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Abstract

We prove existence and uniqueness of mild solutions to Sobolev type fractional nonlocal
dynamic equations in Banach spaces. The Sobolev nonlocal condition is considered in terms of
a Riemann–Liouville fractional derivative. A Lagrange optimal control problem is considered,
and existence of a multi-integral solution obtained. Main tools include fractional calculus,
semigroup theory, fractional power of operators, a singular version of Gronwall’s inequality,
and Leray–Schauder fixed point theorem. An example illustrating the theory is given.
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1 Introduction

Fractional differential equations have attracted the attention of scientists, in reason to their ac-
curate, helpful, and successful results in fields such as mathematical modelling of physical, en-
gineering, and biological phenomena. Both theoretical and practical aspects of the subject are
being explored. In particular, fractional differential equations provide an excellent tool to de-
scribe hereditary properties of various materials and processes, finding numerous applications in
viscoelasticity, electrochemistry, porous media, and electromagnetism. The reader interested in
the development of the theory, methods, and applications of fractional calculus is referred to the
books [1–9] and to the papers [10–17]. For recent developments in the area of nonlocal fractional
differential equations and inclusions see [18–24] and references therein.

The study of fractional control systems and fractional optimal control problems is under intense
investigation [25–27]. Those control systems are most often based on the principle of feedback,
whereby the signal to be controlled is compared to a desired reference signal and the discrepancy
used to compute corrective control actions [28]. The fractional optimal control of a distributed
system is an optimal control problem for which the system dynamics is defined by means of frac-
tional differential equations [29]. In our previous work [22], we introduced multi-delay controls
and we investigated a nonlocal condition for fractional semilinear control systems. The existence
of optimal pairs for systems governed by fractional evolution equations with initial and nonlocal
conditions, is also presented by Wang et al. [24] and Wang and Zhou [30]. Here we are con-
cerned with the study of fractional nonlinear evolution equations subject to fractional Sobolev
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nonlocal conditions. Sobolev type semilinear equations serve as an abstract formulation of partial
differential equations, which arise in various applications, such as in the flow of fluid through
fissured rocks, thermodynamics, and shear in second order fluids. Moreover, fractional differential
equations of Sobolev type appear in the theory of control of dynamical systems, when the con-
trolled system and/or the controller is described by a fractional differential equation of Sobolev
type [31]. The mathematical modeling and simulations of such systems and processes are based
on the description of their properties in terms of fractional differential equations of Sobolev type.
These new models are claimed to be more adequate than previously used integer order models, so
fractional order differential equations of Sobolev type have been investigated by many researchers,
e.g., in [32–35]. Motivated by these facts, we introduce here a new nonlocal fractional condition
of Sobolev type and we present the optimal control of multiply integrated Sobolev type nonlinear
fractional evolution equations. The problem requires to formulate a new solution operator and
its properties, such as boundedness and compactness. Further, we present a class of admissible
multi-integral controls and we prove, under an appropriate set of sufficient conditions, an existence
result of optimal multi-integral controls for a Lagrange optimal control problem, denoted in the
sequel by (LP ). More precisely, we are concerned with the study of fractional nonlinear evolution
equations

CDα
t [Lu(t)] = Eu(t) + f(t,W (t)) (1)

subject to fractional Sobolev nonlocal conditions

LD1−α
t [Mu(0)] = u0 + h(u(t)), (2)

where CDα
t and LD1−α

t are, respectively, Caputo and Riemann–Liouville fractional derivatives
with 0 < α ≤ 1 and t ∈ J = [0, a]. Let X and Y be two Banach spaces such that Y is densely
and continuously embedded in X , the unknown function u(·) takes its values in X and u0 ∈ X .
We consider the operators L : D(L) ⊂ X → Y , E : D(E) ⊂ X → Y and M : D(M) ⊂ X → X ,
W (t) = (B1(t)u(t), . . . , Br(t)u(t)), such that {Bi(t) : i = 1, . . . , r, t ∈ J} is a family of linear
closed operators defined on dense sets S1, . . . , Sr in X with values in Y . It is also assumed that
f : J ×Xr → Y and h : C(J : X) → X are given abstract functions satisfying some conditions
to be specified later. In Section 2 we present some essential notions and facts that will be used
in the proof of our results, such as, fractional operators, fractional powers of the generator of an
analytic compact semigroup, and the form of mild solutions of (1)–(2). In Section 3, we prove
existence (Theorem 1) and uniqueness (Theorem 2) of mild solutions to system (1)–(2). Then,
in Section 4, we prove existence of optimal pairs for the (LP ) Lagrange optimal control problem
(Theorem 3). We end with Section 5, where an example illustrating the application of the abstract
results (Theorems 1, 2 and 3) is given.

2 Preliminaries

In this section we introduce some basic definitions, notations and lemmas, which will be used
throughout the work. In particular, we give main properties of fractional calculus [3, 4] and well
known facts in semigroup theory [36–38].

Definition 1. The fractional integral of order α > 0 of a function f ∈ L1([a, b],R+) is given by

Iαa f(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds,

where Γ is the classical gamma function. If a = 0, we can write Iαf(t) = (gα ∗ f)(t), where

gα(t) :=

{ 1
Γ(α) t

α−1, t > 0,

0, t ≤ 0,

and, as usual, ∗ denotes convolution of functions. Moreover, lim
α→0

gα(t) = δ(t), with δ the delta

Dirac function.
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Definition 2. The Riemann–Liouville fractional derivative of order α > 0, n− 1 < α < n, n ∈ N,
is given by

LDαf(t) =
1

Γ(n− α)

dn

dtn

∫ t

0

f(s)

(t− s)α+1−n
ds, t > 0,

where function f has absolutely continuous derivatives up to order n− 1.

Definition 3. The Caputo fractional derivative of order α > 0, n− 1 < α < n, n ∈ N, is given by

CDαf(t) = LD
α

(

f(t)−
n−1
∑

k=0

tk

k!
f (k)(0)

)

, t > 0,

where function f has absolutely continuous derivatives up to order n− 1.

Remark 1. Let n− 1 < α < n, n ∈ N. The following properties hold:

(i) If f ∈ Cn([0,∞)), then

CDαf(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n
ds = In−αf (n)(t), t > 0.

(ii) The Caputo derivative of a constant function is equal to zero.

(iii) The Riemann–Liouville derivative of a constant function C is given by

LDα
a+C =

C

Γ(1− α)
(x− a)−α.

If f is an abstract function with values in X , then the integrals which appear in Definitions 1–3
are taken in Bochner’s sense.

Let (X, ‖ · ‖) be a Banach space, C(J,X) denotes the Banach space of continuous functions
from J into X with the norm ‖u‖J = sup{‖u(t)‖ : t ∈ J}, and let L(X) be the Banach space of
bounded linear operators from X to X with the norm ‖G‖L(X) = sup{‖G(u)‖ : ‖u‖ = 1}. We
make the following assumptions:

(H1) E : D(E) ⊂ X → Y is linear, closed, and L : D(L) ⊂ X → Y and M : D(M) ⊂ X → X are
linear operators.

(H2) D(M) ⊂ D(L) ⊂ D(E) and L and M are bijective.

