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SECOND-ORDER DIFFERENTIAL EQUATIONS IN THE
LAGUERRE-HAHN CLASS

A. BRANQUINHO, A. FOULQUIE MORENO, A. PAIVA, AND M.N. REBOCHO

ABSTRACT. Laguerre-Hahn families on the real line are characterized in terms
of second-order differential equations with matrix coefficients for vectors in-
volving the orthogonal polynomials and their associated polynomials, as well
as in terms of second-order differential equation for the functions of the second
kind. Some characterizations of the classical families are derived.

1. INTRODUCTION

The study of real orthogonal polynomial sequences, {P,}, that are solutions of
differential equations

N
(1) S 49 =0
j=0

where A; are polynomials (that may depend on n), is connected to measure pertur-
bation theory and spectral theory of differential operators [6]. The minimal order
of a differential equation (1) having orthogonal polynomial solutions is N = 2 or
N = 4 [14]. For the case N = 2in (1), with A, A not depending on n and Ay = A,
where X is some spectral (eigenvalue) parameter depending on n,

(2) Ay + Ay + 2y =0,

it is known the classification of sequences of orthogonal polynomial solutions: {P, }
must be, up to a linear change of variable, a member of the classical families, that
is, the Hermite, Laguerre, Jacobi and Bessel orthogonal polynomials (see [3] and
also [12], for an overview on the problem of determination of orthogonal polynomial
families that are solutions of (2)).

In the present paper we focus our attention on differential equations satisfied
by Laguerre-Hahn orthogonal polynomials on the real line. These polynomials
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are related to Stieltjes functions satisfying Riccati type differential equations with
polynomial coefficients [10, 16, 17, 18, 21]

(3) AS'=BS*+CS+D.

Note that the Laguerre-Hahn orthogonal polynomials are a generalization of the
semi-classical orthogonal polynomials, since the later ones are related to (3) with B =
0, the classical families appearing if, in addiction, deg(A) < 2 and deg(C) = 1 [20].
Laguerre-Hahn orthogonal polynomials can be generated by performing a perturba-
tion on the Stieltjes function of semi-classical orthogonal polynomials or by doing
a modification on the three-term recurrence relation coefficients of semi-classical
orthogonal polynomials [1, 4, 9, 21]. Thus, some well-known examples of Laguerre-
Hahn polynomials include the associated polynomials of semi-classical orthogonal
polynomials [1, 4, 7, 27], as well as the co-recursive, co-dilated and co-modified
polynomials [4, 15].

Laguerre-Hahn families of orthogonal polynomials are solutions of differential
equations (1), where the minimal order is N =4 [2, 10, 11, 14, 19, 23], thus when
no simplification occurs, Laguerre-Hahn orthogonal polynomials satisfy

AP 4+ AsPB) 4 AP + AP, + AP, = 0.

In this work we start by reinterpreting a result of [10], by showing an equivalence
between (3) and differential-difference equations with matrix coefficients

T
A\Ij/n - Mn\Iln +Nn\1jn_1 5 \Iln = |:Pn+1 P7(11)i| , n Z 0’

with {P,} the sequence of monic orthogonal polynomials related to (3) and {P,gl)}
the sequence of associated polynomials of the first kind (cf. Theorem 1). We prove
the equivalence between (3) and differential-difference equations for the sequence
of functions of the second kind {g¢,} (cf. Section 2),

C
Aq;: (ln71+§+BS)QH+®n71anla nZO

Next, we prove the equivalence between (3) and a second-order differential equation
with matrix coefficients having polynomial entries,

(4) AU 4 B, +Co, =09y, n>1,

as well as the equivalence between (3) and a second-order differential equation for
the sequence of functions of the second kind {g,},

(5) Anqg + Bnq; + én‘]n =0, n>1,

where A, is a polynomial and B,,,C, are functions. These equivalences are the
analogue ones, for orthogonality on the real line, of [5, Theorems 1 and 2]. Tak-
ing into account the above referred equivalence between (3) and (4), we deduce a
characterization of the sequences {¥,} corresponding to the Laguerre-Hahn class
zero (i.e., max{deg(A),deg(B)} < 2 and deg(C) =1 in (3) [4, 10]) as solutions of

second-order matrix operators,
(6) L,(9,)=0, L,=AD*4+¥D+A,I, n>0,

with A, U A, 2 X 2 matrices explicitly given in terms of the polynomials A, B, C,
D in (3) (cf. Theorem 3).

Finally, the last part of the paper is devoted to the analysis of the classical fam-
ilies. As a consequence of the above referred results some characterizations for the
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classical orthogonal polynomials are shown, from which we emphasize the charac-
terizations in term of:

— the hypergeometric-type differential equation for the sequence of functions of
the second kind;

— the differential equation that links the associated polynomial P,E” and the de-
rivative of P11,

n

A (P(1)>// +(A—0) (Pf}))/ + AL PW =2DP . n>0,

where A}, | are constants, explicitly given in terms of A, B,C, D in (3).

This paper is organized as follows. In Section 2 we give the definitions and
state the basic results which will be used in the forthcoming sections. In Section 3
we establish the equivalence between (3) and the second-order differential equa-
tions (4) and (5). In Section 4 we establish a characterization of Laguerre-Hahn
orthogonal polynomials of class zero as solutions of (6). In Section ?? we present
characterizations of the classical families of orthogonal polynomials.

2. PRELIMINARY RESULTS

Let P = span {z* : k € Ny} be the space of polynomials with complex coefficients
and let P’ be its algebraic dual space, i.e., the linear space of linear functionals
defined on P. We will denote by (u, f) the action of u € P’ on f € P. We consider
a linear functional v € P’ and (u,2™) = u,, n > 0, its moments. We will take u
normalized, that is, ug = 1.

