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Abstract

In this paper, we prove the existence of four nontrivial solutions of

−∆u− λ

|x|2
u = |u|2∗−2u+ µ|x|α−2u+ f(x), x ∈ Ω\{0}

and show that at least one of them is sign changing. Our results extend some
previous works on the literature, as Tarantello(1993), Kang-Deng(2005) and Hirano-
Shioji(2005).
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1 Introduction

In Chen-Li-Li [4], it has been showed the effect of suitable singular potential
V (x) on the existence of multiple solutions of

−∆u = λV (x)u+ |u|2∗−2u, u ∈ H1
0 (Ω). (E)
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Here, we will prove an additional inhomogeneous perturbation of (E) can
produce more solutions. More precisely, we study the existence of four solutions
of the following problem−∆u(x)− λ

|x|2u(x) = |u(x)|2∗−2u(x) + µ|x|α−2u(x) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(1)

and we prove that at least one of them is sign changing. We assume that 0 ∈
Ω ⊂ RN(N ≥ 3) is a bounded domain with smooth boundary, 2∗ =̇ 2N/(N−2)
is the critical Sobolev exponent, 0 ≤ λ < Λ =̇ ((N − 2)/2)2 and f ∈ L∞(Ω).

Elliptic equations with a singular term have attracted great interests during
the past several years, e.g. see Ferrero-Gazzola [8], Jannelli [10], Terracini
[17], Smets [13]. Particularly, we point out that when α = 2 and N ≥ 7, Kang-
Deng [11] proved the existence of two nontrivial solutions of Eq.(1) provided f
satisfying some other conditions. The main result in this paper (Theorem 1.2)
proves the existence of four solutions of Eq.(1), and also implies that suitable
unbounded coefficients |x|α−2 can release the restriction of spatial dimension
N .

In what follows, we state the main result (Theorem 1.2) but for the presenta-
tion coherence, we first prove an auxiliary result (Lemma 1.1). Assume that
α > 0. From the work of Chaudhuri-Ramaswamy [2], we know that

µ1 =̇ inf

{∫
Ω

(
|∇u|2 − λ

|x|2
|u|2

)
dx :

∫
Ω
|x|α−2|u|2dx = 1

}
> 0.

Define p =̇ 2∗, T (u) =̇
∫

Ω(|∇u|2 − λ
|x|2 |u|

2 − µ|x|α−2|u|2)dx and

M =̇ inf

{(
T (u)

) 1
2

:
∫

Ω
|u|pdx = 1

}
.

Lemma 1.1 If 0 ≤ λ < Λ, α > 0 and 0 < µ < µ1, then M > 0.

Proof. For any u 6= 0, we have from the assumption 0 < µ < µ1 and the
Hardy inequality that

T (u) ≥
(

1− µ

µ1

)∫
Ω

(
|∇u|2 − λ

|x|2
|u|2

)
dx ≥

(
1− µ

µ1

)(
1− λ

Λ

)∫
Ω
|∇u|2dx.

Thus (
1− µ

µ1

)(
1− λ

Λ

)∫
Ω
|∇u|2dx ≤ T (u) ≤

∫
Ω
|∇u|2dx.

Note that the best Sobolev constant

S0 =̇ inf

{∫
Ω
|∇u|2dx :

∫
Ω
|u|pdx = 1

}
> 0.
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We immediately have that M > 0. �

Throughout this paper, we always assume that 0 ≤ λ < Λ and 0 < µ < µ1.
We say that u ∈ H1

0 (Ω) is a solution of Eq.(1) if and only if u is a critical
point of the Euler functional I(u) =̇ 1

2
T (u)− 1

p

∫
Ω |u|pdx−

∫
Ω fu dx, i.e. for any

v ∈ H1
0 (Ω) there holds

∫
Ω

(
∇u∇v − λ

|x|2
uv − µ|x|α−2uv − |u|p−2uv − fv

)
dx = 0.

We will prove the following result:

Theorem 1.2 Let 0 ≤ λ < Λ, 0 < µ < µ1, f ∈ L∞(Ω) and satisfies

|f | p
p−1

=̇ |f |] <
p− 2

2(p− 1)
M

(
Mp

p− 1

) 1
p−2

. (A)

If 0 < α <
√

Λ− λ, then Eq.(1) has at least four nontrivial solutions in H1
0 (Ω)

and at least one of them is sign changing.

The paper is organized as follows. In Section 2, we give some preliminaries.
In Section 3, we obtain the necessary auxiliary results in order to prove the
Theorem 1.2.

The proof of Theorem 1.2 is based on variational methods and it is inspired
by Tarantello [15] and Hirano-Shioji [9]. The main strategy, based on four
steps, is the following. In the first step, we define a Nehari type set M and
use assumption (A) to divide M into three subsets M +, M 0 and M−. In the
second step, we solve two minimization problem infM I and infM− I and get
two solutions w0, w1 of Eq.(1). In the third step, we construct two subsets M−

1

and M−
2 of M− and prove that the minimizer of inf{I(u) : u ∈M−

1 ∩M−
2 }

is a sign changing solution of Eq.(1). In the final step, we define a translated
functional and get a fourth solution of Eq.(1).