(H3) L
−1 : Y → D(L) ⊂ X and M−1 : X → D(M) ⊂ X are linear, bounded, and compact

operators.

Note that (H3) implies L to be closed. Indeed, if L−1 is closed and injective, then its inverse is
also closed. From (H1)–(H3) and the closed graph theorem, we obtain the boundedness of the
linear operator EL−1 : Y → Y . Consequently, EL−1 generates a semigroup {Q(t), t ≥ 0}, Q(t) :=

eEL−1t. We suppose that M0 := supt≥0 ‖Q(t)‖ < ∞ and, for short, we denote C1 = ‖L−1‖ and
C2 = ‖M−1‖.

According to previous definitions, it is suitable to rewrite problem (1)–(2) as the equivalent
integral equation

Lu(t) = Lu(0) +
1

Γ(α)

∫ t

0

(t− s)α−1[Eu(s) + f(s,W (s))]ds, (3)

provided the integral in (3) exists for a.a. t ∈ J .

Remark 2. Note that:

(i) For the nonlocal condition, the function u(0) is dependent on t.
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(ii) LD1−α
t [Mu(0)] is well defined, i.e., if α = 1 and M is the identity, then (2) reduces to the

usual nonlocal condition.

(iii) Function u(0) takes the form

M−1v0 +
1

Γ(1− α)

∫ t

0

M−1[u0 + h(u(s))]

(t− s)α
ds,

where Mu(0)|t=0 = v0.

(iv) The explicit and implicit integrals given in (3) exist (taken in Bochner’s sense).

Throughout the paper, A = EL−1 : D(A) ⊂ Y → Y will be the infinitesimal generator of
a compact analytic semigroup of uniformly bounded linear operators Q(·). Then, there exists a
constant M0 ≥ 1 such that ‖Q(t)‖ ≤ M0 for t ≥ 0. Without loss of generality, we assume that
0 ∈ ρ(A), the resolvent set of A. Then it is possible to define the fractional power Aq, 0 < q ≤ 1, as
a closed linear operator on its domain D(Aq) with inverse A−q. Furthermore, the subspace D(Aq)
is dense in X and the expression ‖u‖q = ‖Aqu‖, u ∈ D(Aq) defines a norm on D(Aq). Hereafter,
we denote by Xq the Banach space D(Aq) normed with ‖u‖q.

Lemma 1 (See [37]). Let A be the infinitesimal generator of an analytic semigroup Q(t). If
0 ∈ ρ(A), then

(a) Q(t) : X → D(Aq) for every t > 0 and q ≥ 0.

(b) For every u ∈ D(Aq), we have Q(t)Aqu = AqQ(t)u.

(c) For every t > 0, the operator AqQ(t) is bounded and ‖AqQ(t)‖ ≤Mqt
−qe−ωt.

(d) If 0 < q ≤ 1 and u ∈ D(Aq), then ‖Q(t)u− u‖ ≤ Cqt
q‖Aqu‖.

Remark 3. Note that:

(i) D(Aq) is a Banach space with the norm ‖u‖q = ‖Aqu‖ for u ∈ D(Aq).

(ii) If 0 < p ≤ q ≤ 1, then D(Aq) →֒ D(Ap).

(iii) A−q is a bounded linear operator in X with D(Aq) = Im(A−q).

Remark 4. Observe, as in [39], that by Lemma 1 (a) and (b), the restriction Qq(t) of Q(t) to Xq

is exactly the part of Q(t) in Xq. Let u ∈ Xq. Since ‖Q(t)u‖q ≤ ‖AqQ(t)u‖ = ‖Q(t)Aqu‖ ≤
‖Q(t)‖‖Aqu‖ = ‖Q(t)‖‖u‖q, and as t decreases to 0+, ‖Q(t)u − u‖q = ‖AqQ(t)u − Aqu‖ =
‖Q(t)Aqu−Aqu‖ → 0 for all u ∈ Xq, it follows that {Q(t), t ≥ 0} is a family of strongly continuous
semigroups on Xq and ‖Qq(t)‖ ≤ ‖Q(t)‖ ≤M0 for all t ≥ 0.

In the sequel, we will also use ‖φ‖Lp(J,R+) to denote the Lp(J,R+) norm of φ whenever φ ∈
Lp(J,R+) for some p with 1 < p <∞. We will set q ∈ (0, 1) and denote by Ωq the Banach space
C(J,Xq) endowed with supnorm given by ‖u‖∞ = supt∈J ‖u‖q for u ∈ Ωq.

Motivated by [22, 32, 40], we give the definition of mild solution to (1)–(2).

Definition 4. A function u ∈ Ωq is called a mild solution of system (1)–(2) if it satisfies the
following integral equation:

u(t) = Sα(t)LM
−1

[

v0 +
1

Γ(1− α)

∫ t

0

[u0 + h(u(s))]

(t− s)α
ds

]

+

∫ t

0

(t− s)α−1Tα(t− s)f(s,W (s))ds,

where

Sα(t) =

∫ ∞

0

L−1ζα(θ)Q(tαθ)dθ, Tα(t) = α

∫ ∞

0

L−1θζα(θ)Q(tαθ)dθ,

ζα(θ) =
1

α
θ−1− 1

α̟α(θ
− 1

α ) ≥ 0, ̟α(θ) =
1

π

∞
∑

n=1

(−1)n−1θ−αn−1Γ(nα+ 1)

n!
sin(nπα), θ ∈ (0,∞),

with ζα the probability density function defined on (0,∞), that is, ζα(θ) ≥ 0, θ ∈ (0,∞) and
∫∞

0
ζα(θ)dθ = 1.
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Remark 5. For v ∈ [0, 1], ones has

∫ ∞

0

θvζα(θ)dθ =

∫ ∞

0

θ−αv̟α(θ)dθ =
Γ(1 + v)

Γ(1 + αv)

(see [41]).

Lemma 2 (See [32, 40, 41]). The operators Sα(t) and Tα(t) have the following properties:

(a) For any fixed t ≥ 0, the operators Sα(t) and Tα(t) are linear and bounded, i.e., for any
u ∈ X, ‖Sα(t)u‖ ≤ C1M0‖u‖ and ‖Tα(t)u‖ ≤ C1M0

Γ(α) ‖u‖.

(b) {Sα(t), t ≥ 0} and {Tα(t), t ≥ 0} are strongly continuous, i.e., for u ∈ X and 0 ≤ t1 < t2 ≤
a, we have ‖Sα(t2)u− Sα(t1)u‖ → 0 and ‖Tα(t2)u− Tα(t1)u‖ → 0 as t1 → t2.

(c) For every t > 0, Sα(t) and Tα(t) are compact operators.

(d) For any u ∈ X, p ∈ (0, 1) and q ∈ (0, 1), we have ATα(t)u = A1−pTα(t)A
pu, t ∈ J , and

‖AqTα(t)‖ ≤ αC1MqΓ(2−q)
Γ(1+α(1−q)) t

−qα, 0 < t ≤ a.

(e) For fixed t ≥ 0 and any u ∈ Xq, we have ‖Sα(t)u‖q ≤ C1M0‖u‖q and ‖Tα(t)u‖q ≤
C1M0

Γ(α) ‖u‖q.

