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Abstract. In this paper, the periodic self-exciting threshold integer-
valued autoregressive model of order one with period T driven by a

periodic sequence of independent Poisson-distributed random variables

is introduced and analyzed in detail. Basic probabilistic and statistical
properties of the model are discussed as well as parameter estimation

and forecasting.

1. Introduction

Modeling the temporal dependence and evolution of integer-valued (and in
particular low counts) time series is an area of research which is gaining im-
portance in time series analysis. The problem of developing models for integer-
valued time series is, indeed, very challenging because traditional approaches
based on Gaussian autoregressive-moving average processes, are of little use to
accurately describe time series defined over finite range of counts or exhibiting
features such low counts, over dispersion, asymmetric marginal distributions,
or excess of zeros. The need to analyze such data adequately led to a multi-
plicity of approaches and a diversification of models that explicitly account for
such features.

Recently, models for dealing with integer-valued time series exhibiting the so-
called piecewise phenomenon have been proposed in the literature. The funda-
mental reason for introducing such class of models is the need to model random
cyclic behavior that exists in many time series. In the continuous-valued case,
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threshold models are typically characterized by having a linear (ARMA) struc-
ture in each regime; see, e.g., Turkman et al. (2014) for details. However, in the
field of integer-valued time series modelling little research has been done so far
to develop models to cope with time series of counts exhibiting piecewise-type
patterns. For this purpose, Monteiro et al. (2012) introduced a class of self-
exciting threshold integer-valued autoregressive (SETINAR, in short) models of
order one and two regimes, defined by the recursive equation

Xt =

{
α1 ◦Xt−1 + Zt, Xt−1 ≤ R
α2 ◦Xt−1 + Zt, Xt−1 > R

.

Here, (Zt) constitutes a sequence of integer-valued random variables (r.v’s),
and R represents the threshold level. The “αi ◦ ” is the binomial thinning op-

erator of Steutel and van Harn (1979). It is defined as α ◦ X :=
∑X
i=1 Yi, for

X with range N0 = {0, 1, . . .}, where the Yi’s are independent and identically
distributed (i.i.d.) Bernoulli variables with probability α ∈ (0; 1). The authors
discussed probabilistic and statistical properties related with this class of mod-
els. Note that the SETINAR models fall within the state-dependent thinning
class.

In this article, we introduce the periodic self-exciting threshold integer-valued
autoregressive model of order one with two regimes (hereafter referred to as
PSETINAR(2; 1, 1)T ) which generalizes the SETINAR model by considering peri-
odically varying threshold levels. For this class of models, we investigate some
basic probabilistic and statistical properties. Furthermore, parameter estima-
tion and forecasting are also addressed. Finally some concluding remarks are
given.

The PSETINAR(2; 1, 1)T model is defined through the recursive equation

(1.1) Xt =

{
α
(1)
j ◦Xt−1 + Z

(1)
t , Xt−d ≤ Rt

α
(2)
j ◦Xt−1 + Z

(2)
t , Xt−d > Rt

, t ∈ N0

with Rt = rj , for t = j + sT , j = 1, . . . , T and s ∈ N0. Note that for the
jth-period we have

(1.2) Xj+sT = (α
(1)
j ◦Xj+sT−1 + Z

(1)
j+sT )I

(1)
j + (α

(2)
j ◦Xj+sT−1 + Z

(2)
j+sT )I

(2)
j

with I
(k)
j , for k = {1, 2}, defined as

(1.3) I
(1)
j :=

{
1, Xj+sT−d ≤ rj
0, Xj+sT−d > rj

, I
(2)
j = 1− I(1)j .
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The threshold parameter Rt (which is assumed to be known) represents the
level of the process and the regime switch is triggered by the lag-d value of the
series.

Note that the model in (1.1) can be represented as

(1.4) Xt = φt ◦Xt−1 + Zt,

where Zt = Z
(1)
j I

(1)
j + Z

(2)
j I

(2)
j , φt = αj ≡ α

(1)
j I

(1)
j + α

(2)
j I

(2)
j , such as αj ∈

(0, 1), t = j + sT , j = 1, . . . , T , and s ∈ N. Furthermore, the thinning operator
◦ is defined as

φt ◦Xt−1
d
=

Xt−1∑
i=1

Ui,t(α
(1)
j )I

(1)
j +

Xt−1∑
i=1

Ui,t(α
(2)
j )I

(2)
j

with (Ui,t(α
(1)
j )) and (Ui,t(α

(2)
j )), i ∈ N, being periodic sequences of i.i.d.

