
Maximum principle for the regularized Schrödinger

operator∗

R. S. Kraußhar† M.M. Rodrigues‡ N. Vieira‡

† Erziehungswissenschaftliche Fakultät, Lehrgebiet Mathematik und ihre Didaktik Universität Erfurt
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Abstract

In this paper we present analogues of the maximum principle and of some parabolic inequalities for the

regularized time-dependent Schrödinger operator on open manifolds using Günter derivatives. Moreover, we

study the uniqueness of bounded solutions for the regularized Schrödinger-Günter problem and obtain the

corresponding fundamental solution. Furthermore, we present a regularized Schrödinger kernel and prove

some convergence results. Finally, we present an explicit construction for the fundamental solution to the

Schrödinger-Günter problem on a class of conformally flat cylinders and tori.
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1 Introduction

Time evolution problems are of extreme importance in Mathematical Physics. However, there is still a strong

need to develop further special techniques in order to get explicit representation formulas or particular existence

and uniqueness results for the solutions for those problems addressing particular geometric settings.

Unfortunately, there is no simple way to extend the stationary theory directly to the framework of non-

stationary problems. Clifford analysis techniques turned out to be a very useful toolkit to address these problems.

First steps in this direction have been made for instance in [8] where the non-stationary Navier-Stokes equation

over time-varying domains have been successfully treated with Clifford analysis methods. After publication of

that paper, other authors used these ideas to develop a continuous and a discrete operator function theory to

deal with the time-dependent Schrödinger equation for several type of domains, see for instance [3, 4, 5, 6, 7,

14, 15, 16]).

The study of boundary value problems for partial differential equations over more general surfaces and

manifolds have a lot of applications. For example, it is applied in the description of heat conduction problems

over surfaces. Furthermore, it is used in the treatment of equations of surface flow, of shell problems in elasticity,

of the vacuum Einstein equations describing gravitational fields, of the Navier-Stokes equations in spherical

domains and of many other problems, see e.g. [11]. However, the generalization of the well-known results for

partial differential equations in the Euclidean case to more general geometric settings is not immediate. We

also need to handle geometric characteristics of the considered generic surface such as curvature.
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The main goal of this paper is to present an analogue of the maximum principle and of some parabolic

inequalities for the regularized time-dependent Schrödinger operator on open manifolds. Our approach uses

Günter derivatives. The main results presented here are based on Dodziuk’s ideas (see [10]). This paper is

structured as follows. In the preliminary section we recall some basic notions about Clifford analysis, the

Laplacian and Günter derivatives. We also introduce the regularization procedure. In Section 3 we present a

generalization of the classical maximum principle for a generic manifold. Section 4 is dedicated to the study

of the uniqueness of solutions for the regularized Schrödinger-Günter problem over a Riemannian manifold. In

the following section we construct the fundamental solution for the regularized Schrödinger-Günter equation.

In Section 6 and Section 7 we study the regularized Schrödinger-Günter kernel and prove some important

fundamental convergence results. In Section 8 we round off by presenting fully explicit representation formulas

for the fundamental solution to the Schrödinger-Günter equation on a class of conformally flat cylinders and

tori with particular spin structures.

2 Preliminaries

2.1 Clifford analysis

We consider the n-dimensional vector space Rn endowed with an orthonormal basis {e1, · · · , en}. We define the

universal real Clifford algebra C`0,n as the 2n-dimensional associative algebra which obeys the multiplication

rules eiej+ejei = −2δi,j . A vector space basis for C`0,n is generated by the elements e0 = 1 and eA = eh1 · · · ehk ,
where A = {h1, . . . , hk} ⊂ M = {1, . . . , n}, for 1 ≤ h1 < · · · < hk ≤ n. Each element x ∈ C`0,n can

be represented by x =
∑
A xAeA, xA ∈ R. The Clifford conjugation is defined by 1 = 1, ej = −ej for all

j = 1, . . . , n, and we have ab = ba. We introduce the complexified Clifford algebra Cn as the tensor product

C⊗ C`0,n =

{
w =

∑
A

wAeA, wA ∈ C, A ⊂M

}
.

In this context, the imaginary unit i of C commutes with the basis elements, i.e., iej = eji for all j = 1, . . . , n.

To avoid ambiguities with the Clifford conjugation, we denote the complex conjugation which maps a complex

scalar wA = aA+ibA with real components aA and bA onto the complex scalar wA = aA−ibA by ]. The complex

conjugation leaves the elements ej invariant, i.e., e]j = ej for all j = 1, . . . , n. We also have a pseudonorm on C
viz |w| :=

∑
A |wA| where w =

∑
A wAeA, as usual. Notice also that for a, b ∈ Cn we only have |ab| ≤ 2n|a||b|.

The other norm criteria are fulfilled.

A function u : U 7→ Cn has a representation u =
∑
A uAeA with C-valued components uA. Properties

such as continuity will be understood component-wisely. Next, we introduce the Euclidean Dirac operator

D =
∑n
j=1 ej∂xj . This first order operator factorizes the n-dimensional Euclidean Laplacian. We have D2 =

−∆ = −
∑n
j=1 ∂x

2
j . A Cn-valued function defined on an open set U ⊆ Rn, u : U 7→ Cn, is called left-monogenic

if it satisfies Du = 0 on U (resp. right-monogenic if it satisfies uD = 0 on U).

