
CHARACTERIZATIONS OF ∆-VOLTERRA LATTICE: A
SYMMETRIC ORTHOGONAL POLYNOMIALS

INTERPRETATION

I. AREA, A. BRANQUINHO, A. FOULQUIÉ MORENO, AND E. GODOY

Abstract. In this paper we introduce the ∆-Volterra lattice which
is interpreted in terms of symmetric orthogonal polynomials. It is
shown that the measure of orthogonality associated to these sys-
tems of orthogonal polynomials evolve in t like (1 + x2)1−tµ(x)
where µ is a given positive Borel measure. Moreover, the ∆-
Volterra lattice is related to the ∆-Toda lattice from Miura or
Bäcklund transformations. The main ingredients are orthogonal
polynomials which satisfy an Appell condition with respect to the
forward difference operator ∆ and the characterization of the point
spectrum of a Jacobian operator that satisfies a ∆-Volterra equa-
tion (Lax type theorem). We also provide an explicit example
of solutions of ∆-Volterra and ∆-Toda lattices, and connect this
example with the results presented in the paper.

1. Introduction

Nonlinear evolution equations have been used as models to describe
various physical phenomena as shallow water waves and ion-acoustic
waves in plasmas. In 1967, M. Toda [28] introduced a model, that
he named as exponential lattice, for a one-dimensional crystal in solid
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state physics with a nearest neighbor interaction, with potential

φ(r) =
a

b
exp(−r) + ar + const. , a, b > 0 ,

such that the particles are subject to

dpk(t)

dt
= exp(qk−1(t)−qk(t))−exp(qk(t)−qk+1(t)),

dqk(t)

dt
= pk(t) ,

where qk(t) and pk(t) are the displacement of the k-th particle from
its equilibrium position, and its momentum, respectively and the mass
is assumed to be equal to the unity [5]. The latter Toda lattice equa-
tions describe the oscillations of an infinite system of points joined by
spring masses, where the interaction is exponential in the distance be-
tween two spring masses [29]. Later on, Henón [13] and Flaschka [10]
proved that the non–periodic Toda lattice is a completely Hamiltonian
integrable system, with Hamiltonian function

H(q1, . . . , qm, p1, . . . , pm) =
1

2

m∑
n=1

p2n +
m−1∑
n=1

exp
(
qn − qn+1

)
.

By using the Flaschka transformation

an(t) = exp
(
qn−1(t)− qn(t)

)
, bn(t) =

dqn(t)

dt
,

the semi-infinite Toda lattice in one time variable is the system of
ordinary differential equations

(1) a−1(t) ≡ 0, a0(t) ≡ 1,


dan(t)

dt
= an(t)

(
bn−1(t)− bn(t)

)
,

dbn(t)

dt
= an(t)− an+1(t),

n ∈ N .

The Toda lattice is integrable in the sense of Liouville and it is mainly a
theoretical mathematical model due to the rich mathematical structure
encoded in it.

There exists a closed relation between the Toda system (1) and or-
thogonal polynomials shown by Moser [22, 23] and Kac and Moer-
becke [15], that we briefly describe. Let t0 ∈ R and µ(x; t0) be a
measure such that all the moments

(2) un =

∫
R
xn dµ(x; t0) , n ∈ N ,

exist and are finite, and Pn(x) be the sequence of monic orthogonal
polynomials with respect to µ(x; t0),∫

R
Pn(x)Pm(x) dµ(x; t0) = h2n δn,m ,
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where δi,j denotes the Kronecker delta. As it is very well-known [7,
14, 27], the monic polynomials Pn(x; t0) ≡ Pn(x) satisfy a three-term
recurrence relation

Pn+1(x) = (x− bn)Pn(x)− anPn−1(x) ,

with initial conditions P0(x) = 1 and P1(x) = x− b0.
The dynamic of the solutions of the Toda lattice (1) corresponds to

the evolution of the spectral measure [23, 24],

dµ(x; t) =
exp(−xt)dµ(x, t0)∫
exp(−xt)dµ(x, t0)

,

of a operator J(t) , defined in the standard basis of `2(0,∞) ,

ek = (0, . . . , 0, 1, 0, . . . )T , k ∈ N ,
by a Jacobi matrix

(3) J(t) =
(
Ji,j(t)

)
=


b0(t) 1 0
a1(t) b1(t) 1 0

0 a2(t) b2(t) 1
. . .

. . . . . . . . . . . .

 ,

where the monic polynomials Pn(x; t) orthogonal with respect to the
modified weight µ(x; t) satisfy

(4) Pn+1(x; t) = (x− bn(t))Pn(x; t)− an(t)Pn−1(x; t) , n = 1, . . . ,

with initial conditions P0(x; t) = 1 and P1(x; t) = x− b0(t).
Let P be the column vector of monic orthogonal polynomials, i.e.
P = (P0, P1, . . .)

T, with respect to a linear functional u(t), defined in
terms of its moments (2) by (cf. [19])

u(t) : P → R , with
〈
u(t), xn

〉
= un(t) , n ∈ N ,

and J(t) the corresponding Jacobi matrix (3). Then, the recurrence
relation for the monic orthogonal polynomials can be written as

J(t)P = xP .
Next, we define the Stieltjes function [24],

S(z; t) = eT0 Rz(t) e0 ,

for the resolvent operator,

Rz(t) =
[
J(t)− z I

]−1
,

associated with the operator J(t) (cf. [1]). We shall assume that linear
functional, u(t), is normalized, i.e.

