

A.1) Functional requirements

Functional requirements represent what the solution needs to do and what is available for

interaction, from a user or developer perspective. For example, being able to add an application to

the portal or triggering a call via the API are functional requirements, whereas security and

performance are general requirements – capabilities that need to exist and are not directly used by

end-users.

A.2.1) API/WebRTC requirements

Over the course of the market analysis, with the research and analysis made on already

available telephony API’s, certain functionalities were seen more often exposed than others. An

example of this is call control versus DTMF processing (Dual-Tone Multi-Frequency, referring to

the ability to send phone digits over a call). While both API’s support call placement, only Plivo

processed DTMF and offered mechanisms for developers to capture and answer it (as one would to

in a call-service, for example, dialing the numbers necessary to execute the desired operations).

Furthermore, these APIs already offer support for WebRTC client applications, enabling the

developers to deploy an application using this technology and, for instance, place calls to PSTN

numbers. Such features are the main objective of this dissertation and will be addressed

momentarily.

Annex

110

Authentication

A mandatory step in user registration and handling, authentication methods must be present

in order to address several more sensitive needs, requirements presented in Table 4 - Table 6:

 Application authentication, required to view application details (such as analytics);

 Developer authentication, allowing this person to access privileged account settings and

view account details;

 User registration and status announcement within the network, allowing him to interact

with other users already registered and available.

Requirement ID Function Description

MRS_API_AUTH_001
Application

authentication

An application will have to access authentication

mechanisms and receive authorization in order to

receive access to networks resources.

MRS_API_AUTH_002
Get application

details

A developer should be able to access application

statistics via the API, accessing usage metrics

(number of users currently logged-in or number

of calls being made concurrently).

Table 4 - Application authentication functions

Requirement ID Function Description

MRS_API_AUTH_003 Developer login
A developer may login to his account at any time,

in order to use all

MRS_API_AUTH_004
Get developer

details

A developer should be able to get his account

details such as his credentials or checking his

status (if authorized for operations, for example).

Table 5 - Developer authentication functions

Requirement ID Function Description

MRS_API_AUTH_005 User login
With this function, a user will be able to re-register

in the network, enabling interaction with other users.

MRS_API_AUTH_006 User sign-up
Users can sign-up to use a published application’s

services.

Table 6 - User authentication functions

Annex

 111

Call operations

Whereas with a SIP endpoint one can use the IMS network normally, sending messages to

other registered users or placing calls without necessarily accessing the API, WebRTC callers

won’t be able to do the same without proper support – these users wouldn’t have the mechanisms

for session signalling to connect to other users. Providing these signalling functionalities and call

operations (presented in Table 7) for third-party applications will be the API’s responsibility.

Requirement ID Function Description

MRS_API_CALL_001 Place call

Call may be started from the API, signalling the

network and sending the request to a SIP endpoint,

for example, from a WebRTC client in order to

initiate a call between both.

MRS_API_CALL_002 Answer call
A call may be answered by a user upon network

notification.

MRS_API_CALL_003 Hang-up call
In the end of a call session, a user may decide to

hang-up his call, terminating the session.

MRS_API_CALL_004 Reject call
A callee may reject an incoming call immediately

after being notified.

MRS_API_CALL_005 Hold call

A call may be put on hold by any of the call

participating parties, notifying the different users of

such an event (something that will be handled by a

different function) and stopping the conversation

momentarily.

MRS_API_CALL_006 Resume call
After putting a call on hold, the user that made such a

decision may resume the call.

MRS_API_CALL_007 Deflect call
A user may be able to deflect a call to another party

upon notification of an incoming call.

MRS_API_CALL_008 Transfer call

While participating on an on-going call session, such

call may be transferred by the callee to another party

(either after warning the party or not, which

constitutes an unattended/attended call transfer,

respectively).

MRS_API_CALL_009 Add to call
A user may be added to an on-going call session

between other users.

MRS_API_CALL_010 Invite to call
A user may be invited to participate in an on-going

call session between other users.

MRS_API_CALL_011

Play

announcements

within a call

Announcements may be played in a call, an event

seen normally when on hold, for example. Additional

features such as the uploading of a song to play

during the announcement are also considered.

Annex

112

MRS_API_CALL_012 Send DTMF

Discussed previously, the API should provide DTMF

sending, in order to interact with IVR (call robots),

for instance.

MRS_API_CALL_013 Receive DTMF
With this function, DTMF processing would be

available for developers to create richer applications.

MRS_API_CALL_014 Click-to-Call

Click-to-Call could be made available so developers

could provide C2C placement mechanisms – alike

Big Blue Button mechanisms.

MRS_API_CALL_015 Click-to-Dial
Click-to-Dial, which defers from the previous in its

flow, could be made available to developers.

Table 7 - Call operations overview

Messaging

This messaging feature-set in intended to enable users to send short/multimedia messages

or create instant messaging sessions with other users. These requirements can be seen in Table 8.