Note that, although the proof is inspired by Tarantello [15] and Hirano-Shioji
[9], the arguments used by them can not be directly applied here, since we are
facing the singular term λ

|x|2u (see Remark 3.6, Remark 3.9 and Remark 3.12).

In fact, we need to develop some techniques recently used in Chen [5, 6] and
the exact local behavior for the solutions of Eq.(1), in order to overcome the
difficulties created by the singular term λ

|x|2u.

Notations. In what follows, we denote the norm in H1
0 (Ω) by ‖ · ‖, the in-

tegral
∫

Ω · dx by
∫
·, and the ball in RN with center at x and radius R by

B(x,R). We use =̇ to emphasize a new definition. Different positive con-
stants may be denoted by the same letter K or Kj. Additionally, O(εβ) means
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that |O(εβ)ε−β| ≤ K, o(εβ) is |o(εβ)ε−β| → 0 as ε → 0, and o(1) is an in-
finitesimal value, and → (respectively, ⇀) will denote strongly (respectively,
weakly) convergence.

2 Preliminaries

In this section, we give some preliminaries which play important roles in the
variational methods used to solve Eq.(1). Namely, we briefly describe the so-
lution of an auxiliary problem, the local behavior of the solutions of Eq.(1)
and some integral estimates.

From Catrina-Wang [3], Terracini [17], and Chou-Chu [7], we have the follow-
ing proposition:

Proposition 2.1 For 0 < λ < Λ = (N−2
2

)2, equation

−∆u− λ

|x|2
u = |u|2∗−2u x ∈ RN\{0}, u(x)→ 0 as |x| → +∞, (2)

has a family of solutions

Uε(x) =
[4ε(Λ− λ)N/(N − 2)]

N−2
4

[ε|x|γ′/
√

Λ + |x|γ/
√

Λ]
N−2

2

, ε > 0.

where Λ = (N−2
2

)2, γ′ =
√

Λ−
√

Λ− λ,γ =
√

Λ +
√

Λ− λ. Moreover Uε(x) is
the unique positive radial symmetric solution of Eq.(2) up to a dilation. And
Uε(x) is the extremal function of the minimization problem

Sλ = inf

{∫
RN

(
|∇u|2 − λ

|x|2
u2

)
dx; u ∈ D1,2(RN),

∫
RN
|u|2∗dx = 1

}
.

Clearly, ∫
RN
|Uε(x)|2∗dx =

∫
RN

(
|∇Uε|2 −

λ

|x|2
U2
ε

)
dx = S

N
2
λ .

We now recall some exact local behavior of the solutions of Eq.(1) (see Chen
[5, Th.1.1]).

Proposition 2.2 Let 0 ≤ λ < Λ. We have that

• if u ∈ H1
0 (Ω) is a solution of Eq.(1), then there holds

|u(x)| ≤ K1|x|−(
√

Λ−
√

Λ−λ), x ∈ B(0, r)\{0} (3)

for some positive constant K1 and sufficiently small r > 0;
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• if u ∈ H1
0 (Ω) is a positive solution of Eq.(1), then there holds

K2|x|−(
√

Λ−
√

Λ−λ) ≤ |u(x)| ≤ K1|x|−(
√

Λ−
√

Λ−λ), x ∈ B(0, r)\{0} (4)

for r > 0 sufficiently small and some positive constants K1, K2.

Remark 2.3 Let u be a positive solution of Eq.(1).

(i) When λ = 0, u(0) is positive and we come back to the usual case.
(ii) When 0 < λ < Λ, the singular order at x = 0 of u stated in Proposition

2.2 coincide with the singularity of the explicit form Uε(x).
(iii) When λ → Λ, the singularity of the positive solutions become more and

more stronger.

The following integral estimates are also relevant. Define a cut-off function
φ(x) = 1 if |x| ≤ δ, φ(x) = 0 if |x| ≥ 2δ, φ(x) ∈ C1

0(Ω) and |φ(x)| ≤ 1,
|∇φ(x)| ≤ C. Let vε(x) = φ(x)Uε(x).

Proposition 2.4 Let 0 ≤ λ < Λ and w ∈ H1
0 (Ω) be a solution of Eq.(1).

Then for ε > 0 small enough we have that∫
w2∗−1vε = O(ε

N−2
4 ) and

∫
wv2∗−1

ε dx = O(ε
N−2

4 ); (5)∫ (
|∇vε|2 −

λ

|x|2
v2
ε

)
= S

N
2
λ +O(ε

N
2 ) +O(ε

N−2
2 ); (6)∫

v2∗

ε = S
N
2
λ −O(ε

N
2 ); (7)∫

|x|α−2v2
ε = O(ε

α
√

Λ
2
√

Λ−λ ), when 0 < α < 2
√

Λ− λ; (8)∫
vεdx = O(ε

N−2
4 ); (9)

Proof. For the proofs of (5), (6) and (7), see Chen [6]. Here we only prove (8)
and (9). Recalling the definition of vε, we have that∫

|x|α−2v2
ε =

∫
Ω\B(0,δ)

|x|α−2v2
ε +

∫
B(0,δ)

|x|α−2v2
ε

= O(ε
N−2

2 ) +
∫
B(0,δ)

|x|α−2v2
ε .