Given the sequence of moments (u,) of u, the principal minors of the corre-
sponding Hankel matrix are defined by H, = det((ui+;);';—),m > 0, where, by
convention, H_; = 1. The linear functional « is said to be quasi-definite (respec-
tively, positive-definite) if H,, # 0 (respectively, H, > 0), for all integer n > 0.
If w is positive-definite, then it has an integral representation in terms of a positive
Borel measure, u, supported on an infinite set of points of the real line, I, such that

(u,x”>:/x”du, n>0.
I

Definition 1. Let v € P'. A sequence {P,},>0 is said to be orthogonal with
respect to u if the following two conditions hold:

(i) deg(P,) =n, n >0,

(ii) (u, P Prm) = knbnm, kn = (u, P2) #£0, n> 0.

If the leading coeflicient of each P, is 1, then {P,} is said to be a sequence of monic
orthogonal polynomials with respect to u, and it will be denoted by SMOP.

The equivalence between the quasi-definiteness of u € P’ and the existence of a
SMOP with respect to u is well-known in the literature of orthogonal polynomials [8,
26].

Monic orthogonal polynomials satisfy a three-term recurrence relation [26]

(7) Poi1(z) = (v — Bn) Pu(z) — Y Po—i(x), n=1,2,...
with Py(z) =1, Pi(x) =2 — fp and v, #0, n > 1, 79 = up = 1. Conversely, given
a SMOP {P,} satisfying a three-term recurrence relation as above, there exists a

unique quasi-definite linear functional u such that {P, } is the SMOP with respect
to u [8, 26].
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Definition 2. Let {P,} be the SMOP with respect to a linear functional u. The

sequence of associated polynomials of the first kind is defined by

Pria(z) — Py (t)
T—1

P(x) = (u, ), n>0,
where u; denotes the action of u on the variable t.
Note that the sequence {P,(Ll)} also satisfies a three-term recurrence relation,
P (@) = (z = )Py (2) = 1P o(x), n=1,2,...
with P (z) =0, P (z) = 1.

Definition 3. Let u € P’ be quasi-definite and (u,,) its sequence of moments. The
formal Stieltjes function of u is defined by
—+oo

S(a) = Z x:il :

n=0

Given a SMOP {P,} and {P,gl)} its sequence of associated polynomials, let S
and S™) denote the corresponding Stieltjes functions, respectively. One has

1
8 SW(z) = ——— —By).

The sequence of functions of the second kind corresponding to {P,} is defined
as follows:

(9) Gn+1(2) = Paya(2)S(2) = PP (2), n>0,q=5.
In the positive-definite case, if u is defined in terms of a measure p, one has [25]
P,(t
@) = [ 2 ). o ¢ sum, w2 0.

Definition 4. Let u € P’ be quasi-definite and let S be its Stieltjes function. u (or S)
is said to be Laguerre-Hahn if there exist polynomials A, B, C, D, with A # 0, such
that S satisfies a Riccati differential equation

(10) AS"=BS?*+CS+D.

The corresponding sequence of orthogonal polynomials is called Laguerre-Hahn. If
B =0, then S is said to be semi-classical or affine Laguerre-Hahn.

Note that if u is semi-classical, with the corresponding Stieltjes function sat-
isfying AS’ = CS + D, then, taking into account (8), there follows that S™) is
Laguerre-Hahn, since it satisfies a Riccati type differential equation.

Equation (10) is equivalent to the distributional equation for the corresponding
linear functional u

(11) D(Au) = u + Bz~ u?),

where 1) = A’ + C [21].

The distributional equation (11) is not unique, many triples of polynomials can
be associated with such an equation, but only one canonical set of minimal degree
exists. The class of u is defined as the minimum value of max{deg(y)—1,d—2}, d =
max{deg(A), deg(B)}, for all triples of polynomials satisfying (11). When B = 0
and the class of u is zero, that is, deg(¢¥)) = 1 and deg(A) < 2, u is called a
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classical functional, and the corresponding orthogonal polynomials are the classical
orthogonal polynomials.
In the sequel we will use the following matrices:

P, n
(12) v, = [Pg)l] ; Qn = [Qq:1] , n>0.

Hereafter I denotes the 2 x 2 identity matrix.

Lemma 1. Let u € P’ be quasi-definite, let {P,} be the corresponding SMOP
and Bn,Yn the coefficients of the recurrence relation (7). Let {¥,}, {Q.} be the
sequences defined in (12). Then,

(a) U, satisfies

(13) \Ijn = ((E - Bn)qlnfl - ’Yn\Iln727 n > 17

th initial conditions w_, = | )| vy = | 1]
wt mttal conairtions W_q1 = Pill) y 0 — Pél) ’

(b) on = {\P\;H} satisfies
(14) on =Knon-1, Kn= |:(£L’ ~ P —’)/n+1I:| , n>1,

T
with, initial conditions oo = [ P PV P Pél)} :
(c) Q. satisfies

(15) Qn :AnQn—l, nZ 1,

with A, = [x _16” _g”} and 1nitial conditions Qp = [(a: o 5%)5 o 1] .

Throughout the text, X (*7) will denote the (i, j) entry in the matrix X.

