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Abstract

Necessary and sufficient conditions are given on matrices A, B and S, having en-
tries in some field F and suitable dimensions, such that the linear span of the terms
AiSB j over F is equal to the whole matrix space.

This result is then used to determine the cardinality of subsets of F[A]SF[B] when
F is a finite field.
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1. Introduction

We start by stating a purely linear algebra problem:

Problem 1.1. Let m,n be integers and F be any field. Let A,S,B be matrices hav-
ing entries in F of dimensions m ×m, m × n and n× n respectively. Give necessary
and sufficient conditions for the F-linear span of {AiSB j }i, j ∈N0 to be equal to the
whole matrix space Fm×n .

A solution to this problem will be provided in Section 3.
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Notice that the previous problem has also an impact in Cryptography since it gives
necessary and sufficient conditions for the attack in [1, Section 3] to be performed
in provable polynomial time.

Starting with Section 4 we will assume that the base field F represents the finite
field F = Fq having cardinality q. Under these conditions and the conditions
that gcd(m,n) = 1 and the characteristic polynomials of the matrices A and B are
irreducible we are able to show in Section 4 that {AiSB j }i, j ∈N0 spans the whole
vector space Fm×n as soon as S , 0.

In Section 5 we will prove that whenever the set {AiSB j }i, j ∈N0 spans the whole
matrix ring as a vector space over the finite field F, the cardinality of subsets of
F[A]SF[B] can be explicitly computed. A particular instance of this computation
(i.e. when S is the identity matrix and A, B have irreducible characteristic polyno-
mial) has already been approached via inequalities in [2].

2. Notation and Preliminaries

Let F be a field and denote by 〈S〉F the linear span over F of a set S of elements
in some F-vector space. Entries, rows and columns of matrices are indexed by
integers starting from zero; In and, respectively, 0m×n denote the n × n identity
matrix and the m × n zero matrix — indices may be omitted when no ambiguity
arises.

Moreover, given M ∈ Fn×n ,

• the minimal polynomial µM of M is the monic generator of the ideal {p(s) ∈
F[s] : p(M) = 0};

• the characteristic polynomial of M is χM (s) = det(sI − M);

• EM is the set of eigenvalues of M , i.e., the zeros of χM in some field exten-
sion of F;

• LλM and RλM are the left and, respectively, right eigenspaces of M associated
with λ ∈ EM ;

• LM =
⋃

λ∈EM

LλM \ {0} and RM =
⋃

λ∈EM

RλM \ {0} are the sets of left and,

respectively, right eigenvectors of M .

• M is cyclic (or non-derogatory) if one of the following equivalent conditions
holds true:
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– µM = χM ;

– M is similar to a companion matrix;

– each eigenspace of M has dimension 1, i.e., every eigenvalue has geo-
metric multiplicity 1.

The definition of the Kronecker product and some of its properties are given next.
More details may be found, for instance, in [3, Section 12.1].

The Kronecker product of matrices M ∈ Fm×p and N ∈ Fn×q is the block matrix

M ⊗ N = [mi, j N]0≤i<m,0≤ j<p ∈ F
mn×pq ,

representing the tensor product of the linear maps corresponding to M and N .
Therefore, it satisfies the property

(M ⊗ N )(P ⊗ Q) = MP ⊗ NQ, (1)

whenever the matrix products on the right side can be computed.

The (column) vectorization of M is the (column) vector v(M) ∈ Fmp formed by
stacking the columns of M . Note that v : Fm×p → Fmp is an isomorphism of
F-vector spaces, establishing a correspondence between entry (i, j) of M and entry
i + m j of v(M).

Using this notation, given three matrices M,X,N of suitable dimensions,

v(M X N ) = (N>⊗ M) v(X ). (2)

3. A basis for the vector space of m × n matrices

Let matrices A, B, and S as in Problem 1.1 and define

VA,B;S = 〈{AiSB j }i, j≥0〉F.

In this and in the following section, conditions will be given, which ensure that the
dimension of VA,B;S is maximal, i.e., equal to mn.