∫
B(0,δ)

|x|α−2v2
εdx = K · ε

(N−2)
2

∫ δ

0

ρα−2+N−1dρ

[εργ′/
√

Λ + ργ/
√

Λ]N−2

= K · ε
(N−2)

2

∫ δ

0

ρα−2+N−1dρ

εN−2ρ2γ′ [1 + ε−1ρ2
√

Λ−λ/
√

Λ]N−2

= K · ε
(N−2)

2

∫ δε
−
√

Λ
2
√

Λ−λ

0

ε
(α−2+N)

√
Λ

2
√

Λ−λ ρα−2+N−1dρ

εN−2ε
γ′

2
√

Λ−λρ2γ′ [1 + ρ2
√

Λ−λ/
√

Λ]N−2
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Since

−1 + α− 2 +N − 2(
√

Λ−
√

Λ− λ)− 4
√

Λ− λ = −1 + α− 2
√

Λ− λ < −1,

(α− 2 +N)
√

Λ

2
√

Λ− λ
− (N − 2)− γ′

√
Λ√

Λ− λ
=

α
√

Λ

2
√

Λ− λ
−
√

Λ < 0,

we get that

∫
B(0,δ)

|x|α−2v2
εdx = K · ε

α
√

Λ
2
√

Λ−λ .

It follows from
∫

Ω\B(0,δ) |x|α−2v2
ε = O(ε

N−2
2 ) and 0 < α < 2

√
Λ− λ that

∫
|x|α−2v2

ε = O

(
ε

α
√

Λ
2
√

Λ−λ

)
, for ε > 0 small enough.

This proves (8). The proof of (9) is similar but simpler than the proof of (8),
so we omit the details. �

3 Proof of Theorem 1.2

In this section, we will prove Theorem 1.2. As described in the Introduction,
the proof is divided into four steps. We start defining some Nehari type sets;
we prove the existence of two solutions of Eq.(1); we prove the existence of a
third solution which is a sign changing solution of Eq.(1); and we prove the
existence of a fourth solution by a translated argument.

Firstly for u ∈ H1
0 (Ω), recall the definition of

T (u) =̇
∫ (
|∇u|2 − λ

|x|2
|u|2 − µ|x|α−2|u|2

)
.

So, the Euler functional can be rewritten as I(u) = 1
2
T (u) − 1

p

∫
|u|p −

∫
fu.

We define

Q(u) =̇ T (u)−
∫
|u|p −

∫
fu and J(u) =̇ 2T (u)− p

∫
|u|p −

∫
fu,

then Q and J are well defined C1 functionals on H1
0 (Ω). Next, set

M =̇ {u ∈ H1
0 (Ω) : Q(u) = 0}.

Then for any u ∈ M , J(u) = T (u) − (p − 1)
∫
|u|p. We also define several

subsets of M ,

M + =̇ {u ∈M : J(u) > 0}, M 0 =̇ {u ∈M : J(u) = 0}
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and M− =̇ {u ∈M : J(u) < 0}.

Lemma 3.1 Let 0 ≤ λ < Λ and 0 < µ < µ1. Then the following hold:

(i) (p− 2)T (u)
1
2 < (p− 1)M−1|f |] for all u ∈M +;

(ii) T (u) >

(
Mp

p−1

) 2
p−2

for all u ∈M−;

(iii) if (A) holds, then I(u) ≥ 0 for all u ∈M−.

Proof. (i) For any u ∈M +, using Q(u) = 0 we get that

0 < J(u) = T (u)− (p− 1)
∫
|u|p = T (u)− (p− 1)

(
T (u)−

∫
fu

)
= (2− p)T (u) + (p− 1)

∫
fu.

Since M |u|p ≤ T (u)
1
2 , we get that

(p− 2)T (u) < (p− 1)|f |]|u|p ≤ (p− 1)|f |]M−1T (u)
1
2 .

Therefore

(p− 2)T (u)
1
2 < (p− 1)M−1|f |].

(ii) For any u ∈ M−, we have that J(u) < 0. From the definition of M , we
have that

∫
|u|p ≤M−pT (u)

p
2 . Therefore

T (u) < (p− 1)
∫
|u|p ≤ (p− 1)M−pT (u)

p
2 .

Thus

T (u) >

(
Mp

p− 1

) 2
p−2

.

(iii) For any u ∈M− ⊂M , we obtain from
∫
|u|p = T (u)−

∫
fu that

I(u) =
1

2
T (u)− 1

p

(
T (u)−

∫
fu

)
−
∫
fu

=
p− 2

2p
T (u)− p− 1

p

∫
fu

≥ p− 2

2p
T (u)− p− 1

p
|f |]|u|p

≥ p− 2

2p
T (u)− p− 1

p
|f |]M−1T (u)

1
2

=
1

p
T (u)

1
2

(
p− 2

2
T (u)

1
2 − (p− 1)|f |]M−1

)
.