Requirement ID Function Description

MRS_API_MESSAGE_001 Send message

The user must be able to send text or

multimedia messages to other users. Although

the resulting flows for a text or multimedia

message are different, this distinction should be

hidden on the API, qualifying both simply as

“messages” and letting internal mechanisms

process them in their own proper manners.

MRS_API_MESSAGE_002 Receive message

A receiver must be opened to message

receiving in order to fully interact with users

wishing to communicate with him.

MRS_API_MESSAGE_003

Create

multimedia

session

With the possibility of creating a multimedia

session, a user would be able to communicate

via instant messaging with other users, sending

text or other multimedia contents.

MRS_API_MESSAGE_004

Invite users to

multimedia

session

A user may be invited to participate in an on-

going session.

Table 8 - Messaging functions

Annex

 113

Notifications

Users need to be notified of API/gateway communications to be able to address such events

properly and engage other users in the interactions. Without these, normal operations wouldn’t be

possible – users wouldn’t receive any feedback on call processing, for example. Table 9 represents

these requirements, along a small description of each.

Requirement ID Function Description

MRS_API_NOTIFICATION_001
Incoming

communication

Notification of incoming calls, messages

or others must be forwarded to the

expected user, warning him of the

upcoming event.

MRS_API_NOTIFICATION_002 Call state

Notifications must be implemented to

give a caller/callee the knowledge if his

call is on hold, for example.

MRS_API_NOTIFICATION_003 Message delivery

Message delivery states should be

returned to the sender, enabling him to

assess whether his message has been

delivered, is pending or has been rejected

MRS_API_NOTIFICATION_004
Authentication

signalling

Signalling must be made available for all

users, in order to control their sessions

status (if they are authenticated/registered

in the network, for example)

Table 9 - Notification functions

These notifications will be received, by the user, using the channels he has opened upon

registration. These, which are already used for signalling the network for call session

establishment, for example, will also be used by the network to signal the application of incoming

calls or messages, call states, among others.

Presence

With the functionalities in Table 10, users will have access to presence services, able to

announce their status to other users and create “Friend” lists (subscriptions to presence lists).

Requirement ID Function Description

MRS_API_PRESENCE_001
Publish presence

status

A user may publish its status, informing the

network of such modification.

Annex

114

MRS_API_PRESENCE_002
Subscribe to

updates

A user may subscribe to receive another

user’s status changes. Examples of this are

popular chat services, where adding a user

will automatically subscribe to his

notifications.

MRS_API_PRESENCE_003
Unsubscribe to

updates

Just like subscribing, a user may unsubscribe,

stopping the receiving of notifications from

other users updates.

Table 10 - Presence functions

A.2.2) Portal requirements

As done with the API, several competitors’ dashboards/portals where analyzed in order to

better design this dissertation’s portal. With certain functionalities that stood out, such as usage

analytics, logging access and billing summary, several conclusions were draw regarding what

should be included. This will be a relevant part of the solution: designing a portal with features

similar to solutions already available will help developers that have used such services to better

acquaint themselves with the solution here presented. The portal is divided into different sections,

corresponding to the role of the system’s users (administrators, developers and end-users), the

reporting functionalities, documentation and application catalog, which will be analyzed in the next

topics.

Reporting - Analytics/Logging

With the functionalities in Table 11, users are able to view information regarding service

usage and the latest activities they have conducted in the network, for example.

Requirement ID Function Description

MRS_PORTAL_ANALYTICS_001 API usage

With this functionality, metrics regarding

most used operations, for example, may

be reviewed.

MRS_PORTAL_ANALYTICS_002
Application

usage

Using this function, an application usage

metrics may be accessed.

MRS_PORTAL_ANALYTICS_003 Activity logs

Latest actions taken in the system may be

overviewed with this functionality, a

functionality used by administration for

monitoring purposes

Table 11 - Available analytics functions

Annex

 115

In this last feature, seen in Table 12, not only are these logs useful for monitoring purposes,

but could be adapted for users, enabling them to view their latest activity (call and messaging

registry or a time log of their logins). Along with recent calls, billing features can also be

implemented, enabling a developer/user to keep financial track of his usage of the network.

Requirement ID Function Description

MRS_PORTAL_BILLING_001
Usage

analytics

With this functionality, billing summaries

may be accessed in order to control

operational costs.

Table 12 - Billing function

A summary could be shown, showing metrics of calls made or messages sent in line with

recent activities, showing the costs of the system’s usage. Although not completely focused on at

this time in the dissertation, one can envision billing related functionalities that the portal would

provide, such as the creation of CDR’s (Call Detail Record) for later analysis.

Administration

Administration will be responsible for controlling the publishing of applications and

platform users. Table 13 depicts the requirements for the administrative actions contemplated.

Requirement ID Function Description

MRS_PORTAL_ADMIN_001
Application

approval

Administration is given the responsibility of

approving application before these can be

published and used by other users.