Theorem 3.1. Let A ∈ Fm×m , B ∈ Fn×n , and S ∈ Fm×n . Then, the following
conditions are equivalent:

VA,B;S = Fm×n; (3)

uSv , 0, ∀u ∈ LA,v ∈ RB . (4)
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The proofs of the implications of Theorem 3.1 will be shown separately. In partic-
ular, “(3) ⇒ (4)” will be demonstrated later on as a consequence of formula (14),
concluding the proof of the theorem, while the converse implication will be stated
as an independent proposition after two preparatory lemmas.

The first one provides a necessary condition for (4) and, as a consequence of The-
orem 3.1, for (3).

Lemma 3.2. If condition (4) holds, then both A and B are cyclic.

Proof. Let E be an extension field containing all eigenvalues of A and B. Given any
left eigenvector u ∈ LA, consider the linear map γu : En → E, x 7→ uSx, whose
kernel has at least dimension n − 1. If B is not cyclic, it has a right eigenspace
RαB ⊆ E

n of dimension greater than one. Therefore, there exists a nonzero vector
v ∈ RαB ∩ ker γu such that γu (v) = uSv = 0.

The same reasoning may be applied exchanging the role of A and B, thus showing
that if either A or B is not cyclic, condition (4) cannot be satisfied. �

The second lemma is well known in the case F = C (see [4, 5]). For completeness,
a self-contained proof for any field F will be given here.

Lemma 3.3. Let H ∈ Fp×p , K ∈ Fp×q and assume that EH ⊆ E, extension field
of F. Then, for any d ≥ deg µH ,

rankF
[
K HK · · · Hd−1K

]
= p⇔ rankE

[
λI − H K

]
= p, ∀λ ∈ EH .

Proof. Observe that for any matrix M with entries in F, rankF M = rankE M , since
the rank depends only on the invertibility (in F) of square submatrices of M . So,
this equivalent statement will be proved:

rankE
[
K HK · · · Hd−1K

]
< p⇔ ∃λ ∈ EH : rankE

[
sI − H K

]
< p.

“⇒”: Be u ∈ E1×p a nonzero vector such that u
[
K HK · · · Hd−1K

]
= 0 and

be a ∈ E[s] any generator of the principal ideal I = { f ∈ E[s] : u f (H) = 0}.
Since µH ∈ I, deg a ≤ deg µH ≤ d and a(λ) = 0 for some λ ∈ EH . Write

a(s) = (λ − s)b(s), with b(s) =
d−1∑
i=0

bi si < I, and let v = ub(H). Then, v , 0,

vK = ub(H)K =

d−1∑
i=0

biuH iK =

d−1∑
i=0

bi0 = 0,

and v(λI − H) = u(λI − H)b(H) = ua(H) = 0. Thus, v
[
λI − H K

]
= 0.
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“⇐”: There exist λ ∈ EH and a nonzero u ∈ E1×p such that u
[
λI − H K

]
= 0,

i.e., uH = λu and uK = 0. Hence,

u
[
K HK · · · Hd−1K

]
= u

[
K λK · · · λd−1K

]
= 0.

�

Proposition 3.4. Under the assumptions of Theorem 3.1, (4)⇒ (3).

Proof. Assuming that condition (4) is satisfied, a sequence of implications will be
established, which prove that also condition (3) holds true.

First of all, note that matrices {AiSB j } generate Fm×n if and only if the corre-
sponding vectors {v(AiSB j )} generate Fmn . Therefore, we get that

(3)⇔ 〈{v(AiSB j )}i, j≥0〉F = F
mn . (5)

By (2) and (1), it follows that

v(AiSB j ) = v(AiSB j In ) = (In ⊗ Ai ) v(SB j ) = (In ⊗ A)i v(SB j ).