(10)
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On the other hand we get from (ii) that

T (u) >

(
Mp

p− 1

) 2
p−2

. (11)

It is deduced from (10) and (11) that

I(u) ≥ 1

p
T (u)

1
2

(
p− 2

2

(
Mp

p− 1

) 1
p−2

− (p− 1)|f |]M−1

)
. (12)

Therefore if (A) holds, then I(u) ≥ 0. The proof is complete. �

Lemma 3.2 Let 0 ≤ λ < Λ, 0 < µ < µ1 and f 6≡ 0 satisfy (A). Then for
any u ∈ H1

0 (Ω) and u 6= 0, there exists a unique t+ = t+(u) > 0 such that
t+(u)u ∈M− and

t+ >

(
T (u)

(p− 1)
∫
|u|p

) 1
p−2

=̇ tmax

and
I(t+u) = max

t≥tmax
I(tu).

Moreover if
∫
fu > 0, then there exists an unique t− = t−(u) > 0 such that

t−(u)u ∈M +, t− < tmax and

I(t−u) = inf
0≤t≤tmax

I(tu).

Proof. The proof follows exactly the scheme in the proof of Lemma 2.1 in
Tarantello [15]. �

Proposition 3.3 Assume 0 ≤ λ < Λ, 0 < µ < µ1 and (A) hold. Let {un} ⊂
M− be such that un ⇀ u weakly in H1

0 (Ω) and I(un) → c but un does not
converge strongly to u in H1

0 (Ω). Then the following holds:

(1) c > I(t+(u)u) in the case u 6= 0 and t+(u) ≤ 1;

(2) c ≥ I(t−(u)u) + 1
N
S
N
2
λ in the case u 6= 0 and t+(u) > 1;

(3) c ≥ 1
N
S
N
2
λ in the case u = 0.

Proof. We use the methods employed in Hirano-Shioji [9]. Note that un ⇀ u,∫
|x|α−2|un − u|2 → 0 as n→∞. We may assume that

T (un − u) =
∫ (
|∇un −∇u|2 −

λ

|x|2
|un − u|2

)
+ 0(1)→ a2
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and
∫
|un − u|p → bp.

Since un does not converge strongly to u, we have a 6= 0. We set

r(t) = I(tu), β(t) =
a2

2
t2 − bp

p
tp

and θ(t) = r(t) + β(t), then I(tun) → θ(t) as n → +∞. We consider three
situations:

(1) When u 6= 0 and t+(u) ≤ 1. Recall, that t+(u) is defined according to
Lemma 3.2. We have that r′(1) ≤ 0. Since un ∈M−, we have that θ′(1) = 0.
Thus β′(1) ≥ 0 and hence a2 − bp ≥ 0. So we have that β(t+(u)) > 0 and
hence

c ≥ θ(1) ≥ θ(t+(u)) = I(t+(u)u) + β(t+(u)) > I(t+(u)u).

(2) When u 6= 0 and t+(u) > 1. We have first from t+(u) > 1 that b 6= 0. Indeed
if b = 0, then from θ′(1) = 0 and θ′′(1) ≤ 0, we have that r′(1) = −a2 < 0
and r′′(1) ≤ −a2 < 0, which contradicts to t+(u) > 1. So we have b 6= 0.

We set t∗ = (a2/bp)
1
p−2 . We know that β attains its maximum at t∗ and

β′(t) > 0 for 0 < t < t∗ and β′(t) < 0 for t > t∗. Therefore we have that

β(t∗) = (a2/b2)
N
2 /N ≥ 1

N
S
N
2
λ . Next, we will show that t∗ ≤ t+(u). Suppose

this is not the case, i.e., 1 < t+(u) < t∗. As 0 > θ′(t) = r′(t)+β′(t) for all t > 1,
we have r′(t) ≤ −β′(t) < 0 for t ∈ (1, t∗), which contradicts to 1 < t+(u) < t∗
and r′(t+(u)) = 0. So we have shown that t∗ ≤ t+(u). Hence we obtain

c = θ(1) ≥ θ(t∗) = I(t∗u) + β(t∗) ≥ I(t−(u)u) +
1

N
S
N
2
λ .

This implies that (ii) holds.

(3) When u = 0. Since un ∈M− ⊂M , we have that

∫
(|∇un|2 −

λ

|x|2
|un|2) =

∫
|un|p + 0(1).

Using the fact that Sλ|v|2p ≤
∫

(|∇v|2 − λ
|x|2 |v|

2) for all v ∈ H1
0 (Ω) and v 6= 0,

we obtain that

c ≥ 1

2

∫ (
|∇un|2 −

λ

|x|2
|un|2

)
− 1

p

∫
|un|p + 0(1)

≥
(

1

2
− 1

p

)∫ (
|∇un|2 −

λ

|x|2
|un|2

)
+ 0(1) ≥ 1

N
S
N
2
λ .

The proof is complete. �
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3.1 Existence of two solutions

In this subsection, we prove the existence of two solutions of Eq.(1). Set

c0 =̇ inf
u∈M

I(u) and c1 =̇ inf
u∈M−

I(u).

Proposition 3.4 If (A) holds, then c0 < 0 and there is a critical point w0 ∈
M + of I such that I(w0) = c0 and w0 is a local minimizer for I.

Proof. The proof is exactly the same as Tarantello [15]. We omit the details
here. �

Lemma 3.5 Let 0 ≤ λ < Λ and 0 < α <
√

Λ− λ. Then c1 < c0 + 1
N
S
N
2
λ .