One possibility to address in-stationary problems consists of considering the square root of the heat operator

in the context of the above-defined Clifford algebra. This approach, however, would demand that one has to

deal with fractional derivatives. An elegant alternative way to avoid fractional derivatives consists of adding

two more basis elements f and f†, which act in the following way:

ff† + f†f = 1, f2 = (f†)2 = 0, fei + eif = 0, f†ej + ejf
† = 0.

This treatment allows us to define a suitable factorization of the heat [8] and Schrödinger [7] operators, where

only partial derivatives are used.

From now until the end of the paper, we will consider functions in the variables (x1, x2, . . . , xn, t) where

(x1, . . . , xn) ∈ Ω ⊂ Rn for i = 1, . . . , n, t ∈ I = [0, T [. The functions take values in the complexified Clifford

algebra Cn generated by the extended Witt basis e1, . . . , en, f, f
†. For the sake of readability we abbreviate the

space-time tuple (x1, x2, . . . , xn, t) simply by (x, t), assigning x = x1e1 + · · ·xnen. For additional details on

Clifford analysis, we refer the interested reader for instance to [9, 13].

The space L2(Ω) can be endowed with the structure of a Hilbert Cn−module by introducing the following

inner product

< f, g >:=

∫
Ω

Sc
(
f(x, t)

]
g(x, t)

)
dx dt, f, g ∈ L2(Ω).
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2.2 Laplace operator and Günter derivatives

One possible extension of the most basic partial differential operators from the flat Euclidean setting to a curved

manifold S ⊂ Rn consists of expressing them globally in terms of the standard spatial coordinates in Rn. It

turns out that a convenient way to carry out this program is to employ the so-called Günter derivatives (for

more details see [11, 12])

D := (D1,D2, ...,Dn), . (1)

In the latter equation, for each 1 ≤ j ≤ n the first-order differential operator Dj is the directional derivative

along ψej . Here ψ : Rn → TS is the orthogonal projection onto the tangent plane to S. Further, as usual,

ej = (δj,k)1≤k≤n ∈ Rn, where δjk simply represents the usual Kronecker symbol. The operator D is globally

defined on S by means of the unit normal vector field. It has a relatively simple structure. In terms of (1), the

Laplace operator defined via Günter derivatives becomes

∆G = D2 =

n∑
j=1

D2
j =

n∑
j=1

(∂j − ν∂ν)(∂j − ν∂ν), (2)

with ν(x) := x
||x|| , x ∈ Rn \ {0}. The expression ∂ν =

∑n
j=1 νi(x) ∂j is the radial derivative in Rn. This

Laplacian is related to the Euclidean Laplacian by the following identity

∆ = ψD2 + 2R2 − GR, (3)

where R(x) = ∇ν(x) and G(x) = divν(x). For more details about the relations between Günter derivatives and

the Laplace operator we refer the reader for instance to [11]. This decomposition allows us to treat solutions of

the second order operator ∆G in terms of the first order operator D which acts on spinor valued sections. That

is the point where Clifford analysis techniques can be applied to describe the solutions.

2.3 Regularization procedure

A fundamental solution e− for the Schrödinger operator has a singularity at all the points of the hyperplane

t = 0,. This is an important difference to the context of hypoelliptic operators, where the fundamental solution

only has a 1-point singularity, see [1]. Moreover, all these singularities are not removable by standard calculation

methods. As a consequence we cannot guarantee the convergence (in the classical sense) of the arising integral

operators. To overcome this problem, we need to regularize the fundamental solution as well as the arising

operators (see [4, 14, 20]). This process of regularization creates a sequence of operators and corresponding

fundamental solutions, which are locally integrable in Rn × R+
0 \ {(0, 0)}. Moreover, this family will converge

to the modified original operators and fundamental solutions when ε→ 0+.

To this end, we will replace the imaginary unit appearing in the Schrödinger operator by the constant

k = ε+i
ε2+1 , and we obtain the modified operator −∆ − k∂t. For each ε > 0, the operator −∆ − k∂t is a

hypoelliptic operator (see [4]). In the context of using this operator the good convergence behavior of the

associated integral operators is guaranteed.

3 The maximum principle

Let u be a Cn-valued function. Further, we look at the regularized Schrödinger-Günter operator ∆G − k∂t
defined on a open subset V ⊂ (M × R+), where M is a Riemannian manifold in Rn . Additionally we require

that for a neighborhood of each point in V there exists a real non-zero constants C such that

C−1
∑
j

ξ2
j ≤

∑
j,k

ξjξk ≤ C
∑
j

ξ2
j , (4)

for every choice of real constants ξ1, ξ2, . . . , ξn. Following the ideas of Calabi [2] and Dodziuk [10], we introduce

the following definition:

Definition 3.1 Consider the regularized Schrödinger-Günter operator ∆G − k∂t satisfying (4). Moreover, let

u be a continuous function on an open domain U ⊂ (M × R). Consider a function ϕ on U with no restriction.
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We say that (∆G − k∂t)u � ϕ holds on an open subset K of U if, for every (x0, t0) ∈ K and every λ > 0, there

exists a neighborhood V = V (λ, x0, t0) ⊂ U of (x0, t0) and a function uελ,x0,t0
on V which is supposed to be C2

in the space coordinates and C1 in the time coordinate, such that∣∣uε(x, t)− uελ,x0,t0

∣∣ ≥ ∣∣uε(x0, t0)− uελ,x0,t0

∣∣ (5)

for (x, t) ∈ V and at (x0, t0) ∣∣(∆G − k∂t)u
ε
λ,x0,t0

∣∣ ≥ |ϕ− ε| . (6)

Remark 3.2 In a similar way we define (∆G − k∂t)u ≺ ϕ, if (∆G − k∂t)(−u) � −ϕ.