Let F = In ⊗ A ∈ Fmn×mn , which is a block diagonal matrix, and be G the mn × n
matrix whose columns are v(SB j ), 0 ≤ j < n. The (right) image of G, i.e., its
column span, corresponds through v to the span of SB j , 0 ≤ j < n. Analogously,
for any 0 ≤ i < m, the image of F iG corresponds to the span of AiSB j , 0 ≤ j < n.
Hence, by the Cayley-Hamilton Theorem,

〈{v(AiSB j )}i, j≥0〉F= img
F

[
G FG · · · Fm−1G

]
. (6)

Observe that the degree of the minimal polynomial µF = µI ⊗A = µA cannot be
greater than m and so, by (5), (6), and Lemma 3.3, we can state that

(3)⇔ img
F

[
G FG · · · Fm−1G

]
= F

mn

⇔ rankE
[
λI − F G

]
= mn, ∀λ ∈ EA, (7)

being E an extension field of F containing the eigenvalues of F, i.e., of A.

In order to determine the conditions that guarantee that the rank of the polynomial
matrix C(s) =

[
sI − F G

]
does not drop as s ∈ EA, it is necessary to analyze the

structure of C(s) with greater detail.

Denote by Gi , 0 ≤ i < n, the m × n blocks forming matrix G. Then

C(s) =
[
sI − F G

]
=



sI − A G0
sI − A G1

. . .
...

sI − A Gn−1



. (8)
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For any α ∈ EA, the rank of C(α) is mn if and only if wC(α) , 0 for every
w , 0. In particular, we shall consider only nonzero vectors w such that w(αI −
F) = 0, since otherwise condition wC(α) , 0 would be obviously satisfied. As
αI − F = In ⊗ (αI − A), it turns out that w(αI − F) = 0 if and only if w =[
u0 u1 · · · un−1

]
, with ui ∈ LαA, 0 ≤ i < n. Under this condition,

wC(α) =
[
u0 u1 · · · un−1

]


αI − A G0
αI − A G1

. . .
...

αI − A Gn−1


=

[
0 u0G0 + u1G1 + · · · + un−1Gn−1

]
. (9)

By Lemma 3.2, A is cyclic. It follows that, since the eigenspace Lα
A

has dimension
1, it is generated by one (eigen)vector, say u , 0, whence ui = γiu, γi ∈ E

for 0 ≤ i < n, not all zero. Summing up, the rank of C(α) is mn if the linear
combination

γ0uG0 + γ1uG1 + · · · + γn−1uGn−1

is not zero for any choice of the (not all zero) coefficients γi , i = 0, . . . ,n − 1, i.e.,
if the vectors {uGi }0≤i<n are linearly independent. Hence, by equivalence (7), it
follows that

(3)⇐ {uGi }0≤i<n are E-linearly independent, ∀u ∈ LA. (10)

Consider now any u ∈ E1×m and define the matrix

D = (In ⊗ u)G =



uG0
uG1
...

uGn−1



∈ En×n .

Moreover, let (SB j )i be the i-th column of SB j for every 0 ≤ i < n and 0 ≤ j < n.

By definition, the j-th column of G is v(SB j ), which contains, stacked, vectors
(SB j )i . Therefore, in particular, the j-th column of Gi , is (SB j )i . Consequently,
the j-th component of uGi , which is the entry at (i, j) of D, is u(SB j )i . At the
same time, this value is the i-th component (column) of uSB j , i.e, the entry at ( j, i)
of the matrix whose rows are uSB j . In other words,

D>=



uSB0

uSB1

...

uSBn−1



.

6



Since D is square, its rows are linearly independent if and only if its columns share
the same property. Applying again Lemma 3.3 with H = B> and K = (uS)>, we
get that

{uGi : 0 ≤ i < n} are E-linearly independent ⇔ (11)

{uSB j : 0 ≤ j < n} are E-linearly independent ⇔

rankE
[
(uS)> B>(uS)> · · · (B>)n−1(uS)>

]
= n ⇔

rankE
[
λI − B> (uS)>

]
= rankE

[
λI − B

uS

]
= n, ∀λ ∈ EB .

As before, define Eu (s) =
[
sI−B
uS

]
∈ E(n+1)×n[s] and consider any β ∈ EB.

By Lemma 3.2, also matrix B is cyclic, being rankE
[
βI − B

]
= n − 1. Therefore,

the rank of Eu (β) is actually n if Eu (β)v , 0 for any v ∈ R
β
B. In this case,

condition Eu (β)v , 0 reduces to uSv , 0 and, consequently,

rankE

[
λI − B

uS

]
= n, ∀λ ∈ EB . ⇐ uSv , 0, ∀v ∈ RB . (12)

In particular, considering only u ∈ LA, as in condition (4), the sequence of impli-
cations (12), (11) and (10) concludes the proof. �

In order to prove the converse implication of Proposition 3.4 we introduce the
necessary notation and state a fundamental result.