(f) Sα(t) and Tα(t), t > 0, are uniformly continuous, that is, for each fixed t > 0 and ǫ > 0 there
exists g > 0 such that ‖Sα(t+ǫ)−Sα(t)‖q < ǫ for t+ǫ ≥ 0 and |ǫ| < g, ‖Tα(t+ǫ)−Tα(t)‖q < ǫ
for t+ ǫ ≥ 0 and |ǫ| < g.

Lemma 3 (See [42]). For each ψ ∈ Lp(J,X) with 1 ≤ p <∞,

lim
g→0

∫ a

0

‖ψ(t+ g)− ψ(t)‖pdt = 0,

where ψ(s) = 0 for s /∈ J .

Lemma 4 (See [41]). A measurable function G : J → X is a Bochner integral if ‖G‖ is Lebesgue
integrable.

3 Main results

Our first result provides existence of mild solutions to system (1)–(2). To prove that, we make
use of the following assumptions:

(F1) The linear closed operators {Bi(t)}i=1,r are defined on dense sets S1, . . . , Sr ⊃ D(A), re-
spectively from Xq into Y .

(F2) The function f : J ×Xr
q → Y satisfies: for each W ∈ Xr

q , in particular, for every element
u ∈ ∩iSi, i = 1, . . . , r, the function t→ f(t,W (t)) is measurable.

(F3) For arbitrary u, u∗ ∈ Xq satisfying ‖u‖q, ‖u∗‖q ≤ ρ, there exists a constant Lf (ρ) > 0 and
functions mi ∈ L1(J,R+) such that

‖f(t,W )− f(t,W ∗)‖ ≤ Lf(ρ)[m1(t) + · · ·+mr(t)]‖u− u∗‖q

for almost all t ∈ J . Here, W ∗(t) = (B1(t)u
∗(t), . . . , Br(t)u

∗(t)), i = 1, . . . , r.

(F4) There exists a constant af > 0 such that

‖f(t,W )‖ ≤ af (1 + r‖u‖q) for all W ∈ Xr
q and t ∈ J.
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(F5) The function h : C(J : Xq) → Xq is Lipschitz continuous and bounded in Xq, i.e., for all
u, v ∈ C(J,Xq) there exist constants k1, k2 > 0 such that

‖h(u)− h(v)‖q ≤ k1‖u− v‖q and ‖h(u)‖q ≤ k2.

Theorem 1. Assume hypotheses (F1)–(F5) are satisfied. If u0 ∈ Xq and αq < 1 for some
1
2 < α < 1, then system (1)–(2) has a mild solution on J .

The following lemmas are used in the proof of Theorem 1.

Lemma 5. Let operator P : Ωq → Ωq be given by

(Pu)(t) = Sα(t)LM
−1

[

v0 +
1

Γ(1− α)

∫ t

0

[u0 + h(u(s))]

(t− s)α
ds

]

+

∫ t

0

(t− s)α−1Tα(t− s)f(s,W (s))ds. (4)

Then, the operator P satisfies Pu ∈ Ωq.

Proof. Let 0 ≤ t1 < t2 ≤ a and αq < 1
2 . We have

‖(Pu)(t1)− (Pu)(t2)‖q

=

∥

∥

∥

∥

[Sα(t1)− Sα(t2)]LM
−1

[

v0 +
1

Γ(1− α)

∫ t1

0

(t1 − s)−α[u0 + h(u(s))]ds

]∥

∥

∥

∥

q

+

∥

∥

∥

∥

Sα(t2)LM
−1

[

1

Γ(1− α)

∫ t1

0

[(t1 − s)−α − (t2 − s)−α][u0 + h(u(s))]ds

]∥

∥

∥

∥

q

+

∥

∥

∥

∥

Sα(t2)LM
−1

[

1

Γ(1− α)

∫ t2

t1

(t2 − s)−α[u0 + h(u(s))]ds

]
∥

∥

∥

∥

q

+

∫ t1

0

(t1 − s)α−1‖Tα(t1 − s)f(s,W (s))− Tα(t2 − s)f(s,W (s))‖qds

+

∫ t1

0

|(t1 − s)α−1 − (t2 − s)α−1|‖Tα(t2 − s)f(s,W (s))‖qds

+

∫ t2

t1

(t2 − s)α−1‖Tα(t2 − s)f(s,W (s))‖qds.

We use Lemma 2, and fractional power of operators, to get

‖(Pu)(t1)− (Pu)(t2)‖q ≤C2‖L‖

[

‖v0‖q + (k2 + ‖u0‖q)
t1−α
1

Γ(2 − α)

]

‖Sα(t1)− Sα(t2)‖q

+ C1C2M0‖L‖

[

(k2 + ‖u0‖q)
(t2 − t1)

1−α + t1−α
1 − t1−α

2

Γ(2− α)

]

+ C1C2M0‖L‖

[

(k2 + ‖u0‖q)
(t2 − t1)

1−α

Γ(2− α)

]

+

∫ t1

0

(t1 − s)α−1‖Aq[Tα(t1 − s)− Tα(t2 − s)]‖‖f(s,W (s))‖ds

+

∫ t1

0

|(t1 − s)α−1 − (t2 − s)α−1|‖AqTα(t2 − s)‖‖f(s,W (s))‖ds

+

∫ t2

t1

(t2 − s)α−1‖AqTα(t2 − s)‖‖f(s,W (s))‖ds

6



≤C2‖L‖

[

‖v0‖q + (k2 + ‖u0‖q)
t1−α
1

Γ(2 − α)

]

‖Sα(t1)− Sα(t2)‖q

+ C1C2M0‖L‖

[

(k2 + ‖u0‖q)
(t2 − t1)

1−α + t1−α
1 − t1−α

2

Γ(2− α)

]

+ C1C2M0‖L‖

[

(k2 + ‖u0‖q)
(t2 − t1)

1−α

Γ(2− α)

]

+
αC1MqΓ(2− q)

Γ(1 + α(1− q))
‖f‖C(J,X)

∫ t1

0

(t1 − s)α−1|(t1 − s)−qα − (t2 − s)−qα|ds

+
αC1MqΓ(2− q)

Γ(1 + α(1− q))

∫ t1

0

|(t1 − s)α−1 − (t2 − s)α−1|(t2 − s)−qα‖f(s,W (s))‖ds

+
αC1MqΓ(2− q)

Γ(1 + α(1− q))

∫ t2

t1

(t2 − s)−qα+α−1‖f(s,W (s))‖ds.