Bernoulli r.v’s with success probabilities P (Ui,t(α
(k)
j ) = 1) = α

(k)
j , for k ∈

{1, 2}. Moreover, the innovation process (Zt) forms a periodic sequence of in-
dependent Poisson-distributed r.v’s with mean vt, Zt ∼ Po(vt), where vt = λj ,
t = j + sT , j = 1, . . . , T , s ∈ N0. It is assumed that Zt is independent of Xt−1
and αt ◦Xt−1, for every t.

The PSETINAR(2; 1, 1)T process in (1.1) can be embedded in the following vec-
torial form

(1.5) Yt = A ◦Yt−1 + Mt,

being Yt = [X1+tT X2+tT · · · XT+tT ]′, where ′ denotes matrix transpose

A =


0 0 . . . α1

0 0 . . . α1α2

...
. . .

. . .
...

0 0 . . .
T−1∏
j=0

αT−j
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and

Mt := B ◦ Zt =



1 0 . . . 0 0
α2 1 . . . 0 0
α3α2 α3 . . . 0 0
...

. . . . . . . . .
...

T−1−2∏
i=0

αT−1−i

T−1−3∏
i=0

αT−1−i . . . 1 0

T−1−1∏
i=0

αT−i

T−1−2∏
i=0

αT−i . . . αT 1


◦


Z1+tT

Z2+tT

...
ZT+tT

 .

Note that, A ◦Y is a T -dimensional random vector with i-th component

[A ◦Y]i =

T−1∑
j=1

0 ◦Xj+tT +

 i∏
j=1

αj

 ◦XT+tT ,

for i = 1, . . . , T . The components of B ◦ Z can be defined similarly.

The rest of the paper is organized as follows: In Section 2, we demonstrate
the existence of a strictly ciclostationary PSETINAR(2; 1, 1)T process satisfying
(1.5). Furthermore, the expression for the periodic mean is given. Parameter
estimation is covered in Section 3. Finally, forecasting is discussed in Section
4.

2. Some properties of the PSETINAR model with two regimes

Let (Xt) be the PSETINAR(2; 1, 1)T process defined in (1.2). We first prove
that there exists a strictly ciclostationary PSETINAR(2; 1, 1)T process satisfying

(1.2). Note that, since α
(k)
j ∈ (0, 1) for j = 1, . . . , T and k = 1, 2, and that

P (Z
(k)
j+sT = 0) ∈ (0, 1), for k = 1, 2, it follows by Lemma 3 in Franke and

Subba Rao (1995) that any solution (Yt) of (1.5) is an irreducible and aperiodic
Markov chain on N0. Thus, the existence of a ciclostationary solution of (1.5)
relies upon the largest eigenvalue of the A matrix in (1.5). The result is quoted
below.

Proposition 2.1. Let (Yt) be the PSETINAR(2; 1, 1)T process defined in (1.5).
If E||Mt|| < +∞ and if the largest eigenvalue, say η, of A is less than one,
then there exists a strictly ciclostationary PSETINAR(2; 1, 1)T process satisfying
(1.5).

Proof. Proposition B in Dion et al. (1995, p. 126) allows to concluded that

(2.6) α
(1)
j I

(1)
j + α

(2)
j I

(2)
j < 1, j = 1, . . . , T ⇔ η < 1.
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Conditions in (2.6) imply that all roots of the characteristic polynomial of A
lie inside the unit circle. Furthermore, if E||Zt|| < ∞ it follows by Theorem
1 in Franke and Subba Rao (1995) that there exists a strictly ciclostationary
PSETINAR(2; 1, 1)T process satisfying (1.5). �

Without employing any distributional assumption on the periodic sequences

Z
(1)
t and Z

(2)
t , the periodic mean of the process is given in the next result. For

simplicity in notation we define

u
(k1,k2,...,kj)

1,2,...,j := E
[
XsT |X1+sT−d ∈ r(k1)

1 , X2+sT−d ∈ r(k2)
2 , . . . , Xj+sT−d ∈ r

(kj)

j

]
,

p
(k1,k2,...,kj)

1,2,...,j := P
[
X1+sT−d ∈ r(k1)

1 , X2+sT−d ∈ r(k2)
2 , . . . , Xj+sT−d ∈ r

(kj)

j

]
,

for k1, k2, . . . , kj = {1, 2}, where rj denotes the regime corresponding to the
period j, i.e.,

(2.7) rj =

{
regime r

(1)
j , Xj+sT−d ≤ rj

regime r
(2)
j , Xj+sT−d > rj

, t ∈ N0.