Following the ideas presented in [10] we can immediately establish the following result:

Lemma 3.3 If u is sufficiently smooth, i.e. C2 in the spatial coordinates and C1 in the time coordinate, then

|(∆G − k∂t)u| ≥ |ϕ| if and only if (∆G − k∂t)u � ϕ.

As presented in [10], we can now formulate our extension of the classical (weak) maximum principle.

Theorem 3.4 Let u be a continuous function in a cylinder C = U × [t1, t2], where U is an open relatively

compact subset of M , such that (∆G − k∂t)u � 0 in U×]t1, t2[. Then

sup
C
|uε(x, t)| = sup

U×{0} ∪ ∂U×[t1,t2]

|uε(x, t)|.

Proof: We define vδ := u− δt, δ > 0. It follows immediate that∣∣(∆G − k∂t)v
δ
∣∣ > δ > 0 (7)

on U×]t1, t2[. Moreover, let Cλ = U × [t1, t2 − λ]. We claim that

sup
Cλ

|vδ| = sup
U×{0} ∪ ∂U×[t1,t2]

|vδ(x, t)|. (8)

The conclusion of the proof follows from (8) by considering λ and δ arbitrarily small. Suppose that (8) is not

true. Then, we can find an x0 ∈ U and a t0 ∈]t1, t2−λ[ such that vδ restricted to Cλ has a maximum at (x0, t0).

From Definition 3.1 and in view of (7), there is a function ṽ in a neighborhood of (x0, t0), which is C2 in the

spatial coordinates and C1 in the time coordinate, such that∣∣vδ(x, t)− ṽ(x, t)
∣∣ ≥ ∣∣vδ(x0, t0)− ṽ(x0, t0)

∣∣ , (9)

and

|(∆G − k∂t)ṽ| ≥
δ

2
> 0, at (x0, t0). (10)

We rewrite (9) as

|ṽ(x0, t0)| ≥
∣∣ṽ(x, t) + vδ(x0, t0)− vδ(x, t)

∣∣ .
Since vδ has a maximum at (x0, t0), so does ṽ. However, from (10) we conclude that this is impossible and,

hence, the validity of (8) is established.

�

As it occurs in [10], the maximum principle presented in the previous theorem is not of the strong form. Notice

that it permits the situation that the maximum may occur both on the boundary and in the interior points.

The following strong form also holds.

Theorem 3.5 Let u be a continuous function defined on an open space U ⊂ (M×R+) satisfying (∆G−k∂)u � 0.

Suppose that the maximum of u is attained at a point (x0, t0) ∈ U . Then u is constant along every curve in U

beginning at (x0, t0).

The proof is a direct adaptation of the proof presented in Chapter 3 of [19].
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4 Uniqueness of bounded solutions

Let us again suppose that u is a Cn-valued function and consider the regularized Schrödinger-Günter operator

∆G − k∂t defined on an open subset V ⊂ (M × R+), where M is a Riemannian manifold in Rn. Following the

lines of [10], we introduce the following definition:

Definition 4.1 A Cn-valued function u defined on V = M× [0, T [) is a solution of the regularized Schrödinger-

Günter problem on V with initial boundary data uε0
(∆G − k∂t)u = 0 on V

uε(x, 0) = uε0(x) on M

, (11)

if u satisfies the following three conditions simultaneously:

• u is continuous, C2 in the spatial coordinates, C1 in t ∈]0, T [;

• u satisfies the regularized Schrödinger-Günter equation (∆G − k∂t)u = 0 on M×]0, T [;

• u satisfies the initial condition uε(x, 0) = uε0(x) for all x ∈M .

We will concentrate on describing the conditions that imply the uniqueness of the solution of problem (11).

To proceed in this direction we will consider the following preparatory lemma, in which we state an important

property of |x− x0|2 = r(x) from a fixed point x0 ∈M :

Lemma 4.2 Let ϕ be a nondecreasing function of the class C2 in the spatial coordinate defined on the half-line

R+. If M is complete and if 2R2 − GR > 0, then the function f = ϕ(r) satisfies

∆Gf ≺ ϕ′′(r) +

(
n− 1

r
+ C

)
ϕ′(r),

where C is a constant that only depends on the lower value of 2R2 − GR. The inequality is understood in the

sense of Definition 3.1.

The proof of this result follows along the same lines as the proof presented in [10]. The main difference is that

we are dealing now with 2R2−GR instead of dealing with the Ricci curvature. We now present the uniqueness’s

result:

Theorem 4.3 Let M be a complete Riemannian manifold where 2R2 − GR > 0. The initial data determines

the uniqueness of every bounded solution of the regularized Schrödinger-Günter problem (11).