MRS_PORTAL_ADMIN_002
Disable

application

An application may be disabled in case of miss-

conduct, such as network abuse.

MRS_PORTAL_ADMIN_003
Developer

approval

Developers may be approved or refused to

operate under certain conditions, something that

can be controlled using this function.

MRS_PORTAL_ADMIN_004
Delete

developers

Developers may be banned from using the

service, for miss-conduct for example, by the

administration.

MRS_PORTAL_ADMIN_005
Notify pending

requests

Administration should be notified of pending

approvals requests made by developers

Table 13 - Administrative actions

Annex

116

Application catalog (Marketplace)

The catalog or marketplace is where any user will be able to view all published

applications and their details, a feature commonly seen in mobile environments (and depicted in

Table 14).

Requirement ID Function Description

MRS_PORTAL_MARKET_001 List applications

A full application listing will be

presented, enabling overview of

available services.

MRS_PORTAL_MARKET_002
Show application

description

As an application is selected, an

overview of its details may be accessed,

presenting useful information regarding

the services it provides.

Table 14 - Marketplace functions

Application management

With the features in Table 15, application management is assured, with the administration

able to approve and authorize an application usage of the network and with the developers provided

of a way to add their applications for approval. Quality assurance features are required, with the

administration also able to block/disable an application of using the network.

Requirement ID Function Description

MRS_PORTAL_DEV_001
Send application

for approval
An application may be sent in for approval,

being added to the network if accepted.

MRS_PORTAL_DEV_002

Check

application

status

After sending the application for approval, the

developer may check its status (if pending or

approved/denied)

MRS_PORTAL_DEV_003
Add a developer

to an application
A developer may be added to an application

through this function.

Table 15 - Application management operations

Annex

 117

The publishing flow would follow a path similar to other application markets: a developer

would add an application to the portal, pending its approval by the administration. After conducting

a review of the application, the administration would be able to approve it, resulting in its

publishing in the marketplace and authorizing its usage of the network’s resources. At this point, a

user would simple login, search the marketplace for the application and use immediately.

Developer management

Containing developer-oriented features, the requirements in Table 16 will allow developers

to manage their accounts, modifying or accessing personal information.

Requirement ID Function Description

MRS_PORTAL_DEV_004 Create account
A developer may create his account at any time,

pending approval by administration.

MRS_PORTAL_DEV_005 Edit account Personal details may be edited by an individual.

MRS_PORTAL_DEV_006 Delete account A developer may delete his account at any time.

Table 16 - Developer management operations

User

The end-user of the system, this is the entity that ultimately uses the applications that are

published and indeed the network for communication purposes. A user must be provisioned before

using the services, in the network and the applications, ensuring its access to both. Although its

registry and deletion are an operator’s responsibility, the user may modify personal information or

configure/block the services he uses (Table 17).

Requirement ID Function Description

MRS_PORTAL_USER_001 Edit account Personal details may be edited.

MRS_PORTAL_USER_002 Block application
An application may be blocked by a user,

deleting its data from the system.

Table 17 - User actions

Not just to ensure the access to all the services, a user is limited in the concurrent actions

he can take on the system, a security feature (presented in Table 18) that must will prevent abuse or

attacks on the network.

Annex

118

Requirement ID Function Description

MRS_PORTAL_USER_003 User provisioning

User provisioning will be available through

the portal, providing support for user

creation and network registration.

MRS_PORTAL_USER_004

Application/Service

provisioning per

user

In order to protect the solution from

inappropriate use, limits are imposed as to

how many calls to the API a single user can

make at any given time.

MRS_PORTAL_USER_005
Device provisioning

per user

Multiple devices may be related to a single

user, using IMS’s mechanisms for device

handling.

Table 18 - User management operations

A.3) General requirements

General requirements are those that are not available for user interaction, but constraints to

the solution, features that it should strive for. Table 19 defines the identifications for the non-

functional requirements.

Requirement ID Function Description

MRS_SYSTEM_API_001
Provide an abstraction

layer for network features

The system must provide an

abstraction layer for underlying

network features such as call

control, signalling, among

others.

MRS_SYSTEM_PORTAL_001
Provide a backoffice for

all users

A portal must be made

available to act as a back-office

for administration, users and

developers. Using this portal,

all users can access personal

information and use the

system.

MRS_INTEROP_WEBRTC_001 Support for WebRTC
WebRTC support must be

made available by the solution.

MRS_INTEROP_NETWORK_001
Support for calls between

networks

Calls between the home and

external networks must be

ensured.

MRS_CONC_MULTIUSER_001 Support for multiple users

WTE must support the

processing of concurrent

actions from multiple users, at

any given time.

Annex

 119

MRS_PERFORM_SCALE_001
Provide scalability

mechanisms

The solution must scale in

accordance to increasing load

and requests.