From Lemma 2 and Hölder’s inequality, one can deduce the following inequality:

‖(Pu)(t1)− (Pu)(t2)‖q

≤ C2‖L‖

[

‖v0‖q + (k2 + ‖u0‖q)
t1−α
1

Γ(2− α)

]

‖Sα(t1)− Sα(t2)‖q

+ C1C2M0‖L‖

[

(k2 + ‖u0‖q)
(t2 − t1)

1−α + t1−α
1 − t1−α

2

Γ(2− α)

]

+ C1C2M0‖L‖

[

(k2 + ‖u0‖q)
(t2 − t1)

1−α

Γ(2− α)

]

+
αC1MqΓ(2 − q)

Γ(1 + α(1 − q))
‖f‖C(J,X)

[

(
∫ t1

0

|(t1 − s)−qα − (t2 − s)−qα|2ds

)

1
2

×

(
∫ t1

0

(t1 − s)2(α−1)ds

)

1
2

+

(
∫ t1

0

|(t1 − s)α−1 − (t2 − s)α−1|2ds

)

1
2

×

(
∫ t1

0

(t2 − s)−2qαds

)

1
2

+
1

α(1 − q)
(t2 − t1)

α(1−q)

]

≤ C2‖L‖

[

‖v0‖q + (k2 + ‖u0‖q)
t1−α
1

Γ(2− α)

]

‖Sα(t1)− Sα(t2)‖q

+ C1C2M0‖L‖

[

(k2 + ‖u0‖q)
(t2 − t1)

1−α + t1−α
1 − t1−α

2

Γ(2− α)

]

+ C1C2M0‖L‖

[

(k2 + ‖u0‖q)
(t2 − t1)

1−α

Γ(2− α)

]

+
αC1MqΓ(2 − q)

Γ(1 + α(1 − q))
‖f‖C(J,X)

[

√

1

2α− 1
t
α− 1

2
1

(
∫ a

0

|(t1 − s)−qα − (t2 − s)−qα|2ds

)
1
2

+

(
∫ a

0

|(t1 − s)α−1 − (t2 − s)α−1|2ds

)
1
2
√

1

1− 2qα

(

t1−2qα
2 − (t2 − t1)

1−2qα

)
1
2

+
1

α(1 − q)
(t2 − t1)

α(1−q)

]

,

which means that Pu ∈ Ωq.

Lemma 6. The operator P given by (4) is continuous on Ωq.

7



Proof. Let u, u∗ ∈ Ωq and ‖u− u∗‖∞ ≤ 1. Then, ‖u‖∞ ≤ 1 + ‖u∗‖∞ = ρ and

‖(Pu)(t)− (Pu∗)(t)‖q =

∥

∥

∥

∥

Sα(t)LM
−1

[

1

Γ(1 − α)

∫ t

0

(t− s)−α[h(u)− h(u∗)]ds

]
∥

∥

∥

∥

q

+

∫ t

0

(t− s)α−1‖Tα(t− s)[f(s,W (s))− f(s,W ∗(s))]‖qds

≤ ‖Sα(t)LM
−1‖

1

Γ(1− α)

∫ t

0

(t− s)−α ‖Aq[h(u)− h(u∗)]‖ ds

+

∫ t

0

(t− s)α−1‖AqTα(t− s)‖‖f(s,W (s))− f(s,W ∗(s))‖ds

≤ C1C2k1M0‖L‖
a1−α

Γ(2− α)
‖u− u∗‖q

+ Lf(ρ)

r
∑

i=1

mi(t)
αC1MqΓ(2 − q)

Γ(1 + α(1− q))

∫ t

0

(t− s)−qα+α−1‖u− u∗‖qds

≤ C1C2k1M0‖L‖
a1−α

Γ(2− α)
‖u− u∗‖∞

+ Lf(ρ)
r
∑

i=1

mi(t)
αC1MqΓ(2 − q)

Γ(1 + α(1− q))

1

α(1 − q)
tα(1−q)‖u− u∗‖∞.

Therefore,

‖(Pu)(t)− (Pu∗)(t)‖∞ ≤ C1C2k1M0‖L‖
a1−α

Γ(2− α)
‖u− u∗‖∞

+ Lf (ρ)

r
∑

i=1

mi(t)
αC1MqΓ(2− q)

Γ(1 + α(1 − q))

1

α(1 − q)
tα(1−q)‖u− u∗‖∞

and we conclude that P is continuous.

Lemma 7. The operator P given by (4) is compact.

Proof. Let Σ be a bounded subset of Ωq. Then there exists a constant η such that ‖u‖∞ ≤ η for
all u ∈ Σ. By (F4), there exists a constant τ such that ‖f(t,W (t))‖ ≤ af (1 + rη) = τ . Then PΣ
is a bounded subset of Ωq. In fact, let u ∈ Σ. Using Lemma 2 (a) and (d), we get

‖(Pu)(t)‖q ≤

∥

∥

∥

∥

Sα(t)LM
−1

[

v0 +
1

Γ(1− α)

∫ t

0

[u0 + h(u(s))]

(t− s)α
ds

]∥

∥

∥

∥

q

+

∫ t

0

(t− s)α−1‖Tα(t− s)f(s,W (s))‖qds

≤ C1C2M0‖L‖

[

‖v0‖q +
a1−α

Γ(2− α)
(k2 + ‖u0‖q)

]

+

∫ t

0

(t− s)α−1‖AqTα(t− s)‖‖f(s,W (s))‖ds

≤ C1C2M0‖L‖

[

‖v0‖q +
a1−α

Γ(2− α)
(k2 + ‖u0‖q)

]

+
αC1MqΓ(2 − q)

Γ(1 + α(1− q))
τ

∫ t

0

(t− s)−qα+α−1ds

≤ C1C2M0‖L‖

[

‖v0‖q +
a1−α

Γ(2− α)
(k2 + ‖u0‖q)

]

+
αC1MqΓ(2 − q)

Γ(1 + α(1− q))
τ

1

α(1− q)
tα(1−q).
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Then, we obtain

‖(Pu)(t)‖∞ ≤ C1C2M0‖L‖

[

η +
a1−α

Γ(2− α)
(k2 + η)

]

+
αC1MqΓ(2− q)

Γ(1 + α(1 − q))

τaα(1−q)

α(1− q)
.

We conclude that PΣ is bounded. Define Π = PΣ and Π(t) = {(Pu)(t)|u ∈ Σ} for t ∈ J .
Obviously, Π(0) = {(Pu)(0)|u ∈ Σ} is compact. For each g ∈ (0, t), t ∈ (0, a], and arbitrary δ > 0,
let us define Πg,δ(t) = {(Pg,δu)(t)|u ∈ Σ}, where

(Pg,δu)(t) = Q(gαδ)

∫ ∞

δ

L−1ζα(θ)Q(tαθ − gαδ)LM−1

[

v0 +
1

Γ(1− α)

∫ t−g

0

[u0 + h(u(s))]

(t− s)α
ds

]

dθ

+Q(gαδ)

∫ t−g

0

(t− s)α−1

(

α

∫ ∞

δ

L−1θζα(θ)Q((t − s)αθ − gαδ)dθ

)

f(s,W (s))ds

=

∫ ∞

δ

L−1ζα(θ)Q(tαθ)LM−1

[

v0 +
1

Γ(1− α)

∫ t−g

0

[u0 + h(u(s))]

(t− s)α
ds

]

dθ

+ α

∫ t−g

0

∫ ∞

δ

θ(t− s)α−1L−1ζα(θ)Q((t− s)αθ)f(s,W (s))dθds.