(5) u0(t) = 1 .
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By using (cf. [3]) 〈
u(t), xn

〉
= Jn1,1(t) , n ∈ N ,

the Stieltjes function reads as

S(z; t) = eT0Rz(t) e0 = eT0
[
J(t)− z I

]−1
e0 = eT0

∞∑
n=0

J(t)n

zn+1
e0 =

∞∑
n=0

Jn1,1(t)

zn+1

=
∞∑
n=0

un(t)

zn+1
=
〈
u(t),

1

z − x
〉
.

A difference analogue of a Korteweg-de Vries equation,

a1(t) ≡ 0 ,
dan(t)

dt
= an(t)

(
an+1(t)− an−1(t)

)
, n = 2, 3, . . . ,

is called Langmuir lattice, due to its applications in modeling Langmuir
oscillations in plasmas [12] or finite difference KDV equation [25], whose
dynamic is given by

(6) dµ(x; t) =
exp(−x2t)dµ(x, t0)∫
exp(−x2t)dµ(x, t0)

.

In [12] it was studied the construction of a solution of the Toda
lattice

(7)


dan(t)

dt
= an(t)

(
bn−1(t)− bn(t)

)
,

dbn(t)

dt
= an(t)− an+1(t) ,

n ∈ Z,

from another given solution, considering sequences {an(t)}n∈Z, {bn(t)}n∈Z,
of real functions. Both solutions of (7) were linked to each other by
Bäcklund or Miura transformations

an(t) = γ2n(t)γ2n−1(t) , bn(t) = γ2n+1(t) + γ2n(t) + c , n ∈ Z,

ãn(t) = γ2n+1(t)γ2n(t) , b̃n(t) = γ2n+2(t) + γ2n+1(t) + c , n ∈ Z ,
with c an arbitrary complex constant independent of t and where
{γn(t)}n∈Z is a solution of the Volterra lattice or Langmuir lattice
(see [25, Theorem 1])

(8) γ̇n+1(t) = γn+1(t)
(
γn+2(t)− γn(t)

)
, n ∈ Z .

This Volterra system, also known as the KM system, was solved in [15]
using a discrete version of the inverse scattering method. The Lax pair
for (8) can be found in [23]. There exists a relation, first discovered by
Hénon, between the Volterra system and the non–periodic Toda lattice
(see [8, 23] for more details).
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In [6], this kind of analysis has been generalized to the full hierarchy
of Toda and Volterra lattices studied in [2] and [1] (see also [9]).

Recently in [4], the following system of nonlinear difference equa-
tions, named ∆-Toda lattice:

(9)

∆tan(t) = αn1 (t)
(
bn−1(t)− bn(t+ 1)

)
,

∆tbn(t) = αn1 (t)− αn+1
1 (t) ,

n ∈ N ,

and his characterization has been presented, where

αn1 (t) =
gn(t)

b0(t+ 1) + 1
,

and

gn(t) =
n∏
k=1

ak(t+ 1)

ak−1(t)
,

assuming that b0(t + 1) + 1 6= 0 and a0(t) = 1, where the forward
difference operator ∆t is defined by

∆tg(t) = g(t+ 1)− g(t) .

The ∆-Toda lattice (9) can be written in a Lax-type representation
as a first–order linear difference system

∆tJ(t) = A(t) J(t)− J(t+ 1)A(t) ,

where

A(t) =


b0(t+ 1) 0
g1(t) b0(t+ 1) 0

0 g2(t) b0(t+ 1)
. . .

. . . . . . . . .

 ,

and J(t) was defined in (3). Let us now introduce the ∆-Volterra lattice
(or ∆-Langmuir lattice) by means of a new Lax–type pair representa-
tion

(10) ∆tΓ(t) = B(t) Γ(t)− Γ(t+ 1)B(t) ,

where

(11) Γ(t) =
(
Γi,j(t)

)
=


0 1 0

γ1(t) 0 1 0

0 γ2(t) 0 1
. . .

. . . . . . . . . . . .

 ,
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(12) B(t) =


γ1(t+ 1) 0

0 γ1(t+ 1) 0

η1(t) 0 γ1(t+ 1)
. . .

0 η2(t) 0
. . .

. . . . . . . . .

 ,

and

(13) η1(t) = γ1(t+ 1)γ2(t+ 1) , ηn(t) =
γ1(t+ 1) · · · γn+1(t+ 1)

γ1(t) · · · γn−1(t)
,

n = 2, . . . , with 1 + γ1(t+ 1) 6= 0 and γn(t) 6= 0.
The main goal of this work is to obtain characterizations of the ∆-

Volterra lattice (10). This will be done in terms of the moments for
the associated linear functional, the Stieljes function, and in terms of
the Appell type equation that these families of symmetric orthogonal
polynomials satisfy. Besides, it is shown that the solutions of ∆-Toda
lattice (9) are connected to ∆-Volterra lattice (10) through Miura or
Bäcklund transformations [12, 18].