3. SECOND-ORDER DIFFERENTIAL EQUATIONS WITH MATRIX COEFFICIENTS

Theorem 1. Let u € P’ be quasi-definite and let S be its Stieltjes function. Let
{U,} be the corresponding sequence defined in (12), and let {q,} be the sequence
of functions of the second kind. The following statements are equivalent:
(a) S satisfies

AS'=BS*+CS+D, A B,C,DcP;
(b) W, satisfies
(16) AV = M, + NPy, n>0,

lL,-$ -B
D I,+5
nomials, with initial conditions

A=(lo—C/2)(x—po) —B+0Og, 0= (x—Po)D+ (lo+C/2);
(c) qn satisfies

where M,, = { } , N = ©,1, and ©,,1,, are bounded degree poly-

C
(17) Aq; = (ln—l + 5 + BS)Qn + Gn—lqn—l ) n Z 05
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with q—1 = 1, 6_1 = D, l_l = 0/2

Moreover, the polynomials l,, and ©,, involved in Eqs. (16) and (17) satisfy the
following relations, for all m > 0:

(18) by 1, = Pl
Yn+1
(19) Opi1 = A+ 20, 1+ (= Brs1) (I — lnsa).

n

Proof. (a) < (b).
This equivalence was proven in [10]. Indeed, (a) = (b) is obtained by using the
following facts:
- Theorem 3.1, page 64, showing the equivalence between the Riccati equation for
the formal Stieltjes function and functional equation;
- the equivalence between the Riccati Equation for the formal Stieltjes function and
Eq. (1.11), page 75 (Theorem 1.1), in our notation,
n+l

(20) APy, =-BP"+ > 0,.P,, n>e,

p=n—e+1
with I = max{t,b},e = max{s + 1,b — 1},¢t = deg(A),b = deg(B), s = max{p,q —
1} —1,p=deg(A’ + C),q = deg(z(A' + C) — A);
- the fact that the former equivalence leads to Eq. (2.12), page 82, in our notation,

’ n—H~ B
(21) A (P,Sljl) =DPuo— (- Bo)DPI + S 0uuPu, nzé.
p=n—e+1
- the fact that Egs. (20) and (21) can be written, using the three term recurrence
relation, as Egs. (3.9) and (3.10), page 83, in our notation,

(22) AP, = (ln — C/2)Pyy1 — BPY +0,P,, n>0,
/
A(PM) = DPoi1 + (1 + C/2)PPV + 0,PY, 020,

which is (16).

The proof of (b) = (a) follows by applying successively the three term recurrence
relation in (22), rearranging as (20).

(b) = (o).
Take derivatives in (9), then multiply the resulting expression by A and use the
equations enclosed in (16), as well as the Riccati equation for S, to get

C
Aq;@ = (ln,1 + 5 + BS)qn + @nflqnfl ,n>1.

Furthermore, as ¢_1 = 1, ¢o = 5, taking into account ©_; = D, I_; = C/2, there
follows that the above equation also holds for n = 0. Hence we obtain (17).

(c) = (a).
Take n=01n (17), with g1 =1, g =S5, ©_1 =D, l_; =C/2.

Let us now deduce the relations (18) and (19) for the polynomials I,,, ©,, involved
in Egs. (16) and (17).
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We write (16) for n 4+ 1 and use the recurrence relation (13), thus getting

ATy, + (2 = Bpg1)AT], — Y1 AV
= (@ = Bnr1)Mps1¥y — Vg 1M1V 1 + N1 0,y .

The use of (16) for n as well as for n — 1 in the above equation yields

(23) AV, =B,Y,_1, n>0.

where A,, and B,, are the polynomials given by

A, =A+ ’Y,T;Jrl Op_1+ (55 - Bn—&-l)(ln - ln+1) - @n-i-l ,

n

Bn = _($ - /Bn-i-l)@n + ’Yn—i-l(ln—l - Zn-i-l) + 7:/4_1 (Z‘ - ﬁn)en—l .

n

Note that (23) reads as
(24) AyPoi1 = BoP,, AP =B,PY | n>0.

n—1>

By multiplying the first equation in (24) by PT(LQI and the second one by P, and
by subtracting the corresponding result, we get

A (PP, = PPV ) =0, n>0.

Also, by multiplying the first equation in (24) by PV and the second one by P,i1
and by subtracting the corresponding result, we get

B.(PWP, — P, PY)y=0, n>0.

As P,(ll)Pn fP,H_lP?ElJl = HZ:O Yk # 0, n > 0[26], there follows 4,, = B,, =0, n >
0, that is, we have (19) as well as

T — By x— Bn
lns1 + @@n =1, 1+ w@n_l )
Tn+1 Tn
Let us add [,, in both hand sides of the above equation. We obtain
My = Mp—1, mn:ln+1+ln+w®n; nZO,
’Yn-&-l
from which there follows m,, = m_1, for all n > 0, that is,
Lyt +zn+m®n =1ly+1_4 +w@_1, n>0.
Tn+1 7o
Using the initial conditions D = ©_1,C/2 = [_; we get l0+l_1+%@_1 =0,
thus (18) follows. O

If we take B = 0 in the previous theorem we obtain differential relations in the
semi-classical class.

Corollary 1. Let u € P’ be quasi-definite and let S be its Stieltjes function. Let
{U,} be the corresponding sequence defined in (12), and let {q,} be the sequence
of functions of the second kind. The following statements are equivalent:
(a) S is semi-classical and it satisfies AS" = CS + D;
(b) W, satisfies

AV = MV, + Np¥, 1, n>0,
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S 0

where M,, = {ln 5 2 - C] , Np = 0,1, and ©,,1,, are bounded degree polyno-
nt 3

mials;
(c) qn satisfies the differential-difference equation with polynomial coefficients

C
quz = (lnfl + 5)% + ®n71qn71 , N >0.