Proof: For the proof we rely on Lemma 4.2. Consider a non-decreasing function ϕ of the class C2 on R+

such that ϕ(s) = 0 for s ∈
]
0, 1

2

[
and ϕ(s) = s for s ≥ 1. Let ρ(x) = ϕ(r(x)) = ϕ(d(x0, s)). Then ρ : M → R

is a continuous function. Further, relying on Lemma 4.2, there exists a constant K which only depends on ϕ

and on the lower value of 2R2 − GR, but not on x0, such that ∆Gρ < K. Now consider the function v(x, t) =

uε(x, t) − N0 − N
R (ρ + Kt), where N0 = supM |uε(x, 0)|, N = supM×[0,T [ |uε(x, 0)| and where R is a sufficient

large positive constant. Moreover, let v(x, t) be defined in the compact ball BR(x0) = {x ∈M : d(x, x0) ≤ R}.
Suppose that v(x, t) is C2 in the spatial coordinates and C1 in the time coordinate. It is clear that v ≤ 0 on

the set BR(x0)× {0} ∪ ∂BR(x0)×]0, T [, and

(∆G − k∂t) v =
N

R
(K −∆Gρ) � 0.

Theorem 3.4 implies the following inequality

|uε(x, t)| ≤ N0 +
N

R
(ρ(x) +Kt), on BR(x0)× [0, T [.

If |x− x0|2 ≤ R, then we apply the same argument to −u and obtain

|uε(x, t)| ≤ N0 +
N

R
(ρ(x) +Kt) (12)
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for x ∈ BR(x0), t ∈ [0, T [. In the limit case where R tends to infinity one has

|uε(x, t)| ≤ N0 = sup
M
|uε(x, 0)|, (13)

for any R > 0, x0, and x ∈ BR(x0). As a consequence of (13) we observe that N = N0, and that the estimate

(12) remains true for every choice of x0.

�

Remark 4.4 From the arguments of the previous proof, we can deduce the following additional estimate

|uε(x, t)| ≤ sup
BR(x0)

|uε(x, 0)|+ N0

R
(ρ(x) +Kt), (14)

for arbitrary R > 0 and x0, x ∈ BR(x0).

5 Fundamental solution

In this section we present a method that allows us to construct a fundamental solution for the regularized

Schrödinger-Günter equation. We begin by introducing the concept of a fundamental solution that we will

consider in this paper.

Definition 5.1 A continuous function pε(x, y, t) on M×M×R+ is called fundamental solution of the regularized

Schrödinger-Günter problem if, for every bounded continuous function uε0 on M , the function

uε(x, t) =


∫
M

pε(x, y, t) dVy for t > 0

uε0(x) for t = 0

(15)

is a solution of the regularized Schrödinger-Günter problem (11) with initial data uε0.

Usually, the fundamental solution is not uniquely determined. However, if M is complete and if 2R2−GR > 0,

then the fundamental solution becomes unique. In this particular case, we shall refer to pε(x, y, t) as the

regularized Schrödinger-Günter kernel.

Now suppose that D is a relatively compact open subset of M with C∞ boundary. pεD(x, y, t) stands for

the regularized Schrödinger-Günter kernel for the regularized Schrödinger-Günter equation on D with Dirichlet

boundary condition pεD(x, y, t) = 0 if either x or y belongs to ∂D. The kernel pεD(x, y, t) can be constructed

by applying the method of the double-layer potential (for more details see [18]). Some of its properties are

presented in the following result:

Lemma 5.2 pεD(x, y, t) is C∞ on D ×D × R+ and vanishes if either x or y is a point of ∂D. Moreover,

(i) pεD(x, y, t) = pεD(y, x, t), for t > 0 and x, y ∈ D;

(ii) (∆G − k∂t)p
ε
D ≡ 0;

(iii)
∫
D
pεD(x, z, t) pεD(z, y, t) dVz = pεD(x, y, t+ s), for s, t > 0 and x, y ∈ D̃;

(iv) For every D ⊂M there exists a C∞ function Φ(x, y) on D ×D such that Φ(x, x) ≡ 1 and for x, y ∈ D

pεD(x, y, t) = (4πt)−
n
2 exp

(
−k
|x− y|2

4t

)
Φ(x, y) +O

(
t−

n
2−1

)
exp

(
−k
|x− y|2

4t

)
, t→ 0. (16)

The previous estimate holds uniformly on every compact subset of D ×D;

(v) Let D1 and D2 be two subdomains of M . By pε1, p
ε
2 we denote the associated regularized Schrödinger-Günter

kernels. Then for x, y ∈ D1 ∩D2 we have

pε1(x, y, t)− pε2(x, y, t) = O(tN), (17)

as t tends to zero, for all N > 0. Again estimate (17) holds uniformly if x, y range over compact subsets

of D1 ∩D2.
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The proof of the previous lemma follows along the same lines as presented in the proof for the corresponding

result presented in [10]. Moreover, this result implies the uniqueness of the solution of the initial boundary

value problem 

(∆G − k∂t)u
ε = 0 on D × R+

uε|∂D×R+
= 0

lim
t→0+

uε(x, t) = uε0(x) for x ∈ D

, (18)

where uε0 is continuous on D and vanishes at each point of ∂D, and

uε(x, t) =

∫
D

pεD(x, y, t) uε0(y) dVy.

In what follows we shall regard pεD(x, y, t) as a function on M ×M ×R+ by defining it to be zero if either x or

y lies outside of D.

Theorem 5.3 The function pεD(x, y, t) has the following properties:

(i) For every x ∈ D, t > 0 ∫
D

|pεD(x, y, t)| dVy < 1;

(ii) If D1 ⊂ D2, then

|pεD1
(x, y, t)| ≤ |pεD2

(x, y, t)|

for x, y ∈ D1 and t > 0.