Proof. First using the same argument as Tarantello [15, Proposition 2.2],
we know that there is s0 > 0 and ε > 0 sufficiently small such that w0 +

s0vε ∈ M−. Next to prove c1 < c0 + 1
N
S
N
2
λ , we only need to prove that

sups>0 I(w0 + svε) < c0 + 1
N
S
N
2
λ . Note that I(w0 + svε) → −∞ as s → +∞,

we only estimate I(w0 + svε) for bounded s. Since w0 is a solution of Eq.(1),
we have that

∫ (
∇w0∇vε −

λ

|x|2
w0vε − µ|x|α−2w0vε

)
=
∫ (

wp−1
0 vε + fvε

)
.

Hence

I(w0 + svε) =
1

2
T (w0 + svε)−

1

p

∫
|w0 + svε|p −

∫
f(w0 + svε)

= I(w0) + I(svε) + 2s
∫

(wp−1
0 vε + fvε)

+
1

p

∫ (
wp0 + |svε|p − |w0 + svε|p

)

≤ I(w0) + I(svε) + C
∫ (

vε + wp−1
0 vε + w0v

p−1
ε

)
.

Note that

sup
s>0

I(svε) = sup
s>0

(
s2

2
T (vε)−

sp

p

∫
vpε − s

∫
fvε

)

≤ sup
s>0

(
s2

2
T (vε)−

sp

p

∫
vpε

)
+ C

∫
vε

≤ 1

N
T (vε)

N
2

(∫
vpε

)1−N
2

+ C
∫
vε.
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We obtain from Proposition 2.4 that

sup
s>0

I(w0 + svε) <
1

N

(
S
N
2
λ +O(ε

N−2
2 )−O(ε

α
√

Λ
2
√

Λ−λ )

)N
2
(
S
N
2
λ −O(ε

N
2 )

)1−N
2

+c0 +O(ε
N−2

4 )

=
1

N
S
N
2
λ

(
1−O(ε

α
√

Λ
2
√

Λ−λ )

)N
2
(

1−O(ε
N
2 )

)1−N
2

+ c0 +O(ε
N−2

4 )

= c0 +O(ε
N−2

4 ) +
1

N
S
N
2
λ −O(ε

α
√

Λ
2
√

Λ−λ )

< c0 +
1

N
S
N
2
λ since α <

√
Λ− λ.

The proof is complete. �

Remark 3.6 We emphasize that in the estimate
∫
wp−1

0 vε and
∫
w0v

p−1
ε , the

exact local behavior of the solution of Eq.(1) (see Propositions 2.2 and 2.4)
played an essential role. Indeed, without Propositions 2.2, estimates

∫
wp−1

0 vε
and

∫
w0v

p−1
ε seem to be impossible.

Proposition 3.7 Let 0 ≤ λ < Λ, 0 < µ < µ1 and 0 < α <
√

Λ− λ. If
f ∈ L∞(Ω) and satisfies (A), then there is a critical point w1 ∈M− of I such
that I(w1) = c1.

Proof. First we will prove that there is w1 ∈M− of I such that I(w1) = c1.
Let {un} ⊂M− and I(un)→ c1. Then by direct calculations we know that

0 < inf T (un) ≤ supT (un) <∞.

The definition of µ1 and 0 < µ < µ1 implies that {un} is bounded in H1
0 (Ω).

We may assume that {un} converges weakly to some w1. By Proposition 3.3
we have that w1 6= 0. Now suppose that {un} does not converge to w1. Then
by (i) and (ii) of Proposition 3.3, we get that c1 > I(t+(w1)w1) or c1 ≥
I(t−(w1)w1) + 1

N
S
N
2
λ ≥ c0 + 1

N
S
N
2
λ . In any case we get a contradiction since

c1 < c0+ 1
N
S
N
2
λ . Therefore {un} converges strongly to w1. This means w1 ∈M−

and I(w1) = c1.

Next we will show that such w1 is a weak solution of Eq.(1). Choose any
v ∈ H1

0 (Ω). For any ρ ∈ (0, 1) we set tρ = t+(w1 + ρv) (where t+(w1 + ρv) is
defined according to Lemma 3.2). Since w1, tρ(w1 + ρv) ∈ M− and I(w1) =
infu∈M− I(u), we have that

I(tρ(w1 + ρv)) ≥ I(w1).
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On the other hand from w1 ∈M−, we have that for any t > 0, I(w1) ≥ I(tw1).
In particular, I(w1) ≥ I(tρw1). Thus we have for any ρ ∈ (0, 1),

I(tρ(w1 + ρv)) ≥ I(tρw1).

Hence we get that

0 ≤ 1

ρ

(
I(tρ(w1 + ρv))− I(tρw1)

)

=
1

ρ

t2ρ
2

(
T (w1 + ρv)− T (w1)

)
− 1

ρ

tpρ
p

∫ (
|w1 + ρv|p − |w1|p

)
1

ρ
tρ

∫
(f(w1 + ρv)− fw1).

Since tρ → 1 as ρ→ 0+, letting ρ→ 0+, we obtain

∫ (
∇w1∇v −

λ

|x|2
w1v − µ|x|α−2w1v − |w1|p−2w1v − fv

)
≥ 0.