Given A ∈ Fm×m , B ∈ Fn×n , and S ∈ Fm×n , let ri, j = v(AiSB j ) and define

RA,B;S =
[
r0,0 r1,0 · · · rm−1,0 r0,1 r1,1 · · · rm−1,n−1

]
∈ Fmn×mn . (13)

Then, given v ∈ Fn , diag(v) ∈ Fn×n is the diagonal matrix defined by the compo-
nents of v. Moreover, let diag(M) = diag

(
v(M)

)
for any matrix M .

Finally, let xn =
[
1 x · · · xn−1

]
and beVn

x0,x1, ...,xl
the matrix whose rows are

x0
n , x1

n , . . . , xl n .

Proposition 3.5. Let A ∈ Fm×m , B ∈ Fn×n , and S ∈ Fm×n . Suppose that uh ∈
L
αh

A
, 0 ≤ h < s, and vk ∈ L

βk
B , 0 ≤ k < t, are the rows and, respectively, columns

of matrices U ∈ Es×m and V ∈ En×t in a suitable extension field E of F. Then,

(V>⊗ U)RA,B;S = diag(USV )(Vn
β0, ..., βt−1

⊗ Vm
α0, ...,αs−1

). (14)
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Proof. Observe that, for any row uh of U and column vk of V , the following equal-
ities hold true: uh Ai = αi

h
uh and B jvk = β

j
k
vk . Thus, by (2),

(v>k ⊗ uh ) v(AiSB j ) = uh AiSB jvk = uhSvk αi
h β

j
k

and from (13) it follows that

(v>k ⊗ uh )RA,B;S = uhSvk
(
β
n

k ⊗ α
m
h

)
.

Stacking up all these equalities, we get equation (14). �

Using Proposition 3.5, we are finally in a position to complete the proof of Theo-
rem 3.1.

Proof (of Theorem 3.1). Given Proposition 3.4, it only remains to show that (3)⇒
(4).

Suppose that the nonzero left-eigenvector u ∈ Lα
A

and right-eigenvector v ∈ RβB
satisfy uSv = 0. Then, taking U = u and V = v in formula (14), we get

(v>⊗ u)RA,B;S = (uSv)(β
n
⊗ αm ) = 0,

showing that RA,B;S does not have full rank. Therefore, its columns v(AiSB j ) are
linearly dependent and the set of matrices AiSB j cannot generate Fm×n . �

Example 3.6. Consider the following matrices, with m,n ≥ 2:

A=

[
0 0

Im−1 0

]
∈Fm×m , B =

[
0 In−1
0 0

]
∈Fn×n , S =

[
1 0
0 0(m−1)×(n−1)

]
∈Fm×n .

Note that A and B are the left and, respectively, right companion matrices of
µA(s) = sm and µB (s) = sn . Therefore, they are cyclic, their only eigenvalue is
λ = 0, they are nilpotent, and their eigenspaces are generated by u =

[
1 0 · · · 0

]

(left eigenvector of A) and v =
[
1 0 · · · 0

]>
(right eigenvector of B).

Even though S has rank 1, uSv = 1 , 0, whence condition (4) of Theorem 3.1
is satisfied. Therefore, F–linear combinations of matrices Ei, j = AiSB j , with
0 ≤ i < m and 0 ≤ j < n, generate Fm×n for any field F.

Indeed, it is straightforward to check that each Ei, j is one of the mn elements of the
canonical basis of Fm×n , having its unique nonzero entry, equal to 1, at position
(i, j). In other words, v(Ei, j ) is the i + m j-th vector of the canonical basis of Fmn .

To the authors’ knowledge, equality (3) and the equivalent condition that was pre-
sented in Theorem 3.1 have not been considered in the literature before (not even
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when m = n: see, for instance, the survey [6] containing a small section about
spanning sets of matrix algebras).