The structure of the paper is the following: In section 2, we present
the main theorem of the ∆-Volterra lattices. We give a representation
of the symmetric orthogonality functional and a Lax-type theorem. In
section 3, we present the connection between the Bäcklund or Miura
transformations in terms of the theory of orthogonal polynomials. Fi-
nally, in section 4, an explicit example of solutions of ∆-Volterra and
∆-Toda lattices related to Jacobi polynomials is given, and connected
with the results presented in this paper.

2. ∆-Volterra system

Let us consider the following ∆-Volterra lattice (or ∆-Langmuir lat-
tice) equivalent to (10):

∆tγ1(t) = −γ1(t+ 1)γ2(t+ 1)

1 + γ1(t+ 1)
,

∆tγn(t) =
γn(t+ 1) · · · γ1(t+ 1)

(
γn−1(t)− γn+1(t+ 1)

)
(1 + γ1(t+ 1))γn−1(t) · · · γ1(t)

,

(14)

n = 2, . . . , assuming that 1 + γ1(t+ 1) 6= 0 and γn(t) 6= 0.
We shall also consider the backward difference operator, ∇t, de-

fined by

∇tg(t) = g(t)− g(t− 1) .
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Theorem 1. Let us assume that the sequence {γn(t)}n∈N is uniformly
bounded. The following conditions are equivalent:

(1) The Jacobi matrix Γ(t) defined in (11) satisfies the matrix dif-
ference equation (10).

(2) The moments un(t) associated to a symmetric functional u(t),
defined by (2), satisfy

(15) ∆tun(t) = −un+2(t+ 1) + u2(t+ 1)un(t) , when n is even ,

since u2n+1(t) = 0.
(3) The Stieltjes function associated with Γ(t) satisfies

(16) ∆tS(z; t) = −z2 S(z; t+ 1) + u2(t+ 1)S(z, t) + z .

(4) The linear functional u(t) associated with Γ(t) satisfies

(17) ∆tu(t) = −x2 u(t+ 1) + u2(t+ 1)u(t) .

(5) The sequence of monic symmetric polynomials, {Rn(x; t)}n∈N,
orthogonal with respect to the functional u(t) associated with
Γ(t) satisfy an Appell type property

(18) ∆tRn(x; t) = αn2 (t)Rn−2(x; t) ,

where

αn2 (t) =

〈
u(t+ 1), xnRn(x; t+ 1)

〉
(1 + u2(t+ 1))

〈
u(t), xn−2Rn−2(x; t)

〉 =
ηn−1(t)

1 + γ1(t+ 1)
,(19)

for n = 2, . . ., and ηn(t) was defined in (13).

Proof. (1) ⇒ (2). By induction it can be proved that

(20) ∆tΓ
n(t) = B(t) Γn(t)− Γn(t+ 1)B(t) ,

where B(t) is defined in (12). By using (2)

eT0 ∆tΓ
n(t) e0 = ∆t

(
eT0 Γn(t) e0

)
= ∆tun(t) ,

where eT0 = (1, 0, . . . ). Moreover, from (20) we have

eT0 ∆tΓ
n(t) e0 = γ1(t+ 1) Γn1,1(t)−

(
Γn1,1(t+ 1) γ1(t+ 1) + Γn1,3(t+ 1) η1(t)

)
= u2(t+ 1)un(t)− un+2(t+ 1) ,

because γ1(t + 1) = Γ2
1,1(t + 1) = u2(t + 1) and as a consequence of

the product of matrices η1(t) = Γ2
3,1(t+ 1) = γ1(t+ 1)γ2(t+ 1), which

completes the proof.
Moreover, from (10) we obtain

ηn(t) =
γn+1(t+ 1)

γn−1(t)
ηn−1(t) , n = 2, . . . ,
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and

(21)


(
1 + γ1(t+ 1)

)
∆tγ1(t) = −η1(t)(

1 + γ1(t+ 1)
)
∆tγn(t) = ηn−1(t)− ηn(t) , n = 2, . . . ,

what leads to the ∆-Volterra lattice (14).
(2) ⇒ (3). From (15), then

∆tS(z; t) =
∞∑
n=0

∆tun(t)

zn+1
= −z2

∞∑
n=0

un+2(t+ 1)

zn+3
+ u2(t+ 1)

∞∑
n=0

un(t)

zn+1

= −z2
(
S(z; t+ 1)− 1

z

)
+ u2(t+ 1)S(z; t) ,

where we have used that u0(t + 1) = 1 and u1(t + 1) = 0. As a
consequence, we obtain (16).

(3) ⇒ (4). By using

S(z; t) =
〈
u(t),

1

z − x
〉
,

and (5), if we apply the ∆t operator, we have that the equation (16)
reads as

∆tS(z; t) :=
〈
∆tu(t),

1

z − x
〉

= −z2
〈
u(t+ 1),

1

z − x
〉

+ u2(t+ 1)
〈
u(t),

1

z − x
〉

+ z

=
〈
u(t+ 1),

−z2

z − x
+ z + x

〉
+ u2(t+ 1)

〈
u(t),

1

z − x
〉

=
〈
u(t+ 1),

−x2

z − x
〉

+ u2(t+ 1)
〈
u(t),

1

z − x
〉
,

which implies〈
∆tu(t) + x2 u(t+ 1)− u2(t+ 1)u(t),

1

z − x
〉

= 0 ,

and so, all the moments for the linear functional ∆tu(t) +x2 u(t+ 1)−
u2(t+ 1)u(t) are zero, and (17) is obtained.