MRS_PERFORM_AVAIL_001
Provide availability

measures

The solution must have

availability measures,

minimazing possible down-

time.

MRS_SEC_PROVISION_001 Provisioning methods

Users, developers and

applications must be

provisioned by administration

in other to use all desired

services.

MRS_SEC_PRIVACY_001 Privacy insurance

All communications must be

secured and provide encryption

support.

Table 19 - General requirements

Annex

120

B) OneAPI layer

This API, modeled after the OneAPI specifications, is exposed by the AS, in order to bring

third party call control capabilities to authorized third party applications. This is one of the main

focuses in this dissertation, with the OneAPI integration being considered as a feature that truly

adds value to the solution. Throughout this annex, certain changes to the original OneAPI

specification will be analyzed, alongside proper explaining as to why this was done and the impact

it might have to a third-party developer that has previously come across such design. All other

details are taken “as is” and implemented according to OneAPI’s recommendations on Voice

(OneAPI Voice Call Control[60]), SMS (OneAPI SMS[61]) and MMS (OneAPI MMS[62]).

B.1) Authentication deviation

The API authenticates the requests it receives by looking for an application token

parameter in the resource called. The logic behind this decision is a design one: all applications that

interact with the solution are seen as third party and will need to go through an authorization

process, where the database is queried for whether the application is authorized to make requests or

not. Unfortunately, the OneAPI specification does not contemplate this token-based authentication,

relying on certificate exchanging and HTTP-based authentication mechanisms.

Certain alternatives exist, such as integrating the application token in the request bodies,

but this had two major disadvantages: firstly, it was a greater deviation from the original

specification, altering the bodies sent, and secondly, this meant that in a terminate call request,

which is expected to be accessed via a DELETE method, would also need a JSON body with the

token. Although the first disadvantage is a trade-off between needing to bring the desired features

to the solution and maintaining OneAPI specification, the second is a significant obstacle since no

expected body is present in a DELETE method[88]. By using such approach, the result would be a

defective API design which would result in several obstacles for developers using the solution,

such as the possibility of breaking client implementation.

Another alternative could be the sending of the applicationToken via an URL encoded

parameter. However, this brings its own obstacles: in order to maintain pattern across the API

design, all other methods would have to contain this URL encoded parameter and, in POST

methods, would also have to bring JSON bodies. This would bring a conflict in content types

accepted by the API (as OneAPI states that only JSON content types should be exchanged) and

would possibly be an obstacle to HTTP client implementations.

Annex

 121

As such, in order to minimize impact and deviations to the OneAPI integration and

maintain a sensible pattern across the API methods, the application token is sent in the resource

URL as show in Snippet 4.

Snippet 4 - Example resource showing the application token location

This is not a perfect solution as it still breaks specifications but is seen as a less intrusive

way of sending the token, as developers using this solution would only need to add a variable to the

path base of their OneAPI implementations and use the solution, requiring less development effort.

B.2) Features

As referred above, this API will be used to provide all the call control, notification and

authorization needs with which to use on developed applications.

B.2.1) User authentication

This feature-set refers to the authenticating methods provided by the API. The solution

already authorizes the request based on the token given, as referred before, but a different method

is used to authenticate network users that log in the applications. In order to enable a third party

application to authenticate network users, the AS will expose a simple user authentication interface.

This is a feature that is not planned in the OneAPI specification and, as such, is exposed in a URL

base different from the rest of the third party call control methods.

Request

To authenticate a user, a developer will have to make an HTTP GET request, with a body

such as the one shown in Snippet 5, URL featuring the application token and content-type set to

application/json (Snippet 6).

Snippet 5 – Example user authentication request body

Annex

122

Snippet 6 – Example user authentication request

Response

The above request will wield a response such as the one in Snippet 7.

Snippet 7 - Example user authentication response

The result of “credentials” field may be true or false, depending whether the credentials

that were sent in the request are valid or invalid.

B.2.2) Sending an SMS

With this feature, the developer is able to send a textual message to a desired user, a pager-

mode message following OneAPI’s SMS specification[61].

Request

Defined in Snippet 8 is the JSON body required for this request, placed to the API via the

POST method.

Annex

 123

Snippet 8 - Example SMS send request body

An example curl request can be seen in Snippet 9, again featuring application token and

body.

Snippet 9 - Example SMS send request

Response

A request such as Snippet 9 would result in a response similar to Snippet 10.

Snippet 10 - Example SMS send response

Annex

124

At this point, the solution responds with the “resourceURL” parameter in blank, since no

mechanism for message delivery state was implemented.

Messaging Flow

This API request/response reflects the interaction in Figure 80 with the network

components:

Figure 80 - Messaging flow

B.2.3) Sending an MMS

With these functionality, a message with multimedia content can be sent to users (only

supported by the WebRTC client, however, due to compatibility issues between devices). This

feature does not implement the OneAPI specification on MMS’s[62] entirely, being the deviation

discussed below.