A comparison with previous results can be made only in the case m = n = 2 and
S = I, verifying that F2×2 is spanned by linear combinations of AiB j , i, j = 0,1, if
and only if it can be generated by A and B as a matrix algebra (see, for example,
[7], where this problem is thoroughly investigated). Indeed, in the following it is
shown that a well-known criterium for the latter problem, the invertibility of the
commutator of A and B, is equivalent to condition (4) presented in Theorem 3.1.

Proposition 3.7. Let A,B ∈ F2×2. Then, the commutator [A,B] = AB − BA is
invertible if and only if uv , 0. for any u ∈ LA and v ∈ RB.

Proof. We will show that [A,B] is singular if and only if there exist vectors u ∈ LA

and v ∈ RB such that uv = 0.

Notice that if A is not cyclic, i.e., it is a multiple of the identity, or B = 0, both
conditions are satisfied, since [A,B] = 0 and LA = F1×2 \ {0} or RB = F2 \ {0}.
Hence, we may assume that A is cyclic and, without loss of generality, in Jordan
form and that B , 0. Since by adding a scalar matrix cI, c in any field extension
of F, to A or B or multiplying them by any nonzero value does not change their
commutator’s rank, the general situation can be represented by the following two
simplified cases (in which matrix A has only one or two different eigenvalues):

A is equal to A1 =

[
0 1
0 0

]
or to A2 =

[
1 0
0 0

]
and B =

[
α γ

β 0

]
, 0.

Observe that A1 has only one independent left eigenvector, e.g., u1 =
[
0 1

]
and

A2 has independent left eigenvectors u1 and u2 =
[
1 0

]
. Moreover, under the

condition βγ = 0, B has eigenvalues 0 and α and its right eigenvectors are nonzero
multiples of the vectors

v1 =

[
α + Hγ

β

]
, v2 =

[
γ

−α + K β

]
,

where H and K are arbitrary (when α , 0, they may be chosen to obtain vectors
with nonzero entries, which are automatically independent).

Finally, the two possible commutators are

C1 = [A1,B] =

[
β −α

0 −β

]
, C2 = [A2,B] =

[
0 γ

−β 0

]
.
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Let A = A1, being [A,B] = C1 singular if and only if β = 0. If C1 is singular,
then v1 is a right eigenvector of B (α or γ have to be nonzero) and u1v1 = 0. On
the other hand, consider v =

[
x y

]>
. If it satisfies uv = 0 for some u ∈ LA, then

u1v = 0, hence y = 0 (and x , 0). So, if v ∈ RB, it follows that βx = 0, thus β = 0
and C1 is singular.

By choosing A = A2, it follows that [A,B] = C2 is not invertible if and only if
βγ = 0. If C2 is singular, either β = 0 or γ = 0, thus either u1v1 = 0 or u2v2 = 0.
Conversely, if uv = 0 for u ∈ LA and a generic v ∈ RB as before, then either
u1v = 0 or u2v = 0. In the first case, as we showed, β = 0; analogously, in the
second case, γ = 0. Concluding, in both cases βγ = 0 and so C2 is singular. �

To conclude this section, a result is given on the number of linearly independent
matrices in the set {AiSB j }0≤i<m,0≤ j<n when condition (4) of Theorem 3.1 is not
satisfied.

The general case demands an extremely complicated notation: only the case of
cyclic and diagonalizable matrices A and B will be considered in this paper.

Theorem 3.8. Let S ∈ Fm×n and suppose that A ∈ Fm×m and B ∈ Fn×n are
cyclic and diagonalizable. In particular, be U ∈ Em×m and V ∈ En×n two invert-
ible matrices, in some extension field E of F, such that U AU−1 and V−1BV are
diagonal.

Then, the dimension of VA,B;S , is equal to the number of nonzero entries of USV.

Proof. Let αh , 0 ≤ h < m and βk , 0 ≤ k < n, be the left eigenvalues of A asso-
ciated with the rows of U and, respectively, the right eigenvalues of B associated
with the columns of V.