As v is arbitrarily, we get that

∫ (
∇w1∇v −

λ

|x|2
w1v − µ|x|α−2w1v − |w1|p−2w1v − fv

)
= 0.

Which means that w1 is a solution of Eq.(1). �

3.2 Existence of sign changing solution

This subsection is devoted to proving the existence of sign changing solution
of Eq.(1). For u ∈ H1

0 (Ω), denote u+ = max{0, u} and u− = max{0,−u}, then
u+, u− ∈ H1

0 (Ω) and u = u+ − u−. Following Tarantello [15], we define

M−
1 =̇ {u ∈M ; u+ ∈M−} and M−

2 =̇ {u ∈M ; −u− ∈M−}.

Set

M−
∗ =̇ M−

1 ∩M−
2 .

Lemma 3.8 Let 0 ≤ λ < Λ and 0 < α <
√

Λ− λ and (A) holds. Then
M−
∗ 6= ∅.

Proof. From the definition of M−
∗ , we only need to prove that there exist

s > 0 and t ∈ R such that

s(w1 − tUε)+ ∈M− and − s(w1 − tUε)− ∈M−.

12



To this purpose, let

t2 =̇ max
Ω̄\{0}

w1

Uε
and t1 =̇ min

Ω̄\{0}

w1

Uε
.

For t ∈ (t1, t2), (w1− tUε)+ and −(w1− tUε)−, denoted by s+(t) and s−(t) the
positive values given by Lemma 3.2, according to which we have

s+(t)(w1 − tUε)+ ∈M− and − s−(t)(w1 − tUε)− ∈M−.

Note that s+(t) is continuous with respect to t satisfying

lim
t→t1+0

s+(t) = t+(w1 − t1Uε) < +∞ and lim
t→t2−0

s+(t) = +∞.

Similarly, s−(t) is continuous with respect to t and

lim
t→t1+0

s−(t) = +∞ and lim
t→t2−0

s−(t) = t+(t2Uε − w1) < +∞.

The continuity of s+(t) and s−(t) implies that there is t0 ∈ (t1, t2) such that

s+(t0) = s−(t0) = s0 > 0.

This proves the Lemma. �

Remark 3.9 The exact local behavior for the solution w1 of Eq.(1) stated in
Proposition 2.2 is essential in the definition of t2 and t1. Indeed because of
Proposition 2.2, both t1 and t2 are finite. It seems to be very difficult to prove
this Lemma without Proposition 2.2.

Lemma 3.10 If (A) holds, then M−
1 , M−

2 ⊂M−.

Proof. Let u ∈ M−
1 , i.e. u ∈ M and u+ ∈ M−. Then we obtain from

T (u)−
∫
|u|p =

∫
fu that

J(u) = T (u)− (p− 1)
∫
|u|p = T (u)− (p− 1)

(
T (u)−

∫
fu

)
= −(p− 2)T (u) + (p− 1)

∫
fu

≤ −(p− 2)T (u) + (p− 1)|f |]|u|p.

By the definition of M , we get that |u|p ≤M−1T (u)
1
2 . Therefore

J(u) ≤ −T (u)
1
2

(
(p− 2)T (u+)

1
2 − (p− 1)|f |]M−1

)
< 0.

13



Now according to u+ ∈M− and (2) of Lemma 3.1, T (u+) >

(
Mp

p−1

) 2
p−2

. Com-

bining this with assumption (A), (p − 2)T (u+)
1
2 − (p − 1)|f |]M−1 > 0. Thus

J(u) < 0 and hence u ∈ M−. This proves that M−
1 ⊂ M−. By a similar

argument we can prove that M−
2 ⊂M−. �

Define
c2 =̇ inf

u∈M−
∗

I(u).

Lemma 3.11 Let 0 ≤ λ < Λ and 0 < α <
√

Λ− λ and (A) holds. Then

c2 < c1 + 1
N
S
N
2
λ .

Proof. It suffices to estimate I(sw1 − tUε) for s ≥ 0 and t ∈ R. Since at
this time, ε can be sufficiently small, we replace Uε by vε = φ(x)Uε defined
in Section 2. From the structure of I, we find there is R > 0 possibly large
such that I(sw1 − tvε) ≤ c1 for all s2 + t2 ≥ R2. Thus it suffices to estimate
I(sw1 − tvε) for all s2 + t2 ≤ R2. From an elementary inequality

|c+ d|q ≥ |c|q + |d|q −K(|c|q−1|d|+ |c||d|q−1), ∀ c, d ∈ R, q > 1

and w1 is a solution of Eq.(1), we obtain that

I(sw1 − tvε) ≤ I(sw1) + I(tvε)− st
∫

(|w1|p−1vε + fvε)

+K4

(∫
|sw1|p−1|tvε|+

∫
|sw1||tvε|p−1

)

≤ I(sw1) + I(tvε) +K5

∫ (
|w1|p−1|vε|+ |w1||vε|p−1 + fvε

)
.

Since w1 ∈M , we have that I(sw1) ≤ I(w1) for all s ≥ 0. Note that

sup
t∈R

I(tvε) ≤
1

N
S
N
2
λ −O(ε

α
√

Λ
2
√

Λ−λ ) +O(ε
N−2

4 ).