Annex

 125

Request

This feature is available by placing a multipart POST request to the solution, with the

resource featuring both application token and sender address. This multipart request can be seen in

Snippet 11 and Snippet 12.

Snippet 11 - Example MMS send request body (part 1)

Annex

126

Snippet 12 - Example MMS send request body (part 2)

By analyzing the request, one can see two distinct sections:

Annex

 127

 A JSON body section, containing all the relevant message information, from the sender to

the address to be sent to;

 An attachment containing a vCard (as per vCard 2.1 specifications[89]) or a JPEG image,

in which case the “name” parameter should be set to “image” instead of “vcard”;

In both sections, certain details must be emphasized, such as the Content-Disposition

headers and the names. In contrast to the definition presented in the OneAPI specification, where

the attachment would be sent in a sub-section of the multipart request, in this case one can see that

the structure has been altered. This has been done in order to simplify implementation and the

request body itself for easier analysis and data parsing. An example request can be seen depicted in

Snippet 13.

Snippet 13 - Example MMS send request

In this example, a directory is used to locate the vCard to be sent. Again, if one were to

send an MMS with a JPEG image, the attachment declaration would change from

"vcard=@/home/user/Desktop/vcard_test.vcf" to a declaration pointing to an image file

"image=@/home/user/Desktop/image_test.jpg".

Response

A response to the request would be similar to the one in Snippet 14.

Annex

128

Snippet 14 - Example MMS send response

Again, the solution responds with the resourceURL parameter in blank, since no

mechanism for message delivery state was implemented. In terms of message flow in the platform,

this API request/response flow is exactly alike the previous text messaging flow in Figure 80, with

the only deviation being in the content sent.

B.2.4) Notifications

Notifications are available via Webhooks, with clients registering a URL where they wish

to receive call state notifications, as well as a long-polling mechanism. This feature-set refers to

such mechanism and how this is mapped in the solution’s API. As was the case in the

authentication feature above, this long-polling mechanism was not presented in the original

OneAPI specification. It was created to provide a fallback method for retrieving call notifications,

in cases where the communication is possibly barred by network configurations, for example. Call

state messages for the ongoing call sessions are stored in the server temporarily, with a lifetime of

60 seconds – after which they will simply be discarded. A third-party client is able to request the

notifications of the call it triggered, identifying it by its call session identification string.

Request

Upon requesting the triggering of a call session, the third-party client may request its

notifications by sending a GET request to the API resource in Snippet 15. At this time, and

following long-polling execution flows, the request will hang until either (A) a message is available

to be delivered to the client or (B) a timeout occurs, the latter happening if the request is not

responded within 10 seconds. In order to continue to receive updates, the client must cyclically

request notifications in this manner.

Annex

 129

Snippet 15 - Example notification request

Response

The response to a notification request will be similar to the one in Snippet 16.

Snippet 16 - Example notification response

With this response, the message was deleted from the server, as it waits for more

notifications.

B.2.5) Make Call

The Make Call function relates to the triggering of a call between the server and the

participants, connecting both via a media bridge allocated in the server.

Request

Make Call is available by making a POST request to the API, with the JSON body for a

basic call session defined in Snippet 17 and a complete call session (with callback referencing)

defined in Snippet 18.

Annex

130

Snippet 17 - Example call triggering request body (basic call session)

Snippet 18 - Example call triggering request body (complete call session)

This request can be done to the API, with the proper ContentType (application/json) via

curl, an example depicted in Snippet 19.

Annex

 131

Snippet 19 - Example call triggering request

Response

Snippet 20 features the request’s response, with a call placed between “+351910000001”

and “+351910000002”.

Snippet 20 - Example call triggering response

Call triggering flow

The interaction above results in the flow in Figure 81.

Annex

132

Figure 81 - Call Triggering flow

As one can see, a POST request is sent to the API, which in turn sends a SIP INVITE to the

first participant. After receiving its response (with a 200 OK code), the AS notifies the third party

application (if a notifyURL was used for subscription to these events) and then sends another SIP

INVITE to the other participant. After receiving its response, the AS connects both users and media

exchange is initiated.

B.2.6) Retrieve Call Information

The Retrieve Call Session Information feature allows a third party developer to get

information regarding an on-going call session.

Request

This feature is available by placing a GET request to the solution, with the resource in

Snippet 21 featuring both application token and call session identifier. This interaction does not

reflect a SIP exchange, being confined to the retrieving of the required information from the

internal server logic.

Snippet 21 - Example call information retrieval request

Annex

 133

Response

A request such has the above would result in a response similar to Snippet 22.

Snippet 22 - Example call information retrieval response

B.2.7) End Call

The End Call feature is related to the ending of a call session, not an individual

participant’s session. This is a function that is translated into the hang-up of the call.

Request

This feature is available by placing a DELETE request to the solution, with the resource

featuring both application token and call session identifier, as per Snippet 23.