Since A and B are cyclic and diagonalizable, they have no repeated eigenvalues,
whenceVm

α0, ...,αm−1
andVn

β0, ..., βn−1
are invertible Vandermonde matrices.

By Proposition 3.5, we have that

(V>⊗ U)RA,B;S = diag(USV )(Vn
β0, ..., βn−1

⊗ Vm
α0, ...,αm−1

),

where both Kronecker products are invertible. So, rank RA,B;S = rank diag(USV ),
which is equal to the number of nonzero entries of USV .

The proof is concluded, since by definition (14), the (column) rank of RA,B;S is
equal to the dimension of the space spanned by {AiSB j }. �
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4. The irreducible case

For the remainder of the paper we will asssume that F = Fq represents the finite
field of order q.

The main result of this section will provide a necessary and sufficient condition for
matrices A, B having irreducible characteristic polynomial which guarantees that
condition (3) of Theorem 3.1 holds true:

Theorem 4.1. Let F be a finite field and suppose that A ∈ Fm×m and B ∈ Fn×n

have irreducible characteristic polynomials. Then,

VA,B;S = F
m×n ,∀S ∈ Fm×n \ {0} ⇔ gcd(m,n) = 1.

Proof. Define the F-linear map

ψ : Fm×n →Fm×n

Z = [zi, j ] 7→
∑

0≤i<m
0≤ j<n

zi, j AiSB j (15)

and note that VA,B;S is the image of ψ. Therefore, we need to prove that kerψ =

{0},∀S , 0⇔ gcd(m,n) = 1. By (2) we obtain that

v
(
ψ(Z )

)
= v

*...
,

∑
0≤i<m
0≤ j<n

zi, j AiSB j
+///
-

=
∑

0≤i<m
0≤ j<n

zi, j (B j )>⊗ Ai
v(S).

Hence, by injectivity of v, it follows that ψ is injective (for any choice of S , 0) if
and only if the kernel of matrix M =

∑
0≤i<m,0≤ j<n

zi, j (B j )>⊗ Ai is trivial, i.e., M

has no zero eigenvalues whenever Z , 0.

Observe first that, by the assumptions on A and B, the matrix rings F[A] and F[B]
are fields. Moreover, all eigenvalue α ∈ EA and β ∈ EB have F-linearly indepen-
dent powers up to degree m − 1 and, respectively, n − 1, being F(α) � F[A] and
F(β) � F[B], which are Galois extensions of F of degree m and, respectively, n.

By a classical result on Kronecker products (see, e.g., [3, Theorem 1, p. 411] for
F = C, whose generalization to finite fields is straightorward) the set of eigenvalues
of M is

EM =




∑
0≤i<m
0≤ j<n

zi, jαi β j : α ∈ EA, β ∈ EB




, (16)
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where all eigenvalues are considered as elements in some common field extension.

So, kerψ = {0} if and only if each sum in (16) is nonzero. In other words, for any
two α ∈ EA and β ∈ EB, the products {αi β j }i<m, j<n are F-linearly independent.
By [8, Proposition 5.1 and Theorem 5.5], this condition is equivalent to

F(α) ∩ F(β) = F.

Since the intersection of F(α) and F(β) is the field extension of F of degree
gcd(m,n) (see [9, Theorem 2.6]), the proof is concluded. �

5. The cardinality of subsets of F[A]SF[B]

In this section we will explicitly compute the cardinality of the set F[A]SF[B]
whose relevance in Cryptography is discussed in [2, 10]. Define the space of poly-
nomials

Pk [s] = {p(s) ∈ F[s] : deg p < k}, k = 0,1, . . .

being, for instance, P0 = {0} and P1 = F.

Note that, given a square matrix M with d = deg µM ,

P0[M] ⊂ P1[M] ⊂ · · · ⊂ Pd−1[M] ⊂ Pd[M] = Pk [M], ∀k ≥ d.

The main objective of this section consists in calculating the cardinality of the sets

M
h,k
A,B;S = Ph[A]SPk [B] ⊆ Fm×n , h, k ∈ N0.