Theorem 2. Let u € P’ be quasi-definite and let S be its Stieltjes function. Let
{U,} be the corresponding sequence defined in (12), and let {q,} be the sequence
of functions of the second kind. The following statements are equivalent:

(a) S satisfies
AS'=BS*+CS+D, A B,C,DcP;
(b) W, satisfies the second-order differential equation

(25) A 0" 4 B +CoW, =090y, n>1,

where A, B, C, are matrices, with polynomial entries, given by
(26) A, = A?O,I,
B, = A©,(A'T—- M, - M,_1)— A@n_lenwf — A% T,

n

(27)

(28) C, o, (@";1@"1 - AM;)

(z — Bn)

n

+ {@n (Mnl + @n11> + A@;I} M,

(c) qn satisfies the second-order differential equation
(29) Anqx-q—l + Bnqg—o—l + énQn-‘rl = 0, n Z 07

where A, By, C, are functions given by

(30) A, = A%0,,
(31) B, = AO,(A'—C-2BS)— A%@/,
32) G, — o, (@”71@" — A+ % + BS)’>
c C
+ (I + 5+ BS) <@n(ln to+ BS) + A@;L) .

Corollary 2. Let u € P’ be quasi-definite and let S be its Stieltjes function. Let
{U,} be the corresponding sequence defined in (12), and let {q,} be the sequence
of functions of the second kind. The following statements are equivalent:

(a) S is semi-classical and satisfies

AS"=CS+D, AC,DeP;
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(b) {VU,} satisfies the second-order differential equation (25) with matriz coeffi-
cients of polynomial entries given by

(33)A, = A?0,I,
5 (A + ()6, — A6/, 0
(34)B, = A [ —2D0,, (A - C)O, — A0, |’
(35) é — gn + (ln - C/Q)hn 0
" A(D®O,, — D'O,) (gn — AC'O,) + (I, + C/2)(hy, + CO,) |’
where

gn = (._.)n <@n—1@n _ A(ln _ 0/2)/> ;

hn = O, (znl — 02+ (5”_5")9710 + AQ;

n
(c) {qn} satisfies the second-order differential equation (29) with polynomial coef-
ficients A,,, By, C, given by

(36) A, = A40,,
(37) B, = 0,(A'-0)- A6,

~ - @kfl C / / C
(38) @ ) (; T ( +2)>+®n( +5)

Proof. Taking B = 0 in the previous theorem and using the relations (18), the
matrices A,-C,, given by (26)-(28) simplify as (33)-(35).

Let us now deduce the coefficients (36)-(38). Taking B = 0 in the previous
theorem, there follows the second-order differential equation (29) with polynomial
coefficients A,-C,, given by

4, = A%e,,
B, = A(©,(A -0C)-40)),

n

Let 7, = On-16n _ 12 4+ (C/2)2
In
Using (18) and (19) we obtain
@n—lgn B li _ A@n—l + 6n—2®n—1 N 12_1’ n Z 17
Tn Tn Yn-1
thus,
O0,-10, "L 0 0_,0
(39) R B e e el T S §
Tn =1k Yo

The initial conditions
©_1=D, (—PB0)D+(lo+C/2)=0, A= (lo — C/2)(x = fo) — B+ 69
yield
0_10
7o

(40) —12=AD +BD — (C/2)?.
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From (39) and (40) there follows

(41) Tn:AZ@’H +AD+ BD.
1 Jk

Note that we are assuming B = 0, thus we obtain C, given by

N "0 C C
Cn—A{®n<Z . 1+D(ln+2)’>+®;(ln+2)}.

w1 Jk

Hence, the coefficients of the second-order differential equation (29) when B = 0
are (36)-(38). O

We recover the well-known result that follows [10, 11].

Corollary 3. Let S be a Laguerre-Hahn Stieltjes function satisfying AS’ = BS? +
CS + D. The SMOP related to S, {P,}, as well as the sequence of associated

polynomials of the first kind, {P,gl)}, satisfy fourth order linear differential equations
with polynomial coefficients.

Proof. Let us consider the differential equation (25) as well as its first and second
derivatives,

(42) A 00 L& 0" 4 Fo0" 4 G0+ H, U, = 0951,
(43) AU L T 0" 4 J,0 4+ KW, = 0ay1

(44) A, 0" 4 B, +C, 0, = 09y,

with

En=2A+8B,, Fo=A'+2B,+C,, G, =B/ +2C., H, =CV,
I, =A, + B, Jo=8,+Cp, Kr=Cl,.
The Eqgs. (42), (43) and (44) enclose the following ones:

(45) Ln 4(Pn+l) _ 757(11,2)(P(1))/// o ];-(1 2) (P(l )// g(l 2)( ) H(l Q)P )
(46)  LEY(PM) = —EPV(Pyyn)” = FEUPY, — 6PV Py — HED P
(47) L 3(Pos1) = —Z§"2(PV)” — g2 (PVY — K2 PLY

(48) LOL(PY) = —~Z@EVPY,, = J2V P, = K&V Py

(49) L2 (Prtr1) = *321’2) (MY =2 P

(50) Lgll,)z(Pél)) = *BS’DPT/LH - éf(Lz’l)PnH )

with

L4 = A20,D% + £0DDP 4 FULUD? 4 gD 4 300
L) = 420,D* + £22D? + FP2D? + GEID + HET,
Ly3 = A20,D° + Z{*YD? + 7{VD + K0T,
]L§}3 A20,D° + I(22D? 4+ 732D 4 K22,
Lpo= A%0,D? + Bnl,l D Cnl’l
L() = 420,D + BEID + I
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By multiplying (45) by A?©,, and using (48), and, in turn, by multiplying the
resulting equation by A20,, and using (50), we obtain

(51) I/[\‘n,4(Pn+1) — [/jn(Prgl))/_i_"/\vnPT(Ll) ’
with
Lot = 420,00 + RBEID + R,CEVIL,

U, =—-RB%?Y + 8,4%0,,,V, = —R,C?? +T,A%0,,
H/:n 4= A2@nLn 4— 5511,2):[7(742,1)]])2 _ g,sl,Q)j7527l)D _ 5&1,2)]{:;2,1)}1’