Then, since the operator Q(gαδ), gαδ > 0, is compact in Xq, the sets {(Pg,δu)(t)|u ∈ Σ} are
relatively compact in Xq. This comes from the following inequalities:

‖(Pu)(t)− (Pg,δu)(t)‖q

≤

∥

∥

∥

∥

∫ δ

0

L−1ζα(θ)Q(tαθ)LM−1

[

v0 +
1

Γ(1− α)

∫ t

0

[u0 + h(u(s))]

(t− s)α
ds

]

dθ

∥

∥

∥

∥

q

+

∥

∥

∥

∥

∫ ∞

δ

L−1ζα(θ)Q(tαθ)LM−1

[

v0 +
1

Γ(1− α)

∫ t

t−g

[u0 + h(u(s))]

(t− s)α
ds

]

dθ

∥

∥

∥

∥

q

+

∥

∥

∥

∥

∫ ∞

δ

L−1ζα(θ)Q(tαθ)LM−1

[

v0 +
1

Γ(1− α)

∫ t−g

0

[u0 + h(u(s))]

(t− s)α
ds

]

dθ

−

∫ ∞

δ

L−1ζα(θ)Q(tαθ)LM−1

[

v0 +
1

Γ(1− α)

∫ t−g

0

[u0 + h(u(s))]

(t− s)α
ds

]

dθ

∥

∥

∥

∥

q

+ α

∥

∥

∥

∥

∥

∫ t

0

∫ δ

0

θ(t− s)α−1L−1ζα(θ)Q((t− s)αθ)f(s,W (s))dθds

∥

∥

∥

∥

∥

q

+ α

∥

∥

∥

∥

∫ t

0

∫ ∞

δ

θ(t− s)α−1L−1ζα(θ)Q((t− s)αθ)f(s,W (s))dθds

−

∫ t−g

0

∫ ∞

δ

θ(t− s)α−1L−1ζα(θ)Q((t− s)αθ)f(s,W (s))dθds

∥

∥

∥

∥

q

≤

∫ δ

0

‖L−1ζα(θ)Q(tαθ)LM−1‖

∥

∥

∥

∥

Aq

[

v0 +
1

Γ(1− α)

∫ t

0

[u0 + h(u(s))]

(t− s)α
ds

]
∥

∥

∥

∥

dθ

+

∫ ∞

δ

‖L−1ζα(θ)Q(tαθ)LM−1‖

∥

∥

∥

∥

Aq

[

v0 +
1

Γ(1− α)

∫ t

t−g

[u0 + h(u(s))]

(t− s)α
ds

]∥

∥

∥

∥

dθ

+ α

∫ t

0

∫ δ

0

θ(t− s)α−1‖L−1‖ζα(θ)‖A
qQ((t− s)αθ)‖‖f(s,W (s))‖dθds

+ α

∫ t

t−g

∫ ∞

δ

θ(t− s)α−1‖L−1‖ζα(θ)‖A
qQ((t− s)αθ)‖‖f(s,W (s))‖dθds
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≤ C1C2M0‖L‖

[

‖v0‖q + (k2 + ‖u0‖q)
t1−α

Γ(2− α)

]
∫ δ

0

ζα(θ)dθ

+ C1C2M0‖L‖

[

‖v0‖q + (k2 + ‖u0‖q)
g1−α

Γ(2− α)

]
∫ ∞

δ

ζα(θ)dθ

+ C1Mqατ

∫ t

0

∫ δ

0

θ(t− s)α−1ζα(θ)(t − s)−αqθ−qdθds

+ C1Mqατ

∫ t

t−g

∫ ∞

δ

θ(t− s)α−1ζα(θ)(t− s)−αqθ−qdθds

≤ C1C2M0‖L‖

[

‖v0‖q + (k2 + ‖u0‖q)
t1−α

Γ(2− α)

]
∫ δ

0

ζα(θ)dθ

+ C1C2M0‖L‖

[

‖v0‖q + (k2 + ‖u0‖q)
g1−α

Γ(2− α)

]

+ C1Mqατ

∫ t

0

∫ δ

0

θ1−q(t− s)−αq+α−1ζα(θ)dθds

+ C1Mqατ

∫ t

t−g

∫ ∞

δ

θ1−q(t− s)−αq+α−1ζα(θ)dθds

≤ C1C2M0‖L‖

[

‖v0‖q + (k2 + ‖u0‖q)
t1−α

Γ(2− α)

]
∫ δ

0

ζα(θ)dθ

+ C1C2M0‖L‖

[

‖v0‖q + (k2 + ‖u0‖q)
g1−α

Γ(2− α)

]

+ C1Mqατ

(
∫ t

0

(t− s)−αq+α−1ds

)
∫ δ

0

θ1−qζα(θ)dθ

+ C1Mqατ
Γ(2 − q)

Γ(1 + α(1 − q))

(
∫ t

t−g

(t− s)−αq+α−1ds

)

and
∫ t

0

(t− s)−αq+α−1ds ≤
1

α(1 − q)
tα(1−q),

∫ t

t−g

(t− s)−αq+α−1ds ≤
1

α(1 − q)
gα(1−q),

so that

‖(Pu)(t)− (Pg,δu)(t)‖q ≤C1C2M0‖L‖

[

‖v0‖q + (k2 + ‖u0‖q)
a1−α

Γ(2− α)

]
∫ δ

0

ζα(θ)dθ

+ C1C2M0‖L‖

[

‖v0‖q + (k2 + ‖u0‖q)
g1−α

Γ(2 − α)

]

+
C1Mqατ

α(1− q)
aα(1−q)

∫ δ

0

θ1−qζα(θ)dθ

+
C1MqατΓ(2 − q)

Γ(1 + α(1− q))

1

α(1 − q)
gα(1−q).

Therefore, Π(t) = {(Pu)(t)|u ∈ Σ} is relatively compact in Xq for all t ∈ (0, a] and, since it is
compact at t = 0, we have relatively compactness in Xq for all t ∈ J .

Next, let us prove that Π = PΣ is equicontinuous. For g ∈ [0, a),

‖(Pu)(g)− (Pu)(0)‖q ≤C2‖v0‖q‖Sα(g)L− I‖q

+ C1C2M0‖L‖

[

(k2 + ‖u0‖q)
g1−α

Γ(2 − α)

]

+
αC1MqΓ(2 − q)

Γ(1 + α(1− q))

τ

α(1 − q)
gα(1−q),
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and for 0 < s < t1 < t2 ≤ a, ‖(Pu)(t1)− (Pu)(t2)‖q ≤ I1 + I2 + I3 + I4 + I5 + I6, where

I1 = C2‖L‖

[

‖v0‖q + (k2 + ‖u0‖q)
t1−α
1

Γ(2− α)

]

‖Sα(t1)− Sα(t2)‖q,

I2 = C1C2M0‖L‖

[

(k2 + ‖u0‖q)
(t2 − t1)

1−α + t1−α
1 − t1−α

2

Γ(2− α)

]

,

I3 = C1C2M0‖L‖

[

(k2 + ‖u0‖q)
(t2 − t1)

1−α

Γ(2− α)

]

,

I4 =
αC1MqΓ(2− q)

Γ(1 + α(1 − q))
‖f‖C(J,X)

√

1

2α− 1
t
α− 1

2
1

(
∫ a

0

|(t1 − s)−qα − (t2 − s)−qα|2ds

)
1
2

,

I5 =
αC1MqΓ(2− q)

Γ(1 + α(1 − q))
‖f‖C(J,X)

(
∫ a

0

|(t1 − s)α−1 − (t2 − s)α−1|2ds

)
1
2

×

√

1

1− 2qα

(

t1−2qα
2 − (t2 − t1)

1−2qα

)
1
2

,

I6 =
αC1MqΓ(2− q)

Γ(1 + α(1 − q))
‖f‖C(J,X)

1

α(1 − q)
(t2 − t1)

α(1−q).