Moreover, we have(
1 + u2(t+ 1)

)
∆tu(t) =

(
− x2 + u2(t+ 1)

)
u(t+ 1) .

(4) ⇒ (5). First of all, let us show that a symmetric regular linear
functional u(t) satisfying (15), is such that 1+u2(t+1) = 1+γ1(t+1) 6=
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0. Let us assume that u2(t + 1) = −1. Then, from (15) for n = 2, we
obtain that u4(t+ 1) = 1 which yields

det(H3(t+1)) =

∣∣∣∣∣∣
u0(t+ 1) u1(t+ 1) u2(t+ 1)
u1(t+ 1) u2(t+ 1) u3(t+ 1)
u2(t+ 1) u3(t+ 1) u4(t+ 1)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0 −1
0 −1 0
−1 0 1

∣∣∣∣∣∣ = 0 ,

in contradiction with being u(t) a regular linear functional (cf. for
instance [7]).

Let {Rn(x; t)}n∈N be the sequence of monic symmetric orthogonal
polynomials with respect to the linear functional u(t), i.e.

Rn(−x; t) = (−1)nRn(x; t) , n ∈ N .
Since {Rn(x; t)}n∈N is a basis in the space of polynomials of degree n,
we have

(22) ∇tRn(x; t+ 1) =
n∑
k=1

αnk(t)Rn−k(x; t) .

By convention we shall assume that α0
1 = 0. For n = 1, from (22) it is

easy to check that α1
1(t) = 0 because R0(x; t) = 1. Now, if we suppose

that we already have tested that

∆tRn(x; t) = αn1 (t)Rn−1(x; t) + αn2 (t)Rn−2(x; t) ,

by comparison of the coefficients in x we have that αn1 (t) = 0, using
that Rn(x; t) is symmetric.

We shall prove for n = 1, . . . that αnk = 0 for k = 3, . . . , n and αn2 6= 0.
From (22) we can write

(23) Rn(x; t+ 1) = Rn(x; t) +
n∑
k=1

αnk(t)Rn−k(x; t) ,

and by using the orthogonality of Rn(x; t) it holds〈
u(t), Rn(x; t+ 1)

〉
= αnn(t)

〈
u(t), 1

〉
.

Moreover, since
〈
u(t+ 1), x2Rn(x; t+ 1)

〉
= 0, for n = 3, . . ., we have

αnn(t)
〈
u(t), 1

〉
= αnn(t)

〈
u(t), R0(x; t)

〉
=

n∑
k=1

αnk(t)
〈
u(t), Rn−k(x; t)

〉
=
〈
u(t+ 1),∇tRn(x; t+ 1)

〉
= −

〈
∆t(u(t)), Rn(x; t+ 1)

〉
=
〈
u(t+ 1), x2Rn(x; t+ 1)

〉
− u2(t+ 1)

〈
u(t), Rn(x; t+ 1)

〉
= −u2(t+ 1)

〈
u(t), Rn(x; t+ 1)

〉
.

We now obtain (1 + u2(t + 1))αnn(t)
〈
u(t), 1

〉
= 0. Assuming that 1 +

u2(t+ 1) 6= 0 and since
〈
u(t), 1

〉
6= 0, we have αnn(t) = 0.
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In the next step we shall prove that αnn−1(t) = 0. From

n−1∑
k=1

αnk(t)
〈
u(t), xRn−k(x; t)

〉
= αnn−1(t)

〈
u(t), xR1(x; t)

〉
=
〈
u(t), x∇tRn(x; t+ 1)

〉
= −

〈
∆t(u(t)), xRn(x; t+ 1)

〉
=
〈
u(t+ 1), x3Rn(x; t+ 1)

〉
− u2(t+ 1)

〈
u(t), xRn(x; t+ 1)

〉
= −u2(t+ 1)

〈
u(t), Rn(x; t+ 1)

〉
= −u2(t+ 1)αnn−1(t)

〈
u(t), xR1(x; t)

〉
,

using that
〈
u(t + 1), x3Rn(x; t + 1)

〉
= 0, for n = 4, . . . and (23), we

obtain (
1 + u2(t+ 1)

)
αnn−1(t)

〈
u(t), xR1(x; t)

〉
= 0 .

Since 1 + u2(t + 1) 6= 0 and
〈
u(t), xR1(x; t)

〉
6= 0 by orthogonality, we

conclude that αnn−1(t) = 0.
Repeating this process we obtain that αnk(t) = 0 for k = 4, . . . , n.

Let us prove in the last step that αn3 (t) = 0. From

3∑
k=1

αnk(t)
〈
u(t), xn−3Rn−k(x; t)

〉
= αn3 (t)

〈
u(t), xn−3Rn−3(x; t)

〉
=
〈
u(t), xn−3∇tRn(x; t+ 1)

〉
= −

〈
∆t(u(t)), xn−3Rn(x; t+ 1)

〉
=
〈
u(t+ 1), xn−1Rn(x; t+ 1)

〉
− u2(t+ 1)

〈
u(t), xRn(x; t+ 1)

〉
= −u2(t+ 1)

〈
u(t), xn−3Rn(x; t+ 1)

〉
= −u2(t+ 1)αn3 (t)

〈
u(t), xn−3Rn−3(x; t)

〉
,

using that
〈
u(t+ 1), xn−1Rn(x; t+ 1)

〉
= 0 and (23), we obtain

(1 + u2(t+ 1))αn3 (t)
〈
u(t), xn−3Rn−3(x; t)

〉
= 0 .