Snippet 23 - Example call ending request

Annex

134

Response

A request such has the above would result in a response similar to Snippet 24, all in all

similar to the retrieval of a call session’s information.

Snippet 24 - Example call ending response

Hang-up Flow

The hang-up process depicted in Figure 82 is very similar to the call triggering flow, with a

few minor changes.

Figure 82 - Hang-up flow

Annex

 135

As represented in Figure 82, a DELETE request is sent to the API, which in turn sends a

SIP BYE to the first participant. Again, if a notifyURL was given, after receiving a 200 OK code,

the AS notifies the third party application and sends a SIP BYE to the other participant. After

receiving its response, the call is terminated with the allocated resources within the AS freed.

B.2.8) Add To Call

The Add To Call feature relates to the adding of a new participant to a call session,

translating into the invitation of a participant and allocation to a specific conference.

Request

The feature is available by placing a POST request to the solution with a JSON body as the

one defined in Snippet 25.

Snippet 25 - Example add to call request body

The curl in Snippet 26 is an example of the methods usage – note the presence of the

content-type and both call session identifier/application token in the resource.

Snippet 26 - Example add to call request

Response

The response will be similar to the example in Snippet 27.

Annex

136

Snippet 27 - Example add to call response

During this interaction, a call should have been placed to “+351912345678”, consequently

connecting it to the on-going call session and exchanging the media.

Add To Call Flow

The hang-up process is very similar to the call triggering flow in Figure 81, with the only

change being that only one call invitation results from the HTTP POST request.

B.2.9) Retrieve Participant Information

The Retrieve Participant Information feature allows a third party developer to get

information regarding a participant in an on-going call session.

Request

This feature is available by placing a GET request to the solution, with the resource in

Snippet 28 featuring application token and call session ID, in addition to participant ID. This

interaction does not reflect a SIP exchange, being confined to the retrieving of the required

information from the internal server logical (the listings that contain the calls and conferences).

Annex

 137

Snippet 28 - Example participant information retrival request

Response

A request such has the above would result in a response similar to Snippet 29.

Snippet 29 - Example participant information retrieval response

B.2.10) Delete Participant from Call

The Delete Participant from Call Session feature enables the termination of a call-leg from

a conference, returning participant information. This reflects the ending of a call for a participant,

not the ending of the call for all parties involved.

Request

This feature is available by placing a DELETE request to the solution, with the resource in

Snippet 30 featuring application token, call session ID and participant ID.

Annex

138

Snippet 30 - Example participant deletion from call request

Response

A request such has the above would result in a response similar to Snippet 31.

Snippet 31 - Example participant deletion from call response

Participant Termination Flow

This individual call hang-up process is very similar to the call hang-up flow, with the only

change being that only one SIP BYE is sent as a result to the HTTP DELETE request.

B.2.11) Hold/Resume Call

The Hold/Resume Call features relate to the triggering of a call hold/resume to a call

session. With this method, one can put all participants of a given call session on hold and then

resume the call on command.

Annex

 139

This feature is not present in the OneAPI specification, having been implemented

following the patterns shown in the previous methods. The parameter “callAction” is in fact new,

chosen since no other parameter in the specification was close enough to properly describe the

actions to be taken in the call.

Request

Both hold and resume features are available by placing a POST request to the solution,

with the resource featuring both application token/call session identifier and a JSON body with the

call action set to “hold” or “resume”, like depicted in Snippet 32.

Snippet 32 - Example hold call request body

An example of its usage may be seen by the curl request in Snippet 33.

Snippet 33 - Example hold call request

Response

The response will be similar to the example in Snippet 34.

Snippet 34 - Example hold call response

Annex

140

During this interaction, the call should have been put on hold or resumed, depending on its

previous state (if the call was not on hold, or vice-versa, a 404 Not Found response will be

triggered).

Hold/Resume Call Flow

The Hold/Resume process is very similar to a normal call triggering flow, with the

participants being re-invited to participate in a call session set to a different conference room,

where media will not be exchanged due to the changes made to the SDP exchanged in the re-invite.

Annex

 141

C) User Provisioning API

This API can be used to remotely insert network users in the WTE solution, providing a

way for operators that already use a back-office for creating new users in the HSS, to also

communicate with the solution and store a synchronized version of the data, allowing users to make

use of the same credentials across third party applications. The API has been modeled with the

influence of OMA Push definition, allowing both XML/JSON content.

C.1) Features

As referred above, this API is only used to register network users in the solution, having

the features below analyzed been implemented.

C.1.1) Request authentication

In its current state, the API proceeds to trigger authorization methods to all incoming

requests, via an application token contained in the request body. The logic behind this decision was

a design one: all applications that interact with the solution will be seen as third party – in this case,

third party administrative applications. This means that an incoming request coming from this

application (in this case, the operator’s back-office), one that was previously published by an

administrator, will go through an authorization mechanism in order to be processed.