Now, we have to verify that Ij , j = 1, . . . , 6, tend to 0 independently of u ∈ Σ when t2 → t1. Let
u ∈ Σ. By Lemma 2 (c) and (f), we deduce that limt2→t1 I1 = 0 and limt2→t1 I4 = 0. Moreover,
using the fact that |(t1 − s)α−1 − (t2 − s)α−1| → 0 as t2 → t1, we obtain from Lemma 3 that

∫ a

0

|(t1 − s)α−1 − (t2 − s)α−1|2ds → 0 as t2 → t1.

Thus, limt2→t1 I5 = 0 since qα < 1
2 . Also, it is clear that limt2→t1 I2 = I3 = I6 = 0. In summary,

we have proven that PΣ is relatively compact for t ∈ J and Π(t) = {Pu|u ∈ Σ} is a family of
equicontinuous functions. Hence, by the Arzela–Ascoli theorem, P is compact.

Proof of Theorem 1. We shall prove that the operator P has a fixed point in Ωq. According
to Leray–Schauder fixed point theory (and from Lemmas 5–7), it suffices to show that the set
∆ = {u ∈ Ωq|u = βPu, β ∈ [0, 1]} is a bounded subset of Ωq. Let u ∈ ∆. Then,

‖u(t)‖q = ‖β(Pu)(t)‖q

≤

∥

∥

∥

∥

Sα(t)LM
−1

[

v0 +
1

Γ(1− α)

∫ t

0

[u0 + h(u(s))]

(t− s)α
ds

]∥

∥

∥

∥

q

+

∫ t

0

(t− s)α−1‖Tα(t− s)f(s,W (s))‖qds

≤ C1C2M0‖L‖

[

‖v0‖q +
a1−α

Γ(2− α)
(k2 + ‖u0‖q)

]

+

∫ t

0

(t− s)α−1‖AqTα(t− s)‖‖f(s,W (s))‖ds

≤ C1C2M0‖L‖

[

‖v0‖q +
a1−α

Γ(2− α)
(k2 + ‖u0‖q)

]

+
afαC1MqΓ(2− q)

Γ(1 + α(1− q))

∫ t

0

(t− s)−qα+α−1(1 + r‖u‖q)ds

≤ C1C2M0‖L‖

[

‖v0‖q +
a1−α

Γ(2− α)
(k2 + ‖u0‖q)

]

+
afαC1MqΓ(2− q)

Γ(1 + α(1− q))

aα(1−q)

α(1 − q)
+
afαrC1MqΓ(2− q)

Γ(1 + α(1 − q))

∫ t

0

(t− s)−qα+α−1‖u‖qds.

11



Based on the well known singular version of Gronwall inequality, we can deduce that there exists
a constant R > 0 such that ‖u‖∞ ≤ R. Thus, ∆ is a bounded subset of Ωq. By Leray–Schauder
fixed point theory, P has a fixed point in Ωq. Consequently, system (1)–(2) has at least one mild
solution u on J .

Theorem 2. Mild solution u(·) of system (1)–(2) is unique.

Proof. Let u∗(·) be another mild solution of system (1)–(2) with Sobolev–fractional nonlocal initial

value M−1
[

v0 +
1

Γ(1−α)

∫ t

0
[u0+h(u(s))]

(t−s)α ds
]

. It is not difficult to verify that there exists a constant

ρ > 0 such that ‖u‖q, ‖u∗‖q ≤ ρ. From

‖u(t)− u∗(t)‖q ≤

∥

∥

∥

∥

Sα(t)LM
−1

{

[v0 − v∗0 ] +
1

Γ(1− α)

∫ t

0

[u0 − u∗0] + [h(u)− h(u∗)]

(t− s)α
ds

}∥

∥

∥

∥

q

+

∫ t

0

(t− s)α−1‖Tα(t− s)[f(s,W (s))− f(s,W ∗(s))]‖qds,

we get

‖u(t)− u∗‖q ≤ C1C2M0‖L‖

{

‖v0 − v∗0‖q +
1

Γ(1− α)

∫ t

0

‖u0 − u∗0‖q + k1‖u(s)− u∗(s)‖q
(t− s)α

ds

}

+ Lf (ρ)

r
∑

i=1

mi(t)
αC1MqΓ(2− q)

Γ(1 + α(1 − q))

∫ t

0

(t− s)−qα+α−1‖u(s)− u∗(s)‖qds.

Again, by the singular version of Gronwall’s inequality, there exists a constant R∗ > 0 such that

‖u(t)− u∗(t)‖q ≤ C1C2M0‖L‖R
∗‖u0 − u∗0‖q,

which gives the uniqueness of u. Thus, system (1)–(2) has a unique mild solution on J .

4 Optimal multi-integral controls

Let Z be another separable reflexive Banach space from which the controls u1, . . . , uk take their
values. We denote by Vf (Z) a class of nonempty closed and convex subsets of Z. The multifunction
ω : J → Vf (Z) is measurable, ω(·) ⊂ Λ, where Λ is a bounded set of Z. The admissible control
set is Uad = Sp

ω = {uj ∈ Lp(Λ)|uj(t) ∈ ω(t) a.e.}, j = 1, k, 1 < p <∞. Then, Uad 6= ∅ [43].
Consider the following Sobolev type fractional nonlocal multi-integral-controlled system:

CDα
t [Lu(t)] = Eu(t) + f(t,W (t)) +

∫ t

0

[B1u1(s) + · · ·+ Bkuk(s)]ds, (5)

LD1−α
t [Mu(0)] = u0 + h(u(t)). (6)

Besides the sufficient conditions (F1)–(F5) of the last section, we assume:

(F6) Bj ∈ L∞(J, L(Z,Xq)), which implies that Bjuj ∈ Lp(J,Xq) for all uj ∈ Uad.

Corollary 1. In addition to assumptions of Theorem 1, suppose (F6) holds. For every uj ∈ Uad

and pα(1 − q) > 1, system (5)–(6) has a mild solution corresponding to uj given by

uuj (t) = Sα(t)LM
−1

[

v0 +
1

Γ(1 − α)

∫ t

0

[u0 + h(u(s))]

(t− s)α
ds

]

+

∫ t

0

(t− s)α−1Tα(t− s)

[

f(s,W (s)) +

∫ s

0

[B1u1(η) + · · ·+ Bkuk(η)]dη

]

ds.
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Proof. Based on our existence result (Theorem 1), it is required to check the term containing
multi-integral controls. Let us consider

ϕ(t) =

∫ t

0

(t− s)α−1Tα(t− s)

[
∫ s

0

[B1u1(η) + · · ·+ Bkuk(η)]dη

]

ds.