Proof: Let us start with addressing property (i). We have

|k|∂t
∫
D

|pεD(x, y, t)| dVy =

∫
D

∆x
G|pεD(x, y, t)| dVy =

∫
D

∆y
G|p

ε
D(x, y, t)| dVy =

∫
∂D

∂−→n y |p
ε
D(x, y, t)| dSy

where dS is the surface area element of ∂D. ∂−→n is the derivative in the direction of the outward unit normal.

We recall that pεD(x, y, t) = 0 for y ∈ ∂D. From Lemma 5.2-(iv) we may conclude

lim
t→0+

∫
D

pεD(x, y, t) dVy = 1, for x ∈ D. (19)

This proves property (i). Next we look at property (ii). Now we apply the maximum principle to the function

uε(x, t) = pεD2
(x, y, t)− pεD1

(x, y, t)

restricted to D1 for a fixed y ∈ D1. By Lemma 5.2, we infer that u has a continuous extension to D̃1 × R+

which vanishes on D̃1 × {0}. This establishes the inequality for x, y ∈ D1.

�

We now pass to the construction of our fundamental solution. We choose a sequence {Dl}∞l=1 such that D̃l ⊂
Dl+1 and

⋃
lDl = M . Next consider

pε(x, y, t) = lim
l→+∞

pεl (x, y, t), (20)

where pεl is the regularized Schrödinger-Günter kernel for Dl. This limit exists in view of Theorem 5.3. However,

we cannot guarantee that this limit is finite. Before we study some properties of pε(x, y, t), we need to consider

the following auxiliar result:
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Lemma 5.4 Let M be a Riemannian manifold and let a, b ∈ R. Suppose that {uεl}∞l=1 is a sequence of solutions

of the regularized Schrödinger-Günter equation on M×]a, b[ such that∫
N

|uεl (x, t)| dVx ≤ C,

where the constant C is independent of l and t ∈]a, b[. Then u = liml→∞ uεl is a smooth solution of the regularized

Schrödinger-Günter equation and uεl → u holds uniformly on a compact set together with the derivatives of all

orders.

The proof of this lemma is an immediate adaptation of the correspondent result in [10]. We now continue with

the study of the function pε(x, y, t).

Theorem 5.5 pε(x, y, t) is C∞ on M ×M × R+. It is a fundamental solution of the regularized Schrödinger-

Günter equation, and has the following properties

(i) pε(x, y, t) = pε(y, x, t) for t > 0, x, y ∈M ;

(ii) (∆G − k∂t)p
ε ≡ 0;

(iii)
∫
M
pε(x, y, t) pε(z, y, s) dVz = pε(x, y, t+ s) for t, s > 0 and x, y ∈M ;

(iv) pε(x, y, t) is independent of the exhaustion used to define it. As a matter of fact

pε(x, y, t) = sup
D⊂M

pεD(x, y, t);

Proof: The properties (i) and (iii) follow from the properties of the regularized kernels pεl (x, y, t) presented

in Lemma 5.2 as soon as we have proved that pεl converges to p in an appropriately strong sense. To this

end, consider the sequence of functions uεl (x, t) = pεl (x, y, t) for a fixed y ∈ M . For every relatively compact

subset D ⊂ M with a smooth boundary we will show that the sequence uεl , l = 1, 2, . . ., converges uniformly

on every cylinder D × [t1, t2], 0 < t1 < t2 to a C∞ solution of the regularized Schrödinger-Günter equation.

From Theorem 5.3-(i) the sequence uεl (x, t) = pεl (x, y, t) for a fixed y ∈M satisfies the conditions of Lemma 5.4.

Hence, its limit pε(x, y, t) satisfies the regularized Schrödinger-Günter equation in the variables (x, t). Consider

pε(x, y, t) as a function on M ×M × R+. The equation

(∆x
G + ∆y

G − 2k∂t)u
ε(x, y, t) = 0 (21)

becomes the regularized Schrödinger-Günter equation on M ×M after a change of time coordinate. For a fixed

D ⊂M and large l, pεl (x, y, t) satisfies the previous equation on D ×D×]0,+∞[, and∫
D×D

|pεl (x, y, t)| dVx dVy ≤ vol(D).

Using Lemma 5.4, we conclude that pεl (x, y, t) = liml→+∞ pεl (x, y, t) is a C∞ solution of equation (21). Now

we show that pε(x, y, t) is a fundamental solution. First observe that for every open subset U of M and every

x ∈ U

lim
t→0+

∫
U

pε(x, y, t) dVy = 1. (22)

From(19), Theorem 5.3-(i), we conclude that

1 ≥ lim
t→0+

∫
M

|pε(x, y, t)| dVy ≥ limt→0+

∫
M

|pε(x, y, t)| dVy

≥ limt→0+

∫
U

|pεD(x, y, t)| dVy ≥ lim
t→0+

∫
D

|pεD(x, y, t)| dVy = 1

where D is an arbitrary relatively compact, open subset of U with smooth boundary and x ∈ D. Moreover,∫
M

|pε(x, y, t)| dVy ≤ 1, for x ∈M, (23)
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as a consequence of Theorem 5.3-(i). From (22) and (23) it follows that for every bounded continuous function

uε0 on M , the function

uε(x, t) =


∫
M

pε(x, y, t) dVy for t > 0

uε0(x) for t = 0

is continuous and bounded. Assuming, without lost of generality, that u0 ≥ 0, we have that

uε(x, t) = lim
l→0+

∫
M

pεl (x, y, t) u
ε
0(y) dVy

is a limit of a sequence of solutions of the regularized Schrödinger-Günter equation with local L1 bounds which

are independent of l. From Theorem 5.5 we conclude that uε(x, t) satisfies the regularized Schrödinger-Günter

equation. Property (iv) follows from an immediate application of the maximum principle.