R, = EMDI2D _ g20, F(1D)
S, = 551,2)‘7752,2) _ A2@ng7(ll,2) ,
T, = gélﬂ)ngLQ,Q) _ AQ@anllﬂ) )

By multiplying (47) by A%20,, and using (50), we obtain

(52) Ln3(Pat1) = Un(PV) + V, PV,
with
Lys = A%0,L, 5+ Z(PB2YD 4 70D
ﬁn _ Ir(Ll’Q)Bg’Q) _ \7751,2)142@7“‘771 _ IT(LLQ)C?T(LQ,Q) _ KS,Q)AQ@W

Egs. (49), (51) and (52) yield the determinant that gives us the fourth-order
differential equation for {P,}

H:\:n,4(Pn+1) Qn ‘:}\n
Lin,3(Prs1) U, - =0, n>1.
Lin2(Prt1) ~- B -
The fourth-order differential equation for {PT(Ll)} is deduced analogously. O

The lemmas that follow will be used to prove Theorem 2. The detailed proof of
Theorem 2 will be given at the end of the section.

Lemma 2. Let u € P’ be quasi-definite and let S be its Stieltjes function. Let
{U,} be the corresponding sequence defined in (12), and let {q,} be the sequence of
functions of the second kind. If S satisfies AS' = BS>+CS+D, A,B,C,DEP,
then {U,} satisfies (25) with coefficients (26)-(28) and {q.} satisfies (29) with
coefficients (30)-(32).

Proof. If we take derivatives in (16) and multiply the resulting equation by A we get

(53) A2 = AM,, — AV, + NLAY!, |+ AML T, + AN T, ;.
If we use (16) to n — 1 and the recurrence relation (13) for ¥,, we obtain

en—l
Tn

(54) AV | = (/\/ln_l + M@n_1> U,y — 0, .

Tn
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The substitution of (54) into (53) yields

@n—l

n

APV = AM,, — ATV, + (AM; - Nn) v,

+ [Nn (Mn1 + (xr_yﬂn)@n1) -I-ANTIL] U,_1.

The multiplication of the above equation by ©,, and the use of (16) gives us (25)
with coefficients (26)-(28).

To get (29) we proceed analogously as before, starting by taking derivatives
n (17), thus obtaining flnqxﬂ + Bnq;H + C’nan =0, with 4,, = A20,, and

(x — Bn)

B, = —A0,(l,+1l,_1+C+2BS—A4") - ATGH_&)n — A%@/,,
Tn 2
+ (o + % + BS) [@n ((m ; ’8")971,1 + o+ % + BS> +A@4 .
The use of I,, + 1,1 = f(m;if")@n_l (cf. (18)) in the above equations yields B,
and C,, given by (31) and (32). O

Lemma 3. Let u € P’ be quasi-definite and let {U,} be the corresponding sequence
defined in (12). If {V,} satisfies the second-order differential equation (25) with
coefficients (26)-(28), then the following equation holds:

Anqﬂn =M,¥, +an1/n717 n>1,

where fln € P, M,, is a matriz of order two with polynomial entries, and N, is a
scalar matrix.

Proof. We write the equation (25) in the form

(55) ’Dn(pg + Sncp;l + fn@n = 04><1
where ¢, = [\IJ\IJ"H} , n>1,and D,,&,, F, are block matrices given by
Oniil 0 B 0 C 0
Dn _ A2 n+1 2><2:| , gn — |: n+1 2~><2:| , J—_-n _ |: n+1 2~><2:| )
|: 02><2 enl 02><2 Bn 02><2 Cn

Taking n + 1 in (55) and using the recurrence relations for ¢, (cf. (14)) we obtain

(56) Dn+1Kn+1<p;: + (2Dn+llc»/n+1 + gn-‘,—l’(:n-‘rl)(p;z
+ (5n+lK:;l+1 + -Fn+1]Cn+1)<pn - 04><1 .

To eliminate ¢! between (55) and (56) we proceed in two steps: firstly we multi-

0,1 0

ply (55) by ©,42K+1Gn, Gn = , thus obtaining
0 Oppl

(57) A2®n@n+1@n+2Kn+1<pZ + 6n+21Cn+1gn5n80/n + @n+2]cn+1gn]:n90n = 04><1 )
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and we multiply (56) by ©,,G,+1, thus obtaining

(58)  A%0,05,410n42Kn 4100 + OnGni1(2Dn 1K), 1 + Eng1Knt1) ),
+0,Gn+41(Ent1K), 11 + Fri1Kng1)on = Oux1 -

Then, we subtract (58) to (57), thus obtaining
(59) Hnp = Tnn »
with

Hp = On12Kn11GnEn — OnGni1(2Dn 1K) 1 + En1Kni) s

Tn = 001Gn41(Ent 1K1 + Fras1Kng1) — On2Knp1GnFin -
But

HED — 92— gD _ 722 _g, s

thus Eq. (59) reads

(60) HEDW, L+ HED, = 70V, 4+ gD,
If we write (60) for n + 1 and if we use the recurrence relation (13) we obtain
(61) Sn@;z = Tnn
with
(1,1) (1,2)
Sn = " 1,1 1,2 " 1,1) | »
" [(w - ﬂn+2)H£L—l’-1) + Hii—l) —7n+27'[£1,-§-1)

(1,1) (1,2)
- n o]

l(m = Bus2) T+ TUT 1) g
where det(S,,) is non-zero. The multiplication of (61) by adj(S,) yields
AnSOIn = ["n@n )
with
Ay, =det(S,), L, = adj(S,) T -
Thus, the assertion follows. (I

Now we study the coefficients of the structure relations obtained in the preceding
lemma.