Using Lemma 2 (d) and Hölder inequality, we have

‖ϕ(t)‖q ≤

∥

∥

∥

∥

∫ t

0

(t− s)α−1Tα(t− s)

∫ s

0

[B1u1(η) + · · ·+ Bkuk(η)]dηds

∥

∥

∥

∥

q

≤

∫ t

0

(t− s)α−1‖AqTα(t− s)‖[‖B1u1(s)‖a+ · · ·+ ‖Bkuk(s)‖a]ds

≤
αaC1MqΓ(2− q)

Γ(1 + α(1 − q))

[

‖B1‖∞

∫ t

0

(t− s)−qα+α−1‖u1(s)‖Zds

+ · · ·+ ‖Bk‖∞

∫ t

0

(t− s)−qα+α−1‖uk(s)‖Zds

]

≤
αaC1MqΓ(2− q)

Γ(1 + α(1 − q))

[

‖B1‖∞

(
∫ t

0

(t− s)
p

p−1 (−qα+α−1)ds

)

p−1
p
(
∫ t

0

‖u1(s)‖
p
Zds

)

1
p

+ · · ·+ ‖Bk‖∞

(
∫ t

0

(t− s)
p

p−1 (−qα+α−1)ds

)

p−1
p
(
∫ t

0

‖uk(s)‖
p
Zds

)

1
p
]

≤
αaC1MqΓ(2− q)

Γ(1 + α(1 − q))

[

‖B1‖∞

(

p− 1

pα(1 − q)− 1

)

p−1
p

a
pα(1−q)−1

p−1 ‖u1‖Lp(J,Z)

+ · · ·+ ‖Bk‖∞

(

p− 1

pα(1 − q)− 1

)

p−1
p

a
pα(1−q)−1

p−1 ‖uk‖Lp(J,Z)

]

,

where ‖B1‖∞, . . . , ‖Bk‖∞ are the norm of operators B1, . . . ,Bk, respectively, in the Banach space
L∞(J, L(Z,Xq)). Thus,

∥

∥

∥

∥

(t− s)α−1Tα(t− s)

∫ s

0

[B1u1(η) + · · ·+ Bkuk(η)]dη

∥

∥

∥

∥

q

is Lebesgue integrable with respect to s ∈ [0, t] for all t ∈ J . It follows from Lemma 4 that

(t− s)α−1Tα(t− s)

∫ s

0

[B1u1(η) + · · ·+ Bkuk(η)]dη

is a Bochner integral with respect to s ∈ [0, t] for all t ∈ J . Hence, ϕ(·) ∈ Ωq. The required result
follows from Theorem 1.

Furthermore, let us now assume

(F7) The functional L : J ×Xq × Zk → R ∪ {∞} is Borel measurable.

(F8) L(t, ·, . . . , ·) is sequentially lower semicontinuous on Xq × Zk for almost all t ∈ J .

(F9) L(t, u, ·, . . . , ·) is convex on Zk for each u ∈ Xq and almost all t ∈ J .

(F10) There exist constants d ≥ 0, c1, . . . , ck > 0, such that ψ is nonnegative and ψ ∈ L1(J,R)
satisfies

L(t, u, u1, . . . , uk) ≥ ψ(t) + d‖u‖q + c1‖u1‖
p
Z + · · ·+ ck‖uk‖

p
Z .

13



We consider the following Lagrange optimal control problem:
{

Find (u0, u01, . . . , u
0
k) ∈ C(J,Xq)× Uk

ad

such that J (u0, u01, . . . , u
0
k) ≤ J (uu1,...,uk , u1, . . . , uk) for all uj ∈ Uad,

(LP )

where

J (uu1,...,uk , u1, . . . , uk) =

∫ a

0

L(t, uu1,...,uk , u1(t), . . . , uk(t))dt

with uuj denoting the mild solution of system (5)–(6) corresponding to the multi-integral controls
uj ∈ Uad. The following lemma is used to obtain existence of a fractional optimal multi-integral
control (Theorem 3).

Lemma 8. Operators Υj : L
p(J, Z) → Ωq given by















(Υ1u1)(·) =
∫ ·

0

∫ s

0 Tα(· − s)B1u1(η)dηds,
...

(Υ1uk)(·) =
∫ ·

0

∫ s

0
Tα(· − s)Bkuk(η)dηds,

where pα(1 − q) > 1 and j = 1, k, are strongly continuous.

Proof. Suppose that {unj }j=1,k ⊆ Lp(J, Z) are bounded. Define Θj,n(t) = (Υju
n
j )(t), t ∈ J .

Similarly to the proof of Corollary 1, we can conclude that for any fixed t ∈ J and pα(1− q) > 1,
‖Θj,n(t)‖q, j = 1, k, are bounded. By Lemma 2, it is easy to verify that Θj,n(t), j = 1, k, are
compact in Xq and are also equicontinuous. According to the Ascoli–Arzela theorem, {Θj,n(t)}
are relatively compact in Ωq. Clearly, Υj, j = 1, k, are linear and continuous. Hence, Υj are
strongly continuous operators (see [43, p. 597]).

Now we are in position to give the following result on existence of optimal multi-integral
controls for the Lagrange problem (LP ).

Theorem 3. If the assumptions (F1)–(F10) hold, then the Lagrange problem (LP ) admits at least
one optimal multi-integral pair.

Proof. Assume that inf{J (uu1,...,uk , u1, . . . , uk)|u
uj ∈ Uad} = ǫ < +∞. Using assumptions (F7)–

(F10), we have ǫ > −∞. By definition of infimum, there exists a minimizing feasible multi-pair
{(um, um1 , . . . , u

m
k )} ⊂ Uad sequence, where Uad = {(u, u1, . . . , uk)|u is a mild solution of system

(5)–(6) corresponding to u1, . . . , uk ∈ Uad}, such that J (um, um1 , . . . , u
m
k ) → ǫ as m→ +∞. Since

{(um1 , . . . , u
m
k )} ⊆ Uad, m = 1, 2, . . . , {(um1 , . . . , u

m
k )} is bounded in Lp(J, Z) and there exists a

subsequence, still denoted by {(um1 , . . . , u
m
k )}, u01, . . . , u

0
k ∈ Lp(J, Z), such that

(um1 , . . . , u
m
k )

weakly
−→

(

u
0
1, . . . , u

0
k

)

in Lp(J, Z). Since Uad is closed and convex, by Marzur lemma u
0
1, . . . , u

0
k ∈ Uad. Suppose u

m(u0)
is the mild solution of system (5)–(6) corresponding to u

m
1 (u01), . . ., u

m
k (u0k). Functions u

m and u0

satisfy, respectively, the following integral equations:

um(t) = Sα(t)LM
−1

[

v0 +
1

Γ(1 − α)

∫ t

0

[u0 + h(um(s))]

(t− s)α
ds

]

+

∫ t

0

(t− s)α−1Tα(t− s)

[

f(s,Wm(s)) +

∫ s

0

[B1u
m
1 (η) + · · ·+ Bku

m
k (η)]dη

]

ds,

u0(t) = Sα(t)LM
−1

[

v0 +
1

Γ(1− α)

∫ t

0

[u0 + h(u0(s))]

(t− s)α
ds

]

+

∫ t

0

(t− s)α−1Tα(t− s)