Theorem 5.1. Let A ∈ Fm×m , B ∈ Fn×n , and S ∈ Fm×n such that VA,B;S = Fm×n .
Then, for any 0 ≤ h ≤ m and 0 ≤ k ≤ n,

���M
h,k
A,B;S

��� =
(qh − 1)(qk − 1)

q − 1
+ 1.

In order to demonstrate this statement, some specific notation and one preparatory
lemma are needed.

First, for every h ≤ m, let

F
h;m = {x ∈ Fm : xi = 0,∀i = h, . . . ,m − 1},

12



being therefore Fh � F
h;m ⊆ Fm . Define, for every h ≤ m and k ≤ n, the bilinear

map

ϕh,k :Fh;m × Fk ;n→F
m×n

(x, y) 7→ xy>
(17)

and, for the sake of simplicity, denote its image by

ϕh,k = ϕh,k (Fh;m × Fk ;n ). (18)

Lemma 5.2. Let A, B, and S as in Theorem 5.1. Then ���M
h,k
A,B;S

��� = |ϕh,k |.

Proof. It is easy to check that the map ψ defined in (15) induces a well defined
restriction

ψh,k : ϕh,k→Mh,k
A,B;S

M 7→ψ(M)

which is surjective. In fact, for every M ∈ M
h,k
A,B;S , there exists (x, y) ∈ Fh;m ×

Fk ;n ⊆ Fm × Fn such that

M =

( ∑
0≤i<h

xi Ai

)
S
( ∑

0≤ j<k

y j B j

)
=

∑
0≤i<m
0≤ j<n

xi y j AiSB j = ψ(xy>) ∈ ψh,k (ϕh,k ).

Whenever the conditions of Theorem 5.1 are satisfied, ψ is injective and therefore
ψh,k is a bijection between ϕh,k andMh,k

A,B;S . �

Observe that this lemma shows that the cardinality of Mh,k
A,B;S is independent of

the choice of A, B, and S when condition (3) is met.

The problem is now reduced to the computation of the cardinality of ϕh,k , defined
in (18).

Proof (of Theorem 5.1). Consider again the map ϕh,k , defined in (17), and ob-
serve that

F
h;m × Fk ;n = (ϕh,k )−1(ϕh,k ) =

⋃
Z ∈ϕh,k

(ϕh,k )−1(Z ).

Consequently, since the inverse images are disjoint,

qhqk = |Fh;m × Fk ;n | =
�����

⋃
Z ∈ϕh,k

(ϕh,k )−1(Z )
�����
=

∑
Z ∈ϕh,k

|(ϕh,k )−1(Z ) |.

To compute the value of the summation, we have to consider two situations.

13



• When Z = 0, ϕh,k (x, y) = xy> = 0 if and only if all the products of each
component of x and each component of y are zero if and only if x = 0 and
y = 0 (1 case), x = 0 and y , 0 (qk − 1 cases), or x , 0 and y = 0 (qh − 1
cases). Therefore, |(ϕh,k )−1(0) | = qh + qk − 1.

• If Z , 0, observe that, by the bilinearity of ϕh,k , ϕh,k (x, y) = ϕh,k (αx,α−1y)
for every α ∈ F \ {0}.

On the other hand, if ϕh,k (x, y) = ϕh,k ( x̃, ỹ) then x̃ = αx and ỹ = α−1y

for some α , 0. Indeed, considering only the indexes i and j such that
xi y j = x̃i ỹ j , 0, we get that

xi
x̃i

=
ỹ j

y j
.

By the independency of the indices, it follows that α =
xi
x̃i

=
ỹ j

y j
for every

i, j. So, we conclude that |(ϕh,k )−1(Z ) | = |F \ {0}| = q − 1.

Putting all together,

qhqk = |(ϕh,k )−1(0) | +
∑

Z ∈ϕh,k \{0}

���(ϕ
h,k )−1(Z )���

= qh + qk − 1 +
∑

Z ∈ϕh,k \{0}

(q − 1) = qh + qk − 1 +
(
|ϕh,k | − 1

)
(q − 1),

whence

|ϕh,k | =
qhqk − qh − qk + 1

q − 1
+ 1 =

(qh − 1)(qk − 1)
q − 1

+ 1.

Finally, the claim follows by Lemma 5.2. �
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