We obtain from Proposition 2.4 that

max
s>0,t∈R

I(sw1 − tvε)

≤ max
s>0

I(sw1) + max
t∈R

I(tuε) +K7ε
(N−2)/4 +K8ε

(N−2)/4

≤ I(w1) +
1

N
S
N
2
µ −O(ε

α
√

Λ
2
√

Λ−λ ) +K9ε
(N−2)/4

< c1 +
1

N
S
N
2
µ ,

since 0 < α <
√

Λ− λ. �
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Remark 3.12 Similar to those pointed out in Remark 3.6, we emphasize that
the exact local behavior of the solution of Eq.(1) (see Propositions 2.2 and 2.4)
played an essential role in estimate of c2.

Theorem 3.13 Let 0 ≤ λ < Λ and 0 < α <
√

Λ− λ and (A) holds. Then
there is a w2 ∈M−

∗ such that I(w2) = c2 and w2 is a sign changing solution
of Eq.(1).

Proof. In the first step, we will prove that there is w2 ∈ M−
∗ such that

I(w2) = c2. Let {un} ⊂ M−
∗ be such that I(un) → c2. Using the fact that

{u+
n } ⊂M− and Sobolev inequality, one can easily show that

0 < inf ‖u+
n ‖ ≤ sup ‖u+

n ‖ < +∞.

Similarly we have that {u−n } is bounded with respect to n. Going if necessary
to a subsequence, we may assume that u+

n ⇀ u+ and u−n ⇀ u− in H1
0 (Ω)

and that I(u+
n ) → d1, I(u−n ) → d2 and c2 = d1 + d2. We claim that u+ 6= 0

and u− 6= 0. If u+ = 0 and u− = 0, then by Proposition 3.3, d1 ≥ 1
N
S
N
2
λ ,

d2 ≥ 1
N
S
N
2
λ and hence c2 ≥ 2

N
S
N
2
λ . If u+ = 0 and u− 6= 0, then by Proposition

3.3, d1 ≥ 1
N
S
N
2
λ , d2 ≥ c1 or d2 ≥ c0 + 1

N
S
N
2
λ , which implies that c2 ≥ c1 + 1

N
S
N
2
λ

or c2 ≥ c0 + 2
N
S
N
2
λ . If u+ 6= 0 and u− = 0, then by Proposition 3.3, one gets

c2 ≥ c1 + 1
N
S
N
2
λ or c2 ≥ c0 + 2

N
S
N
2
λ . All the above three cases contradict Lemma

3.5 and Lemma 3.11. Therefore u+ 6= 0 and u− 6= 0. According to (1) and (2)
of Proposition 3.3, we have one of the following:

(i) {u+
n } converges strongly to u+;

(ii) d1 > I(t+(u+)u+);

(iii) d1 > I(t−(u+)u+) + 1
N
S
N
2
λ ;

and we also have one of the following:

(iv) {u−n } converges strongly to u−;
(v) d2 > I(−t+(−u−)u−);

(vi) d2 > I(−t−(−u−)u−) + 1
N
S
N
2
λ .

We will prove that only cases (i) and (iv) hold. For example, in the case (ii)
and (v), we have that t+(u+)u+ − t+(−u−)u− ∈M−

∗ and hence

c2 ≤ I(t+(u+)u+−t+(−u−)u−) = I(t+(u+)u+)+I(−t+(−u−)u−) < d1+d2 = c2,
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which is a contradiction. In the case (iii) and (vi), we have that t−(u+)u+ −
t−(−u−)u− ∈M + and hence

c1 +
1

N
S
N
2
λ < c0 +

2

N
S
N
2
λ ≤ I(t−(u+)u+ − t−(−u−)u−) +

2

N
S
N
2
λ

= I(t−(u+)u+) + I(−t−(u−)u−) +
2

N
S
N
2
λ

≤ d1 + d2 = c2,

which contradicts to Lemma 3.11. In the cases (ii) and (vi), we have that
t+(u+)u+ − t−(−u−)u− ∈M− and hence

c1 +
1

N
S
N
2
λ ≤ I(t+(u+)u+ + t−(u−)u−) +

1

N
S
N
2
λ < d1 + d2 = c2,

which again contradicts to Lemma 3.11. In the case (i) and (v), we have
u+ − t+(−u−)u− ∈M−

∗ and hence

c2 ≤ I(u+ − t+(−u−)u−) < d1 + d2 = c2,

which is a contradiction. Therefore we prove that only cases (i) and (iv) hold.
Hence both {u+

n } and {u−n } converge strongly to u+ and u−, respectively and
we get that u+, u− ∈M−. Denote w2 = u+ − u−. We get that I(w2) = c2.

Next we show that w2 is a critical point of I. Suppose that w2 is not a critical
point of I, i.e. ∇I(w2) 6= 0. Note that for u ∈M−, we have that

〈∇Q(u), u〉 = J(u) < 0.

Hence we can define

V (u) = ∇I(u)−
〈
∇I(u),

∇Q(u)

‖∇Q(u)‖

〉
∇Q(u)

‖∇Q(u)‖
, u ∈M−.