Lemma 4. Let u € P’ be quasi-definite and let {¥,,} be the corresponding sequence

defined in (12). Let ¢, = F}\;Jﬂ} satisfy

(62) AHSDIn = ﬁn@m n>1,

where A,, are bounded degree polynomials and ﬁm n > 1, are block matrices of order
two whose entries are bounded degree polynomials. Then, (62) is equivalent to

(63) A(p; =Lnpn, n2>1,

with A € P and L,, block matrices of order two whose entries are bounded degree
polynomials. Furthermore, there holds

(64) A’C;H-l = [-:’IL-'rl’CTL-‘rl —Kny1Ln, n2>1,

where ICy, are the matrices of the recurrence relation (14).
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Proof. Taking n+1 in (62) and using the recurrence relation for ¢, (cf. (14)) we get

(65) An+1§0fn = ’C;-il-l (ﬁn+1’Cn+1 - An—i—l’C;H_l) Pn -

From (62) and (65) we conclude that there exists a polynomial L,, such that
An—&-l = Lnlzln
Koty (ﬁnJrl’CnJrl - An+l’%+1) =L,Ln, n>1,

because the first order differential equation for ¢,, is unique, up to a multiplicative
factor. But from An+1 L, A we obtain

An+1 :(LnLg)Al, VTLZl

Since, for all n > 1, the degree of A, is bounded by a number independent of n,
then the degree of the L,’s must be zero, that is, L, is constant, for all n > 1.
Hence we obtain (63) with

A=A, Lo=Kok (oKt = AniiKin ) /(L -+ La).

To obtain (64) we take derivatives on ¢, 11 = K, 119, and multiply the resulting

equation by A, to get
Agni = AK, 100+ Knpa Ay, .
Using (63) in the previous equation and the recurrence relation (14) there follows
£n+1}Cn+190n = AK;«kl(pn + ICn+1L‘n(Pn ;

thus (64). O
Corollary 4. Let {p,} satisfy (63), /Alcp;l = Lpon, n > 1, where L, are block

matrices of order two whose entries are bounded degree polynomials. Then, the fol-
lowing assertions take place:

(a) £ s a scalar matriz if, and only if, £V s scalar.

(b) If E%Q’l) is a scalar matriz, then there exist polynomials p;, © = 1,...,3,
such that
! — P b2
66 ﬁ(l,l) — n+1 n 1 .
( ) " pP3 ln—i—l + P1 -

Proof. Taking into account the definition of KC,,, (63) is equivalent to

(67) AL = (2= Buy) (L) — £00) 4 £ 1, o@D
(68) _7’n+2£&11) — (2 = Bup2) L0 + g2 L3 =0,

(69) (@ = Brg2) L5 + £22 — £ =0,

(70) —7n+2£(2 D2 =,

Assertion (a) follows taking into account (70), that is, £? = Vnt2 ﬁsirll)

To prove assertion (b) we note that since £ and £ are diagonal, from (67)
there follows that the entries (1,2) and (2,1) of the matrix £ are independent
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. (1,17® 1,12 .
of n. Further, from (67) we obtain that [ﬁn ] - [ﬁn ] is independent
of n. Hence, (66) follows. O

Lemma 5. Let u € P’ be quasi-definite and let {q,} be the corresponding sequence
of functions of the second kind. If {q,} satisfies the second-order differential equa-
tion (29) with coefficients (30)-(32), then the Q,’s given in (12) satisfy

A\nQ;:EnQna 71217
with ,Zn € P and En a matrix of order two with analytic entries.

Proof. Analogous to the proof of Lemma 3. O

Lemma 6. Let u € P’ be quasi-definite and let {Q,} be the corresponding sequence
given in (12). Let

with A, € P and L, a matriz of order two with analytic entries. Then, (71) is
equivalent to
A\Q;:Engny TL217
with A € P and L, a matriz of order two with analytic entries. Furthermore, it
holds
A.A;l+1 == AanrlAnJrl - AnJrl‘Cn ) n Z 1 9

where A, are the matrices of the recurrence relation (15).

Proof. Analogous to the proof of Lemma 4. O

Proof of Theorem 2:
Lemma 2 proves (a) = (b) and (a) = (c¢). Using the Lemmas 3 and 4 and Corollary
4 we prove (b) = (a). Lemmas 5 and 6 prove (¢) = (a).

4. LAGUERRE-HAHN ORTHOGONAL POLYNOMIALS OF CLASS ZERO

In this section we begin by introducing a matrix type second order operator to
Laguerre-Hahn families of orthogonal polynomials of class zero.

Theorem 3. Let u be a Laguerre-Hahn Stieltjes functional satisfying D(Au) =
Yu + Bz~ '?), with deg(y) = 1, max{deg(A),deg(B)} < 2. Let {P,} be the
SMOP related to u and let {P,gl)} be the sequence of associated polynomials of the
first kind. It holds that

Pn+1

2 L,(¥,) = U =
(7) n( n) 0, n I:Pﬁbl)

| w0
where L, is a matriz operator given by

_ 2 _ 1/) 2B _ >\n+1 B/
(73) L, =AD? + WD + A, I, W= [_2D 2A’—w} ,An_[ 7o

where DF denotes the derivative operator, D° =1, and
AII A/I B//

A1 = A — A"+ YN =2+ 1)D *n(n+3)7 +ny', D = > -~ 5
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Moreover, the three-term recurrence relation coefficients of the MOP sequences { P, }
satisfying (72) are given by

(2D = 2(n = Das + ¢1) vp—1 + (A; = Ans1) ¥n

74 n =
(74) ~ X —An
+ (280D +2(n — 1)ay — ¥o) -1 — 271D — 2(n — 1)ao , n>2,
A1 A
(75) Brn=an—an_1, n>1,

where, for alln > 1,

B n[—(n+ 1)a1 + o — 280 D] B
(76) Qp = —(n—l)(n—f—?)ag—i—(n—l)wl—)\:L+1+2nD’ OCO—Oa
(n —1) [on (nay — Yo + 2o D) — nag — 271 D]