Since 1+u2(t+1) 6= 0 and
〈
u(t), xn−3Rn−3(x; t)

〉
6= 0 by orthogonality,

we conclude that αn3 (t) = 0.
Therefore, we have obtained that

∇tRn(x; t+ 1) = αn2 (t)Rn−2(x; t) .

Finally, we will determine αn2 explicitly:

αn2 (t)
〈
u(t), xn−2Rn−2(x; t)

〉
=
〈
u(t), xn−2∇t(Rn(x; t+ 1))

〉
= −

〈
∆t(u(t)), xn−2Rn(x; t+ 1)

〉
=
〈
u(t+ 1), xnRn(x; t+ 1)

〉
− u2(t+ 1)

〈
u(t), xn−2Rn(x; t+ 1)

〉
=
〈
u(t+ 1), xnRn(x; t+ 1)

〉
− u2(t+ 1)

〈
u(t), xn−2

(
Rn(x; t) + αn2 (t)Rn−2(x; t)

)〉
,
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using (17). Hence(
1 +u2(t+ 1)

)
αn2 (t)

〈
u(t), xn−2Rn−2(x; t)

〉
=
〈
u(t+ 1), xnRn(x; t+ 1)

〉
,

which gives the value of αn2 (t) given in (19). Moreover, when n = 2, we
can obtain easily that

α2
2(t) = −∆tγ1(t) ,

taking into account thatR2(x; t) = x2−γ1(t) and α2
2(t) = α2

2(t)R0(x; t) =
∆tR2(x; t).

(5) ⇒ (1) If we apply ∆t to the recurrence relation

(24) xRn(x; t) = Rn+1(x; t) + γn(t)Rn−1(x; t) , n = 1, . . . ,

with R−1(x; t) = 0 and R0(x; t) = 1, we get

(25) αn2xRn−2(x; t) = ∆tRn+1(x; t) + ∆tγn(t)Rn−1(x; t)

+ γn(t+ 1) ∆tRn−1(x; t) .

If we use again the recurrence relation to expand

xRn−2(x; t) = Rn−1(x; t) + γn−2(t)Rn−3(x; t) ,

and ∆tRn+1(x; t) = αn+1
2 Rn−1(x; t), by equating in (25) the coefficients

in Rn−1(x, t) and Rn−3(x; t), we get for n = 2, . . . the equations

αn+1
2 (t) γn−1(t) = αn2 (t) γn+1(t+ 1) , αn2 (t) = αn+1

2 (t) + ∆tγn(t) .

As a consequence, using (19) we obtain (21) and

αn2 (t) =
1

1 + γ1(t+ 1)

γn(t+ 1)γn−1(t+ 1) · · · γ2(t+ 1)γ1(t+ 1)

γn−2(t)γn−3(t) · · · γ1(t)
.

Thus, we have(
1 + γ1(t+ 1)

)
∆tγn(t) = αn2 (t)− αn+1

2 (t)

=
γn(t+ 1)γn−1(t+ 1) · · · γ2(t+ 1)γ1(t+ 1)

γn−1(t)γn−2(t) · · · γ1(t)
(
γn−1(t)− γn+1(t+ 1)

)
.

�

Theorem 2. Assume that the normalized symmetric functional u(t)
verifies

u(t) = κ
(
1 + x2

)1−t
v ,

where κ is the normalizing constant and v is a positive definite lin-
ear functional. Then, the coefficients {γn(t)}n∈N of the Jacobi matrix
Γ(t) associated to the functional u(t) are solution of the ∆-Volterra
lattice (14).
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Proof. Let

(26) f(x, t) =
(
1 + x2

)1−t
,

and the moments〈
v, xn

〉
=

∫
xn d%(x) , n = 0, 1, . . . .

Let un(t) the moments of the linear functional u(t),

un(t) =

∫
f(x, t)xn d%(x)∫
f(x, t) d%(x)

.

Since

∆t(f(t)/g(t)) =
∆tf(t) g(t)− f(t) ∆tg(t)

g(t)g(t+ 1)
,

then

∆tun(t) =

∫
∆tf(x, t)xn d%(x)∫
f(x, t+ 1) d%(x)

−
( ∫

f(x, t)xn d%(x)
)( ∫

∆tf(x, t) d%(x)
)( ∫

f(x, t) d%(x)
)( ∫

f(x, t+ 1) d%(x)
) .

By using ∆tf(x, t) = −x2 f(x, t+ 1), we obtain

∆tun(t) = −un+2(t+ 1) + u2(t+ 1)un(t) ,

which completes the proof. �

Remark 1. Let us consider the difference operator

∆t,hf(x, t) =
f(x, t+ h)− f(x, t)

h
, lim

h→0
∆t,hf(x, t) =

∂

∂t
f(x, t) .

In this case, the function fh(x, t) to be considered analogue of (26) is

fh(x, t) =
(
1 + hx2

)1−t/h
.

It yields,

lim
h→0

fh(x, t) = exp(−x2t) ,

which is the evolution (6) associated to the continuous case [25].

Next, we prove a Lax-type theorem [17, Theorem 3, p. 270].