C.1.2) User creation/update

Both user creation and update are available by making a PUT request to the API, with a

JSON (Snippet 35) or XML (Snippet 36) body defined with all the mandatory fields – from

application token to the user’s desired password.

Annex

142

Snippet 35 - Example user creation request body (JSON)

Snippet 36 - Example user creation request body (XML)

This API can only be accessed by privileged applications (“administrative applications”,

reserved for administration and not available from a user/developer marketplace). As such, it gives

full control over users’ details, requiring only the email to stay unique and be maintained across

updates.

Request

Example usage – properly setting content-type and method via a curl call -, can be seen in

Snippet 37 and Snippet 38, with a JSON and XML body, respectively.

Annex

 143

Snippet 37 - Example user creation request (with JSON body)

Snippet 38 - Example user creation request (with XML body)

Response

An example response to a request with a JSON body can be seen in Snippet 39. Note that

the response is a 200 OK HTTP code, signifying that the request was received, processed, and the

user was created. If, for some reason, the body structure was invalid or the given application token

was rejected because the application was not previously authorized to make such actions, the

response would be a 400 Bad Request and a 401 Unauthorized, respectively.

Annex

144

Snippet 39 - Example user creation response

Processing flow

The diagram in Figure 83 demonstrates the resulting processing flow from the interaction

above. As one can see, the API will check whether the request is well formed (if all the necessary

fields are present and the package syntax is correct, among others), sending an HTTP 400 (Bad

request) code otherwise. After this, the application token is checked, validating whether the

application sending the request is authorized do to so. If not, the response will be an HTTP code

401 (Not authorized). Finally, only if the above conditions are met is the request processed, with

the database registering a new user entry and informing the user of the creation (HTTP 200 OK

response).

Annex

 145

WIT WTE Solution

Third Party
Application

JDBCREST

WTE API

2. Authorize

4. 200 OK

1. PUT

4. Create

Database

B.1) If the API authorizes the request

3. Ok

5. Ok

B.2) If the API fails to authorizes the request

3. Error

4. 401 Not authorized

A.1) If the request is malformed

2. 400 Bad request

A.2) Else, application is checked for authorization

Figure 83 - User creation flow

C.1.3) User deletion

User deletion follows a similar approach, through a POST request with fewer mandatory

fields. In Snippet 40 and Snippet 41, one can see these fields for a JSON and XML request.

Snippet 40 - Example user deletion request body (JSON)

Annex

146

Snippet 41 - Example user deletion request body (XML)

Request

The curl examples are also very similar to the ones presented before and can be seen

depicted in Snippet 42 and Snippet 43.

Snippet 42 - Example user deletion request (with JSON body)

Snippet 43 - Example user deletion request (with XML body)

Response

Again, a curl such as the above would yield a response similar to Snippet 44.

Annex

 147

Snippet 44 - Example user deletion response

Processing flow

The processing flow is, all in all, similar to the flow in the user creation/update topic -

Figure 83 -, with the difference being that from the database interaction results the erasing of the

users’ details.

C.1.4) HTTP responses

The HTTP codes on Table 20 are provided as responses to the requests made.

HTTP

Code
Definition Usage

200 Ok To signal the execution of a request

400 Bad request When a request was mal-formed

401 Unauthorized When the request comes from an unauthorized source

404 Not found
When the processing of a request, issued to modify or delete

a user, does not find the specified user

405
Method not

allowed
When the request calls for an unsupported method

415
Unsupported

media type
When the request features an unsupported content body

Table 20 - HTTP response codes

Annex

148

D) User provisioning solutions

In terms of user provisioning to use the platform’s services, multiple approaches could be

taken, each with its own set of advantages and disadvantages. However, the goal is to provide the

user with the capability of using only one set of credentials – the one used to register in the IMS

network.

D.1) Welcome notice

 One of the approaches could be to send a welcome notice[90], upon first registration, as

depicted in Figure 84.

Figure 84 - Welcome notice

A welcome notice is no more than a message sent to the user upon first registration on the

network. A common industry solution, this mechanism would, however, fail the goal proposed of

using only one set of credentials, imposing a client-side dependency on text message support.

IMS CoreWTE Solution

CSCFs HSS

SIP Endpoint (B)

SIP SIP SIP

AS
SIP/VoIP

Client

ACK and HSS
messages are not

represented

4a. OK

1. REGISTER

2. REGISTER

3.AS receives
REGISTER and
processes it

5a. OK

If the AS has already received a REGISTER from this user before

If this is the first time the AS receives a REGISTER from this user

4b. OK

5b. OK

6. MESSAGE

7. MESSAGE

Annex

 149

D.2) Third party registration

A second viable approach could be through third party registration via the application

server, as seen in Figure 85.