Lemma 2.2. Let (Xt) be the PSETINAR(2; 1, 1)T process in (1.5). The mean of
the process takes the form

E[Xt] =
2∑

k1=1

2∑
k2=1

· · ·
2∑

kj=1

[
α
(k1)
1 α

(k2)
2 · · ·α(kj)

j × u(k1,k2,...,kj)1,2,...,j × p(k1,k2,...,kj)1,2,...,j

]
+

j∑
l=1

λl

(
2∑

kl+1=1

· · ·
2∑

kj=1

α
(kl+1)
l+1 · · ·α(kj)

j × pkl+1,...,kj
l+1,...,j

)
,

for t = j + sT, j = 1, . . . , T and s ∈ N0.

3. Parameters estimation

In this section, we consider the parameter estimation of the PSETINAR(2; 1, 1)T
process. In particular, the conditional least squares (CLS) and conditional max-
imum likelihood methods are adopted. For this purpose, let (X1, . . . , Xn) be a
sequence of r.v’s satisfying (1.4) and denote by

θ := (α
(1)
1 , α

(2)
1 , λ1, . . . , α

(1)
T , α

(2)
T , λT ),

the vector of unkown parameters. Recall that Rt is assumed to be known.

3.1. Conditional least squares estimators. The CLS-estimators

θ̂CLS := (α̂
(1)
1,CLS , α̂

(2)
1,CLS , λ̂1,CLS , . . . , α̂

(1)
T,CLS , α̂

(2)
T,CLS , λ̂T,CLS),
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are obtained by minimizing the expression

Q(θ) :=

N−1∑
s=0

T∑
j=1

(
Xj+sT − gj(θj , Xj+sT−1)

)2

with N and T denoting the number of complete cycles and number of periods,

respectively. Moreover, θj :=
(
α
(1)
j , α

(2)
j , λj

)
and the function gj takes the form

gj(θj , Xj+sT−1) = α
(1)
j Xj+sT−1I

(1)
j + α

(2)
j Xj+sT−1I

(2)
j + λj .

Solving the systems of the form

(3.1)


∂Q

∂α
(1)
j

= 0

∂Q

∂α
(2)
j

= 0, j = 1, . . . , T,

∂Q
∂λj

= 0

we obtain the following set of CLS-estimators

α̂
(1)
j,MQC =

N
N−1∑
s=0

Xj+sTXj+sT−1I
(1)
j −

N−1∑
s=0

Xj+sT

N−1∑
s=0

Xj+sT−1I
(1)
j

N
N−1∑
s=0

X2
j+sT−1I

(1)
j −

(
N−1∑
s=0

Xj+sT−1I
(1)
j

)2

α̂
(2)
j,MQC =

N
N−1∑
s=0

Xj+sTXj+sT−1I
(2)
j −

N−1∑
s=0

Xj+sT

N−1∑
s=0

Xj+sT−1I
(2)
j

(N
N−1∑
s=0

X2
j+sT−1I

(2)
j −

(
N−1∑
s=0

Xj+sT−1I
(2)
j

)2 ,

λ̂j,MQC = N−1

(
N−1∑
s=0

Xj+sT − α(1)
j

N−1∑
s=0

Xj+sT−1I
(1)
j − α(2)

j

N−1∑
s=0

Xj+sT−1I
(2)
j

)
for j = 1, . . . , T . The consistent and asymptotic distribution of the CLS-

estimators is established in the result given below.

Theorem 3.1. The CLS-estimators are strongly consistent and asymptotically
normal, i.e.,

(3.2)
√
n(θ̂ − θ)

d−→ N(0,V−1WV−1),
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where V and W are square matrices of order 3T defined by blocks of 3 × 3
given by

V =


Ψ:1 0 . . . 0
0 Ψ:2 . . . 0
...

...
. . .

...
0 0 . . . Ψ:T

 and W =


Ω:1 0 . . . 0
0 Ω:2 . . . 0
...

...
. . .

...
0 0 . . . Ω:T

 ,

where

Ψ(k,l):j := E

[
∂

∂θk:j
gj(θj , Xj+sT−1)

∂

∂θl:j
gj(θj , Xj+sT−1)

]
,

Ω(k,l):j := E

[
U2
j+sT

∂

∂θa:j
gj(θj , Xj+sT−1)

∂

∂θl:j
gj(θj , Xj+sT−1)

]
,

are the elements of the matrices Ψ:j and Ω:j , j = 1, . . . , T , respectively, with

k, l ∈ {1, 2, 3}; j = 1, . . . , T and θj := (θ1:j , θ2:j , θ3:j) ≡
(
α
(1)
j , α

(2)
j , λj

)
, are

the parameters associated to j-th period.