Theorem 3. Let λ(t) be a spectral point of the Jacobi matrix Γ(t), i.e.

(27) Γ(t)P(λ(t)) = λ(t)P(λ(t));

then, Γ(t) satisfies (10) if, and only if, ∆tλ(t) = 0.
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Proof. If we apply the ∆t operator to (27) we obtain

∆tΓ(t)P(λ(t)) + Γ(t+ 1)∆tP(λ(t)) = ∆tλ(t)P(λ) +λ(t+ 1)∆tP(λ(t)).

Then,

B(t)λ(t)P(λ(t))− Γ(t+ 1)B(t)P(λ(t))

+ (Γ(t+ 1)− λ(t+ 1) I) ∆tP(λ(t)) = (∆tλ(t))P(λ(t)),

and so,(
Γ(t+ 1)− λ(t+ 1)

)(
∆tP(λ(t))−B(t)P(λ(t))

)
=
(
∆tλ(t) I − (λ(t+ 1)− λ(t))B(t)

)
P(λ(t)),

with B(t) defined by (12), or equivalently,(
Γ(t+1)−λ(t+1)

)(
∆tP(λ(t))−B(t)P(λ(t))

)
= ∆tλ(t)(I−B(t))P(λ(t)).

From this we get, as 1 + γ1(t+ 1) 6= 0, that ∆tλ(t) = 0 if and only if(
Γ(t+ 1)− λ(t+ 1)

)(
∆tP(λ(t))−B(t)P(λ(t))

)
= 0,

or, what is equivalent, there exists s ∈ R such that

∆tP(λ(t)) = B(t)P(λ(t)) + sP(λ(t+ 1)),

which is equation (18) in vector notation, as s = γ1(t+ 1). �

3. Bäcklund or Miura transformations and sequences of
polynomials

Bäcklund or Miura transformations are equations that relate differ-
ent solutions of the same nonlinear evolution equation [11, 18, 21].
In this section we give a simple connection between ∆-Volterra and
∆-Toda lattices by using background knowledge of the theory of or-
thogonal polynomials [7].

Lemma 1. Let {γn(t)}n∈N be a solution of the ∆-Volterra lattice (14).
Then {an(t)}n∈N and {bn(t)}n∈N defined by a0(t) = 1 and for n = 1, . . . ,

(28) an(t) = γ2n(t)γ2n−1(t) , bn(t) = γ2n+1(t) + γ2n(t) + c ,

are solution of the ∆-Toda lattice (9). Moreover, the sequences {ãn(t)}n∈N
and {b̃n(t)}n∈N defined by ã0(t) = 1 and for n = 1, . . . ,

(29) ãn(t) = γ2n+1(t)γ2n(t) , b̃n(t) = γ2n+2(t) + γ2n+1(t) + c ,

are also solution of the ∆-Toda lattice (9), assuming that γ0(t) = 1.
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Proof. If we apply the ∆t operator to the first equation of (28) we
obtain

∆tan(t) = ∆tγ2n(t) γ2n−1(t) + γ2n(t+ 1) ∆tγ2n−1(t) .

From (14) it yields

∆tan(t) =
γ2n(t+ 1) · · · γ1(t+ 1)

(
γ2n−1(t)− γ2n+1(t+ 1)

)
γ2n−1(t)(

1 + γ1(t+ 1)
)
γ2n−1(t) · · · γ1(t)

+ γ2n(t+ 1)
γ2n−1(t+ 1) · · · γ1(t+ 1)(

1 + γ1(t+ 1)
)
γ2n−2(t) · · · γ1(t)

(
γ2n−2(t)− γ2n(t+ 1)

)
=
γ2n(t+ 1) · · · γ1(t+ 1)

(
γ2n−1(t) + γ2n−2(t)− γ2n+1(t+ 1)− γ2n(t+ 1)

)(
1 + γ1(t+ 1)

)
γ2n−2(t) · · · γ1(t)

where by using (28) we finally obtain

∆tan(t) =
an(t+ 1) · · · a1(t+ 1)(

1 + γ1(t+ 1)
)
an−1(t) · · · a1(t)

(
bn−1(t)− bn(t+ 1)

)
.

Moreover, if we apply the ∆t operator to the second equation of (28)
we obtain

∆tbn(t) = ∆tγ2n+1(t) + ∆tγ2n(t) ,

where by using (28) the result follows.

The results for {ãn(t)}n∈N and {b̃n(t)}n∈N follow in a similar way. �

Given a family of tridiagonal matrices {J(t), t ∈ R}, as in (3), we
consider the sequence of polynomials {Pn(x; t)}n∈N defined in (4). It
is well-known [7] that, if an(t) 6= 0 for n = 1, 2, . . . , then the sequence
{Pn(x; t)}n∈N is orthogonal with respect to some quasi-definite moment
functional.

Lemma 2. Let {an(t)}n∈N and {bn(t)}n∈N be solution of the ∆-Toda
lattice (9), and {Pn(x; t)}n∈N be the sequence of orthogonal polynomials
with Jacobi matrix (3). Let c ∈ C such that Pn(c; t) 6= 0, for each
n ∈ N and for all t ∈ R. Then the sequence {γn(t)}n∈N defined in (28)
is solution of the ∆-Volterra lattice (14), assuming that γ0(t) = 1.