Choosing δ ∈ (0,min{‖u+‖, ‖u−‖}/3) such that ‖V (v)− V (w2)‖ ≤ 1
2
‖V (w2)‖

for each v ∈ M− with ‖v − w2‖ ≤ 2δ. Let ψ : M− → [0, 1] be a Lipschitz
mapping such that

ψ(v) =

 1 for v ∈M− with ‖v − w2‖ ≤ δ,

0 for v ∈M− with ‖v − w2‖ ≥ 2δ.

Let η : [0, s0]×M− be the solution of the differential equation

η(0, v) = v,
d

ds
η(s, v) = −ψ(η(s, v))V (η(s, v)) for (s, v) ∈ [0, s0]×M−,

where s0 is some positive number. We set

χ(t) = t+((1−t)u+−tu−)·((1−t)u+−tu−) and ξ(t) = η(s0, χ(t)) for 0 ≤ t ≤ 1.
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Keep the definition of u+ = max{u, 0} and u− = max{−u, 0} in mind. We
have that if t ∈ (0, 1

2
) ∪ (1

2
, 1), then

I(ξ(t)) ≤ I(χ(t)) = I(χ(t)+) + I(χ(t)−) < I(u+) + I(u−) = I(w2)

and I(ξ(1
2
)) < I(χ(1

2
)) = I(w2). Therefore I(ξ(t)) < I(w2) for t ∈ (0, 1). Since

t+(ξ(t)+)− t+(−ξ(t)−)→ −∞ as t→ 0+ and t+(ξ(t)+)− t+(−ξ(t)−)→ +∞
as t → 1 − 0, we get a t1 ∈ (0, 1) such that t+(ξ(t1)+) = t+(−ξ(t1)−). So
ξ(t1) = ξ(t1)+ − ξ(t1)− ∈M−

∗ and I(ξ(t1)) < I(w2), which is a contradiction.
Hence we obtain ∇I(w2) = 0. �

3.3 A fourth solution

Up to now, we got three solutions w0, w1 and w2. Next we will prove that
there is another solution by a translated argument. We define a C1 functional
Ī : H1

0 (Ω)→ R by

Ī(v) =̇
1

2
T (v)− 1

p

∫ (
|v+ + w0|p − |w0|p − p|w0|p−2w0v

+

)

for v ∈ H1
0 (Ω). Consider the following minimax value

c̄ =̇ inf
γ∈Γ

sup
0≤t≤1

Ī(γ(t)),

where

Γ =̇ {γ ∈ C([0, 1], H1
0 (Ω)) : γ(0) = 0, γ(1) = kvε}

with suitable ε and k.

Lemma 3.14 We have c̄ < 1
N
S
N
2
λ .

Proof. The proof is almost the same as Chen [5, Lemma 5.2]. �

Lemma 3.15 Ī satisfies the (PS)c condition for c̄ < 1
N
S
N
2
λ .

Proposition 3.16 There exists a critical point w̄1 ∈ H1
0 (Ω) of I such that

w̄1 > w0 in Ω. Moreover, w2 6= w̄1.

Proof. Similar to those in the proof of Chen [5, Lemma 5.1], we know that 0
is a local minimizer of Ī. By Lemmas 3.14 and 3.15 and a standard mountain
pass theorem (see Rabinowitz [12], Struwe [14], Willem [18]), we obtain that
there is a critical point v 6= 0 of Ī. By standard argument and maximum
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principle we have that v > 0 in Ω. Set w̄1 = v + w0. Then w̄1 is is a critical
point of I and w̄1 > w0 in Ω.

Next we show that w2 6= w̄1. Suppose that w2 = w̄1. Then we have that
0 ≥ −w−2 ≥ −w−0 . Since −w−2 ∈M− and w0 ∈M +, we get that

T (−w−2 ) < (p− 1)
∫
| −w−2 |p ≤ (p− 1)

∫
| −w−0 |p ≤ (p− 1)

∫
|w0|p < T (w0).

On the other hand, using Lemma 3.1 and assumption (A),

T (w0) <

(
p− 1

p− 2
M−1|f |]

)2

<

(
1

2

(
Mp

p− 1

) 1
p−2
)2

< T (−w−2 ),

which is a contradiction. Thus, we have proved w2 6= w̄1. �

Proposition 3.17 There exists a critical point ŵ1 ∈ H1
0 (Ω) of I such that

ŵ1 < w0 in Ω. Moreover, w2 6= ŵ1.

Proof. For v ∈ H1
0 (Ω), we define the following functional

Î(v) =̇
1

2
T (v)− 1

p

∫ (
|w0 − v−|p − |w0|p + p|w0|p−2w0v

−
)
.

Now using the same procedure as in getting the solution w̄1, we can easily
get the existence of a critical point ŵ1 ∈ H1

0 (Ω) of I and ŵ1 satisfies all the
requirement of Proposition 3.17. �

Proof of Theorem 1.2. From the previous three subsection, we have got five
weak solutions of Eq.(1) w0, w1, w2, w̄1 and ŵ1. Since w1 may equal to w̄1 or
ŵ1, we have obtained at least four solutions w0, w2, w̄1 and ŵ1 of Eq.(1), and
we know that w2 is sign changing. 2
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