Proof. Consistency and asymptotic normality can be proved using the results
of Klimko and Nelson (1978, sec.3). It is easily checked that all regularity con-
ditions by Klimko and Nelson (1978, p. 634) are satisfied, and thus, by their
Theorem 3.1 it follows that the CLS-estimators are strongly consistent. Fur-
thermore, in proving asymptotic normality we have to check first conditions
(A)-(C) in Monteiro et al. (2012, p. 2725). To this extent, note first that con-
ditions (A) and (B) follow easily by the arguments given in Monteiro et al.
(2012). Finally, note that each block Ψ:j of matrix V in (3.3) is defined as

Ψ:j =

[
q
(1)
j m

(1)
j,2 0 q

(1)
j u

(1)
j

0 q
(2)
j m

(2)
j,2 q

(2)
j u

(2)
j

q
(1)
j u

(1)
j q

(2)
j u

(2)
j 1

]
,

where

u
(1)
j := E [Xj−1+sT |Xj−1+sT−d ≤ rj ] u(2)

j := E [Xj−1+sT |Xj−1+sT−d > rj ]

m
(1)
j,i := E

[
Xi

j−1+sT |Xj−1+sT−d ≤ rj
]
m

(2)
j,i := E

[
Xi

j−1+sT |Xj−1+sT−d > rj
]

q
(1)
j := P [Xj+sT−d ≤ rj ] q(1)j := P [Xj+sT−d > rj ] .

Noticing that det|Ψ:j | 6= 0, ∀j = 1, . . . , T lead us to conclude that V is
invertible and condition (C) is thus fulfilled. Thus, Theorem 3.2 of Klimko
and Nelson (1978) is thereby satisfied implying that the CLS-estimators are
asymptotically normal. This concludes the proof. �
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3.2. Conditional maximum likelihood estimators. For a fixed value of x0,
the conditional likelihood function for the PSETINAR(2; 1, 1)T takes the form

L(θ) :=
N−1∏
s=0

T∏
j=1

Pj (Xj+sT = xj+sT |Xj−1+sT = xj−1+sT )

=
N−1∏
s=0

T∏
j=1

pj

(
xj−1+sT , xj+sT , α

(1)
j I

(1)
j + α

(2)
j I

(2)
j , λj

)
with

pj

(
xj−1+sT , xj+sT , α

(1)
j I

(1)
j + α

(2)
j I

(2)
j , λj

)
=

= e−λj

M∗∑
m=0

2∑
k=1

Cxj−1+sT
m α

(k)
j

m (
1− α(k)

j

)(xj−1+sT−m) λxj+sT−m

(xj+sT −m)!
I
(k)
j

≡ pj

(
xj−1+sT , xj+sT , α

(1)
j I

(1)
j , λj

)
+ pj

(
xj−1+sT , xj+sT , α

(2)
j I

(2)
j , λj

)
= pj (xj−1+sT , xj+sT )

(1)
+ pj (xj−1+sT , xj+sT )

(2)

and M∗ := min(xj−1+sT , xj+sT ).

The CML-estimators

θ̂CML := (α̂
(1)
1,CML, α̂

(2)
1,CML, λ̂1,CML, . . . , α̂

(1)
T,CML, α̂

(2)
T,CML, λ̂T,CML),

are obtained by maximizing the conditional log-likelihood function

l(θ) =
N−1∑
s=0

T∑
j=1

ln pj

(
xj−1+sT , xj+sT , α

(1)
j I

(1)
j + α

(2)
j I

(2)
j , λj

)
.

From the partial derivatives of first-order we obtain the set of systems

I
(k)
j

α
(k)
j (1−α(k)

j )

N−1∑
s=0

(xj+sT − xj−1+sTα(k)
j )−

−λj
pj

(
xj−1+sT , xj+sT − 1, α

(1)
j I

(1)
j + α

(2)
j I

(2)
j , λj

)
pj

(
xj−1+sT , xj+sT , α

(1)
j I

(1)
j + α

(2)
j I

(2)
j , λj

) = 0

N−1∑
s=0

pj
(
xj−1+sT ,xj+sT−1,α(1)

j I
(1)
j +α

(2)
j I

(2)
j ,λj

)
pj

(
xj−1+sT ,xj+sT ,α

(1)
j I

(1)
j +α

(2)
j I

(2)
j ,λj

) = N

,
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for k = 1, 2 and j = 1, . . . , T . In order to solve those systems numerical proce-
dures have to be employed. Note, however, that the CML-estimates for the λ’s,
are readily available from those for the α’s through the following expression

λ̂j,CML =
1

N

N−1∑
s=0

(
xj+sT − α̂(k)

j,CMLxj−1+sT

)
, j = 1, . . . , T.