Proof. From [7, Exercise 9.6, page 49] we have that the coefficients
γn(t) have the following representation

γ2n+1(t) = −Pn+1(c; t)

Pn(c; t)
, γ2n+2(t) = −an+1(t)

Pn(c; t)

Pn+1(c; t)
, n = 0, 1, . . . ,

for the odd and even cases.
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If we apply the ∆t operator to the first equation, we obtain

∆tγ2n+1(t) = −∆tPn+1(c; t)

Pn(c; t)
+
Pn+1(c; t+ 1) ∆tPn(c; t)

Pn(c; t)Pn(c; t+ 1)
.

In [4] we have proved that a necessary and sufficient condition for
{an(t)}n∈N and {bn(t)}n∈N be a solution of a ∆-Toda lattice (9) is that
{Pn(x; t)}n∈N satisfy an Appell property

∆tPn(x; t) = αn1 (t)Pn−1(x; t) , αn1 (t) =
1

1 + γ1(t+ 1)

n∏
k=1

ak(t+ 1)

ak−1(t)
,

assuming that 1 + γ1(t+ 1) 6= 0 and a0(t) = 1. Therefore,

∆tγ2n+1(t) = −αn+1
1 (t)− γ2n+1(t+ 1)αn1 (t)Pn−1(c; t)

Pn(c; t)

= −αn+1
1 (t) +

γ2n+1(t+ 1)γ2n(t)αn1 (t)

an(t)

= αn+1
1 (t)

(
− 1 +

γ2n+1(t+ 1)γ2n(t)

an+1(t+ 1)

)
=

αn+1
1 (t)

γ2n+2(t+ 1)

(
− γ2n+2(t+ 1) + γ2n(t)

)
,

which yields the odd part of (14). The even part can be proved in a
similar way. �

As a consequence, if {an(t)}n∈N and {bn(t)}n∈N are solution of the
∆-Toda lattice defined in (9), then from Lemma 2 we construct a solu-
tion of the ∆-Volterra lattice (14) denoted by {γn(t)}n∈N. Now, from
Lemma 1 and these coefficients {γn(t)}n∈N we construct another solu-

tion {ãn(t)}n∈N and {b̃n(t)}n∈N of the ∆-Toda lattice defined in (9).
Let us denote by Γn(t) the finite submatrix formed by the first n

rows and columns of Γ(t). We may summarize these results as follows,
which is a ∆t-analogue of [6, Theorem 1.3], where the full Toda and
Volterra hierarchy has been considered.

Theorem 4. Let us consider the family {Γ(t), t ∈ R}, of tridiagonal
infinite matrices defined in (11) and let c ∈ C be such that det(Γn(t)−
c In) 6= 0, for each n ∈ N and for all t ∈ R. Then there exists a
sequence {γn(t)}n∈N, t ∈ R, solution of (14) and there exists a pair

of two sequences {an(t)}n∈N, {bn(t)}n∈N, and {ãn(t)}n∈N, {b̃n(t)}n∈N,
t ∈ R, solutions of (9) such that (28) and (29) hold.
Moreover, for each c ∈ C in the above conditions, the sequences
{γn(t)}n∈N, {an(t)}n∈N, {bn(t)}n∈N, and {ãn(t)}n∈N, {b̃n(t)}n∈N are the
unique sequences verifying (28) and (29).
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Notice that the condition det(Γn(t) − c In) 6= 0, is equivalent to
Pn(c; t) 6= 0 for the monic polynomials Pn(x; t) defined by (4) [7, 24, 27].

4. Example: Modified Legendre functional

Let us consider 〈
v, p(x)

〉
=

1

2

∫ 1

−1
p(x) dx ,

the Legendre linear functional normalized to have first moment equal
to one, and let us consider the functional

u(t) = κ(1 + x2)1−t v ,

where κ is a normalizing constant. Then, the even moments are ex-
plicitly given by

u2n(t) =
2F1

(
n+ 1

2
, t− 1;n+ 3

2
;−1

)
(2n+ 1) 2F1

(
1
2
, t− 1; 3

2
;−1

)
and u2n+1(t) = 0, n ∈ N due to the symmetry of u(t).

Let us consider the sequence {γn(t)}n∈N defined by

γn(t) = − n(n− 2t+ 2)

(2n− 2t+ 1)(2n− 2t+ 3)
, n = 1, . . . , γ0(t) = 1 , t 6= 1 ,

which is solution of the ∆-Volterra equations (14).
The sequence of monic symmetric polynomials {Rn(x; t)}n∈N which

satisfy the three term recurrence relation (24) are explicitly given, for
n ∈ N, by

Rn(x; t) =

(
− i

2

)n
n!C

(
3
2
−t
)

n (ix)(
3
2
− t
)
n

= xn 2F1

(1

2

(
(−1)n − 2

[n
2

])
,−
[n

2

]
; t+

(−1)n

2
− 2
[n

2

]
− 1;− 1

x2

)
,

t < 3
2

, where C
(λ)
n (x) are the Gegenbauer (or ultraspherical) polynomi-

als defined in [16, (9.8.19)] and
[
x
]

gives the integer part of x.
These polynomials are orthogonal with respect to the normalized

linear functional

u(t) = −
i
(
x2 + 1

)1−t
Γ
(
5
2
− t
)

√
π Γ(2− t)

= κ
(
1 + x2

)1−t
,

i.e., for all n,m ∈ N,∫ i

−i
κ
(
1 + x2

)1−t
Rn(x; t)Rm(x; t) dx =

(
− 1

4

)n
Γ(n+ 1)

(
3− 2t

)
n(

3
2
− t
)
n

(
5
2
− t
)
n

δnm ,
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t < 3
2

. The sequence of orthogonal polynomials {Rn(x; t)}n∈N coincides
with the monic orthogonal polynomials sequence defined in [20, (17)]
for r = 4− 2t, s = 0, p = 1 and q = 1 or with the polynomials defined
in [20, (86)] with a = 0 and b = t − 1. It is shown that they are
also finitely orthogonal with respect to the second kind of beta weight
function x−2a(1 + x2)−b on (−∞,∞).