�

6 The regularized Schrödinger-Günter kernel

In this section we impose some additional conditions on the manifold M and we study their implications. One

reasonable additional property consists of demanding that the fundamental solutions should satisfy the following

conservation law ∫
M

pε(x, y, t) dVy = 1, t > 0, x ∈M. (24)

The physical interpretation of this conservation law means that the total amount of energy in M is conserved. In

general, this fact is not true in view of Theorem 5.3-(i). Nevertheless, we may derive the following consequence

of Theorem 4.3.

Theorem 6.1 A complete Riemannian manifold where 2R2 − GR > 0 has a uniquely defined fundamental

solution of the regularized Schrödinger-Günter equation (in the following called regularized Schrödinger-Günter

kernel). This kernel satisfies the properties stated in Theorem 5.5 and satisfies the conservation law (24).

Proof: From the results of the previous section we may conclude that the function uε(x, t) =
∫
M
pε(x, y, t) dVy

is a solution of the regularized Schrödinger-Günter problem with initial boundary data uε0(x, t) ≡ 1. The fact

that uε(x, t) ≡ 1 follows from the uniqueness property.

�

Let {Pk
t }t∈R+ be the semigroup of operators defined on the space of bounded continuous functions on M by

(Pk
t )(x) =

∫
M

pε(x, y, t) uε(y) dVy. (25)

In [15] some properties of a particular case of these operators were studied.

Theorem 6.2 Let M be a complete Riemannian manifold with 2R2 − GR > 0, and let uε0 be a continuous

function on M which vanishes at infinity. Then Pk
t u

ε
0 vanishes at infinity for every t > 0.

Proof: Let uε(x, t) = Pk
t u

ε
0(x). For every λ > 0, |uε(x, 0)| = |uε0(x)| < λ whenever x is in the complement of

a compact set Kλ. Applying (14) with R = d(x0,Kλ), x0 /∈ Kλ, x = x0, and since ρ(x0) = ϕ(r(x0)) = ϕ(0) = 0

we get

|uε(x0, t)| ≤ λ+
N0Kt

d(x0,Kλ)
.

Hence, |uε(x, t)| ≤ 2λ outside the compact set
{
x : d(x,Kλ) ≤ N0

Kt
λ

}
, i.e., uε(·, t) = Pk

t u
ε
0 vanishes at infinity

for every fixed t > 0.
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�

For an arbitrary open Riemannian manifold M we can define the regularized Schrödinger-Günter kernel

qε(x, y, t) for the generalized Dirichlet boundary conditions as the kernel generating the semigroup Γk
t on L2(M).

Proposition 6.3 The fundamental solution pε(x, y, t) constructed in Section 5 is equal to qε(x, y, t).

Proof: It suffices to show that Pk
t u = Γk

t u for every function u ∈ C∞0 (M). Our first step will be to prove that

Pk
t u ∈ L2(M) for every t > 0. Consider the sequence {Dl}∞l=1, such that D̃l ⊂ Dl+1 and

⋃
lDl = M , used in

the construction of pε(x, y, t). For sufficiently large l, we have suppu ⊂M . A standard energy argument shows

that ∣∣∣∣∣∣∣∣∫
M

pεl (·, y, t) uε(y) dVy

∣∣∣∣∣∣∣∣
L2

< ||u||L2 .

Since Pk
t u

ε(x) = liml→+∞
∫
M
Pl(x, y, t)u

ε(y) dVy, Fatou’s lemma implies that Pk
t u ∈ L2(M) and ||Pk

t u||L2 ≤
||u||L2 . Differentiation under the integral shows that ∆GP

k
t u ∈ L2(M) for t > 0. Consider the function

v(x, t) = (Pk
t − Γk

t )u. We have to show that v(x, t) ≡ 0. However,

k

2
∂t

∫
M

v2(x, t) dVx = k

∫
M

v ∂tv dVx = k

∫
M

v∆Gv dVx.

It is clear that Pk
t u lies inside of the domain of ∆G, because it is a limit of functions with compact support.

We get

|k|
2
∂t

∫
M

v2(x, t) dVx = −
∫
M

|Dxv|2 dVx ≤ 0. (26)

Since v(·, 0) ≡ 0, Pk
t u = Γk

t , i.e., pε(x, y, t) = qε(x, y, t).

�

Another application of our results is formulated in the following theorem:

Theorem 6.4 Let M be complete Riemannian such that 2R2 − GR > 0. For every function uε0 ∈ C∞0 (M),

the bounded solution uε(x, t) of the regularized Schrödinger-Günter equation with initial data uε0 satisfies the

following conservation law ∫
M

uε(x, t) dVx =

∫
M

uε0(x, t) dVx.

Proof: From the uniqueness property of the solutions we know that

uε(x, t) =

∫
M

pε(x, y, t) uε0(y) dVy.