The following result establishes the consistency and the asymptotic distribution
of the CML-estimators.

Theorem 3.2. Let (Xt) be the PSETINAR(2; 1, 1)T model in (1.1). The CML-
estimators are asymptotically normal, i.e,

√
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α̂
(1)
1 − α

(1)
1

α̂
(2)
1 − α

(2)
1

λ̂1 − λ1
...

α̂
(1)
T − α

(1)
T

α̂
(2)
T − α

(2)
T

λ̂T − λT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d→ N(0, I−1), where I =


M1 0 . . . 0
0 M2 . . . 0
...

...
. . .

...
0 0 . . . MT

 ,

is the Fisher information matrix with

Mj =



−E

[
∂2l(θ)

∂(α
(1)
j )2

]
−E

[
∂2l(θ)

∂α
(1)
j ∂α

(2)
j

]
−E

[
∂2l(θ)

∂α
(1)
j ∂λj

]

−E

[
∂2l(θ)

∂α
(1)
j ∂α

(2)
j

]
−E

[
∂2l(θ)

∂(α
(2)
j )2

]
−E

[
∂2l(θ)

∂α
(2)
j ∂λj

]

−E

[
∂2l(θ)

∂α
(1)
j ∂λj

]
−E

[
∂2l(θ)

∂α
(2)
j ∂λj

]
−E

[
∂2l(θ)

∂λ2
j

]


,



10 ISABEL PEREIRA MANUEL SCOTTO RAQUEL NICOLETTE*

for j = 1, . . . , T , and

E

[
∂2l(θ)

∂(α
(k)
j )2

]
= N

+∞∑
a

+∞∑
b

P (Xj+sT = b)
I
(k)
j

α
(k)
j (1− α(k)

j )

{[
(2α

(k)
j − 1)b− aα(k)2

j

]
×

×pj(b|a) + 2(1− α(k)
j )λjpj(b− 1|a)(k) + λ2

jpj(b− 2|a)(k)+

+2(1− α(k)
j )λjpj(b− 1|a)(k) + λ2

jpj(b− 2|a)(k) − λ2
j

p2j (b− 1|a)(k)

pj(b|a)(k)

}
;

E

[
∂2l(θ)

∂α
(k)
j ∂λj

]
=

N

α
(k)
j (1− α(k)

j )

+∞∑
a

+∞∑
b

P (Xj+sT = b)

{
− pj(b− 1|a)(k)−

−λjpj(b− 2|a)(k) + λj
p2(b− 1|a)(k)

p(b|a)(k)

}
;

E

[
∂2l(θ)

∂λ2
j

]
= N

+∞∑
a

+∞∑
b

P (Xj+sT = b)

{
λjpj(b− 2|a)(k) −

p2j (b− 1|a)(k)

pj(b|a)(k)

}
,

for k = 1, 2.

Proof. In order to derive the large sample distribution of the CML-estimators,
we use the same arguments as in Franke and Seligmann (1993, pp. 324–325).
Note that the consistency and asymptotic distribution of the CML-estimators
for the INAR(1) process can be obtained by means of Theorems 2.1 and 2.2 in
Billingsley (1961, pp. 10–13). Since the innovation process is Poisson-distributed
the arguments used by Monteiro et al. (2010, 2012) for the periodic INAR of
order one and period T , PINAR(1)T , and the SETINAR(2; 1, 1) process can be
easily generalized for the SETINAR(2; 1, 1) with periodic structure. We omit the
details. �

4. Point Prediction in the PSETINAR model

In this section we consider the forecasting of future values Xi+NT+h, with
h = j + lT , given past observations up through time i+NT , i.e,

(X1, . . . , XT , . . . , Xi+NT , . . . ,+Xi+NT ).