Observe that the difference equation (18) can be written as

∆tRn(x; t) =
(n− 1)n

(−2n+ 2t− 1)(−2n+ 2t+ 1)
Rn−2(x; t) , n = 2, . . . .

Using the Miura transformations (28) we obtain explicitly the se-
quences

an(t) =
4n(2n− 1)(2n− 2t+ 1)(n− t+ 1)

(4n− 2t− 1)(4n− 2t+ 1)2(4n− 2t+ 3)
, n = 1, . . . ,

bn(t) =
−4n(2n− 2t+ 3) + 2t− 1

(4n− 2t+ 1)(4n− 2t+ 5)
, n ∈ N , t 6= 1 ,

which are solutions of the ∆-Toda equations defined in (9).
The sequence of monic polynomials {Pn(x; t)}n∈N defined by the

three term recurrence relation (4) can be identified in terms of monic
shifted Jacobi polynomials for α, β > −1 ,

G(α,β)
n (x) =

(−1)n(β + 1)n
(α + β + n+ 1)n

2F1(−n, α + β + n+ 1; β + 1;x) ,(30)

as

Pn(x; t) = (−1)nG(1−t,−1/2)
n (−x) , n ∈ N ,

and moreover y(x) = Pn(x; t) obey the following second order differen-
tial equation

x(1 + x)y′′(x) +
1

2
((5− 2t)x+ 1)y′(x)− 1

2
n(2n− 2t+ 3)y(x) = 0 .

Thus, the following orthogonality relation holds,∫ 0

−1

(1 + x)1−t√
−x

Pn(x; t)Pm(x; t) dx

=

√
π 4−2n+t−1Γ(2n+ 1)Γ

(
5
2
− t
)
Γ(2n− 2t+ 3)

Γ(2− t)Γ
(
2n− t+ 3

2

)
Γ
(
2n− t+ 5

2

) δn,m ,

n,m ∈ N, for t < 3
2
. It is easy to verify that in this case

R2n(x; t) = Pn(x2; t), R2n+1(x; t) = xQn(x2; t) , n ∈ N ,
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where the polynomials Qn(x; t) are obtained from the polynomials
Pn(x; t) by the Christoffel transformation, [7]:

(31) Qn(x; t) =
Pn+1(x; t)− ψn(t)Pn(x; t)

x
,

where

ψn(t) =
Pn+1(0; t)

Pn(0; t)
= − (2n+ 1)(2t− 2n− 3)

(2t− 4n− 3)(2t− 4n− 5)
, n ∈ N .

In a similar way, using the transformations (29) we obtain the new
recurrence coefficients

ãn(t) =
4n(2n+ 1)(2n− 2t+ 3)(n− t+ 1)

(4n− 2t+ 1)(4n− 2t+ 3)2(4n− 2t+ 5)
, n = 1, . . . ,

b̃n(t) =
−4n(2n− 2t+ 5) + 6t− 9

(4n− 2t+ 3)(4n− 2t+ 7)
, n ∈ N , t 6= 1 ,

which also satisfy the chain of difference equations (9) for the ∆-Toda
lattice.

The monic polynomials {P̃n(x; t)}n∈N generated by P̃−1(x; t) = 0,
P̃0(x; t) = 1 ,

P̃n(x; t) = (x− b̃n−1(t))P̃n−1(x; t)− ãn−1(t)P̃n−2(x; t) ,

n = 1, . . ., can be identified in terms of monic shifted Jacobi polyno-
mials (30) as

P̃n(x; t) = (−1)nG(1−t,1/2)
n (−x) , n ∈ N .

Thus, y(x) = P̃n(x; t) is solution of the equation of hypergeometric
type

x(1 + x) y′′(x) +
1

2
((7− 2t)x+ 3) y′(x)− 1

2
n(2n− 2t+ 5) y(x) = 0 ,

and their polynomial solutions have the orthogonality property∫ 0

−1
(1 + x)1−t

√
−x P̃n(x; t) P̃m(x; t) dx

=

√
π 2−4n+2t−3Γ(2n+ 2)Γ

(
7
2
− t
)
Γ(2n− 2t+ 4)

Γ(2− t)Γ
(
2n− t+ 5

2

)
Γ
(
2n− t+ 7

2

) δn,m ,

n,m ∈ N, for t < 3
2
. It is easy to verify that in this case the new solution

P̃n(x; t) coincides with the monic kernel polynomials corresponding to
{Pn(x; t)}n∈N defined in (31), i.e.

P̃n(x; t) = Qn(x; t), n ∈ N .
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