Figure 85 - Third party registration

This would reach the proposed goal, in addition to not demanding credentials to be stored

in the platforms database, a security plus. Nonetheless, the AS would still be required to handle the

added user session (one session for endpoint registration and another for API login) and the

question remains on how the IMS would deal with the same IMPU being used. The OpenIMS core,

for example, although capable of handling this situation, becomes unstable upon its occurrence.

D.3) Diameter/Cx integration

 The only true integration considered, provisioning could be made via Cx integration, where

the credentials sent for authentication would be checked against does in the networks HSS using

the Diameter protocol.

SIP REGISTER
from the AS to

the S-CSCF

*

API

IMS

Core ISC/SIP *

Annex

150

Figure 86 – Diameter/Cx integration

 Again, among the approaches discussed in this annex, Figure 86 depicts the only true

integration, with the credentials not being stored in the platforms database and with no extra

consequences for the solution. This is not a perfect solution: excluding the added complexity of the

implementation this mechanism would demand, security and network restrictions could eventually

interdict access to this interface.

API
IMS

Core

HSS

ISC/SIP

Diameter/Cx

Annex

 151

E) Notification mechanisms solutions

In this annex, alternative methods for notification handling will be analyzed, reviewing

methods such as push or pull mechanics. Push or server push, refers to the transfer of data, with the

communication started from the server to the client. Pull, by contrast, is when the client inquires

information from the web server, with it responding with the desired information. There are several

advantages and disadvantages to both:

 Push requires an open connection, where this pathway is used to send the information to

the client. Consequently, this requires open ports from both server and client sides, creating

problems in terms of network usage (especially in mobile devices) and port limitation;

 Pull requires constant multiple requests to the server which also creates problems in terms

of network usage and bandwidth, but leaves out port limitations.

E.1) Push alternatives - WebSockets/HTTP Streaming

WebSockets or HTTP streaming is where a connection is established between client and

server, allowing the latter to push notifications to the client. This results in real-time

communication between the parties. The difference between both is in the initial handshake, which

is repeated (in HTTP) for every message sent. In both cases, a bottleneck occurs in terms of

concurrent connections and the opening of sockets would mean an increase in developer

complexity for the API.

E.2) Pull alternatives - Long polling

Long polling is where a connection is cyclically opened between the client/server until a

certain events occurs. Upon these events, data is sent and the connection is closed. This can be

more efficient if the frequency of messages is low since, if you have two messages in the server

awaiting client request, the second one will only be sent after the first. Comparing to the previous

alternative, network management is less complex, since 1:1 port mapping of the server to the client

would not be required. This also diminishes required resources - a 1:1 mapping would mean the

reservation of a processing thread per user. Unfortunately, the problem with concurrent messages

still stands but can be mitigated with efficient server-side logic and framework usage.

Annex

152

F) Testbed components and software

Description

CPU Intel Pentium Dual CPU T2310 @1.46 Ghz

Memory 3 GB

HDD Speed: 50 MB/s

Network Ethernet@1000 Mbps

OS Ubuntu 12.04 LTS (32 bit)

Description

CPU Intel Pentium i7 CPU M60 @2.67Ghz

Memory 8 GB

HDD Speed: 50 MB/s

Network Ethernet@1000 Mbps

OS Windows 7 Professional (64 bit)

Software Version

OpenIMS Core R1186

Sippy RTPproxy v1.2.1

WIT Communications Application Server v3.7

Wowza Media Server v3

Sun JVM v1.6.0_45

Apache Tomcat v7.0.29

Mobicents v2.0.0

MySQL v5.5.35

PostgreSQL v9.1.13

MTS (Multi-Protocol Test Suite) v5.8.3

Annex

 153

G) OpenIMS modification

The following modifications were done across the pcscf.cfg, icscf.cfg and scscf.cfg files of

the IMS core, in order to maximize throughput:

Snippet 45 - OpenIMS modification for evaluation

H) MTS default proprieties

The values defined in Table 21 were used in all MTS-involved test-cases.

File Property Default Value

tester.properties logs.STORAGE_LOCATION FILE

tester.properties stats.GENERATE_CHARTS_PICTURES true

udp.properties socket.RECEIVE_BUFFER 8192 1048576

udp.properties socket.SEND_BUFFER 8192 1048576

Table 21 – MTS default configuration changes

This values define the storage location for the logs (defined here as “FILE”, meaning that

logging will be stored in separate files in the client’s machine), chart generations (defined here as

“true”, in order to generate delay charts, among others statistics) and general network buffer

parameters (UDP buffers set to an higher value that the defaults, in order to maximize

performance).

Annex

154

I) P-CSCF error and modification

The issue was located in the sdp_util.c file (present in the pcscf module of the IMS core),

where one can find the following code:

Snippet 46 - OpenIMS's SDP utilities module

This will always return “false” since line 979 is missing an asterisk before c1p_altered.

This line was changed to:

Snippet 47 - SDP utilities modification

This modification corrected the issue and enabled the proper execution of RTPproxy

enabled signalling flows.