(n—=2)(n+1)ag— (n—2)1 + Ay —2(n—1)D"

(77) v, =

Remark 1. We emphasize the equation enclosed by (72),
(78) ‘C;kL(P7(L1)) = 2DP7IL+1 ) n Z 07
where L} is the operator defined by

L =AD* + (24" =)D+ A5 T.
The preceding theorem gives us the formulas for the three-term recurrence relation
coefficients of the SMOP { P, } satisfying (78). Note that the full description of the
three-term recurrence relation coefficients of Laguerre-Hahn polynomials of class

zero was given in [4]. The Eq. (78) has been given in [23] for the classical orthogonal
polynomials.

Proof. The Stieltjes function of u satisfies
AS'=BS?+CS+D, C=1— A", D constant.

Since the class of u is zero, the ©’s involved in the structure relation (16) are

0,10
constant. If we use the notation 7, = ———" —[2 + (C//2)?, then, taking into
n

account 1, = AZ ©—1/v + AD + BD (cf. (41)), the second-order differential
k=1
equation (25) can be written as (72) with the operator L,, given by (73).
To obtain the three-term recurrence relation coefficients of {P,} we start by
writing

PW(z) = 2" —apa” T4z 24
Poyi(z) = o™ — (an + Bo)x™ + (Vn + Boan —y1)a" t+ -+
with
(79) W= Bry va= D, BiBi—> w, n>1
k=1 1<i<j<n k=2

Equating coefficients of 27! and 2”2 in (78) we get (76) and (77).
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To obtain (74) we start by taking derivatives in (7), then multiply the resulting
equation by 2D and use the equation enclosed by (72)

L£i(PM)=2DP,,,, Li=AD*+ (24 —¢)D+ Ny, n>0,

as well as the recurrence relation, to get

n

!/
(80) 2DP, =24 (P, ) +(24 =) P+ (N =N PO + (M = A Pi,
Equating coefficients of 2"~2 in (80) we get (74). (75) follows from (79). O

4.1. Characterizations of classical orthogonal polynomials. Let us now show
a characterization for a sub-family of the Laguerre-Hahn orthogonal polynomials of
class zero, namely, the so-called classical families. The results that follow, although
not new in the literature, aim to illustrate the preceding theorem.

Hereafter we denote the monic Hermite, Laguerre, Jacobi and Bessel polynomials
by H,, LS, P,(La’ﬁ) and By, respectively. The corresponding three-term recurrence
relation coefficients B, vn+1, n > 0, are given in the table that follows.

Bn ’Yn+1
n+1
H,o |0 =
L 2n+a+1 n+D(n+a+1)
P(aaﬁ) B2 —a? 4(n+1)(n+a+1)(n+p+1)(n+a+p+1)
n (2n+a+B)(2n+a+p+2) | (2ntatB+1)(2ntatB+2)?(2nt+atp+3)
B(a) —2 —4(n+1)(n+a+1)
n (n+a)(2n+a+2) (2n+a+1)(2n+a+2)2(2n+a+3)
Table 1

Theorem 4. Let u € P’ be regular, let {P,} be the SMOP with respect to u, let

{P,gl)} be the sequence of associated polynomials of the first kind, and let {q,} be the
sequence of functions of the second kind. The following statements are equivalent:
(a) w is classical and it satisfies D(Au) = u;

(b) P, satisfies

(81) AP! + 4P + X\, P, =0, n>0;
(¢) qn satisfies the second-order differential equation
(82) Agy + (24" = 9)gy + (M + A" =4')g, =0, n>0;

(d) the derivative P}, is linked to the polynomial pv through a relation of the same
type as (78),

1" !/
(83) A(PM) + 24 =) (PV) + O + A" =) PO =2DP,,y, 0 >0,

where, for all m > 0,
(n—1) A"

n
n:—iAN— / Dzi— /.
A . ', D="-—y
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Proof. Note that D(Au) = vu is equivalent to the first order differential equation
for the corresponding Stieltjes function AS’ = CS+ D, C =1 — A’. Since u
is classical, that is, deg(A) < 2,deg(v)) = 1, then the 0,’s and the [,,’s involved
in the coefficients of the second-order differential equations (25) and (29) satisfy
deg(0,) = 0,deg(l,,) < 1. Thus, (25) yields (81) and (83), and (29) yields (82) for
allm > 1. Notice that (82) for n = 0 (with A\g = 0) reads as AS"+(A'—C)S'—C’'S =
0, which is the derivative of AS’ = CS + D.

To prove (d) = (a) we use the equations (74) and (75) (cf. Remark 1) with the
values of 5y and ~y; given in table 1, thus recovering the expressions for 7,11 and 3,
for all n > 1, thus obtaining the classical families of orthogonal polynomials. (]

Remark 2. Eqgs. (81)-(83) are known in the literature, see, e.g., [13, 22, 23]. In
[22] it is given that the sequence of functions of the second kind, therein denoted
by Qn, constitute another solution (together with P,) of the hypergeometric-type
differential equation Ay” + vy’ + A,y = 0. Tt is well to remark that the notation
of [22] for the functions of the second kind, @, (cf. chapter II, §11), differs from
the notation used in the present paper, ¢,. Indeed, one has Q,, = ¢, /w, being w a
solution of the Pearson equation (Aw)" = ¢w. Hence, the fact that @, is another
solution of the hypergeometric-type differential equation Ay” + ¥y’ + A,y = 0
follows from (82) together with w satisfying the Pearson equation.