[

f(s,W 0(s)) +

∫ s

0

[B1u
0
1(η) + · · ·+ Bku

0
k(η)]dη

]

ds.
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It follows from the boundedness of {um1 }, . . . , {umk }, {u01}, . . . , {u
0
k} and Theorem 1 that there exists

a positive number ρ such that ‖um‖∞, ‖u0‖∞ ≤ ρ. For t ∈ J , we have

‖um(t)− u0(t)‖q ≤ ‖ξ(1)m (t)‖q + ‖ξ(2)m (t)‖q + ‖ξ(3)m (t)‖q + · · ·+ ‖ξ(k+2)
m (t)‖q,

where

ξ(1)m (t) = Sα(t)LM
−1 1

Γ(1− α)

∫ t

0

[h(um(s))− h(u0(s))]

(t− s)α
ds,

ξ(2)m (t) =

∫ t

0

(t− s)α−1Tα(t− s)[f(s,Wm(s))− f(s,W 0(s))]ds,

ξ(3)m (t) =

∫ t

0

(t− s)α−1Tα(t− s)

∫ s

0

B1[u
m
1 (η)− u

0
1(η)]dηds,

...

ξ(k+2)
m (t) =

∫ t

0

(t− s)α−1Tα(t− s)

∫ s

0

Bk[u
m
k (η) − u

0
k(η)]dηds.

The assumption (F5) gives

‖ξ(1)m (t)‖q ≤ C1C2M0k1‖L‖
a1−α

Γ(2− α)
‖um − u0‖q.

Using Lemma 2 (d) and (F3),

‖ξ(2)m (t)‖q ≤ Lf (ρ)

r
∑

i=1

mi(t)
αC1MqΓ(2− q)

Γ(1 + α(1 − q))

∫ t

0

(t− s)−qα+α−1‖um(s)− u0(s)‖qds.

From Lemma 8, we get

ξ(j+2)
m (t)

strongly
−→ 0 in Xq as m→ ∞, j = 1, k.

Thus,

‖um(t)− u0(t)‖q ≤
k
∑

j=1

‖ξ(j+2)
m (t)‖q + C1C2M0k1‖L‖

a1−α

Γ(2− α)
‖um − u0‖q

+ Lf (ρ)

r
∑

i=1

mi(t)
αC1MqΓ(2− q)

Γ(1 + α(1 − q))

∫ t

0

(t− s)−qα+α−1‖um(s)− u0(s)‖qds.

By virtue of the singular version of Gronwall’s inequality, there exists M∗ > 0 such that

‖um(t)− u0(t)‖q ≤M∗

k
∑

j=1

‖ξ(j+2)
m (t)‖q,

which yields that
um → u0 in C(J,Xq) as m→ ∞.

Because C(J,Xq) →֒ L1(J,Xq), using the assumptions (F7)–(F10) and Balder’s theorem, we obtain
that

ǫ = lim
m→∞

∫ a

0

L(t, um(t), um1 (t), . . . , umk (t))dt

≥

∫ a

0

L(t, u0(t), u01(t), . . . , u
0
k(t))dt

= J (u0, u01, . . . , u
0
k)

≥ ǫ.

This shows that J attains its minimum at u01, . . . , u
0
k ∈ Uad.
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5 An example

Consider the following fractional nonlocal multi-controlled system of Sobolev type:

∂α

∂tα

[

u(t, x)− uxx(t, x)

]

+
∂2

∂x2
u(t, x) =

∫ t

0

[u1(s, x) + · · ·+ uk(s, x)]ds + F (t,Dr
xu(x, t)), (7)

u(0, x) =
∂2

∂x2

[

v0(x) +

m
∑

η=1

cη
Γ(1 − α)

∫ tη

0

u0(x) + u(sη, x)

(tη − sη)α
dsη

]

, x ∈ [0, π], (8)

u(t, 0) = u(t, π) = 0, 0 < t ≤ 1, (9)

where 0 < α ≤ 1, 0 < t1 < · · · < tm < 1 and cη are positive constants, η = 1, . . . ,m; the functions
u(t)(x) = u(t, x), f(t, ·) = F (t, ·),W (t)(x) = Dr

xu(x, t) and h(u(t))(x) =
∑m

η=1 cηu(tη, x). Let us

take Bjuj(t)(x) = uj(t, x), j = 1, k, and the operator Dr
x as follows:

Dr
xu(x, t) =

(

∂xu(x, t), ∂
2
xu(x, t), . . . , ∂

r
xu(x, t)

)

.

Let X = Y = Z = L2[0, π]. Define the operators L, E, and M on domains and ranges contained
in L2[0, π] by Lw = w − w′′, Ew = −w′′ and M−1w = w′′, where the domains D(L), D(E) and
D(M) are given by

{w ∈ X : w,w′ are absolutely continuous, w′′ ∈ X,w(0) = w(π) = 0}.

Then L and E can be written, respectively, as

Lw =

∞
∑

n=1

(1 + n2)(w,wn)wn and Ew =

∞
∑

n=1

−n2(w,wn)wn,

where wn(t) = (
√

2/π) sinnt, n = 1, 2, . . ., is the orthogonal set of eigenfunctions of E. Further-
more, for any w ∈ X , we have

L−1w =

∞
∑

n=1

1

1 + n2
(w,wn)wn, EL−1w =

∞
∑

n=1

−n2

1 + n2
(w,wn)wn,

and

Q(t)x =

∞
∑

n=1

exp

(

−n2t

1 + n2

)

(w,wn)wn.

It is easy to see that L−1 is compact, bounded, with ‖L−1‖ ≤ 1, and A = EL−1 generates the above
strongly continuous semigroup Q(t) on L2[0, π] with ‖Q(t)‖ ≤ e−t ≤ 1. If Bj = 0, j = 1, k, then,
with the above choices, system (7)–(9) can be written in the form (1)–(2). Therefore, Theorems 1
and 2 can be applied to guarantee existence and uniqueness of a mild solution to (7)–(9).

Let the admissible control set be

Uad =







uj ∈ Z |
k
∑

j=1

∫ t

0

‖uj(s, x)‖L2([0,1],Z)ds ≤ 1







.

Choose α = 4
5 , p = 2 and q = 1

4 . Find the controls u1(t, x), . . . , uk(t, x) that minimize the functional

J (u, u1, . . . , uk) =

∫ 1

0

∫ π

0

|u(t, x)|2dxdt+
k
∑

j=1

∫ 1

0

∫ t

0

∫ π

0

|uj(s, x)|
2dxdsdt

subject to system (7)–(9). If Bjuj(t)(x) = uj(t, x), j = 1, k, then system (7)–(9) can be trans-
formed into (5)–(6) with the cost function

J (u1, . . . , uk) =

∫ 1

0

[

‖u(t)‖2 +

∫ t

0

{‖u1(s)‖
2
Z + · · ·+ ‖uk(s)‖

2
Z}ds

]

dt.

We can check that αq = 4
5 × 1

4 = 1
5 < 1 and pα(1 − q) = 2 4

5
3
4 = 6

5 > 1. Then all assumptions of
Theorem 3 are satisfied and we conclude that the optimal control problem has an optimal pair.
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