Hence, by Fubini’s theorem and Theorem 6.1 we obtain∫
M

uε(x, t) dVx =

∫
M×M

pε(x, y, t) uε0(y) dVy dVx =

∫
M

(∫
M

pε(x, y, t) dVx

)
uε0(y) dVy =

∫
M

uε0(y) dVy. (27)

�

We finish this section by presenting an application to the regularized Schrödinger-Günter equation, where

the Laplacian is defined via Günter derivatives.

Theorem 6.5 Suppose that M is a complete Riemannian manifold and that 2R2 − GR > 0. For every T > 0,

bounded solutions of the regularized Schrödinger-Günter problem on L2(M) are uniquely determined by their

initial value. Moreover, if the initial data vanishes at infinity, then the solution vanishes at infinity for every

t ∈]0, T [.
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Proof: From our assumption on M , < (2R2 − GR)u, u > ≥ c||u||L2 for all the functions u ∈ L2(M) at every

point x ∈ M , where < ·, · > denotes the pointwise inner product and | · | is the corresponding norm. Let

u ∈ L2(M) depending on a parameter t ∈ [0, T ] which is a bounded solution of the regularized Schrödinger-

Günter problem with the initial value uε0. Consider the function ũ = ecu. Relying on relation (3) and after

some calculations we obtain

(∆G − k∂t)|ũ|2 = e2c(2 < (2R2 − GR)u, u > +2 < Du,Du > −2c < u, u >).

Now we can repeat the argument used in the proof of Theorem 4.3 with u = |ũ|2 and we conclude that (12),

(13) and (14) are valid, and therefore we prove the uniqueness. The second part follows from (14) using the

same arguments of the proof Theorem 6.2.

�

7 Convergence results

We start this section by studying the behavior of the regularized Schrödinger-Günter kernel (16), when ε→ 0+.

Moreover, we will prove that (16) converges to

pD(x, y, t) = (4πt)−
n
2 exp

(
−i |x− y|

2

4t

)
Φ(x, y) +O

(
t−

n
2−1

)
exp

(
−i |x− y|

2

4t

)
. (28)

In this sense, we have the following result

Theorem 7.1 We have the following weak convergence in W
−n2−1
2 (M)

< pε, ϕ >−→< p,ϕ >, ϕ ∈W−
n
2 +1

2 (M)

when ε→ 0+.

Proof: Suppose that ϕ ∈W−
n
2 +1

2 (M). Then

| < pε, ϕ > − < p,ϕ > |

=

∣∣∣∣∫
M

(pε(x, t)− p(x, t))ϕ(x, t) dxdt

∣∣∣∣
≤
∣∣∣∣∫
M

[(
exp

(
−k

d2(x, y)

4t

)
− exp

(
−id

2(x, y)

4t

))
(4πt)−

n
2

]
ϕ(x, t)Φ(x, y) dxdt

∣∣∣∣
+

∣∣∣∣∫
M

[(
exp

(
−k

d2(x, y)

4t

)
− exp

(
−id

2(x, y)

4t

))
(4πt)−

n
2

]
O
(
t−

n
2−1

)
dxdt

∣∣∣∣ (29)

The latter expression converges to zero when ε→ 0 since ϕ ∈W−
n
2 +1

2 (M).

�

From this theorem we get the following two corollaries:

Corollary 7.2 The sequence of the semigroup operators {Pk
t }t∈R+ , defined in (25), converges weakly in W

−n2 +1
2 (M)

to the following semigroup operator

Pt(x) =

∫
M

p(x, y, t) uε(y) dVy.

Corollary 7.3 The sequence of regularized fundamental solutions

uε(x, t) =


∫
M

pε(x, y, t) dVy for t > 0

uε0(x) for t = 0

,
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converges weakly in W
−n2 +1
2 (M) to the following fundamental solution

u(x, t) =


∫
M

p(x, y, t) dVy for t > 0

u0(x) for t = 0

.

Moreover, we can guarantee that this sequence of solutions is a fundamental sequence in W
−n2 +1
2 (M).

The conclusion of Corollary 7.3 can be refined. In fact, consider u ∈ W
−n2 +1
2 (M) the function limit of

the Cauchy family studied. In view of Definition 5.1 and (18), we can guarantee that (∆G − i∂)u = 0 and

(∆G − i∂t)uε = 0, with uε|∂D×R+
= 0 = u|∂D×R+

.

Since (∆G − i∂t)−1 exists and since it is unique (for more details see [21]), we can establish the following

equality:

u− uε = (∆G − i∂t)−1((∆G − k∂t)− (∆G − i∂t))uε

which implies that

||u− uε||L2(M) = ||(∆G − i∂t)−1||L1(M)||(∆G − k∂t)− (∆G − i∂t)||L1(M)||uε||L2(M).

Since ||(∆G−k∂t)− (∆G− i∂t)||L1(M) converges to zero when ε→ 0+, we conclude that the right-hand side

of the last expression also converges to zero. This fact implies that u ∈ L2(M).

8 The Schrödinger-Günter problem on conformally flat cylinders

and the n-torus

In this section we briefly outline how we can construct fundamental solutions of the Schrödinger-Günter prob-

lem on a class of higher dimensional conformally flat cylinders and the n-torus with different spin structures

embedded in the space Rn⊕R+. The explicit knowledge of the fundamental solution allows us to directly carry

over the results of the previous sections to the setting of these particular manifolds.

To make the paper self-contained, we recall from previous works that a conformally flat spin manifold in n

real variables is a Riemannian manifold with a well-defined spin structure possessing an atlas whose transition

functions are Möbius transformations.