First note that by iterating equation (1.1) it follows that Xt can be expressed
as

Xt
d
=

n−1∏
j=0

φt−j

 ◦Xt−n +

n−1∑
i=1

i−1∏
j=0

φt−j

 ◦ Zt−i + Zt

≡ βt,n ◦Xt−n +

n−1∑
i=0

βt,i ◦ Zt−i,
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where, for t > i

βt,i :=

{ ∏i−1
j=0 φt−j , i > 0

1, i = 0
=

{
βt,jβ

l
T,T , i = j + lT, j = 1, . . . , T

1, i = 0
,

leading to obtain

(4.1) Xi+NT+h
d
= βi+NT+h,h ◦Xi+NT +

h−1∑
m=0

βi+NT+h,m ◦ Zi+NT+h−m.

Since h = j + lT , it follows that

Xi+NT+h
d
= βi+j+(N+l)T,j+lT ◦Xi+NT +

j+lT−1∑
m=0

βi+j+(N+l)T,m ◦ Zi+j+(N+l)T−m.

Due to the periodicity of β’s, βi+j+(N+l)T,j+lT = βi+j,j+lT = βi+j,jβ
l
T,T , and

considering the relation

lT−1∑
m=0

βj+lT,m ◦ Zj+lT−m
d
=

l−1∑
w=0

T−1∑
m=0

βj+lT,mβ
l
T,T ◦ Zj+(l−w)T−m,

the expression in (4.1) takes the form

(4.2) Xi+NT+h
d
=
(
βi+j,jβ

l
T,T

)
◦Xi+NT + Vi+j+lT

with

Vi+j+lT :=

i−1∑
m=0

βi+j,m◦Zi+j−m+NT +

l−1∑
w=0

T−1∑
m=0

βi+j+(N+l)T,m+j+Tw ◦Zi+(N+l−w)T−m.

In order to generate the h-step ahead prediction the mean, median or mode of
the predictive distribution of Xi+NT+h|Xi+NT can be employed as a point fore-
cast. Note that the median and mode are considered as coherent (i.e., integer-
valued) predictions, whereas the mean is not. In order to evaluate the prediction
performance given by the mean, median or mode of the predictive distribution
we can use the square root of the mean squared error (RMSE), the mean
absolute error (MAE) or the loss function everything or nothing (LFEN), re-
spectively. Note that the h-step-ahead point predictor that minimizes the mean
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square error (MSE) is given by

X̂i+NT+h = E [Xi+NT+h|Xi+NT ]

= E
[(
βi+j,jβ

l
T,T

)
◦Xi+NT |Xi+NT

]
+

j−1∑
m=0

βi+j,m

(
λ
(1)
i+j−mp

(1)
i+j−m + λ

(2)
i+j−mp

(2)
i+j−m

)
+

l−1∑
w=0

T−1∑
m=0

βi+j,m+j+Tw

(
λ
(1)
i−mp

(1)
i−m + λ

(2)
i−mp

(2)
i−m

)
with

p
(1)
i+j−m := P (Xi+j−m+NT−1 ≤ ri+j−m) ;

p
(2)
i+j−m = 1− p(1)i+j−m, i+ j > m;

p
(1)
i−m := P

(
Xi+(N+l−w)T−m−1 ≤ ri−m

)
;

p
(2)
i−m = 1− p(1)i−m, i > m.

Turning now to the particular case h = 1, the one-step-ahead predictive func-
tion is given by

P (Xj+NT+1 = y|Xj+NT = x)

=
min(x,y)∑
m=0

2∑
k=1

Cxm

(
α
(k)
j+1

)m (
1− α(k)

j+1

)x−m
e−λ

(k)
j+1

(
λ
(k)
j+1

)(y−m)

(y−m)! I
(k)
j+1

with λ
(k)
j+1 = E[Z

(k)
j+NT+1], k ∈ {1, 2}. Finally, from (4.2), the most commonly

used one-step-ahead predictor of Xj+NT+1, takes the form

X̂j+NT+1 =
(
α
(1)
j+1Xj+NT + λ

(1)
j+1

)
P (Xi+NT ≤ ri+1)

+
(
α
(2)
j+1Xj+NT + λ

(2)
j+1

)
P (Xi+NT > ri+1).

5. Concluding Remarks

This paper has presented the periodic self-exciting threshold integer-valued
autoregressive model of order one with period T , driven by a periodic sequence
of independent Poisson-distributed random variables. Basic probabilistic and
statistical properties of the model are established as well as parameter estima-
tion and forecasting.

We would like to stress here that an important issue when fitting PINAR models
lies with parsimony. Even every simple PINAR model can have an inordinately
large number of parameters. This is also true when dealing with PSETINAR
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models. Therefore, the development of procedures for dimensionality reduction
is an impeding problem. This remains a topic of future research.
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