4.2. Further illustration of the results: a characterization for Legendre
polynomials. The main purpose of this subsection is to illustrate Theorem 1 for
Legendre polynomials.

We denote by p,(z) = k2™ + ..., n > 0, the Legendre polynomials. Tt is
well-known that such polynomials are a particular case of Jacobi polynomials, as
Jacobi polynomials are orthogonal with respect to the weight function w(x) =
(1 —2)*(1 + )%,z € [~1,1], and Legendre polynomials are obtained by taking
a=p=0. Let pﬁP, n > 0, denote the associated polynomials of the first kind
related to {p,}.

An explicit formula for {p%l)} is [24, Eq. (8.30)]

n—1 . .
W @)=Y (2 + 1D - (—1)"“)

In order to proceed with further computations, it is well to recall some facts:
- the three term recurrence relation for {p,} [24, page 146]

pTH’l(x) = (anx + bn)p’ﬂ(x) - C’ﬂp’nfl(x)v n > 17 p(](f) = 17 pl(x) =,
with a, = 2n+1)/(n+1), b, =0, ¢, =n/(n+1);
- there holds, for all n > 1,

pn(sc):knx”—l—..., p1('7,1)1( ):kn$n_1+...7 k,lzo,kozklzl,

where kpt1/kn = an, n >0 (cf. [24, page 135]).
Let us now re-write (84) for the monic case, in our notation, P7§1_)1:

AV Dk sy
J ) Z 4

(85) n+j+1)( ) kn

M

7=0

where P; denotes the monic Legendre polynomial of degree j.
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Recall the three term recurrence relation for monic Legendre polynomials,
(n+1)*

(86)  Puy1(2) = 2P = mbPoi(2), g1 = @n+1)(2n+3)" =

It is well-known that {P,} is related to the Stiletjes function S(z) = & In (”—H)
24, Ch. §).
Theorem 1 gives us the following.

Corollary 5. Let {P,} be the sequence of monic Legendre polynomials, let {Pfll)}
be the sequence of associated polynomials of the first kind, and let {g,} be the
sequence of functions of the second kind. Let S be the Stieltjes function related to
{P,}. The following statements are equivalent:

(a) S satisfies
AS'=CS+ D, Alx)=1-2°% C(z)=0, D(x)=1;
(b) P, and PV satisfy
/ 2y (pmY’ (1) (1)
(87) ( )Pn+1 - lnPn+1+®nan (1_95 ) (Pn ) = Pn+1+lnPn +®’ﬂpn—1 ’
n >0, with l,(x) = —(n+ Dz, 0, = (2n+ 3)yn+1;
(c) qn satisfies
(88) (1 - x2)qun = lnflqn + anlqnfl ) n Z 07
with q-1 = 1, @_1 = 1, l_l =0.

Proof. Note that (88) follows from (87), as {g, } is defined by (9). The first relation
in (87) is well-known (see, e.g., [21] and [10, page 94]). Thus, for checking purposes,
it remains to check the second relation in (87), taking into account (85).

Let us use

2j +1)(1— (~1)"14) K
P(l) P L ( J J
E:A” Ang (n+j+2)(n+1-7) knpa

into the second equation of (87). We get

D> AjPi(@) | = Poga(z)+Ha(2) (Z An,j P (@) +O, i An—1,;Pj()
=0 k=0 =0

thus, using the first equation in (87), we get

n n n—1
> A (1 —2?)Pj(x) = Poy1 + (@)Y AiPi+ 00 Y Au1; P
§=0 — j=0 j=0
=lj—1(z)P;(2)+©;-1P;_1(z)
By using l,(x) = —(n + 1)z, n > 0, as well as (86), there follows

72]/\ 7J]DJ_._l Z])\ ,]’Y] i— 1 )+Z)‘n7j®j—1pj—1(x) :Pn+1(x)

Jj=0

—(”+1)Z>‘n,jpj+1( )—(n+1) Z/\nJ’YJ i-1(2) + On Z/\n 15 P
=0

7=0
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Upon rearranging, one has

n—1
A1 (80 =) Po(x) + Y (=7 = DAngo1 = (G + DAn 1741 + Anyj10;) Py (@)
j=1
- (7’L - 1)An,n—1Pn - n)\n,nPn-l—l = (_(n + 1))\n,171 + ®n>\n—170) PO([E)
n—1
+ Z (—(n + 1))\n,j71 — (n + 1)>\n,j+1’7j+1 + @n)\nfl,j) Pj(m)
=1

—(n+ DAy o1 P+ (1 — (n+1)A ) Poga

As {P,} is a basis, then we obtain the equations for the coefficients of the above
linear combination:

89) /\n71(@0 - ’Yl) = 7(” + 1)>\n,171 + @nAn—l,O ;

—(J = DAnjo1 = G+ DAngr1vie1 + Anjr10;

—(TL — 1))\77,)7171 = _(TL + 1))\77,,7171 )

(

(90)

(91) = —(n + 1))\71’]',1 — (n + 1))\n,j+1'7j+1 + @nAnfl’j ,7=1...,n—1,
(92)

(

93) —nApn=1—(n+1Apn.

Taking into account the above definitions of A, ©,,v,, the above relations (89)-

(93) are true. Hence, we conclude that the second relation in (87) holds for {P,gl)}
defined by (85), as required. O

Remark 3. The sequence {PT(LU} consitutes an example of a Laguerre-Hahn family.
Indeed, taking into account (8) and (87), there follows that {P,(Ll)} is related to the
Stieltjes function S1) that satisfies the Riccati equation A (S(l))/ =B (S(l))2 +
CSM + D with A(z) =1 — 2%, B(x) =1/3, C(z) = —2z, D(x) = 3.
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