As explained for example in [17] and [15], we obtain a class of higher dimensional conformally flat spin

cylinders Ck in n real variables by forming the topological quotient Ck := Rn/Zk where Zk = Ze1 + · · ·+Zek is

the k-dimensional orthonormal lattice; k stands for a positive integer from the set {1, . . . , n}. In the case k = n

we obtain a flat n-torus. In another interesting subcase represented by n = 2, k = 1 one re-obtains the classical

infinite cylinder of radius 1 embedded in the three-dimensional Euclidean space.

Since Rn is the universal covering space of all these generalized cylinders Ck there exists a well defined

projection map pk : Rn → Ck, x 7→ x mod Zk. One has pk(x) = pk(y) if and only if there exists an ω ∈ Zk such

that x = y + ω.

Next, every subset U ⊂ Rn that has the property that x ∈ U also implies that x + ω ∈ U , for all ω =∑k
i=1 ωiei ∈ Zk, gives rise to an open subset U ′ on Ck defined by U ′ := pk(U).

More generally, on Ck one can consider 2k inequivalent different spinor bundles. To construct them, we

decompose the lattice Zk, as suggested in [17], into the direct sum of the sublattices Zl := Ze1 + · · ·+ Zel and

Zk−l := Zel+1 + · · · + Zek where l is some integer from {1, . . . , k}. We now obtain 2k different spinor bundles

E(l) on Ck by making the identification (x,X)⇔ (x+ ω, (−1)ω1+···+ωlX) with x ∈ Rn and X ∈ Cn.

The basic idea to construct fundamental solutions of the regularized Schrödinger-Günter equation on these

manifolds is to periodize the fundamental solutions described earlier in Section 5, i.e.

pεD(x, t) =
1

(4π)n/2
e−

k|x|2
4t Φ̃(x) +O(t−n/2−1)e−

k|x|2
4t

over the period lattice Zk and adding a further parity factor that addresses the particular chosen spinor bundle.

Here in this setting the domain D simply is supposed to be the whole Rn.
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Notice that the function Φ has the structure Φ(x, y) = Φ̃(x−y). The condition Φ(x, x) = 1 then is re-phrased

in the form Φ̃(0) = 1.

To get concrete examples, let us assume that the C∞ function Φ̃ is a polynomial of some arbitrary degree

in the variables x1, . . . , xn and that Φ̃(0) = 1 in order to meet the above mentioned requirement.

Under these conditions the function series

℘εD(x, t) :=
∑
m∈Zl

∑
n∈Zk−l

(−1)m1+···+mlpεD(x+m+ n, t)

=
∑
m∈Zl

∑
n∈Zk−l

(−1)m1+···+ml 1

(4πt)n/2
e−

k|x+m+n|2
4t Φ̃(x+m+ n) +O(t−n/2−1)e−

k|x+m+n|2
4t

converges normally due to the dominance of the decay of the exponential terms in these series expression. This

is done by applying the same arguments as in the convergence proof of [15]. Basically the new item in this

expression is the appearance of the function Φ̃ which did not appear in the context of our previous work [15].

In the context of [15] we simply dealt with the special situation where the function Φ(x) ≡ 0 while the second

term involving a further function of growth O(t−n/2−1) did not appear at all. However, as the latter function

of the order O(t−n/2−1) only depends on the time coordinate t, it has no influence on the convergence behavior

of the series, since the summation is only extended over a period lattice in the spatial coordinates.

However, the presence of the function Φ̃ appearing in the first term may significantly affect the convergence

behavior of the whole function series. If we only requires as in Section 5 that Φ̃ is a C∞ function, then the

series will not converge in general. To guarantee the convergence we have to put additional restrictions on Φ̃.

As long as the functions Φ̃ are supposed to be only polynomials, the exponential decay from e−
k|x+m+n|2

4t

dominates the polynomial increase of Φ̃ such that the complete series expression remains convergent under

this particular condition. Then we obtain a fundamental solution on the associated manifold Ck for the

regularized Schrödinger-Günter problem by applying the projection map pk to this convergent series, i.e.,

e(x′, t) := pk(℘εD(x, t)) and E(x′, y′, t) := e(x′ − y′, t), then serves as integral kernel for the regularized

Schrödinger-Günter problem on Ck. Instead of polynomials only one can admit for Φ̃ more generally also

some transcendental functions that still have a growth behavior that is dominated by the terms e−
k|x|2

4t .

Next, in order to address the limit case ε → 0+ which refers to the usual Schrödinger-Günter problem one

can consider the construction

℘D(x, t) := lim
ε→0

∑
m∈Zl

∑
n∈Zk−l

(−1)m1+···+mlpεD(x+m+ n, t)

= lim
ε→0

∑
m∈Zl

∑
n∈Zk−l

(−1)m1+···+ml 1

(4πt)n/2
e−

ε+1

ε2+1
|x+m+n|2

4t Φ̃(x+m+ n) +O(t−n/2−1)e−
ε+1

ε2+1
|x+m+n|2

4t

where we again impose additional restrictional growth conditions on Φ̃ that guarantee the convergence of the

series. As simplest choice we again may admit every polynomial for Φ̃(0) = 1. Applying the same arguments

as in [15] one can conclude that the projection of this expression then yields the fundamental solution of the

Schrödinger-Günter problem on Ck.
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